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ABSTRACT 
With sustainable development as their overarching goal, Urban Water System managers need to 

take into account all social, economic, technical and environmental facets related to their decisions. 

Decision support systems (DSS) have been used widely for handling such complexity in water 

treatment, having a high level of popularity as academic exercises, although little validation and few 

full-scale implementations have been reported in practice. The objective of this paper is to make a 

review of artificial intelligence methods (mainly machine learning) applied to UWSs and to 

investigate the integration of these methods into DSS. The results of the review show that artificial 

neural networks is the most popular method in the water and wastewater sectors followed by 

clustering. Bayesian networks and swarm intelligence/optimization have shown a spectacular 

increase in the water sector in the last 10 years, being the latest techniques to be incorporated but 

overtaking case-based reasoning. Whereas artificial intelligence applications to the water sector 

focus on modelling, optimization or data mining for knowledge generation, their encapsulation into 

functional DSS is not fully explored. We believe that the reason behind the misuse of Artificial 

intelligence methods in DSS is not related to the methods themselves but academic level and have 

not made it into practice probably due to the lack of an association between the fields of water 

engineering and computer engineering. 
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1  INTRODUCTION 

1.1 THE URBAN WATER SYSTEM 
The urban water system constitutes part of the natural water cycle. Water is extracted from natural 

or artificial reservoirs (surface water, groundwater, etc.) and is treated for use and consumption. It is 

then transported to an urban agglomeration - an urban area where population and/or economic 

activities are sufficiently concentrated for water to be conducted to and collected from. After its 

various uses (municipal, industrial, agricultural), it is collected again through a system of conduits 

(sewer system) responsible for the transportation of wastewater to a treatment facility. At the 

wastewater treatment plant (WWTP) it is treated and then either reused or discharged back to the 

environment, most commonly a receiving water body. As [1,2] explain, and [3,4] exemplify,  the 

primary concerns of UWS have evolved through the years. For example at wastewater side, they 

evolved from being primarily about sanitation and hygiene (early 20th century) to focussing on water 

pollution and the removal of organic matter and nutrients (mid - late 20th century) to the removal of 

emerging pollutants and other concerns (late 20th - present). As we advance our understanding of 

the complicated interconnected relationships between society and environment the goals of water 

management also become more complex and multifaceted: for example, the goal of simply 

removing nutrients during wastewater treatment is now considered out-dated, other environmental 

emissions of treatment are also now taken into account (e.g. greenhouse gas emissions) and the 

ecological status of water bodies is accounted for in more detail. 

There is great eco-toxicological concern regarding the presence of various emerging pollutants, such 

as nanomaterials and persistent chemical compounds found at trace concentrations (namely micro-

pollutants) in our water bodies. Excessive nutrient discharge is not only a main cause of 

eutrophication but also a waste of resources; especially with regards to phosphorus, as phosphate 

rock is a limited and critical raw material. Nutrient recovery is now more feasible with the 

development of new technologies that allow valuable products (such as fertilisers) to be generated 

from wastewater. Wastewater is also a source of organic matter, which can be used for the 

production of biogas, a potent renewable energy source. Efficient recovery of biogas is now possible 

for supplying energy to the WWTP or other uses [5]. These opportunities are increasingly more 

important in the face of increased energy dependency on energy imports and scarce energy 

resources in Europe and beyond. Energy efficiency is a progressively important topic, including in the 

treatment of water and wastewater, in the process of reducing primary energy consumption and 

reducing greenhouse gas emissions. Water resource efficiency also comes in question, especially in 

the Mediterranean region facing dire climate change impacts. Water scarcity is reported in nearly all 

Mediterranean river basin districts. Institutions and governing bodies, including the European Union, 

encourage reclamation for various applications. Besides protecting the quantity and quality of water 

resources, the sustenance of the ecosystems they bear is also of increasing concern. A large number 

of factors put ecosystems at risk in the “anthropocene”. Insufficiently treated discharges are only 

part of the damage, ever-increasing water needs, excessive use of fertilisers and pesticides in 

agriculture, diffuse pollution and urbanisation are some others. Around the world, societies aim to 

restore, maintain and improve ecological status of aquatic ecosystems to ensure the provision of 

goods and service that contribute to human well-being. Surface waters provide services for 

recreational activities (swimming, fishing, rowing and other water sports); agricultural practices, 

such as irrigation, benefit from good quality of surface and groundwater; the industrial sector also 



 

 

benefits from water of sufficient quality to be used for industrial practices. Healthy aquatic 

ecosystems do not only benefit the direct users of water services, but also everyone that uses a 

service indirectly (e.g. consumer of agricultural products) or merely values the existence of the 

service (e.g. knowing that beautiful natural environment is in proximity). Improved qualities for 

aquatic ecosystems and the associated increase of biodiversity and environmental assets could 

therefore have important socio-economic benefits, including for public health and resilience towards 

future environmental pressures [6].  

1.2 UWS AND THE PILLARS OF SUSTAINABILITY 
These concerns and challenges are mirroring a general socio-political concern that took hold in the 

late 20th century. Various United Nations agencies, along with many individual nations, local 

governments and corporations have adopted sustainable development as an overarching goal of all 

economic and social development [7]. Decisions based on economic, social and environmental 

conditions of the present and the future will accordingly be necessary across sectors, including the 

UWS. A new metric – that of sustainable development – will need to be adopted [5] and the UWS 

will need to measure up to new standards of economic, social and environmental sustainability. This 

does not just entail impacts of the UWS to the three pillars of sustainability, but equally the impacts 

of changes in these three pillars to the system.  

Article 9 of the Water Framework Directive (WFD) states that “Member States shall take account of 

the principle of recovery of the costs of water services, including environmental and resource costs, 

[…] and in accordance in particular with the polluter pays principle.” Full cost recovery of water and 

sanitation services is a major component of the strive towards improving UWSs and rehabilitating 

the receiving water bodies [8]. Full cost recovery implies the accounting of externalities such as 

water pollution and over-extraction. Failure to recognise the total value of water assets has been 

identified as one of the factors that can set in motion a vicious cycle of underfunding in UWS 

infrastructure and management activities [9]. Besides full cost recovery, efficient use of resources is 

also necessary in times of economic instability, such as the economic crisis experienced in Europe 

since 2008. With limited financial resources, integrated system analyses are necessary to work out 

the UWS interventions that would offer the best “value-for-money”.  

The urban water cycle is large in many aspects, not least in terms of geography. Water sanitation, 

water supply and watershed authorities, environmental agencies, municipalities as well as the 

industrial and agricultural sectors all form a part of the urban water cycle. Involvement of these 

stakeholders and integration of their concerns and interests are necessities for a sustainable UWS 

management. The contrasting visions and priorities between these stakeholders make their 

integration into the decision-making process a complex endeavour. For example, public priorities 

might lie in other aspects of governance or other types of environmental pollution. How is the 

administration meant to allocate funds for UWS when budget is restricted and the local society 

would rather see other issues addressed?  

Perhaps what really makes this situation an incredibly complicated problem is that there is no 

panacean answer; no solution can be the most socially acceptable, most environmentally beneficial 

and have the highest financial return. A trade-off is almost always established and some of the 

aspects need to be compromised – preferably with the end-goal of sustainable development. The 

trade-off relationships are certainly not linear and the variables are many. Dynamic elements of 



 

 

socio–ecological systems, such as biophysical relationships, human preferences and behaviour, and 

feedbacks between them are poorly understood [10]. There is no “one fits all” solution (or rather 

compromise) to be found either; each decision-making challenge is specific to its characteristics and 

concerns.  

1.3 UNCERTAINTY IN UWSS 
Uncertainty is one of the most important concerns in any type of decision-making. It affects UWSs in 

various ways and undermines their efficacy [11]. In UWS decision-making its presence may have 

formidable consequences when a wrong or simplified picture of the system is perceived. Alas, 

uncertainty is a fact of life and decision makers have indicated more willingness to trust models if 

they are presented to them accompanied by the appropriate uncertainty analyses [12]. This is largely 

due to the liability and responsibility they assume for their decisions. A better understanding of the 

types of uncertainty would also potentially lead to more trust in these tools [11].  

1.4 ADAPTIVE MANAGEMENT – A NEW DECISION-MAKING PARADIGM 
Authors have remarked on the fact that stationarity and its associated implications for UWS 

management are dwindled under the weight of rapid and unpredictable changes [13-14].  This 

suggests that current static design and upgrading practice is unsuitable as it is based on the premise 

that the future can be effectively predicted [13,15] . Unless current management regimes undergo a 

transition towards a more adaptive approach sustainable management of water and wastewater 

resources cannot be realised [16-18] . Adaptive management relies strongly on a decision-making 

process that is participatory and has active stakeholder involvement. Stakeholder participation 

allows for the inclusion of a wide range of different perspectives rather than decision-making by 

specialists and experts in isolation – something that is particularly important in early design and 

planning stages [19]. There is also an apparent gap between experts and/or researchers and 

stakeholders and/or policy makers, which often leads to an inadequate application of models and 

other support tools in the decision-making process [20]. Early involvement of stakeholders in the 

development and application of support tools can help bridge that gap and spread the application of 

model-based tools in the decision-making process [21]. In terms of the adaptive capacity of a 

system, a broad range of perspectives can facilitate adaptation by recognising new challenges and 

needs for institutional change [19]. For these reasons, the European Water Framework Directive 

encourages that “stakeholders are invited to contribute actively to the process and thus play a role 

in advising the competent authorities” [22].  

Sections 1.2-1.4 have described a situation of daunting complexity for UWS decision makers. The 

decision making methods necessary should be able to: incorporate various tools and criteria; include 

stakeholder and expert input/knowledge; address uncertainty and decision robustness; and help to 

better understand and predict the behaviour of the system and its processes when deterministic 

modelling is insufficient. Artificial Intelligence (AI) methods present a valuable option in that respect 

and can be coupled with decision support systems (DSS) to help in handling the high level of 

complexity that UWS management requires. The objective of this paper is to make a review of AI 

methods applied to UWSs and to investigate the integration of these methods into DSS. 

  



 

 

2.  TRANSFORMING DATA TO KNOWLEDGE IN THE WATER SECTOR 
Technologies are now available for the conservation of water resources; reduction of water 

consumption, reclamation and reuse of wastewater; the management and extraction of energy from 

the wastewater stream; the recovery of nutrients; the separation of wastewater sources; and not 

least in instrumentation, control and automation. At the same time methods for data processing, 

information processing and decision have advanced significantly [23]. Three main computer science 

research fields are dedicated to the transformation of data to usable knowledge and support 

decisions: i) artificial intelligence (AI), which is a broad term for using either data or knowledge to 

offer solutions to existing problems that require some search or reasoning, ii) machine learning (ML), 

which is a specific area from AI which offers procedures learning from data, and iii) data mining 

(DM), which is an interdisciplinary field to discover patterns in large data sets and subsumes both 

ML, statistical modelling, or visualization disciplines. This review paper focuses on the ML methods 

that are shared between AI and DM research fields (black circle in Figure 1). We found 16074 papers 

on ML applied to water and 1394 applied to wastewater for the period comprised between 1935 

and August 2016.  

 

Figure 1. Number of papers dealing with data mining (DM), artificial intelligence (AI) and machine 

learning (ML) within the water (left part of the bracket) and wastewater sectors (right part of the 

bracket). Based on SCOPUS search (see Appendix). 

 



 

 

 

Figure 2. Number of papers using machine learning (ML) techniques within the water (left) and 

wastewater sectors (right). Based on SCOPUS search. 

The reviewed ML methods are the most popular in the data mining context [24-25], and include 

clustering, artificial neural networks, decision trees & classifiers, swarm intelligence, case-based and 

Bayesian networks (BNs). When looking into the specific methods for ML we see that that artificial 

neural networks (ANN) is the most popular method in the water and wastewater sectors followed by 

clustering (Figure 2). Clustering was first applied to the water sector in the late 60s to enhance 

process understanding; ANN overtook clustering within five years of its first application as there was 

increasing interest in predicting process behaviour (Figure 3). ANN is the most widely accepted DM 

method and is widely used in various areas of water-related research. One of the most widespread 

applications of neutral networks is the modelling of natural and man-made water systems [26]. 

Traditional deterministic models used to enhance process understanding are often over-

parameterized which make them computationally demanding. ANN (together with other data-driven 

models) emerged as an attractive option for prediction and classification in water systems. ANN are 

normally very effective to capture the non-linear relationships that exist between variables in 

complex systems, and can also be applied in situations where insufficient process knowledge is 

available to construct a deterministic model of the system [27]. The principal benefits of such 

methods are their fast execution time (once the ANN has been trained) as compared to traditional 

deterministic dynamic models implemented as ordinary differential equations, and their small 

requirement of prior knowledge. Within the water sector ANN have been applied to model systems, 

to optimize process performance, for data reconciliation and for uncertainty assessment.  



 

 

 

Figure 3. Evolution of reviewed techniques applied to the water sector. A) all methods reviewed 

together; B) only methods with less than 200 papers 

Besides clustering and ANN, classifiers were already applied in the 70s and showed an exponential 

increase after 2000. Decision trees were applied in the early 90s and also increased their visibility in 

the water sector after 2000. BNs and swarm intelligence/optimisation have shown a spectacular 

increase in the water sector, being the latest techniques to be incorporated but overtaking case-

based reasoning. BNs are an increasingly popular method of modelling uncertain and complex 

domains such as ecosystems and environmental management. Bayesian modelling techniques have 

several features that make them useful in many real-life data analysis and management questions 

[28], being the most relevant ones the fact that provide a natural way to handle missing data and 

that they facilitate learning about causal relationships between variables. The reason behind the 

rapid penetration of BNs into the water sector is its simplicity to build them (users are the 

designers), are diagrammatically based (which facilitates communication to people without technical 

abilities) and relatively simple to adapt to new situations. BNs have been applied to water resources 

management (e.g. [29]), ecological modelling (e.g. [30]), public participation in the management of 

water resources (e.g. [31]), urban drainage water quality and quantity modelling (e.g. [32]), and 

wastewater treatment process performance prediction (e.g. [33]). 

 

3. DECISION SUPPORT TOOLS FOR IMPROVED UWS MANAGEMENT 
In this seemingly dire decision-making setting, one must not overlook the fact that the tools and 

methods made available by research and technology are now more advanced and all encompassing 

than ever. The focus of research and technology development to support in the challenges described 

in section 1 is demonstrated by the ever-increasing literature addressing these issues. Figure 4a 

presents the number of documents published per year containing each of the terms along with the 

terms “wastewater” or “water” in the title, abstract and keywords. 



 

 

 

The complexity of the UWSs decision-making however requires that more elaborate approaches 

than the mere application of conventional numerical models [34] . For this purpose integrative 

approaches of expert systems, rule-based systems and other tools also started appearing, giving rise 

to advanced tools (such as environmental decision support systems) for multi-criteria decision-

making [23, 35, 36]. There has been an increased application of DSS in UWS literature: Figure 4a 

presents the results of a search in the Scopus database for articles published per year containing the 

term “decision support” along with the terms “wastewater” or “water” in their title, abstract or 

keywords. Their increased application can be attributed to the multiple benefits they appear to offer 

for UWS management. At higher levels of executive decision-making, DSS offer the ability to 

incorporate qualitative knowledge from different agents; the ability to integrate various tools, 

analyses and metrics; can summarise expertise from different fields (ecology, hydrology, engineering 

and others); facilitate in the communication between scientific outcomes and decision-making; and 

provide easily communicable outcomes. For technical, mid and low level management, DSS can 

support decision-making by incorporating various monitoring technologies (e.g. data acquisition, 

data validation and analysis); integrating expert knowledge with models and other tools; providing 

both online and offline responses; helping the user to formulate and diagnose the problem. Given 

this magnitude of abilities, DSS can solve problems of high complexity; can cope with situations 

where experience is essential for finding a solution; reduce the time need to identify the problem 

and make a decision; and improve the consistency, quality and argumentation of decisions [37]. This 

approach to decision support is conducive to effective decision-making for sustainable development 

as advocated by authors [5,38,39]  due to the complexity and multi-disciplinary nature of the issues 

(e.g. society, policy, operation, environment, finance) (as detailed in Section 1.2).  

ML methods can be used to build DSS. Figure 5 shows that out of all journal papers in the water 

sector that deal with ML methods (almost 50,000) only about 2,500 (a 5%) also deal with decision or 

planning. Going into detail to different research fields related to water (wastewater, drinking water, 

urban drainage, rivers, and agriculture), the same observation applies. In the specific case of 

wastewater treatment only 209 papers link ML methods with DSS. Whereas ML applications to the 

water sector focus on modelling, optimization or knowledge generation, their encapsulation into 

(a) (b) 

Figure 4 – Results of search through the Scopus database for (a) number of documents published 

for each search term per year; and (b) number of documents published for combinations of terms 



 

 

functional DSS is not fully explored and DSS full potential is not being used. Looking at the literature 

on these terms (and their variations) in the fields of water and wastewater, the extensive focus 

placed on them individually is clearly apparent (Figure 4b). Studies looking at combinations of the 

terms are reduced, despite the strong interrelations of the terms for water and wastewater 

management (as previously elaborated). Searching the Scopus database with all the terms (“(water 

or wastewater”) and sustain* and adapt* and uncertain* and deci* and framework”) results in 41 

documents of which 27 are research articles. None of these 27 articles providing frameworks 

highlight the importance of ML techniques to help developing more robust DSS that can provide 

more qualified decisions. 

 

Figure 5. Number of papers dealing with water per sector that incorporated machine learning (ML) 

methods, with a differentiation on the number of papers that supported decision-making or 

planning. 

We believe that the reason behind the misuse of ML methods in DSS is not related to the methods 

themselves; there are enough methods in the computer engineering field that have shown excellent 

performance to solve environmental problems. This is demonstrated by their ever-increasing use 

(Figure 3). However, most of the methods remain at the academic level and have not made it into 

decision support tools (Figure 5). This would suggest that the limitations are not pertinent to the 

nature of ML methods per se, but rather to how they are incorporated in DSS for non-academic 

applications. Examples of successful methods that made it into practice are ANN and decision trees. 

Non-academic applications rarely provide methodological contributions or published in research 

journals making it difficult to obtain information about them [40].  On the other hand, most AI 

techniques have been adopted by academics who have limited practical experience (mostly using 

toy or benchmark examples). Another limitation that we identified is the lack of an association 

between the fields of water engineering and computer engineering. AI techniques are inherently 

multi-disciplinary; they require numerous often incompatible and non-commensurate pieces of 



 

 

information from various sources to be brought together [41]. Combined with the intricate issues 

facing water and wastewater systems (explained in section 1.2), the application presents a problem 

of formidable complexity. In terms of tools development, authors have suggested that better and 

more user-friendly interfaces, along with simpler tools and more support after product delivery 

would increase the use of AI methods in industry applications [42,43].  

There is a need for more in-depth interactions between water and computer engineers when 

developing methods to guarantee their successful application. It is of paramount importance to train 

researchers and practitioners in both skills. In addition, there multiple techniques and there is little 

guidance for selection of the best AI method for a particular application. It is not always clear which 

methods will perform best in different settings, and how choices made will influence performance. 

Moreover, good practices for utilisation of AI methods for the water sector is needed as for instance 

the guidelines proposed for BNs in [44]. Finally, increasing computational power is required and as 

more high-resolution data become available, it is necessary to develop and use big data tools (such 

as distributed databases, massively parallel processing, and cloud computing) for effective and 

efficient searching, retrieving, analysis, and integration [45]. 

   

4. CONCLUSIONS 
All social, economic, technical and environmental facets related to UWS management need to be 

taken into account by decision-makers. DSS can be major aids when handling such complexity. In this 

study we looked into the extent of the application of artificial intelligence methods applied to UWSs 

and their integration into DSS. 

 When looking into the specific methods for machine learning used in data mining we see 

that artificial neural networks is the most popular method in the water and wastewater 

sectors followed by clustering; 

 Only 5% of the journal papers in the water sector that deal with machine learning methods, 

also deal with decision or planning; 

 The encapsulation of machine learning methods into functional DSS is not fully explored 

 We believe that the reason behind the misuse of machine learning methods in practical 

applications of DSS is not pertinent to the nature of the methods per se, but because of the 

following reasons:  

o the lack of an association between the fields of water engineering and computer 

engineering; 

o most machine learning techniques have been adopted by academics with limited 

practical experience; 

o machine learning techniques are inherently multi-disciplinary and combined with 

the intricate issues facing water and wastewater systems the applications present 

problems of great complexity; 

o better and more user-friendly interfaces, simpler tools and more support after 

product delivery are necessary. 
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6. APPENDIX 

SCOPUS research queries to build Figure 1. 

A) To build Figure 1 (left part of the bracket) 
a. (TITLE-ABS-KEY(water) OR TITLE-ABS-KEY(wastewater)) AND (TITLE-ABS-KEY("machine learning") OR TITLE-

ABS-KEY("neural network") OR TITLE-ABS-KEY(clustering) OR TITLE-ABS-KEY("decision tree") OR TITLE-ABS-

KEY(classifier) OR TITLE-ABS-KEY("swarm intelligence") OR TITLE-ABS-KEY("swarm optimization") OR TITLE-

ABS-KEY("case-based") OR TITLE-ABS-KEY("bayesian network")) AND ( LIMIT-TO(DOCTYPE,"ar" ) OR LIMIT-

TO(DOCTYPE,"re" ) OR LIMIT-TO(DOCTYPE,"ip" ) ) 

b. (TITLE-ABS-KEY(water) OR TITLE-ABS-KEY(wastewater)) AND (TITLE-ABS-KEY("generalized linear models") OR 

TITLE-ABS-KEY("ANCOVA") OR TITLE-ABS-KEY("ANOVA") OR TITLE-ABS-KEY("time series") OR TITLE-ABS-

KEY("discriminant analysis") OR TITLE-ABS-KEY("regression") OR TITLE-ABS-KEY("principal component") OR 

TITLE-ABS-KEY("correspondence analysis") OR TITLE-ABS-KEY("factorial method") OR TITLE-ABS-KEY("data 

mining") OR TITLE-ABS-KEY("machine learning") OR TITLE-ABS-KEY("multi agent")  OR TITLE-ABS-

KEY("knowledge-based") OR TITLE-ABS-KEY("neural network") OR TITLE-ABS-KEY(clustering) OR TITLE-ABS-

KEY("decision tree") OR TITLE-ABS-KEY(classifier) OR TITLE-ABS-KEY("swarm intelligence") OR TITLE-ABS-

KEY("swarm optimization") OR TITLE-ABS-KEY("case-based") OR TITLE-ABS-KEY("bayesian network")) AND ( 

LIMIT-TO(DOCTYPE,"ar" ) OR LIMIT-TO(DOCTYPE,"re" ) OR LIMIT-TO(DOCTYPE,"ip" ) ) 

c. (TITLE-ABS-KEY(water) OR TITLE-ABS-KEY(wastewater)) AND (TITLE-ABS-KEY("automatic reasoning") OR 

TITLE-ABS-KEY("wet semantics") OR TITLE-ABS-KEY("sentiment analysis") OR TITLE-ABS-KEY("natural 

language processing") OR TITLE-ABS-KEY("agent-based") OR TITLE-ABS-KEY("machine learning") OR TITLE-

ABS-KEY("multi agent") OR TITLE-ABS-KEY("artificial intelligence") OR TITLE-ABS-KEY("knowledge-based") OR 

TITLE-ABS-KEY("neural network") OR TITLE-ABS-KEY(clustering) OR TITLE-ABS-KEY("decision tree") OR TITLE-

ABS-KEY(classifier) OR TITLE-ABS-KEY("swarm intelligence") OR TITLE-ABS-KEY("swarm optimization") OR 

TITLE-ABS-KEY("case-based") OR TITLE-ABS-KEY("bayesian network")) AND ( LIMIT-TO(DOCTYPE,"ar" ) OR 

LIMIT-TO(DOCTYPE,"re" ) OR LIMIT-TO(DOCTYPE,"ip" ) ) 

B) To build Figure 1 (right part of the bracket) 
a. (TITLE-ABS-KEY(sewer) OR TITLE-ABS-KEY(wastewater) OR TITLE-ABS-KEY(“waste water”) OR TITLE-ABS-

KEY(sewage))  AND (TITLE-ABS-KEY("machine learning") OR TITLE-ABS-KEY("neural network") OR TITLE-ABS-

KEY(clustering) OR TITLE-ABS-KEY("decision tree") OR TITLE-ABS-KEY(classifier) OR TITLE-ABS-KEY("swarm 

intelligence") OR TITLE-ABS-KEY("swarm optimization") OR TITLE-ABS-KEY("case-based") OR TITLE-ABS-

KEY("bayesian network")) AND ( LIMIT-TO(DOCTYPE,"ar" ) OR LIMIT-TO(DOCTYPE,"re" ) OR LIMIT-

TO(DOCTYPE,"ip" ) )  

b. (TITLE-ABS-KEY(sewer) OR TITLE-ABS-KEY(wastewater) OR TITLE-ABS-KEY(“waste water”) OR TITLE-ABS-

KEY(sewage)) AND (TITLE-ABS-KEY("generalized linear models") OR TITLE-ABS-KEY("ANCOVA") OR TITLE-

ABS-KEY("ANOVA") OR TITLE-ABS-KEY("time series") OR TITLE-ABS-KEY("discriminant analysis") OR TITLE-

ABS-KEY("regression") OR TITLE-ABS-KEY("principal component") OR TITLE-ABS-KEY("correspondence 

analysis") OR TITLE-ABS-KEY("factorial method") OR TITLE-ABS-KEY("data mining") OR TITLE-ABS-

KEY("machine learning") OR TITLE-ABS-KEY("multi agent")  OR TITLE-ABS-KEY("knowledge-based") OR TITLE-

ABS-KEY("neural network") OR TITLE-ABS-KEY(clustering) OR TITLE-ABS-KEY("decision tree") OR TITLE-ABS-

KEY(classifier) OR TITLE-ABS-KEY("swarm intelligence") OR TITLE-ABS-KEY("swarm optimization") OR TITLE-



 

 

ABS-KEY("case-based") OR TITLE-ABS-KEY("bayesian network")) AND ( LIMIT-TO(DOCTYPE,"ar" ) OR LIMIT-

TO(DOCTYPE,"re" ) OR LIMIT-TO(DOCTYPE,"ip" ) )   

c. (TITLE-ABS-KEY(sewer) OR TITLE-ABS-KEY(wastewater) OR TITLE-ABS-KEY(“waste water”) OR TITLE-ABS-

KEY(sewage)) AND (TITLE-ABS-KEY("automatic reasoning") OR TITLE-ABS-KEY("wet semantics") OR TITLE-

ABS-KEY("sentiment analysis") OR TITLE-ABS-KEY("natural language processing") OR TITLE-ABS-KEY("agent-

based") OR TITLE-ABS-KEY("machine learning") OR TITLE-ABS-KEY("multi agent") OR TITLE-ABS-KEY("artificial 

intelligence") OR TITLE-ABS-KEY("knowledge-based") OR TITLE-ABS-KEY("neural network") OR TITLE-ABS-

KEY(clustering) OR TITLE-ABS-KEY("decision tree") OR TITLE-ABS-KEY(classifier) OR TITLE-ABS-KEY("swarm 

intelligence") OR TITLE-ABS-KEY("swarm optimization") OR TITLE-ABS-KEY("case-based") OR TITLE-ABS-

KEY("bayesian network")) AND ( LIMIT-TO(DOCTYPE,"ar" ) OR LIMIT-TO(DOCTYPE,"re" ) OR LIMIT-

TO(DOCTYPE,"ip" ) ) 
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