
Update: A non-parametric method for the measurement of size
diversity, with emphasis on data standardization. The measurement
of the size evenness

Xavier D. Quintana,*1 Juan J. Egozcue,2 Omar Mart�ınez-Abella,3 Roc�ıo L�opez-Flores,3

St�ephanie Gasc�on,1 Sandra Brucet,4,5 Dani Boix1

1GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
2Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
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Abstract

A method for the measurement of the size diversity based on the classical Shannon–Wiener expression

was proposed as a proxy of the shape of the size distribution. The summatory of probabilities of a discrete

variable (such as species relative abundances) in the original Shannon–Wiener expression was substituted by

an integral of the probability density function of a continuous variable (such as body size). Here, we propose

an update of this method by including the measurement of the size e-evenness, just dividing the exponential

of the size diversity by its possible maximum for a given size range. Assuming a domain of the size range of

(0,1), for a given logarithmic mean (mln) and a logarithmic standard deviation rlnð Þ, the distribution with

the highest diversity is the Log-Normal. The size e-evenness ranges between 0 and 1 because of the division

by the maximum exponential diversity. Size e-evenness is useful to discriminate whether variations in size

diversity are due to changes in the shape of the size distribution or caused by differences in size dispersion.

Quintana et al. (2008) proposed a nonparametric method

for the measurement of the size diversity as a proxy of the

shape of the size distribution. Size diversity is computed on

the basis of the Shannon–Wiener diversity expression (Pielou

1969) and adapted for continuous variables, such as size.

The use of the size diversity for the analysis of the shape of a

size distribution has several advantages (Quintana et al.

2008): (1) it integrates sizes of individuals and a size-density

in the same way that Shannon–Wiener species diversity inte-

grates the number of species and their relative abundance;

(2) after data standardization, samples measured with differ-

ent units, such as length, weight or volume, are comparable;

and (3) its meaning is easy to interpret, since the concept of

diversity is well established (Hurlbert 1971): a high size

diversity means a wide size range and/or similar proportions

of the different sizes along the size distribution. For the size

diversity measurement the summatory of probabilities of dis-

crete variables of the classical Shannon–Wiener expression

(such as species relative abundances), is substituted by an

integral involving the probability density function of the

size Xð Þ of the individuals (pX xð Þ) and takes the form

l2 Xð Þ5 2

ð11

0

pX xð Þ log2 pX xð Þ dx;

when based on the base 2 logarithm. A more conventional

form, using natural logarithms is

l Xð Þ5 2

ð11

0

pX xð Þ ln pX xð Þ dx; (1)

such that l Xð Þ5ln 2ð Þ l2 Xð Þ as pointed out in Quintana

et al. (2008). The probability density function (pdf) of the

size of the individuals X is estimated by a non-parametric

kernel local evaluation of pX xð Þ, applicable to any type of

size distribution. Data are previously standardized by means

of the division of each size value by the geometric mean of

the size distribution. Then, the density of Y 5 ln X is esti-

mated using standard kernel techniques. Standardization

dividing by the geometric mean is equivalent to centering
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the distribution of Y to have 0 mean. The estimated pdf of X

is obtained as pX xð Þ5 1=x pY yð Þ, where the factor 1=x corre-

sponds to the derivative of the transformation y 5 ln x.

For discrete variables, such as species composition, a value

of evenness can be obtained, ranging between 0 and 1, just

dividing species diversity by the maximum diversity that can

be achieved with the same number of species (Pielou 1969;

Magurran 1988). Species evenness shows how similar are the

relative abundances of species involved. This cannot be discri-

minated using only diversity values, since diversity integrates

both number of species and proportionality among them.

We investigate how to obtain the evenness for a continu-

ous variable such as body size. For a continuous size distribu-

tion, with no defined upper and lower limit, the distribution

with the highest diversity is the Log-Normal (e.g., Park and

Bera 2009). Thus, we obtain the size evenness of a size distri-

bution by comparing its size diversity (obtained by the above

described non parametric kernel approach) with that of a

Log-Normal distribution with the same logarithmic mean and

standard deviation. Because negative values of size diversity

are feasible, meaning low values of size diversity, the size

evenness will not range between 0 and 1. We propose the use

of an e-evenness, as the quotient of the exponential of diver-

sities to avoid this problem. We also provide an R routine for

the computation of size diversity and size e-evenness.

Materials and procedures

For a discrete probability function, such as the relative

abundance of the different species in a community, the

evenness is calculated simply by dividing the Shannon diver-

sity value by log2S, where S is the number of species. The

log2S is the maximum diversity possible with S species, and

represents the diversity of a distribution of S species when all

species are equiprobable (Pielou 1969; Magurran 1988). For

continuous variables, such as size, the maximum possible

diversity is not so trivial. If the size range is finite, as is the

case when there is an upper and lower threshold in the sam-

pling procedure, the unconditional maximum diversity is

achieved by a uniform function, which has to satisfy

ðmax

min

pX xð Þdx51:

In this case, the evenness of the size distribution is

evenness 5
l2

log2 RS
5

l
ln RS

; (2)

where l2 and l are the size diversities and RS is the size range.

However, there are difficulties in the estimation of the mini-

mum and maximum threshold, unless there is a clear limit of

the counting or sampling device (i.e., when organisms are fil-

tered by several mesh sizes, so that meshes define both the

upper and the lower limit). If size limits are not determined by

the methodologic procedure, size range estimation will strongly

depend on the variability in the estimation of the minimum

and the maximum sizes. Usually, the biggest or the smallest

organisms in a size distribution are scarce, and this makes the

estimation of the size range very variable and uncertain.

Another way to assess the maximum diversity in a contin-

uous distribution is to assume that there are no limits to the

size distribution. In this case, we need to find which distribu-

tion achieves the highest diversity, also satisfying that
ð1

0

pX xð Þdx51:

For a given logarithmic mean (mln) and a logarithmic

standard deviation rlnð Þ, the distribution with the highest

diversity is the Log-Normal. That Log-Normal distribution is

the maximum entropy or maximum diversity distribution,

subject to a given mean value and variance, is well known

and derived from the general information theory (e.g., Kull-

back 1968). Specific derivations of the general form of maxi-

mum entropy distributions can be found in Zellner and

Highfield (1988) and Golan et al. (1996). Park and Bera

(2009) report the result for the Log-Normal distribution.

The size diversity of a Log-Normal distribution is (see

Quintana et al. 2008)

l LNð Þ5ln 2ð Þl2 LNð Þ5 1

2
1ln

ffiffiffiffiffiffi
2p
p

rln

� �
1mln

� �
; (3)

where mln and rln are the logarithmic mean and standard

deviation of the Log-Normal distribution. When the Log-

Normal variable (LN) is standardized dividing by the geomet-

ric mean, mln50, or approximately so when using estimates

of the geometric mean. The traditional form of defining the

evenness would lead to

Jl Xð Þ5 l Xð Þ
l LNð Þ : (4)

or equivalently using l2. However, negative values of l Xð Þ
are feasible, meaning low values of size diversity. In fact, the

integrand in Eq. 1 can take positive values when pX xð Þ take

values larger than 1, thus producing negative diversity val-

ues. Figure 1 shows three pdf’s: the dashed line corresponds

to a log-normal pdf which l is null; the full line is a log-

normal pdf with negative diversity as corresponds to a pdf

more peaky than that represented by the dashed line. The

third represented pdf (dotted line) is the kernel estimation of

a simulated sample from the full line pdf.

To avoid the problem of negative values in Eq. 4 we pro-

pose to use the e-evenness (Je), defined as

Je Xð Þ5 exp l Xð Þð Þ
exp l LNð Þð Þ 5

2l2 Xð Þ

2l2 LNð Þ ; 0 � Je Xð Þ � 1: (5)

Regarding the standardization, it should be taken into

account that, to define an evenness function, i.e., the ratio
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of a diversity of a given pdf over the log-normal diversity,

the two pdf’s must have the equal logarithmic variance. The

diversity of a log-normal pdf is given in Eq. 3, which is larger

than any diversity corresponding to a pdf with logarithmic

mean equal to mln and logarithmic variance equal to r2
ln :

When the comparison is done using a kernel estimate of the

pdf, these parameters should be those of the kernel esti-

mated pdf. When using a standardization of data dividing by

the geometric mean of the data mln � 0, but not exactly

equal to 0 due to kernel estimation. Similarly, r2
ln must be

that corresponding to the kernel estimation of the pdf,

which is not equal to the logarithmic variance estimated

from the data but only an approximation. Then, e-evenness

function using the log-variance of the standardized data can

be larger than that of the corresponding Log-Normal distri-

bution. However, this seldom occurs.

Assessment

After data standardization (mln � 0), Eq. 5 can be written as

l Xð Þ5 1

2
1 ln Je Xð Þð Þ1 ln

ffiffiffiffiffiffi
2p
p

rln

� �
: (6)

According to this Eq. 6, we can use ln(Je Xð Þ) and ln(rln) in

a variation partitioning procedure to discriminate whether

variations in size diversity of natural samples are due to

changes in the logarithmic standard deviation, rln, or in the

shape of the pdf which is quantified by the e-evenness Je Xð Þ.
We computed the size e-evenness for several contrasting

size distributions: the phytoplankton of some oligohaline and

meso-euhaline coastal lagoons and marshes (Baix Ter wet-

lands); the zooplankton of meso-euhaline coastal saltmarshes

(Empord�a wetlands); the hypobenthic macroinvertebrates of

the same saltmarshes; and the epibenthic macrofauna, includ-

ing invertebrates and amphibians, of a temporary pond (platja

d’Espolla). All these ecosystems are located in Girona (NE

Spain). Details on sampling procedure, body size estimations,

species composition and ecological characteristics of water-

bodies sampled are found in L�opez-Flores et al. (2006) for phy-

toplankton data, Brucet et al. (2005) for zooplankton data,

Gasc�on et al. (2005) for hypobenthic macroinvertebrates and

Boix et al. (2004) for epibenthic macrofauna. Some descrip-

tives of all these size distributions are listed in Table 1.

We compared the size diversity with the size e-evenness

(Je) and the standard deviation of sizes (rln) in all these data

sets. To make sizes data comparable, we use standardized

sizes, that is, after the division of each size value by the geo-

metric mean of the size distribution. For the comparison of

the relative contribution of the e-evenness and the logarith-

mic standard deviation we used a variation partitioning pro-

cedure (Borcard et al. 1992; Legendre and Legendre 1998),

Fig. 1. Example of a negative size diversity. Full line: pdf of LN

(mln 5 0,rln 5 0.1), l(X) 5 20.884. Dashed line: pdf of LN
(mln 5 0,rln 5 0.242) and null diversity; LN densities with rln less than

exp ((20.5)/�2p) 5 0.242 have negative diversity and they appear more
peaky than the dashed line. Dotted line: kernel density estimation of a
simulated 500-sample from LN (mln 5 0,rln 5 0.1) (full line).

Table 1. Mean and standard deviation values (in brackets) of some descriptives of the size distributions used.

Dataset

Phytoplankton in

oligohaline coastal

ecosystems

Phytoplankton in

meso-euhaline

coastal ecosystems

Zooplankton in

meso-euhaline

coastal saltmarshes

Hypobenthic macro-

invertebrates in

meso-euhaline

coastal saltmarshes

Epibenthic macro-

fauna in a tempo-

rary karstic pond

# Samples 36 80 528 15 15

# Sizes measured 3295 (1764) 5000(1669) 128(23.86) 670(376) 270(75.70)

Size units lm3 Biovolume lm3 Biovolume lg Dry Weight lg Dry Weight mg Dry Weight

Body size geometric mean 1.916 (2.023) 37.03 (71.79) 3.051 (58.19) 0.693 (0.648) 0.0126 (0.0077)

Body size rln 2.324 (0.258) 0.968 (0.417) 1.215(0.604) 1.782 (0.402) 1.036 (0.367)

Je Xð Þ 0.906 (0.050) 0.820 (0.134) 0.720 (0.110) 0.791 (0.069) 0.611 (0.101)

l2 Xð Þ 3.146 (0.116) 1.622 (0.480) 1.837 (0.777) 2.528 (0.387) 1.363 (0.638)

l Xð Þ 2.181 (0.081) 1.125 (0.333) 1.273 (0.538) 1.796 (0.276) 0.945 (0.443)
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using the “hier.part” package (Oksanen et al. 2009) of the R

language (R Development Core Team 2008). According to

Eq. 6, we compared the % of variance of the size diversity

(response variables) explained by ln Je Xð Þð Þ (as a proxy of the

shape of the size distribution) or by ln rlnð Þ (as a proxy of

the size range). Size diversity was mostly related to variation

of ln rlnð Þ in all the data sets analyzed (78–88%), suggesting

that increases in size diversity are mainly caused by the

increase of size variability. However, e-evenness contribution

can also be significant, varying between 11% and 24%, indi-

cating that some variability in size diversity can be caused

by the equalization of the relative abundances of the differ-

ent sizes.

The e-evenness, Je Xð Þ, can be interpreted as a measure of

goodness of fit of the standardized data (mln50) to a log-

normal distribution with rln estimated from the data. How-

ever, for similar values of Je Xð Þ, the values of l Xð Þ can differ

substantially depending on the values of ln(rln), as shown in

Eq. 6. Figure 2, shows examples of pdf’s, estimated using the

kernel techniques described in Quintana et al. (2008). They

correspond to some samples of the data sets (standardized)

used in Table 1. Left panel shows pdf’s of two cases, which

have a similar Je Xð Þ (0.98, 0.97) but quite different diversities

(1.07, 0.55 respectively). Both pdf’s fit well to a log-normal

pdf’s (Je Xð Þ � 1, but their rln differ, as can be observed look-

ing at the upper tail of the pdf’s. Right panel of Fig. 2 shows

a reverse case. These data sets present similar diversities

(1.07, 1.05 respectively) but their shape quantified by Je Xð Þ
(0.98, 0.50) differ, thus pointing out that the full line size

distribution fits quite well a log-normal distribution but the

dashed line one does not so.

Discussion

Size diversity has been applied in the analysis of size-based

organization of communities, including effects of predation

on prey size distribution (Compte et al. 2010, 2011, 2012;

Rudolf 2012; Ye et al. 2013; Quintana et al. 2015; Sorf et al.

2015; Tavşano�glu et al. 2015), responses to environmental

biotic or abiotic gradients at local or global scale (Badosa et al.

2007; Gasc�on et al. 2009; Ruh�ı et al. 2009; Brucet et al. 2010;

Schartau et al. 2010; Emmrich et al. 2011; Arranz et al. 2015;

Benejam et al. 2015) and seasonal dynamics or successional

patterns after disturbances (Brucet et al. 2006; Paredes and

Montecino 2011). Size-based approaches have also been used

for the establishment of the ecological status in aquatic eco-

systems (Gallardo et al. 2011; Basset et al. 2012).

Both variability and regularity of data distribution con-

tribute to size diversity as described in Eq. 6. The e-evenness

term accounts for regularity, thus showing whether increases

in size diversity are due to increase of variability or not. This

cannot be discriminated when using only diversity values.

Furthermore, e-evenness values range between 0 and 1 simi-

larly to standard evenness. This is especially useful in ecolog-

ical status monitoring, where a reference value is needed,

from which the different thresholds of ecological status are

derived (Birk et al. 2012; Kail et al. 2012). Examples in Fig. 2

illustrate the usefulness of the e-evenness. Size distributions

with the same shape but different dispersion differ in l Xð Þ
but not in Je Xð Þ (left panel), while those with similar l Xð Þ
but different Je Xð Þ differ mainly in their shape (right panel).

The fact that the dashed pdf in right panel has low e-

evenness points out that its bimodal shape is not close to a

Log-Normal distribution.

Fig. 2. Probability density functions for standardized size data sets, estimated using kernel technique on the log-scale. Left panel shows densities with

similar e-evenness and different diversity: full line, a sample with l(X) 5 1.07, Je(X) 5 0.98; dashed line, a sample with l(X) 5 0.55, Je(X) 5 0.97. Both are
phytoplankton samples in a meso-euhaline coastal ecosystem. Right panel shows densities with similar diversity but different e-evenness. Full line is the

same full line distribution found in left panel; dashed line is an epibenthic macrofauna sample in a temporary karstic pond (l(X) 5 1.05, Je(X) 5 0.50).
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At this point, it is convenient to recall the underlying

assumptions in the procedures for estimating both diversity

and e-evenness. The parameters of the size distribution (mln,

rln) have to be estimated from the available sample. Conse-

quently, uncertainty on these parameters depends on the size

of the sample. The pdf of the log-transformed variable is esti-

mated using a kernel technique. The kernel has been assumed

normal and its bandwidth has been estimated taking into

account the available sample. Afterward, the integral in Eq. 1

is computed using Monte Carlo. This means that there are

many sources of uncertainty in the estimation of both

diversity and e-evenness. To show the estimation variability

of l Xð Þ and Je Xð Þ, a bootstrap experiment has been conducted

(Davison and Hinkley 1997). We have chosen a real sample of

sizes of the phytoplankton in meso-euhaline coastal ecosys-

tems data set. It consists of 351 data-points with their corre-

sponding abundances (summing up 12992). From this data

set, 100 re-samples have been obtained. For each of these re-

samples l Xð Þ and Je Xð Þ have been computed. Table 2 shows

the bootstrap quantiles of l Xð Þ and Je Xð Þ. It can be concluded

that, for this kind of data sets, both l Xð Þ and Je Xð Þ are esti-

mated with a moderate uncertainty. In both l Xð Þ and Je Xð Þ,
there are two significant digits.

A program for the computation of the size diversity and

the size e-evenness is available for free in the web site of the

Research Team on Limnology of Mediterranean Lagoons and

Wetlands of the University of Girona. A tutorial explaining

how to proceed is also available.
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