SORT 40 (2) July-December 2016, 349-374

Log-ratio methods in mixture models for
compositional data sets

M. Comas-Cufi, J.A. Martin-Fernandez and G. Mateu-Figueras

Abstract

When traditional methods are applied to compositional data misleading and incoherent results
could be obtained. Finite mixtures of multivariate distributions are becoming increasingly impor-
tant nowadays. In this paper, traditional strategies to fit a mixture model into compositional data
sets are revisited and the major difficulties are detailed. A new proposal using a mixture of dis-
tributions defined on orthonormal log-ratio coordinates is introduced. A real data set analysis is
presented to illustrate and compare the different methodologies.
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1. Introduction

A finite mixture distribution is a probability distribution with probability density func-
tion (pdf) given by the expression

i fi(-301) 4+ mfi( -3 0k), (1)

where fi,..., fi are pdf’s of distributions with parameters @1, ...,6; respectively, and
my,..., T are positive numbers with ELI m; = 1 (McLachlan and Peel, 2000). The pdfs
fi,-.., fx are typically called mixtures components. In this paper we assume the most
common case where all the mixture components, f;, in a mixture belong to a unique
family (Gaussian, skew-normal, etc) with pdf, f, and parameters 61, ...,6; belonging to
a unique set ©.

According to Scott and Symons (1971) and McLachlan and Peel (2000), finite mix-
ture models provide reasonable results in several multivariate techniques, for instance,
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discriminant analysis, density estimation and model-based clustering (Banfield and Raf-
tery, 1993), even for high-dimensional data (Bouveyron and Brunet-Saumard, 2014).
The Gaussian mixture is the most common model thanks to its theoretical and computa-
tional simplicity (McLachlan and Peel, 2000). However, because of its simplicity, Gaus-
sian mixtures have some significant limitations which triggered the proposal of alterna-
tive models. For example, Student t mixtures were introduced to fit distributions with
heavier tails (Andrews and McNicholas, 2012, Lee and McLachlan, 2014, Lin, 2010);
and skew-normal and skew-t (Azzalini and Capitanio, 1999, 2003) mixtures were pro-
posed to fit asymmetrical distributions (Lee and McLachlan, 2011). Moreover, Browne
and McNicholas (2013) introduced the Generalized Hyperbolic mixture, a more gen-
eral mixture model which includes, either asymptotically or explicitly, different types of
well-known families of mixture models. A crucial point to note is that all these mixture
models were designed for data in real space. For data in a different sample space, there
is a general agreement that other distributions should be used. For example, Bickel and
Scheffer (2004) used multinomial mixture distributions for discrete data in text clas-
sification, and Bouguila (2011) proposed other extensions of multinomial mixture dis-
tributions for count data. Another example is circular data, whose sample space is the
sphere. Banerjee et al. (2005) and Mardia et al. (2007) proposed mixtures of Von Mises
probability distributions, defined for random vectors in the sphere.

Finite mixture modelling for compositional data (CoDa) also needs its own proba-
bility distributions because the CoDa sample space, the simplex .#?, has a particular
algebraic-geometric structure, different from the one in real space (Pawlowsky-Glahn
and Egozcue, 2001). CoDa, also called D-part compositions, are vectors X = (xy,...,Xp)
with all its parts strictly positive and carrying only relative information. A D-part com-
position is usually restricted to sum to a fixed constant x, i.e.

D
> xi=n 2)
i=1

As a convention, it is usual to assume x = 1 for proportions and x = 100 for percentages.
Because the value of & is irrelevant, in this paper we will assume that x = 100 for sim-
plicity. Typical examples of CoDa are frequent in economics (income and expenditure
distributions), medicine (body composition: fat, bone, muscle), the food industry (food
composition: fat, sugar, etc), geochemistry and chemometrics (chemical composition),
ecology (abundance of different species), sociology (time-use surveys), and genetics
(genotype frequency). When a problem is compositional, one assumes that the absolute
value of each part is irrelevant and the interest is focused on the ratios of the parts. Fol-
lowing this idea, Aitchison (1986) introduced the log-ratio methodology to deal with
compositional data. According to this methodology, the compositions are expressed in
terms of log-ratio coordinates and traditional techniques are applied to them. This log-
ratio methodology is coherent with the algebraic-geometric structure of the simplex
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introduced later by Pawlowsky-Glahn and Egozcue (2001). In the literature we find a
large number of papers where a specific methodology for CoDa is developed following
the log-ratio approach (e.g., Martin-Fernandez et al., 2015, Vives-Mestres et al., 2014,
Palarea-Albaladejo et al., 2012).

As in many other statistical methods, log-ratio methodology requires complete data
sets. When measuring concentrations, some elements are often not present in sufficient
concentrations and measuring instruments report them as values below detection limits.
In the literature this issue is also known as the rounded zero problem. The data matrix is
completed by using imputation strategies, replacing non-detected values with reasonable
estimates, and by allowing the computation of log-ratios for applying to any multivariate
data analysis. The interested reader can refer to Palarea-Albaladejo et al. (2014), whose
work encompasses the recent advances in this area.

Another approach to the zero problem consists in transforming the data from the
simplex into the real space using a transformation defined on the zero, for example the
hyperspherical transformation (Neocleous et al., 2011, Wang et al., 2007). Scealy et al.
(2015) recommend the square root transformation because it handles zero components.
While these possibilities can exhibit good results, in practice they lack of geometric
structure (see discussion in Aitchison, 1982). In this work we consider the log-ratio
methodology, which can be seen as a transformation but it also provides a geometry to
the simplex with its own operations.

It is difficult to find in the literature finite mixture models for CoDa that consider
distributions restricted to the simplex. The exception are a few studies (e.g., Albert and
Gupta, 1982, Bouguila et al., 2004, Calif et al., 2011) where finite mixture models us-
ing Dirichlet distributions, a traditional probability distribution in the simplex, are used.
Nevertheless, it is more frequent to ignore the compositional nature of the CoDa data
and to use mixtures models of distributions on real space (e.g., Papageorgiou et al.,
2001). Recently, in practical works, the log-ratio methodology had been considered to
fit a mixture model (e.g., Ferrer-Rosell et al., in press) without theoretical and method-
ological considerations. As a consequence, there is a methodological gap in the anal-
ysis of CoDa where the latest advances in log-ratio methods can contribute to mixture
modelling. In the present work, we introduce a new technique to model CoDa using
mixtures of distributions well-defined on the simplex using orthonormal log-ratio coor-
dinates and consequently coherent with its algebraic-geometric structure. In particular
we use the normal and the skew-normal distributions on the simplex (Mateu-Figueras
and Pawlowsky-Glahn, 2007, Mateu-Figueras et al., 2013).

This paper is organized as follows: in Section 2 a brief introduction of CoDa analy-
sis is provided. Section 3 describes the pros and cons of each of the traditional mixture
models when applied to CoDa. Section 4 is devoted to introducing log-ratio mixture
models and two real data sets are analysed in Sections 5 and 6 to compare the tra-
ditional and log-ratio approaches. Finally, Section 7 contains conclusions and final re-
marks. The programming of the data analyses discussed in this work has been conducted
using the open-source R statistical environment (R Core Team, 2014). Computer rou-
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tines implementing the methods can be obtained from the R packages Mclust, Rmixmod,
EMMIXuskew and also from the website www.compositionaldata.com. As an accompani-
ment to this article, the data and the programs used to fit the mixtures in Sections 5 and
6 are provided as supplementary material.

2. Compositional data analysis

Aitchison (1986) stated that there are two basic operations in the simplex .%?: pertur-
bation () and powering (®). Perturbation is defined between two compositions x and
y, and powering is defined between a composition X and a scalar value « as:

x®y = C(x1y1,...,XpYD), a®x=C(x%...,xp"%), 3)

where C(x) = Zx (x1,...,xp) is the closure operation for rescaling a vector.

These operations respectively play analogous roles to translation and scalar multi-
plication in R?, and provide a vector space structure of dimension D — 1 to the simplex.
Pawlowsky-Glahn and Egozcue (2001) stated that the inner product

XY = Zln ‘1 2 4)
J

i<j

provides .#’P with the structure of an Euclidean space of dimension D — 1. Note that a
norm and a distance can be derived from the inner product given by Equation 4. This
Euclidean space structure allows us to establish the principle of working on coordinates
(Mateu-Figueras et al., 2011). The idea is to express compositions in terms of their
coordinates with respect to an orthonormal basis on .’ and apply traditional statis-
tical methods to these coordinates. These coordinates are formed by log-ratios, there-
fore we use the log-ratio methodology mentioned above. Once an orthonormal basis
P ={vi,...,Vvp_1} is fixed, any D-part composition x can be expressed as the linear
combination

Xx=(Mov) ® @ (hp_1 ©Ovp_1).
The elements of vector hg(x) = (hy,...,hp_1) are the orthonormal log-ratio coordi-

nates of composition x with respect to the basis Z. Egozcue et al. (2003) introduced an
example of these coordinates where

; ®)

l+ 1 Xit+1
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whose corresponding basis is Z = {vy,...,vp_; } with
v; :c(el/\/"("“),...,el/\/"("“), l/e\/i/(i+1),l,...,1).
~——
i D—(i+1)

In this paper we use the coordinates in Equation 5 but any other orthonormal basis
can also be considered. Determining which basis or coordinates are the most appropriate
to solve a specific problem, is not straightforward. Nevertheless, the sequential binary
partition introduced by Egozcue and Pawlowsky (2005) is a very useful tool to construct
a particular basis to increase the interpretability of the corresponding coordinates.

One can define a pdf on the simplex by a pdf over the vector of orthonormal log-ratio
coordinates. Indeed, let f*(-;0) : R°~! — R* be a pdf defined on real space with param-
eters 0. Then, f(x;0) = f*(hy(x) ;0) defines a pdf on the simplex, f( -;0): P —
R, with respect to the Aitchison measure on .#”. For example, fixing an orthonormal
basis 4, the log-ratio normal distribution with parameters 1 and X is defined as

1 -
fa(x;p, %) = - e 2(hz(x)-p)S" (hz(x)—p) (6)
(271')(D ])/2|E|l/2

Note that it is a density on the simplex with respect to the Aitchison measure. The
Aitchison measure, d)\,, is a natural measure on .2, compatible with its Euclidean
vector space structure (see Mateu-Figueras et al., 2013, for an in-depth discussion). This
measure is absolutely continuous with respect to the Lebesgue measure on real space,
d ), and the relationship between them is |d)\,/d\| = (v/Dxixa---xp)~".

Figure 1 (left) shows the contour lines of three normal distributions in the simplex
3. Note that the distribution in the centre of the ternary diagram is similar to the cir-
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Figure 1: Contour lines of typical log-ratio normal distribution on the simplex: (left) in the ternary dia-
gram; (right) in log-ratio coordinates.
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cular contour lines in real space. However, note that, the farther the distribution from
the centre is, the more different the contours from the traditional Gaussian shape are.
These shapes are frequent in real data sets from industrial and scientific applications
(Buccianti, 2011, Vives-Mestres et al., 2014). When these distributions are plotted us-
ing their orthonormal log-ratio coordinates (Figure 1 (right)) the traditional Gaussian
contour lines are obtained. This idea can be applied by using other distributions on real
space as, for example, the skew-normal (Mateu-Figueras and Pawlowsky-Glahn, 2007).

The well-known additive log-ratio vector (Aitchison, 1986) can be interpreted as
the coordinates of a composition with respect to a non-orthogonal basis. Although the
expression of the corresponding pdf is similar to Equation 6, the distances are not pre-
served among the additive log-ratio components and the principle of working on coordi-
nates cannot always be applied (Mateu-Figueras et al., 2011). The equally well-known
centred log-ratio vector (Aitchison, 1986) can be interpreted as the coordinates of a
composition with respect to a generating system, not a basis. Despite the distances be-
ing preserved in this case, we do not recommend its use in a mixture model context
because the fitted densities will be degenerate (Mateu-Figueras et al., 2011).

3. Modelling compositional data using traditional mixtures

When the goal is to fit a finite mixture model, the researcher can encounter different
difficulties such as unbounded likelihood function, different local maximum, etc. The
reader interested in knowing how to deal with these difficulties can consult McLach-
lan and Peel (2000) for an in-depth exposition. In this article we will indicate all the
decisions taken in the process of fitting the finite mixtures.

3.1. Finite mixtures using traditional distributions defined on the real space

This approach assumes that .#’? is a subset of R” and its particular Euclidean space
structure described in Section 2 is ignored. It is assumed that compositions are generated
from a finite mixture distributions with pdf given by Equation 1 where f( - ;6;) : R? —
R* is a pdf defined on the real space and with respect to the Lebesgue measure (e.g., a
multivariate normal distribution or a ¢-student distribution). The main reason for using
this approach is the simplicity of working without having to consider any restriction.
However, this strategy exhibits some significant limitations and misleading results could
be obtained.

When one uses traditional distributions defined on the real space, the mixture pdf
is strictly positive in all the space, giving positive probability to impossible events. For
example, the impossible event of having the i-th part negative has positive probability,
ie P({x € &P|x; < 0}) > 0. This difficulty is similar to the traditional confidence in-
terval of a very small or very large proportion, i.e. it may provide lower or upper limit
respectively beyond the restricted space.
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Table 1: CoDa set with three parts (a,b,c) from 20 compositions. (hy, hy) are its log-ratio coordinates. Two
categorical covariates were considered: site and condition.

a b c hy hy site condition
54.73 34.37 10.90 0.329 1.128 S1 C1
64.75 25.08 10.18 0.671 1.123 S1 Cl
64.18 2491 10.91 0.669 1.060 S1 C1
83.53 11.85 4.61 1.381 1.568 S1 Cl1
62.72 28.15 9.13 0.566 1.246 S1 C1
62.10 27.73 10.17 0.570 1.148 S1 Cl1
69.46 22.53 8.00 0.796 1.305 S1 C1
68.25 26.43 5.32 0.671 1.696 S1 Cl1
66.88 26.16 6.96 0.664 1.464 S1 C1
61.62 28.38 9.99 0.548 1.169 S1 Cl1
31.65 55.23 13.12 —0.394 0.946 S2 C1
24.32 61.47 14.21 —0.656 0.817 S2 Cl1
24.47 59.49 16.04 —0.628 0.708 S2 C1
18.75 68.00 13.25 —0.911 0.809 S2 Cl1
15.72 72.96 11.32 —1.085 0.895 S2 C1
18.83 32.85 48.32 —0.394 —0.542 S2 Cc2
12.11 30.61 57.27 —0.656 —0.890 S2 Cc2
10.75 26.14 63.10 —0.628 —1.082 S2 Cc2
10.31 37.38 52.31 —0.911 —0.800 S2 Cc2
8.15 37.81 54.05 —1.085 —-0.918 S2 Cc2

In addition, this approach defined on the real space also ignores the constant sum
constraint. Therefore, a further limitation is the collinearity that appears between parts
after restricting the parts to sum a constant (Equation 2). This collinearity implies that
the covariance matrix is singular, and therefore some methods can not be directly ap-
plied. Frequently, mixture models are estimated using the Expectation—Maximization
(EM) algorithm (Dempster et al., 1977). In the E-step of the EM-algorithm a pdf com-
puted from the sample is evaluated. Because most pdf depend on the inverse of the
covariance matrix (e.g., multivariate normal and skew-normal), the common solution
consists of removing one part of the composition for the rest of the analysis (e.g., Papa-
georgiou et al., 2001). However, this strategy may produce misleading results. For ex-
ample, let X be the CoDa set recorded in Table 1. It is a simulated 3-part compositional
data set representing proportions of 3 different elements, denoted a, b and ¢. Assume
that the compositions come from two different locations, S; and S5; and that they were
collected under two possible weather conditions, C; and C,. In addition, assume that it
is well known that these weather conditions only affect part c: in condition C; the level
of element c is lower than in condition C, (for example, element c¢ is water and condi-
tion Cj is a sunny day while condition C; is a rainy day). In this way, the compositions
from row numbers 16 to 20 (Table 1) are the perturbed corresponding counterparts of
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Figure 2: CoDa set X in the ternary diagram. Filled and empty symbols are respectively used for data
from location S and S,. Circles and triangles respectively correspond to condition Cy and C;.

compositions from row numbers 11 to 15 after the perturbation (1,1,r), where r is a
random number depending on condition C;. In this example we have modelled r as a
lognormal random variable with parameters 4 = 2 and ¢ = 0.25. We have considered
that condition C; and C, were an effect of the component ¢ regardless of the magnitude
of components a and b. Therefore, the effect of condition C; and C;, could be modelled
by means of a perturbation (Equation 3), which is a movement in the simplex with the
Aitchison geometry.

The ternary diagram in Figure 2 shows that X is formed by three groups: the first
group consists of the observations collected in site S; (filled circles), all of them col-
lected under condition Cj; the second group with observations collected in site S, under
condition C; (empty circles) and the third group with observations collected in site S,
under condition C, (empty triangles). Suppose that an analyst, who is interested in fit-
ting a traditional mixture model to X, is not informed about the two different weather
conditions and he or she only knows the information about the location. Because of the
collinearity he/she decides to eliminate part ¢ for the rest of the analysis. After elimi-
nating part ¢, the researcher is working with the data set represented in Figure 3. This
plot suggests that the analyst might conclude that X is formed by three mixture com-
ponents as a result of the information collected in only the first two elements. This is a
misleading conclusion because, by construction, we know that exclusively attending to
the raw information provided by the first two elements the CoDa set X is formed by only
two groups (one group for each location). But, when we work with proportions (a,b,c),
despite part ¢ having been eliminated, its effect (weather condition) is still present and
interpretations about the nature of the groups based only on parts (a,b) may be mislead-
ing. An interested reader could find other examples about the misleadings conclusions
and problems resulting from applying standard analysis to compositional data in Aitchi-
son (1999, 2002).
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Figure 3: Scatterplot of parts (a,b) of CoDa set X. Filled and empty symbols are respectively used for
data from location S| and S,. Circles and triangles respectively correspond to condition C and C,.

3.2. Finite mixtures using traditional distributions defined on the simplex

A finite mixture of distributions defined on the simplex is a probability distribution with
pdf given by Equation 1 where f( - ;0) : .#’? — R, is a pdf defined on the simplex. The
Dirichlet distribution has been traditionally used as the probability distribution on .#?.
It can be obtained by the projection on the simplex of a random vector formed by inde-
pendent and equally scaled gamma distributed parts. Despite its simplicity and its good
mathematical properties, it has a very strong independence structure (Aitchison, 1986).
In particular, any ratio x; /x; of two parts have to be independent from another ratio x /x,,
formed from other two parts. In practice, such an independence structure cannot be as-
sumed for most real data sets and consequently it heavily restricts the Dirichlet potential
modelling application (Aitchison, 1986). To solve this difficulty, many generalizations
of the Dirichlet distribution with less independence structure have been proposed: the
Connor and Mosimann’s distribution (Connor and Mosimann, 1969), the scaled Dirich-
let distribution (Aitchison, 1986). In addition, Rayens and Srinivasan (1994) extend
the Liouville distribution further to the generalized Liouville family. Later Smith and
Rayens (2002), due to the limited applicability of the Liouville family of distributions,
propose a generalization called Conditional Liouville distribution. Ongaro and Miglio-
rati (2013) present the Flexible distribution, a generalization of the Dirichlet that exhibits
greather flexibility in terms of dependence/independence structure and shape of the den-
sity. Finally, Monti et al. (2011) introduce the shifted-scaled Dirichlet distribution. This
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generalized distribution is defined by adding the perturbation and powering operations
(Equation 3) to the standard Dirichlet distribution. Unfortunately, all of these attempts
have had limited success in fitting the general dependence structure of CoDa. Note that
all these distributions are usually expressed through their density function with respect
to the Lebesgue measure on .#’? but the density with respect to the Aitchison measure
could be easily obtained using the relationship between them (see Monti et al. (2011)
for a detailed analysis of the implications of changing the measure).

In the literature different methods are found to estimate the parameters of a Dirich-
let distribution. As it is an exponential family, the log-likelihood function is globally
concave and a global optimum can be obtained. However, there is no closed form so-
lution for the ML equations and numerical methods must be employed. According to
Ng et al. (2011), the MLE via Newton-Raphson algorithm converges to the global opti-
mum. Narayanan (1991) provides a Fortran subroutine with three different possibilities
to estimate the initial parameter required. We can also obtain MLE estimates via the EM
gradient methods (Ng et al., 2011). Recently the performance of different algorithms
and starting value strategies to obtain the MLE of the Dirichlet parameters have been
compared by Giordan and Wehrens (2015) using high-dimensional data. Nevertheless,
the main problem is that final estimates can be outside the correct range for the pa-
rameters. Also, a large amount of iterations could be required to reach convergence. In
practice, given a CoDa set, there is no straightforward method to fit a Dirichlet mixture
or any of its generalizations. However, to obtain an approximation of the MLE estimator
of a Dirichlet mixture, it is possible to apply the classification EM-algorithm (Celeux
and Govaert, 1992) using any of the mentioned approaches to fit a Dirichlet model (see
example in Section 5).

4. Modelling compositional data using a mixture of log-ratio
distributions

To model CoDa using a finite mixture of log-ratio distributions, we consider

mifa(-301) 4+ mfa( -1 6k) (7N

where fz(x;0;) are pdf’s defined on the simplex with parameters 6, that is, they are
densities defined considering the particular algebraic-geometric structure of the simplex
defined in Section 2 and consequently are expressed with respect to the Aitchison mea-
sure. As indicated before and according to the principle of working on coordinates, we
have

fa(x;0) = f*(hgz(x);0)
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where f*( - ;0) are pdf on RP~! for the orthonormal log-ratio coordinates vectors h(x).
Let X = {xy,...,X,} be a CoDa set. Thus fitting the parameters 7,...,7; and 0,,...,0;
of Equation 7 using maximum likelihood estimators is equivalent to fitting the parame-
ters in

mf (-301)+ -+ f (- 50k) (®)

using the data set X' = {hg(x;),...,hz(x,)}, that is, the log-ratio coordinates of the
data set with respect to a selected orthonormal basis 4.
Indeed, the likelihood function evaluated for the CoDa set X is

.k .k
[1D _mifs(xi:0,) =T1D_7if (hu(x):8)). )
i=1 j=1 i=1 j=1

=

Because the likelihood functions are the same, the maximum likelihood estimators
Rlyeeey Rk, 01,. .., 0y are also the same

A

a Kk
(ﬁl,...,ﬁk,él,...,ok): arg max HZijyg(Xi;ej): (10)
=1

TLyeees T 0150, Ok i

0k
= argmax HZﬂ'jf*(hgg(Xi);ej). (11)

Ty 0150k =1

Following this approach, we cannot obtain the misleading results shown in Sec-
tion 3.1.. Taking the example from Section 3.1, we were interested in fitting a mixture
to a sample X formed by parts a, b and ¢ (Table 1). Instead of eliminating one part, now
the analyst decides to express parts a, b and c¢ in log-ratio coordinates. Before starting
the analysis, a basis 4 of .73 is selected, for example

%:{C(el/ﬁ,l/e\/l/_z,l),C(el/‘/g,e]/ﬁ,l/e\/%)}, (12)

and the compositions of X are expressed in terms of their coordinates X' (h; = /1/2
In(a/b) and hy = /2/3In(vab/c)) (see Table 1). Figure 4 shows the plot of these
coordinates where the different effect of the location (parts a and b) and the weather
conditions (part c) are highlighted. Note that the compositions from S, under condition
C take the same value in the first coordinate as their counterparts under condition Cj.

In this case the interpretations based only in terms of parts a and b will not be mis-
leading. In fact, if the analyst also decides to remove part ¢, a basis %’ of .7 is selected
as:
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Figure 4: Scatterplot of log-ratio coordinates for the CoDa set X. Filled and empty symbols are respec-
tively used for data from location S| and S;. Circles and triangles respectively correspond to condition Cy
and C,.

B = {C(el/\/i,l/e\/m)}.

In this way, the corresponding coordinate 4, is the same as before. Figure 5 shows the
histograms of coordinate /; separated by weather conditions in two stratas. Note that,
regardless of the condition, all the data collected in S, take the same value, forming one
cluster (between —1 and 0). On the other hand, the compositions collected in S; are
close to one.
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Figure 5: Histograms of first log-ratio coordinate for CoDa set X. Two stratas correspond to weather

conditions.
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In Equations 9 and 10, we fit the mixture using the coordinates hy(x) with respect
to a specific basis & but any other orthonormal basis could have been chosen as well.
Thus, in any compositional analysis involving coordinates, it is important to check the
invariance of the results under changes of basis. When fitting a mixture of log-ratio
distributions, it is enough to check that the family of distributions used to fit the mixture
is basis invariant, that is, it satisfies the following definition.

Definition 1 Let %, and %, be two basis on .#P. Let ® be a parameter space for a
probability density function f* : RP~! — R*. A probability density function f* is basis
invariant if for any two different basis %, %$,, for any parameters 0, € O, there are
parameters 6, € © such that

[ (h,(x);01) = [ (ha,(x);602).

Most common distributions are basis invariant when we do not restrict the parame-
ters. For example, the log-ratio normal distribution (Equation 6) is formulated in terms
of Mahalanobis distance and of covariance matrix determinant, that are both invariant
elements under change of basis (Barceld-Vidal et al., 1999). Moreover, using the linear
transformation property (Azzalini and Capitanio, 1999), it can easily be proved that the
multivariate log-ratio skew-normal distribution is also invariant under change of basis.

5. A real data set: Forensic Glass

To illustrate and compare the different described approaches, we analysed the USA
Forensic Science Service data set, also known as the Forensic Glass data set. This data
is available from the UCI Machine Learning Repository (Bache and Lichman, 2013).
The data set is composed of 214 fragments of glass samples where the percentages of
eight chemical elements were measured. The fragments of glass were originally come
from seven types of glass. In order to easily display the results using ternary diagrams
and bivariant plots, we only consider three chemical elements: Calcium (Ca), Silica (Si)
and Aluminium (Al). For simplicity, we only consider three types of glass (containers,
vehicle headlamps and vehicle windows) but all types of glass could be considered and
lead to similar conclusions. We call this data set the Reduced Forensic Glass data set (Ta-
ble 2). Figure 6 shows this data set formed by 59 glass samples in the ternary diagram.
We can see that the types of glass do not form well-separated groups and consequently
there will be a weak relation between the components of the mixture and the types of
glass. This was already observed by Venables and Ripley (2002) in a discriminant con-
text.

We fit a mixture model using the normal distribution on real space, the Dirichlet
distribution and the log-ratio normal and skew-normal distributions on the simplex. For
all cases the index BIC indicates that k = 3 are the optimal number of components
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Table 2: Reduced Forensic Glass data set: parts (Ca, Si, Al) and its log-ratio coordinates. The categorical
covariate (type) shows the provenance of glass.

Ca Si Al hy hy type
10.43 88.23 1.35 —1.510 2.541 Veh
10.12 88.26 1.63 —1.531 2.375 Veh
10.23 88.10 1.67 —1.523 2.359 Veh
10.31 88.06 1.63 —1.517 2.382 Veh
10.14 87.73 2.13 —1.526 2.155 Veh
11.60 87.39 1.01 —1.428 2.818 Veh
10.81 88.40 0.79 —1.486 2.994 Veh
10.12 88.40 1.48 —1.533 2.455 Veh
10.63 87.79 1.58 —1.493 2418 Veh
10.36 88.12 1.52 —1.514 2.441 Veh
10.48 87.97 1.55 —1.504 2.429 Veh
11.77 87.53 0.71 —1.419 3.112 Veh
10.67 87.48 1.85 —1.488 2.290 Veh
10.69 87.33 1.98 —1.485 2.234 Veh
10.87 87.26 1.86 —1.473 2.292 Veh
10.80 88.29 0.91 —1.486 2.878 Veh
11.23 87.66 1.12 —1.453 2.721 Veh

7.41 88.18 4.42 —1.751 1.433 Con
11.92 85.88 2.20 —1.396 2.186 Con
13.29 84.89 1.82 —1.311 2.380 Con
13.41 84.78 1.80 —1.304 2.393 Con
13.26 84.84 1.90 —1.312 2.344 Con
11.84 86.03 2.13 —1.402 2210 Con
13.15 84.81 2.04 —1.318 2.282 Con
14.23 83.94 1.84 —1.255 2.395 Con
8.65 87.57 3.78 —1.637 1.621 Con
8.59 87.66 3.74 —1.643 1.627 Con
14.51 83.87 1.63 —1.241 2.501 Con
11.54 85.88 2.58 —1.419 2.043 Con
13.08 85.17 1.75 —1.325 2.407 Con
6.78 90.96 2.26 —1.836 1.957 Head
7.31 89.89 2.80 —1.774 1.808 Head
10.71 87.80 1.49 —1.488 2.469 Head
11.89 85.60 2.51 —1.396 2.076 Head
10.72 87.65 1.63 —1.486 2.396 Head
10.38 87.48 2.14 —1.507 2.160 Head
10.38 86.80 2.82 —1.502 1.931 Head
10.60 86.13 3.27 —1.481 1.816 Head
10.21 87.40 2.39 —1.518 2.062 Head
10.17 87.47 2.36 —1.522 2.071 Head
10.65 86.20 3.15 —1.479 1.848 Head
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Ca Si Al hy hy type
11.05 85.97 2.98 —1.451 1.908 Head
10.58 86.65 2.77 —1.487 1.953 Head
10.70 86.16 3.14 —1.475 1.853 Head
10.46 86.56 2.97 —1.494 1.891 Head

9.92 87.41 2.68 —1.539 1.957 Head
10.47 88.14 1.40 —1.506 2.513 Head
9.93 87.21 2.86 —1.536 1.903 Head
9.93 87.68 2.39 —1.540 2.052 Head
10.33 86.97 2.69 —1.506 1.968 Head
10.32 87.52 2.16 —1.512 2.150 Head
10.36 87.40 2.24 —1.508 2.121 Head
7.97 89.78 2.24 —-1.712 2.025 Head
11.11 85.67 3.22 —1.444 1.845 Head
10.84 85.76 3.40 —1.463 1.791 Head
10.07 87.55 2.38 —1.529 2.061 Head
10.06 87.53 2.41 —1.530 2.050 Head
10.09 87.60 2.31 —1.528 2.086 Head
10.25 87.27 2.47 —1.514 2.036 Head
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except for the Dirichlet distribution whose optimal value is for k = 5. For illustration
purposes and in order to easily compare all described approaches, we will use k = 3
for all different cases. For each mixture approach, we fit the mixture 100 times using
different starting points to avoid local maximums.

Ca*

Al

“Si

Type of glasses
A container

O headlamp

O vehicle window

Figure 6: Reduced Forensic Glass data set in ternary diagram: Calcium (Ca), Silica (Si) and Aluminium

(Al) chemical elements. Three groups of glass: containers (circles), headlamps (triangles) and vehicle win-

dows (squares). The large ternary diagram is a zoom of the shadow area seen in the smaller initial ternary

diagram.
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Using the traditional approach introduced in Section 3.1 we fit a mixture of distri-
butions on real space with three mixture components. In particular we choose a tradi-
tional Gaussian mixture. As mentioned, we need to eliminate one part to avoid the con-
stant sum constraint. For example, when we removed the Calcium (Ca) part, the corre-
sponding mixture model (BIC = —763.4) obtained is 71 f( - ; 1, 51) +m2f (-5, X0) +
w3 f( - s, 23) with estimates

o o &  ( 1.66 0.81
71 =0.12, f1; =(88.76,1.65), X = ( 0.81 0.52 >
o o & _ ( L17 0.72
#3=0.5, fi3=(87.67,1.97) and 3% = < ?61168 _00;78 )

Figure 7 (top-left) shows the isodensity curves for the fitted mixture of Gaussian
distributions. Figure 7 (top-right and bottom-left) also shows the isodensity curves of the
finite mixture when the parts removed were Aluminium (Al) and Silica (Si), respectively.
The dashed lines represent the limit of the simplex, i.e. the region were restrictions
given by Equation 2 are held. In Figure 7 (bottom-right) the isodensity curves have been
completed to be represented in the ternary diagram. Note that the distribution is giving
positive probability to impossible regions.

Despite the fact that in Gaussian mixtures the maximum likelihood function is in-
variant whatever part is removed, we stated that in practice the numerical algorithm gets
stuck in a local optimum. That is, the invariance of the results is not guaranteed, and
different mixtures may be obtained depending on the part removed.

A Dirichlet probability distribution is specified by the parameters a = (a' ,oo,al )
Therefore, to fit a mixture of K Dirichlet distributions the parameters ny, ..., mx and
a,...,ak need to be estimated. To make this estimation we approximated the MLE es-

timator of a Dirichlet mixture using the EM-algorithm proposed by Celeux and Govaert
(1992). The mixture of Dirichlet distributions obtained (BIC =—732.9) was 7y f( - ;1) +
mf( - o) +m3f( - ;a3) with estimates

w1 =0.37, &) = (281.2,2343.1,71.6),

7, =0.15, &, =(272.9,1777.2,41.2),

#3=048and @&; = (34.6,304.3,6.3).
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Figure 7: Reduced Forensic Glass data set. On the top-left, top-right and bottom-left isodensity curves
for mixtures of Gaussian distributions in R* after removing the Ca, the Al and the Si part respectively. On
bottom-right the isodensity curves transformed into the simplex.

Note that for k = 3 the Dirichlet BIC value is worse than the value for the normal dis-
tribution. Using the Dirichlet parameter estimates we can, respectively, obtain the centre
of each mixture component in the simplex: (10.43,86.91,2.66), (13.05, 84.98,1.97) and
(10.02,88.15,1.83), expressed in percentages.

Figure 8 shows how the Dirichlet mixture fits the data set. Due to the strong inde-
pendence structure of the Dirichlet model (noted above in Section 3.2), the density can
only take nearly elliptical shapes. Consequently, the mixture obtained cannot capture
non-elliptical forms of variability.

Finally, we use the log-ratio approach introduced in Section 4. To fit a mixture of
log-ratio distributions it is necessary first to express each composition with respect to a
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Figure 8: Reduced Forensic Glass data set: classification given by a standard Dirichlet mixture model.

basis of .#3. Consider the same basis % defined in Equation 12. Table 2 contains the data
set expressed in log-ratio coordinates with respect to basis %, resulting in coordinates
hi = /1/21n(Ca/Si) and hy = 1/2/31n(+/Ca- Si/Al).

Fitting a Gaussian mixture to the log-ratio coordinates (BIC = —84.3) results in
mixture model w1 (- 5 1, 21) + 72 fz(c s 1o, 30) + 3 (- s 13, X3) with estimates

. o . ( 8e—04 0.0059
#1=0.59, i, = (—1.5,231), 21_< 0005 00949 )

i, = 0.1, i, =(—1.73,1.75), 5, = < 0.005 —0.0059 ) 7

—0.0059 0.0422

#3=0.31, fi3=(—1.39,2.12) and 33 = ( 0.00650.0186 >

0.0186 0.0581

Note that the difference between the BIC value for the log-ratio normal distribution
and the previous distributions seems to be unusually large. However, these values can
not be directly comparable because the latter is calculated using log-ratio coordinates.
In Figure 9 the isodensity curves of the log-ratio normal distribution are represented in
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Figure 9: Log-ratio Gaussian mixtures for Forensic Glass data set: (left) in log-ratio coordinates; (right)
in the ternary diagram.

the space of coordinates (left) and in the ternary diagram (right). Looking at the co-
ordinate space, we see that this mixture can model elliptical forms of variability and
consequently, on the simplex the estimated mixture is able to model those typical arc
shaped forms (Figure 9 (right)). Because multivariate log-ratio normal is basis invariant
(Section 4), working with another orthonormal log-ratio basis results in the same mix-
ture as that represented in the ternary diagram (Figure 9 (right)). As noted above, there is
low similarity between mixture components and types of glass. In this case the adjusted
Rand index (Hubert and Arabie, 1985) is equal to 0.219.

Note that the parameters of the mixture are expressed with respect to coordinates
and /. To better interpret the parameters of the mixture, we back-transformed the pa-
rameters p,; into the simplex: (10.46,87.75,1.79), (7.77,89.13,3.10) and (12.02,
85.59,2.39), into percentages. Note that only the centre of the first log-ratio normal
mixture component is similar to the centre of the first Dirichlet mixture component.
To better interpret the covariance parameter X;, Aitchison (1986) proposes using the
variation matrix, that is, the variance of each log-ratio. In this case, the corresponding
log-ratio variances are shown in Table 3.

The first mixture component is characterised by the highest relative variability of the
ratio between the Calcium and Aluminium parts and lowest between the Calcium and

Table 3: Forensic Glass data set: log-ratio variances for each mixture component fitted by a log-ratio
Gaussian mixture.

Mixture component var(In(Ca/Si)) var(In(Ca/Al)) var(In(Si/Al))

1 0.0016 0.1530 0.1324
0.0101 0.0556 0.0760
3 0.0131 0.1226 0.0582
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Figure 10: Log-ratio skew normal mixture adjusted for Forensic Glass data set: (left) in log-ratio coordi-
nates; (right) in the ternary diagram.

Silica elements. Due to var(In(Ca/Si)) being close to zero, the concentration of these ele-
ments are nearly proportional ( Martin-Fernandez et al., 2015). Note that this behaviour
is common across the three mixture components. All the variances take small values for
the second mixture component, while the third mixture component differs from the first
due to the small value in the variance of In(Si/Al).

Following an analogous approach, it is possible to fit other non-Gaussian mod-
els. For example, in Figure 10 the data set is modelled with a mixture of multivariate
log-ratio skew-normal distributions using the package provided by Prates et al. (2013)
(BIC = —62.3). The log-ratio skew-normal model extends the modelling possibilities
because it contains the log-ratio normal model as a particular case. Nevertheless, the
final model is more complex because a skew parameter is added for each density in
the mixture. This complexity also contributes to the BIC value which is worse than the
value for the log-ratio normal distribution. For the sake of brevity, we prefer not to give
the estimated parameters here. The multivariate log-ratio skew-normal model is also ba-
sis invariant, thus working with another orthonormal log-ratio basis results in the same
mixture as that represented in the ternary diagram (Figure 10 (right)). Although the ad-
justed Rand index increased slightly to 0.348, there is low similarity between mixture
components and types of glass.

6. A second real data set: C-horizon of the Kola data set

To illustrate how to proceed when the number of parts is greater than three, we analysed
a reduced data set of the C-horizon of the Kola data set (Reimann, Filzmoser). We
selected a subsample formed by 69 observations belonging to three groups: Alkaline
(7), Sediments (39) and Granite (23). For these samples we created the subcomposition
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Figure 11: Mixtures adjusted to the reduced C-horizon of Kola data set: (top) compositional biplot; (mid-
dle) marginal of the log-ratio Gaussian mixture for the two first coordinates: hy and hy; (bottom) marginal
of the log-ratio skew normal mixture for the two first coordinates.
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formed by the chemical elements: Calcium (Ca), Copper (Cu), Magnesium (Mg), Sodium
(Na), Strontium (Sr) and Zinc (Zn).

Figure 11 (top) shows the compositional biplot, which consists of a principal com-
ponent plot applied to the centred log-ratio coordinates. The two principal components
explain a 90.6% variance, which is a high percentage of the total variance of the sample.
The first principal axis (PC;) is associated to the relative variation in parts Na and Sr
as opposed to Mg and Cu. On the other hand, the axis of the PC; is associated to the
relative variation of element Ca versus Zn. The group of Alkaline observations has a
high concentration of elements Na and Sr with respect to the proportion in the groups
Granite and Sediments that have a high concentration of Mg and Cu elements. The main
differences between the groups Granite and Sediments is that the former has a higher
proportion of the element Ca, whilst the latter has high concentration in the Zn part.

We fit a mixture model using the normal and the skew-normal distributions on log-
ratio coordinates. For the sake of brevity, the estimated parameters are not provided. In
both cases the BIC index indicates that kK = 3 is the optimal number of components.
To avoid local maximums we recalculated the parameters for each mixture until no im-
provement was obtained in the likelihood function during 100 simulations. To calculate
the orthonormal log-ratio coordinates in this example we considered the orthonormal
basis % formed by the directions of the principal components.

Figure 11 (middle) shows the marginal of the adjusted log-ratio normal mixture with
respect to the first (4;) and second (%) orthonormal log-ratio coordinates. For the log-
ratio normal distributions the Rand index was 0.580, with 29 observations misclassified.
In Figure 11 (bottom) the marginal (&, h;) of the adjusted log-ratio skew normal mixture
is shown. In this case the Rand index is better (0.760) and the misclassification rate is
also improved because only 5 observations were misclassified.

7. Final remarks

Traditional distributions in finite mixtures for compositional data sets show significant
difficulties. If densities for real data are used, probabilities of impossible events are ob-
tained. Additionally, as a part of a composition is often removed to estimate the model,
the results depend on that part. Dirichlet density and some generalizations on the sim-
plex can not capture the variability of many compositional data sets due to their strong
independence structure. The proposed log-ratio models are defined on the simplex using
its particular algebraic-geometric structure. Consequently probabilities for impossible
events are not obtained and there is no need to eliminate any part. The log-ratio normal
model is a flexible model that can describe different forms of variability and depen-
dence structures. It is a simple model and provides a rich enough parametric class of
distributions on the appropriate sample space. Certainly, the model has the equivalent
limitations as the traditional Gaussian mixtures in real space. Nevertheless, the pro-
posed methodology allows different and alternative models. Indeed, any mixture model
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defined on the real space can be considered to model data on the simplex space using
the principle of working on coordinates. In this paper we have proposed a mixture of
normal and skew-normal distributions to the log-ratio coordinates of a compositional
sample. These two options extend the range of possibilities we have had up to now with
the Dirichlet model or its generalizations. Interestingly, both proposed log-ratio models
are invariant with respect to the orthonormal basis chosen to compute the log-ratios. The
proposed log-ratio methodology could be extended by studying the possibilities of other
known distributions on real space, like Student-t and skewed-t mixtures. Furthermore,
in a non-parametric context, an analogy of these models with the P-spline methodology
for CoDa should be explored Eilers et al. (2015).
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