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Abstract

Studies of relatedness have been crucial in molecular ecology over the last decades.

Good evidence of this is the fact that studies of population structure, evolution of social

behaviours, genetic diversity and quantitative genetics all involve relatedness research.

The main aim of this article was to review the most common graphical methods used in

allele sharing studies for detecting and identifying family relationships. Both IBS- and

IBD-based allele sharing studies are considered. Furthermore, we propose two additional

graphical methods from the field of compositional data analysis: the ternary diagram and

scatterplots of isometric log-ratios of IBS and IBD probabilities. We illustrate all graphical

tools with genetic data from the HGDP-CEPH diversity panel, using mainly 377

microsatellites genotyped for 25 individuals from the Maya population of this panel. We

enhance all graphics with convex hulls obtained by simulation and use these to confirm

the documented relationships. The proposed compositional graphics are shown to be

useful in relatedness research, as they also single out the most prominent related pairs.

The ternary diagram is advocated for its ability to display all three allele sharing probabili-

ties simultaneously. The log-ratio plots are advocated as an attempt to overcome the

problems with the Euclidean distance interpretation in the classical graphics.
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1 | INTRODUCTION

Statistical methods for the analysis of the genetic relationships

between individuals of a population are of great relevance for

molecular ecology (Blouin, 2003). Studies of relatedness are crucial

for studying population structure, evolution of social behaviour,

genetic diversity, quantitative genetics, etc. It is known that the

estimation of quantitative genetic parameters in wild populations

is less biased and more precise if we dispose of pedigree informa-

tion (B�er�enos, Ellis, Pilkington, & Pemberton, 2014). The role of

relatedness for selective breeding is also recognized. Loughnan,

Smith-Keune, Jerry, Beheregaray, and Robinson (2016) recommend

low levels of relatedness and high levels of neutral genetic diver-

sity to form a base population for selective breeding. The

exclusion of duplicated individuals and close relatives is a previous

quality control filter used in studies of population structure

(Gonder et al., 2015). Relatedness estimation is also important for

conservation programmes, and the performance of several estima-

tors has been compared in that context (Oliehoek, Windig, van

Arendonk, & Bijma, 2006). It plays an important role in structuring

societies with fusion–fission dynamics (Croft et al., 2012;

Snyder-Mackler, Alberts, & Bergman, 2014; Spencer et al., 2015),

can bias estimates of allele frequencies (Hansen, Nielsen, & Mens-

berg, 1997) and violates the assumption of independent individuals

in trait-gene association studies (Foulkes, 2009). Thus, statistical

methods that can verify documented or uncover undocumented

family relationships in the database are important tools in

molecular ecology.
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Relatedness investigations can be carried out in an entirely

numerical manner by inspecting estimated IBS (identity by state) and

IBD (identity by descent) probabilities, likelihood ratios or confusion

matrices (Boehnke & Cox, 1997; Epstein, Duren, & Boehnke, 2000).

Graphics greatly facilitate the interpretation of the results of related-

ness studies and are increasingly being used (Abecasis, Chemy,

Cookson, & Cardon, 2001; Pemberton, Wang, Li, & Rosenberg,

2010; Rosenberg, 2006). The main aim of this article was to summa-

rize the state of the art of the graphical methods used in relatedness

research. Relatedness investigations are based on allele sharing, and

we will consider techniques that use IBS alleles as well as those

using IBD alleles. A plot of the means against the standard devia-

tions of the IBS counts is a powerful tool to detect relatedness (Abe-

casis et al., 2001). We explore this tool in detail and establish the

domain of this graphic from a mathematical point of view. Plots of

the proportions of markers with 0, 1 or 2 IBS counts (p0, p1 or p2)

are often used to assess the existence of family relationships (Rosen-

berg, 2006). Nevertheless, if the researcher is interested in identify-

ing the degree of relatedness, plotting the probabilities of sharing 0,

1 or 2 IBD alleles (k0, k1 or k2) is the best strategy. The IBD probabil-

ities depend directly on relatedness and enable us to accurately infer

the type of relationship. In addition to the former graphical methods,

we propose to use graphics from compositional data analysis (CoDA)

for both IBS and IBD allele sharing studies. Due to the fact that the

proportions (p0, p1, p2) and the probabilities (k0, k1, k2) are con-

strained to sum to one, it is possible to apply all the graphical and

analytical CoDA techniques introduced by Aitchison (1986) and

developed posteriorly by Pawlowsky-Glahn and Buccianti (2011).

Two graphics, commonly used in CoDA, are of particular relevance

for relatedness studies: the ternary diagram (also known as a de

Finetti diagram in genetics) and a scatterplot of log-ratios. We show

the ternary diagram to be useful for plotting the proportions of the

IBS counts and for plotting the estimated Cotterman coefficients

(IBD probabilities). Moreover, the theoretical IBD sharing probabili-

ties for the standard family relationships can be used as reference

points in the ternary diagram (Thompson, 2000). Furthermore, the

CoDA techniques allow us to introduce the isometric log-ratio coor-

dinates (ilr-coordinates) of the vectors p = (p0, p1, p2) and

k = (k0, k1, k2), which we can represent in a scatterplot. These ilr-

coordinates allow us to measure the degree of similarity between

two vectors of IBS proportions or IBD probabilities. The graphics we

propose are of universal value and can be used in any relatedness

study that concerns diploid individuals.

The remainder of this article is organized as follows. Section 2

gives an overview of the IBS allele sharing analysis and the graphical

methods used to detect family relationships. Section 3 presents the

basic principles of IBD estimation and the most common graphics

used for relatedness estimation in the IBD context. The former sec-

tions also detail the graphical methods from the field of CoDA used

in IBS-IBD approaches: the ternary diagram and the scatterplot of

log-ratios. Section 4 presents a way to enhance IBS and IBD graph-

ics with convex hulls that express the degree of uncertainty about a

relationship. Section 5 presents a case study with individuals from

the Maya population. Finally, Section 6 summarizes the principal

conclusions of this article and the pros and cons of each graphical

method are discussed.

2 | IBS STUDIES

IBS studies disregard if the alleles for any diploid individual are

derived from a common ancestor. IBS allele sharing concerns the

number of matches between the alleles of the genotypes of two

individuals. Two diploid individuals can share 0 (e.g., A1/A1 and A2/

A2 or A1/A2 and A3/A3), 1 (e.g., A1/A1 and A1/A2 or A1/A2 and

A1/A3) or 2 (e.g., A1/A1 and A1/A1) IBS alleles for a specific genetic

marker, and we will refer to these as IBS counts. To detect family

relationships in a given population of n individuals and m genetic

markers, the number of matches between IBS alleles (the IBS counts)

is considered for each pair of individuals across genetic markers.

That is, we move from a data set of n individuals and m genetic

markers to a data set of
n
2

� �
pairs of individuals with the informa-

tion of the IBS counts for m genetic markers. There are different

ways to deal with this type of data as described below. First, we

focus on the plot of means and standard deviations of the IBS

counts (Abecasis et al., 2001). Second, we detail the plot of the pro-

portions of the IBS counts (Rosenberg, 2006). To conclude this sec-

tion, graphics from CoDA (Aitchison, 1986; Pawlowsky-Glahn &

Buccianti, 2011) are presented.

To illustrate the different IBS graphics that are introduced in this

Section, we use five pairs of individuals with the information of IBS

counts and IBS proportions for 377 microsatellites (see Table 1). The

individuals are from the Maya population which we will analyse in

Section 5. We consider a parent-offspring (PO) pair, a full-sib (FS)

pair, a half-sib (HS), avuncular (AV) or grandparent-grandchild (GG)

pair, a pair of first cousins (FC) and a pair of unrelated individuals

(UN). We discuss the different graphics in the sections below.

2.1 | ð�x; sÞ-plot
Let xijk be the number (0, 1 or 2) of shared IBS alleles between indi-

vidual i and j for the genetic marker k. Abecasis et al. (2001) pro-

posed to compute the mean (�xij) and variance (s2ij ) over K genetic

markers. The plot �xij versus sij reveals characteristic clusters that cor-

respond to the different family relationships for a given population.

The statistics �xij and s2ij are constrained due to the limited num-

ber of outcomes (0, 1 or 2), and we proceed to derive their range of

variation (Figure 1a). As an example, we consider a table with all

possible outcomes of the allele sharing counts (0, 1 or 2) for a set of

100 markers. The rows of this table represent possible pairs of indi-

viduals. There are 3100 combinations (rows), if the order of the out-

comes is considered relevant. However, in terms of means or

standard deviations, the order of the IBS counts (0, 1 or 2) over the

different markers is irrelevant but their multiplicity is important. For

example, a pair of individuals sharing 1 IBS allele for the first marker

and 0 for all other markers will have the same mean and variance as
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a pair of individuals sharing 1 IBS allele for the k-th marker and 0

for all others. Mathematically, the combinations of the IBS counts

for a pair of individuals form a multiset (Stanley, 1997, Section 1.2)

of cardinality m (the number of markers) made of a basic set of car-

dinality k = 3 (the outcomes 0, 1 and 2). The possible number of

(�x; s) pairs in the plot can be no larger than the number of multisets

of cardinality k, where the latter is given by the multiset coefficient

k
m

� �� �
¼ k þm� 1

k

� �
; (1)

Thus, for 100 genetic markers there will be at most

3
100

� �� �
¼ 3þ 100� 1

100

� �
¼ 102

100

� �
¼ 5151 different (�x; s)

pairs. Figure 1a shows the means and standard deviations of the

5151 combinations of IBS counts for 100 genetic markers. The fig-

ure has the shape of an umbrella and represent the domain of the

(�x; s)-plot. For empirical data, it will be impossible to observe a ð�x; sÞ
point outside the umbrella region. It is clear that the mean of the

IBS counts ranges from zero to two. The maximum variance equals

one and is reached when the array of IBS counts has fifty 0 IBS alle-

les and fifty 2 IBS alleles, whereas the minimum variance equals zero

and is reached when the array of IBS counts has either one hundred

0 IBS alleles, one hundred 1 IBS allele or one hundred 2 IBS alleles.

The red points on the right hand curve of the “umbrella” corre-

spond presumably to parent–offspring relationships for having a

mean larger than 1 and low variance. The first point of the curve

TABLE 1 Computations for five pairs of individuals from the Maya population. Mean and standard deviation of IBS counts, proportion of
sharing 0, 1 and 2 IBS alleles (p0, p1, p2) and estimated Cotterman coefficients (k̂0; k̂1; k̂2) are shown

Type of relative

IBS studies IBD studies

Mean
Standard
deviation p0 p1 p2 k̂0 k̂1 k̂2

PO 1.34 0.48 0.002 0.650 0.348 0.009 0.991 0.000

FS 1.32 0.60 0.073 0.532 0.395 0.214 0.617 0.169

HS, AV or GG 1.09 0.64 0.160 0.581 0.259 0.447 0.553 0.000

FC 1.00 0.67 0.225 0.546 0.229 0.657 0.343 0.000

UN 0.86 0.67 0.308 0.526 0.166 0.731 0.269 0.000
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(b) Family relationships
Parent−offspring (PO)

Full-sibs (FS)
Half-sibs (HS), Avuncular (AV)
or Grandparent−grandchild (GG)
First cousins (FC)

Unrelated (UN)F IGURE 1 a. Plot of means and
standard deviations of all possible
combinations of IBS counts for a table of
100 genetic markers. The red curve shows
the pairs of individuals that are parent-
offspring. The green point represents a
monozygotic twin pair or a pair of
duplicated individuals. b. Plot of means
versus standard deviations of the IBS
counts for five pairs from the Maya
population
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with mean equal to 1 IBS allele and standard deviation equal to 0

IBS alleles corresponds to an array of one hundred ones. The second

point of the curve corresponds to an array of 99 markers with 1 IBS

alleles and one marker with 2 IBS alleles, and so on. In other words,

this red curve represents the pairs of individuals who have a mean

larger than or equal to 1 and the smallest standard deviation of all

possible IBS counts. This can be related with the fact that the proba-

bility of sharing 1 IBD allele between a parent-offspring equals 1, as

we will see in the next Section (Table 2). For parent-offspring pairs,

we have that �xij �1 because children inherit at least 1 IBS allele from

their parents. And for monozygotic twins (MZ) or duplicated individ-

uals, we have �xij ¼ 2 and sij = 0 (green point in Figure 1a).

Figure 1b shows the (�x; s) plot for the five Maya pairs in Table 1.

The larger the mean of the IBS counts for any pair of individuals,

the more likely they are to be closely related. The PO pair (red point)

is located on the right hand curve of the umbrella, the FS pair (blue

point) with mean larger than 1 is separated from second- and third-

degree family relationships (violet and gold points respectively),

whereas, the unrelated individuals have the smallest mean (green

point).

2.2 | (pi, pj)-plots

Let xij be the vector of the IBS counts between individual i and j as

large as the number of the genetic markers in the data set. Let p0,

p1 and p2 be the proportions of 0, 1 and 2 IBS alleles, respectively,

for each pair of individuals. Rosenberg (2006) proposed a graphical

method for relatedness research by plotting the proportion of shar-

ing 2 IBS alleles (p2) versus the proportion of sharing 0 IBS alleles

(p0) for all pairs of individuals from a given population. Similarly, Sun

(2012) uses IBS proportions for relatedness research by plotting p1

versus p0. In fact, any combination of the three proportions could be

plotted for relatedness research. We refer to these graphics as (pi,

pj)-plots (for i, j = 0, 1, 2 and i < j) were pi corresponds to the X-axis

of the plot and pj to the Y-axis.

Monozygotic twins (MZ) or duplicated individuals are easy to

identify in the (pi, pj)-plots because they have p2 close to 1. PO pairs

have low values of p0 and are also easy to detect visually because

they are on the p1 or p2-axis. FS usually have large values of p2 and

are separated from unrelated individuals. Second degree and third

degree are more difficult to detect because positions in the plot

depend on the allele frequencies of the population under study.

Figures 2a, b and c show the (p0, p2)-, (p0, p1)- and (p1, p2)-plots for

the five Maya pairs (Table 1). Notice that the distance between pairs

of individuals is not the same in the three plots. For instance, the FS

pair (blue point) is most close to the PO pair (red point) in the

(p0, p2)-plot, but closer to the HS pair (violet point) in the (p0, p1)-

plot. If the distances between pairs of individuals are different

depending on the plotted proportions, then it is not appropriate to

draw conclusions about the family relationship between individuals

from the (pi, pj)-plots.

2.3 | Ternary diagrams

Let p be the vector (p0, p1, p2) of proportions of the IBS counts.

Because the three components of p sum to one (p0 + p1 + p2 = 1),

we can plot the vector p in a ternary diagram. Mathematically, the

set of the vectors of proportions p = (p0, p1, p2) forms the simplex,

S3. Figure 3 shows the ternary diagram for the vectors of propor-

tions for the five Maya pairs (Table 1). The PO pair (red point) is

located on the opposite side of the vertex p0; the FS pair (blue point)

has the largest value for p2 and is the closest to the p2 vertex. The

UN pair (green point), FC pair (gold point) and the HS, AV or GG pair

TABLE 2 Cotterman coefficients for the different type of family
relationship and degree of relatedness

Type of relative Degree k0 k1 k2

Monozygotic twins (MZ) 0 0 0 1

Parent-offspring (PO) 1 0 1 0

Full-siblings (FS) 1 1/4 1/2 1/4

Half-siblings (HS)/avuncular

(AV)/grandchild-grandparent (GG)

2 1/2 1/2 0

First cousins (FC) 3 3/4 1/4 0

Unrelated (UN) ∞ 1 0 0
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0.00 0.25 0.50 0.75 1.00
p0
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p0
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p 1
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p 2

Family relationships
Parent−offspring (PO)

Full-sibs (FS)
Half-sibs (HS), Avuncular (AV)
or Grandparent−grandchild (GG)
First cousins (FC)

Unrelated (UN)

F IGURE 2 (pi, pj)-plots for five individuals from the Maya population. a. Plot of the proportion of sharing 0 IBS alleles (p0) versus the
proportion of sharing 2 IBS alleles (p2): (p0, p2)-plot. b. Plot of the proportion of sharing 0 IBS alleles (p0) versus the proportion of sharing 1 IBS
allele (p1): (p0, p1)-plot. c. Plot of the proportion of sharing 1 IBS allele (p1) versus the proportion of sharing 2 IBS alleles (p2): (p1, p2)-plot
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(violet point) have lower values of p2. The UN pair has the lowest

values for p2 and p1 and is closest to the p0 vertex. The main advan-

tage of this graphical tool is that it represents the three proportions

p0, p1 and p2 simultaneously in contrast to the (pi, pj)-plots that rep-

resent only two of them.

2.4 | ilr-plots

Aitchison (1986) stated that it is not meaningful to interpret the dis-

tances between two vectors of proportions in the ternary diagram

as if we were in an Euclidean space. Aitchison (1986) defines a new

distance based on the log-ratio of the components of the vectors of

proportions. This distance, jointly with the perturbation and power-

ing operators (analogous to translation and scalar multiplication in

the real space, respectively), forms the structure of the simplex in a

two-dimensional metric space (Aitchison, Barcel�o-Vidal, Mart�ın-

Fern�andez, & Pawlowsky-Glahn, 2000; Pawlowsky-Glahn & Buc-

cianti, 2011). Thereby, the vectors of proportions p = (p0, p1, p2) can

be expressed in coordinates using any orthonormal basis defined

in the simplex (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, &

Barcel�o-Vidal, 2003). These coordinates are called isometric log-ratio

coordinates (ilr-coordinates). The distance between two vectors of

proportions is calculated as the Euclidean distance between their ilr-

coordinates. The ilr-coordinates of a vector of proportions depend

on the orthonormal basis used in the simplex. The most commonly

used ilr-coordinates z0, z1 and z2 of a vector of proportions

(p0, p1, p2) are given by

z0¼
z01¼ 1ffiffi

2
p ln p2

p1

� �
z02¼ 1ffiffi

6
p ln p1p2

p20

� �
8<
: z1¼

z11¼ 1ffiffi
2

p ln p2
p0

� �
z12¼ 1ffiffi

6
p ln p0p2

p21

� �
8<
: z2¼

z21¼ 1ffiffi
2

p ln p1
p0

� �
z22¼ 1ffiffi

6
p ln p0p1

p22

� �
8<
: ; (2)

Figures 4a, b and c plot the ilr-coordinates for the five Maya pairs

(Table 1). Notice that the distance between any pair of points is

exactly the same in the three graphics, irrespective of the ilr-

coordinates (z0, z1 and z2) that are plotted. The PO pair (red point)

in Figures 4a–c is an outlying pair. The FS pair (blue point) is also

isolated from pairs of second and third degree of relationships. The

degree of relationship decreases with the z02, z11 and z21 ilr-coordi-

nates (close relatives with a first-degree relationship (PO, FS) have

larger values for these coordinates than second-degree relationships

(HS, AV, GG)).

3 | IBD STUDIES

Studies of relatedness based on IBD alleles are based on the proba-

bilities that a pair of individuals shares 0, 1 or 2 IBD alleles. These

probabilities are commonly referred to as Cotterman’s coefficients

(Cotterman, 1941) and denoted by the vector of proportions k = (k0,

k1, k2). Table 2 shows the values of the Cotterman coefficients for

some standard relationships. Cotterman’s coefficients can be esti-

mated by the maximum-likelihood method (Milligan, 2003; Weir,

Anderson, & Hepler, 2006). The maximum-likelihood estimates reveal

the most likely relationship for a pair given the observed genotype

data. Let R represents a possible relationship between two individu-

als with genotypes G1 and G2, respectively. The likelihood of R is

defined by the probability of observing G1 and G2 given relationship

R. This probability depends on the allele frequencies of the popula-

tion under study and is conditioned by the Cotterman coefficients.

This likelihood is calculated across loci to obtain the most likely val-

ues (estimates) of the Cotterman coefficients. These estimates pro-

vide a first indication of the possible relationship between a pair of

individuals. A hypothesis test is recommended to confirm or refute

this relationship (Garc�ıa-Magari~nos, Egeland, L�opez-de-Ullibarri,

Hjort, & Salas, 2015). More details are explained by Wagner, Creel,

and Kalinowski (2006). Under the assumption of absence of inbreed-

ing, the inequality k21 �4k0k2 applies and constrains the Cotterman

coefficients (Thompson, 1991).
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Family relationships

Parent−offspring (PO)

Full-sibs (FS)
Half-sibs (HS), Avuncular (AV)
or Grandparent−grandchild (GG)
First cousins (FC)

Unrelated (UN)

F IGURE 3 Ternary diagram of the IBS
proportions for five pairs from the Maya
population
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Analogously to the vector of proportions p = (p0, p1, p2) of the

IBS counts, Cotterman’s coefficients also satisfy k0 + k1 + k2 = 1.

We can use the same graphical techniques described for p = (p0, p1,

p2) to identify relatedness from the estimated Cotterman coefficients

k̂. The Cotterman coefficients can be represented in a ðk̂i; k̂jÞ-plot, in
a ternary diagram or in an ilr-plot with the ilr-coordinates z0, z1 and

z2, defined in the Equation (2), substituting pi for k̂i. With the aim of

describing each graphical method used in IBD studies, we compute

maximum-likelihood estimates of the Cotterman coefficients for the

five Maya pairs (Table 1).

3.1 | ðk̂i; k̂jÞ-plots
In the literature, the estimated Cotterman coefficients are plotted in

different ways to identify relatedness. Nembot-Simo, Graham, and

McNeney (2013) use the ðk̂0; k̂1Þ-plot. Similarly, Moltke and

Albrechtsen (2014) use the ðk̂1; k̂2Þ-plot. The remaining possibility,

the ðk̂0; k̂2Þ-plot, could be also considered. Figure 5a shows the plot

for the five Maya pairs (Table 1). The grey curve in the ðk̂0; k̂1Þ-plot
corresponds to the equation k21 ¼ 4k0k2. This curve jointly with the

hypotenuse and the vertical axis delimits the feasible region

k21 �4k0k2. PO pairs are points located on the k1-axis with values

close to 1, FS pairs are located close to the centre of the grey curve

according to the theoretical IBD probabilities (Table 2) and second

and third degree pairs are located around the centre of the hypote-

nuse. UN pairs theoretically have k0 = 1 and are located between

the hypotenuse and the grey curve, near to the vertex k̂0 ¼ 1.

Finally, the origin of the ðk̂0; k̂1Þ-plot is the position for any MZ pair.

As previously shown for IBS studies with the (pi, pj)-plots, only two

of the three Cotterman coefficients are plotted and the relative posi-

tions and distances between points vary depending on the (k̂i; k̂j)-plot

used. For this reason, we propose graphics from CoDA.

3.2 | Ternary diagrams

The theoretical IBD probabilities for the standard family relationships

can be represented in a ternary diagram (Thompson, 2000). These

probabilities form reference points against which the empirical esti-

mates can be compared. Figure 5b shows the ternary diagram for

the estimated Cotterman coefficients for the five Maya pairs

(Table 1). Most pairs in Table 1 are close to their theoretical IBD

probabilities given in Table 2. However, values of k1 are larger than
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expected for the FS, HS, AV and notably, the UN pair (see the Dis-

cussion section). The domain has the shape of an arrowhead inside

the ternary diagram. The curve delimiting the arrowhead from below

corresponds to the inequality k21 �4k0k2.

3.3 | ilr-plots

It has been shown that the maximum-likelihood estimates of the

Cotterman coefficients in the simplex are the same as the estimates

obtained by maximizing the likelihood in ilr-coordinates (Graffelman

& Galv�an-Femen�ıa, 2016). With the aim of establishing reference

zones for the standard family relationships in the ilr space, we com-

pute the maximum-likelihood estimates of the Cotterman coeffi-

cients from the ilr-coordinates defined by the Equation (2) and we

plotted the z1 ¼ ðz11; z12Þ ilr-coordinates as is shown in Figure 6. All

the family relationships have values lower than � ffiffiffiffiffiffiffiffiffiffiffiffið2=3Þp
lnð2Þ for

z12 which corresponds to the grey line in the graph. This line corre-

sponds to the curve shown in the former graphs (Figure 5a and b).

Due to the fact that some Cotterman coefficients equals 0, some of

the (or both) ilr-coordinates tend to +/� infinity. Thus, given that it

is impossible to represent the point, we are limited to indicate the

direction of the infinity in the ilr-plot for each type of family rela-

tionship. Regarding Figure 6, PO pairs have a large variability of val-

ues, either positive or negative for z11; FS have values close to 0 for

z11 and � ffiffiffiffiffiffiffiffiffiffiffiffið2=3Þp
lnð2Þ for z12. HS, AV, GG and FC are located

between PO, FS and UN. UN pairs have negative values of z11 which

correspond to the green point of the left hand. If present, MZ pairs

are points with positive values of z11 located on the right hand side

of the plot.

4 | UNCERTAINTY IN IBS/IBD GRAPHICS

With the previously described graphics, one can try to infer the rela-

tionship of a pair for which the relationship is not documented, or

try to confirm the documented relationships. Such graphical infer-

ence is hampered by the fact that the statistics represented in the

graphs (means and standard deviations of the IBS counts, p0, p1, p2,

k0, k1, k2) are subject to uncertainty. For a given sample, relation-

ships are not represented by points, but by zones. Some insight into

this uncertainty and the corresponding zones can be obtained by

simulation. Ideally, this would require a large sample for which a sub-

set of unrelated individuals can be identified. From these individuals,

by sampling alleles across markers according to Mendelian laws, the

reproductive process can be simulated allowing us to generate artifi-

cial children, leading to artificial PO pairs, FS pairs and artificial pairs

of any other desired relationship. For example to simulate a PO pair

we sample two UN individuals at random without replacement from

the database. From each UN individual, we sample one allele at ran-

dom from each marker and join the alleles to form a child. The pro-

cess of sampling UN pairs and child generation is repeated many

times, generating many artificial PO pairs. We can calculate the IBS/

IBD statistics of the artificial pairs, and add these to the graphics of

the previous sections by representing them individually or with a

convex hull. A convex hull for a given set of points X is the unique

convex polygon whose vertices are points from X and that contains

all points of X (de Berg, van Kreveld, Overmars, & Schwarzkopf,

2000). By generating a large number of artificial pairs and represent-

ing these in the IBS/IBD graphics of interest, the zones correspond-

ing to the different relationships can be approximated. Such

simulations are conditional on the observed allele frequencies and

can quantify the uncertainty in a graphical assessment of the rela-

tionship to some extent. We illustrate this with examples in the next

section where all graphics are enhanced with hulls based on 80 PO,

48 FS, 120 second degree, 36 FC and 1256 UN artificially generated

pairs.

5 | CASE STUDY

We applied all the graphical methods detailed in the previous

sections using empirical data extracted from a world-wide data set

from the Noah A. Rosenberg Research lab at Stanford University

(Rosenberg et al., 2002). This world-wide database is derived from

the Human Genome Diversity Cell Line Panel (HGDP, Cavalli-Sforza,

2005). The genetic information is given by 377 microsatellites geno-

typed for 52 human populations around the world. We used all 25

available individuals of the Maya sample to illustrate all graphical

methods for relatedness research. All the family relationships present

in this sample were reported by Rosenberg (2006). All the Figures
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presented throughout this article are made with the R software (R

Core Team, 2015) using the R packages ggplot2 (Wickham, 2009)

and ggtern (Hamilton, 2015).

5.1 | IBS graphics

Figure 7 shows all IBS graphics for all pairs of the Maya population.

In the ð�x; sÞ-plot (Figure 7a), the points with the smallest standard

deviation close to the grey curve are two PO pairs. The relationships

of first and second degree are the points with a mean above 1. Note

that some pairs of FC are mixed with UN pairs. Figure 7b (the

(p0, p2)-plot) clearly separates the family relationships of first and

second degree from the UN pairs. In the ternary diagram (Figure 7c),

PO pairs are points on the opposite side of the vertex p0, meaning

that the p0 is close to 0. The FS pair is the point closest to the ver-

tex p2, which has the largest p2; the violet points represent the fam-

ily relationships of second degree are separated from the green

points representing UN pairs. In Figure 7d, the first ilr-coordinate

(z11) clearly discriminates first-degree relatives from UN pairs. Pairs

with larger values for z11 are more likely to correspond to related

individuals. PO pairs are extreme outliers because they have p0 val-

ues close to 0 which increase the first coordinate of the correspond-

ing log-ratio. The scatterplot of the log-ratios is seen to produce a

larger degree of separation between FS and PO pairs, and between

first-degree relationship pairs and all other pairs. The convex hulls

for the simulated related pairs in Figure 7 are seen to enclose the

sample estimates of the PO, FS, HS and FC pairs and so confirm the

assigned relationships.

5.2 | IBD graphics

We estimated IBD probabilities for all pairs of the Maya population.

All IBD graphics are shown in Figure 8. The ðk̂0; k̂1Þ-plot (Figure 8a)

separates the first, second and some pairs of third degree of related-

ness. In the ternary diagram of k̂ (Figure 8b), it is easy to identify

PO pairs at the vertex of k̂1, a FS pair close to the barycenter of the

triangle and other family relationships of second degree on the

opposite side of the k̂2 vertex. UN pairs are on the k0 – k1 edge and

tend towards the k0 vertex. Third-degree pairs are mixed with unre-

lated individuals. In the ilr-plot (Figure 8c), the pairs with a close

family relationship tend to have larger values of z11. The family rela-

tionships of the first degree (FS and PO) are located according to

the directions indicated in Figure 6. The ilr-plot clearly separates out

these FS and PO relationships from all other pairs. Notice that Fig-

ure 8a and b show only one pair with a second degree relationship

(the violet point), whereas in Figure 8c, there are two visible violet

pairs. The IBD graphics were also amplified with convex hulls of arti-

ficially generated related pairs to show the approximate expected
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positions for the different relationships. These hulls mainly confirm

the assigned relationships. In ilr-coordinates, PO hulls do not capture

all observed PO pairs (see Discussion).

6 | DISCUSSION

The main aim of this article was to review all graphical methods used

in relatedness research. We have distinguished graphics based on

IBS and IBD allele sharing. Plotting means versus standard deviations

of the IBS counts allows us to detect monozygotic twins (MZ), par-

ent-offspring (PO) and full-sibs (FS) pairs. However, higher degree

relationships are more difficult to detect visually. The distances

between unrelated and related pairs depend on the allele frequency

distribution of the markers under study. The larger the heterozygos-

ity in a population, the larger the distances between related and

unrelated individuals are. A disadvantage of this mean-variance plot

is that there are no fixed reference points for the standard relation-

ships. Such reference points could eventually be found by calculating

expectations of the mean and the variance of the IBS counts. These

do depend on the allele frequency distribution and will therefore

depend on the population that has been sampled, and on the distri-

bution of the allele frequencies in that population. The (pi, pj)-plots

allow easy detection of MZ pairs (or duplicated individuals) because

they have p2 values close to 1, and PO pairs have low values of p0

and are also easy to detect. FS pairs are located between PO pairs

and the pairs with large values of p0. However, it remains hard to

detect relationships of the second and third degree. The (pi, pj)-plots

neither have a fixed reference position for the standard relation-

ships. Moreover, as has been noted in Section 2, the Euclidean dis-

tance between two pairs in a (pi, pj)-plot is not invariant with respect

to the chosen index (0, 1 or 2), for example, is not the same in a

(p0, p1) and a (p0, p2)-plot. ðk̂i; k̂jÞ-plots have, in comparison with

(pi, pj)-plots, the advantage that fixed reference positions for the

standard relationships exist, as given in Table 2. This is of great prac-

tical value when inferring relationships. Moreover, IBD plots are

more reliable for classifying relationships because they show a larger

degree of separation between the different relationships than their
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IBS counterparts. This is clearly visible when one compares Figures 2

with 5a, 3 with 5b, 7b with 8a and 7c with 8b. However, the IBD-

based ðk̂i; k̂jÞ-plots suffer from the same problem as their IBS coun-

terparts: the Euclidean distances between pairs (and reference

points) depend on the index (0, 1 or 2) that is used.

We comment on some peculiarities of the HGDP-CEPH database

analysed in the article. We found the high estimate of k1 (0.27) in

Table 1 for the reported UN pair to be not too unusual for Maya

UN pairs, being the median of k1 0.17 for UN pairs of this popula-

tion. The relatively high k1 estimates are probably to some extent

due to inbreeding, as the South American populations had the lar-

gest medians of k1 for UN pairs. However, for many other less

inbred populations k1 estimates of UN pairs had a large median too,

in the range 0.1–0.2. We suggest the database could be affected by

a certain degree of sample contamination, as this will increase the

number of heterozygote calls, leading to overestimated IBD (Andoh,

Sato, Sakamoto, Yoshida, & Ohtaki, 2010).

We continue with some remarks on the graphics from CoDA

proposed in this article. We advocate the ternary diagram as an

alternative for the (pi, pj)-plots because it clearly shows all three

proportions simultaneously. MZ twins are close to the vertex p2;

PO pairs are easy to identify on the opposite side of the vertex p0.

FS pairs usually have large values of p2 and are separated from

unrelated pairs which have lower values of p2. We also advocate

the ternary diagram for IBD studies for the same reasons: all three

estimated IBD probabilities are represented in one single graph with

all three k̂i axes. The theoretical IBD probabilities (Table 2) are

easily added for use as reference points. The ternary diagram

resolves the indeterminacy of the Euclidean distances between pairs

due to the choice of axes observed above in (pi, pj) and (ki, kj) scat-

terplots. However, the interpretation of Euclidean distances in the

ternary diagram remains a tricky issue, because the simplex is a

constrained space. We note that the Euclidean distance is regarded

inadequate for the comparison of compositions, and for this reason,

we have considered isometric log-ratio coordinates of IBS and IBD

probabilities. The Euclidean distances between the pairs in ilr-coor-

dinates correspond to Aitchison distances between (p0, p1, p2) (or

(k0, k1, k2)) compositions. The Aitchison distance is considered to be

an adequate metric for representing compositions (Pawlowsky-

Glahn, Egozcue, & Tolosana-Delgado, 2015, Chapter 3). Plotting the

ilr-coordinates of the IBS proportions is useful for detecting related

individuals because usually unrelated individuals are concentrated in

a cloud of points and most outlying individuals correspond to

related pairs. Plotting the ilr-coordinates of the estimated Cotter-

man coefficients gives reference zones over the ilr space for the

different relationships (Figure 6). Standard family relationships can

be inferred depending on the values of z11 and z12. UN pairs are

mainly represented in the scatterplot of the isometric log-ratios of

IBD probabilities by a central cloud of points around (�10, �5)

(Figure 8c) but also by points close to the upper limit of the second

ilr-coordinate (� ffiffiffiffiffiffiffiffiffiffiffiffið2=3Þp
lnð2Þ). A small change in the tolerance or

the initial point of the maximization algorithm can greatly influence

the final position of an UN pair. Both IBS- and IBD-based log-ratio

plots show a strong discrimination of PO and FS pairs which typi-

cally appear as outliers in these plots. We also note that all infer-

ence on relationships in all presented graphical methods relies on

the judgement of the analyst, who interprets distances between

points in a graph. Depending on the sample size of the study, the

number of markers used for the genotyping and the distributions of

their allele frequencies, those distances will be subject to some

degree of uncertainty which complicates graphical inference on

relationships. By simulating artificial related pairs using the geno-

types of unrelated pairs of the database, convex hulls for the

expectation of the standard relationships can be obtained, which

are conditional on the observed sample allele frequencies. These

convex hulls assess the degree of uncertainty that can be expected

for the different related pairs and are helpful for confirming puta-

tive relationships. In the present work, the convex hulls are limited

by the fact that they assumed independent markers. This may

explain why some related pairs are outlying with respect to their

corresponding convex hulls. The accuracy of the convex hulls

depends on the sample size, and in particular on the number of UN

individuals in the sample from which it is generated. More accurate

convex hulls may be obtained if linkage disequilibrium is taken into

account and artificial pairs are generated by sampling from haplo-

types instead of by sampling individual markers independently. Con-

vex hulls of PO pairs in ilr-coordinates often do not capture all

observed PO pairs (Figure 8). We suggest this might be due to a

small sample size combined with numerical instability. The position

of a PO pair in ilr-coordinates has a high variability and depends on

the tolerance and initial point used in the maximization of the likeli-

hood (Graffelman & Galv�an-Femen�ıa, 2016). If the sample size is

small, or the number of simulated pairs is small, the PO hull many

not cover the full area compatible with PO pairs. It is worth

remarking that PO and FS convex hulls do not intersect each other

and do not overlap with the rest of the hulls, having a valuable dis-

crimination power (Figures 7 and 8). We think the current simulated

convex hulls are helpful to assess uncertainty but of limited value

and see a clear need for methods of formal statistical inference on

relationships by means of hypothesis testing and confidence regions

(Garc�ıa-Magari~nos et al., 2015).

7 | SOFTWARE

R functions for making the graphics in this manuscript are available

from the Dryad Digital Repository: https://doi.org/10.5061/dryad.

2532d.
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