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Abstract

Bootstrap resampling is an attractive, computationally-intensive approach for estimating pop-
ulation parameters and their associated uncertainties. Values below detection limit—also referred
to as non-detects—frequently arise particularly when dealing with multivariate geochemical con-
centrations, making the estimation of distributional parameters—mean, median, percentiles—a
difficult challenge. The bootstrap method can be used repeatedly for analyzing resampled versions
of the original data set. This way it is possible to estimate univariate distributional parameters
while also capturing the additional uncertainty due to missing information. Within this approach,
a method must be chosen to substitute non-detects with appropriate values given the compositional
nature of the data. This idea was first introduced by Olea (2008) in the previous CoDaWork’08
meeting. Making use of the isometric log-ratio transformation and analyzing one variable at a time,
he proposed a univariate bootstrap procedure where the distributional parameters of geochemical
components were modeled from bootstrap resamples considering different criteria to impute non-
detects. After conducting a sensitivity analysis on both proportion of non-detects and sample size,
the study concluded that when drawing randomly a value from the extrapolated tail below the de-
tection limit of the distribution best fitting the complete data—usually the log-normal distribution
for geochemical data—the bootstrap estimates turned out to be more accurate than those obtained
using simple imputation methods. Rather than analyzing each variable separately, here we make
a step further to get the most of the covariance structure of the data set, extending the univariate
approach for replacing non-detects to a multivariate setting. As a test bench, a number of data
sets containing non-detects are artificially generated from real geochemical data and used to eval-
uate the performance of different replacement methods within the bootstrap process. First results
show improved results when non-detects are replaced by random values drawn from a conditional
truncated additive logistic model.

1 Introduction

The presence of trace elements in concentrations below a certain detection limit (BDL) is a practical
problem that often arises when analysing experimental samples, particularly in the natural sciences.
Values below detection limits are then reported by the laboratories as indicators of limiting concen-
trations at which the analyte may be present, but it cannot be detected—hence the name non-detects.
The number of non-detects is mainly related to current technical—or even economical—limitations of
the laboratories. Also important is how “clean” the samples are in a particular study. A large amount
of analytes may interfere with the determination of the concentration of the element of concern and,
hence, the detection limit. All of this implies that detection limits can be regarded as a dynamical
issue as, for a certain element, they may vary depending on the laboratory and on the time the sam-
ples were analysed. In fact, it is not unusual to have several detection limits associated with a single
element. Following Olea (2008), the non-detects problem is depicted here in the context of inferring
univariate distributional parameter from compositional data sets applying the bootstrap method. The
constrained nature of compositional data determines the way non-detects have to be dealt with. This
work seeks to be a first approach for extending the idea proposed in Olea (2008) by incorporating
available multivariate information.

From a statistical point of view, non-detects represent a particular missing data problem: data are
non-observed but the detection limit provides information as an upper limit, that is, as a left censoring
point for the data distribution. Depending on the severity of the censoring, distributional parameters
may not reflect the characteristics of the true underlying data distribution, so it is necessary to have
a procedure to recover as realistically as possible the missing information. Any method aimed at
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replacing compositional non-detects by sensible values must meet desirable requirements such as scale
invariance and subcompositional coherence (Aitchison, 1986, postscript to the 2003 printing: p. 2 ).
They also must not alter the relative relationship between those elements without non-detects. The
simple idea of leaving all the elements containing BDL values out of the data analysis is generally
regarded as suboptimal, as it implies getting rid of valuable information. One might think that since
non-detects are unusually small values, they are not truly relevant. Nevertheless, they could have a
major influence on the results, and even greater when working within the log-ratio framework as it is
required for proper compositional data analysis (Aitchison, 1986). Other popular strategy such as just
replacing non-detects with a constant value—commonly a fraction of the detection limit, e.g. 0.5DL
or 0.7DL—may appear to work relatively well when the number of non-detects is very small, but they
introduce bias and variability underestimation as the amount of non-detects increases (Helsel, 2006).
Moreover, given the constant-sum constraint of compositional data, these proposals may distort the
covariance structure of the data if suitable adjustments are not made in those elements free of non-
detects (Mart́ın-Fernández et al., 2003). As a result, debatable statistical outputs can be produced.
An alternative approach is to exploit the statistical characteristics of the data distribution above the
detection limit to provide estimates for the non-detects. Although more computationally intensive,
these methods relying on some kind of data modelling are generally more reliable and provide better
results, as will be shown below.

2 Bootstrapping compositional samples containing non-detects

The bootstrap (e.g. Efron and Tibshirani, 1993; Chernick, 2008) is a computer-based resampling
method that treats the collected data as a pseudo-population. A number of bootstrap resamples—
usually the same size as the original—are randomly drawn by resampling with replacement from the
empirical distribution of the original data set, and univariate statistics of interest (mean, median,
percentiles, and so on) can be then computed from each one of them. Finally, bootstrap estimates
of univariate distributional parameters, summarising bootstrap sample-wise statistics, and their as-
sociated uncertainly measures can be derived in a straightforward way. This iterative process allows
estimation of the sample distribution of almost any statistic we may be interested in.

Here we divert from the ordinary bootstrapping as the existence of non-detects requires procedures
to deal with partly censored data. It is important to note that non-detects add an additional source
of variability which will be reflected in resulting bootstrap standard errors and confidence intervals.
Additionally, the compositional nature of our data requires that those procedures meet compositional
principles. Note that a simpler alternative could be to first have the non-detect treated and then
initiating the bootstrap, but in such a case the non-detects extra variability would not be incorporated
into the modeling.

Given a data set X = (xij)N×D—N samples of a D-part compositional random vector x =
[x1, . . . , xD]—containing non-detects, the non-detect bootstrap scheme can be outlined as follows:

1. Randomly sample rows with replacement from X to get bootstrap resample Xb of size N ×D.

2. Replace non-detects in Xb by estimated values → X∗
b .

3. Compute and save univariate statistics of interest from X∗
b .

4. Repeat 1–3 B times.

5. Compute bootstrap distributional summary estimates.

Originally, in the context of geochemical data and considering a single analyte, Olea (2008) showed
how replacing non-detects at point 2 with random values from the left tail of an univariate log-
normal—using the detection limit as cut-off value—provides more accurate results than the popular
constant-value substitution. Now, we assess that strategy against other model-based replacing ap-
proaches considering a multi-analyte framework. Particularly, five different imputation criteria will be
considered:
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1. Simple substitution: non-detects replaced by 0.7DL.

2. Random uniform: non-detects are replaced by random values from an uniform probability dis-
tribution in (0, DL).

3. Random univariate log-normal: non-detects are replaced by random values BDL from an uni-
variate log-normal distribution.

4. alr-EM algorithm: following Palarea-Albaladejo and Mart́ın-Fernández (2008), non-detects are
replaced, within a Expectation-Maximization full-data parameters updating loop, by conditional
expected values from an additive logistic normal (ALN) model.

5. Random conditional ALN model: non-detects are replaced by random conditional values from
a right-truncated ALN model.

The detection limit DL is not required to be the same for all components in any case and all
procedures are designed to generate values below it. Model parameters for methods 3 and 5 are
simply estimated from the observed data. The novelty of methods 4 and 5 is the incorporation of
multivariate information from other components in the estimation of non-detects. In other words, they
generate values taking into account the correlation structure of the components. In consequence, these
methods are not likely to stand out in those situations where the components are nearly uncorrelated
or the correlations are low. Note that methods 4 and 5 require a log-ratio transformation of the data
for the multivariate normal model be used in real space. The additive log-ratio (alr) transformation
(Aitchison, 1986) is used here for that purpose because it allows easily moving the DL information
between original and transformed space. Note that the results are invariant with respect to the
alr-denominator chosen (Palarea-Albaladejo and Mart́ın-Fernández, 2008). Particularly for method
5, random values from the univariate conditional right-truncated normal distributions are generated
using the alr-transformed DLs as truncation points. Then, the results are transformed back into the
simplex to get the univariate statistics of interest from X∗

b in the original units.

3 The Fort Union data set

With the goal of comparing bootstrap results according to the non-detects treatment applied, a real
data set originally free of non-detects was kindly provided by geochemists at the U.S. Geological
Survey. The data consists of N = 229 samples of the concentration (in ppm) of D = 5 minor elements
[Cr,Cu, Hg, U, V ] in carbon ashes from the Fort Union formation (Montana, USA). Actually, this
vector of elements represents a subcomposition of a much larger composition available, and the data
are not closed to a constant sum. Note that originally all the values are above the detection limit.
Table 1 summarizes the ordinary descriptive univariate statistics. It can be seen that Cr,Hg and U
have the smaller concentrations, whilst V exhibit the higher.

min p5 p25 geo mean median p75 max
Cr 0.72 1.24 2.35 4.07 3.71 7.07 28.8
Cu 16 26.4 37 49.54 47 67 203
Hg 0.14 0.26 0.48 0.74 0.71 1.17 5.77
U 0.21 0.50 0.91 1.53 1.36 2.36 17.4
V 10 25 49 70.05 70 130 500

Table 1: Fort Union univariate descriptive statistics: concentrations in ppm.

The biplot on clr-coordinates (Aitchison and Greenacre, 2002)—Figure 1—reveals that clr(Hg) and
clr(U) have the higher relative variability as they have the longer rays. On the other hand, the vertices
in Figure 1 lie far apart from each other and the minimum value in the variation matrix (Aitchison,
1986, p.76)—Table 2—is equal to 0.2965, which corresponds to the log-ratio variance between Cu and
V . In consequence no strong geochemical associations are found in the data set, although care must
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Cr Cu Hg U V
Cr 0 0.553 1.084 0.475 0.346
Cu 0.553 0 0.522 0.493 0.297
Hg 1.084 0.522 0 0.895 0.946
U 0.475 0.493 0.895 0 0.512
V 0.346 0.297 0.946 0.512 0

Table 2: Fort Union variation matrix.

be taken on conclusions drawn from the clr-biplot given the modest percentage (76%) of variability
explained by the first two axes. However the poor relationship between elements is also reflected in
the correlation matrix of the alr-transformed data set (not reproduced here), where the highest value
obtained is equal to 0.68 between log-ratios ln(Cu/V ) and ln(Hg/V ). Given the above, no large
differences between the results from methods 3 and 5 are expected.

clr(Cr)

clr(Cu)

clr(Hg)

clr(U)

clr(V)

Prop. Var. Explained:  0.76

Figure 1: Fort Union data: clr-biplot.

From the original Fort Union data, a collection of synthetic data sets with different distribution of
non-detects was generated. Geochemists provided us with a set of current reference detection limits for
each element (DL range column in Table 3) and also with those detection limits particularly applied
to the Fort Union data set (FU DLs column in Table 3). From this, we considered 6 different levels
of non-detects—Low (< 5%), Moderate (5-15)%, Medium (15-25)%, ...—and detection limits were
accordingly established for each element at each level as shown in Table 3.

As a result, 12 different scenarios were set out giving rise to 12 data sets {X1,X2, . . . ,X12} with
percentage distribution of non-detects shown in Table 4.

Low Moderate Medium Medium-High High Very high
DL range FU DLs (< 5%) (5-15)% (15-25)% (25-50%) (50-67%) (> 67%)

Cr 0.1-9 0.1 1 (3.1%) 1.5 (8.7%) 2 (20.5%) 2.5 (28.8%) 5 (62.3%) 6 (69.4%)
Cu 1-500 20 25 (3.9%) 30 (8.7%) 35 (16.6%) 45 (45.0%) 60 (65.1%) 80 (86.0%)
Hg 0.005-0.02 0.01 0.25 (4.8%) 0.35 (14.8%) 0.4 (18.8%) 0.6 (38.0%) 0.75 (53.3%) 1 (69.4%)
U 0.1-1 0.15; 1 0.4 (2.6%) 0.7 (9.6%) 0.85 (20.1%) 1 (30.1%) 1.5 (54.2%) 4.5 (91.3%)
V 0.1-1 0.9 25 (3.9%) 30 (7.9%) 35 (23.1%) 70 (37.6%) 75 (63.8%) 120 (72.9%)

Table 3: Fort Union detection limits (left) and imposed detection limits by element-level combination (right). In paren-
thesis the percentage of BDL values.

Note that we decided to let Vanadium not to have values BDL in order to facilitate the use of
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replacement methods requiring log-ratio transformation, particularly methods 4 and 5 described in
Section 2 making use of the alr transformation. On the other hand, given that the data used here are
a subcomposition of concentrations in ppm they are not in fact closed to a constant sum, as required
to come back from the real space to the simplex using the alr inverse transformation. For addressing
this issue we could fill the gap up to 1,000,000 by adding a residual—really an estimated residual—
to those samples containing non-detects. We could also just transform the data into percentages or
proportions dividing by the associated row sums—that is, closing them to 100 or 1—but then losing
the original scale. However, our objective when replacing non-detects will be to approximately recover
the original data set in ppm without altering the relative structure of the data. This can be achieved
without adding any residual term as long as the replacement method does not alter the ratios between
the elements. The alr- and inverse alr-transformation process embedded in methods 4 and 5 will itself
close the data to a constant sum, say 1. In order to get the data set expressed back in the original
ppm scale we can convert those replaced non-detects as follows. Let yj be the value of a replaced non-
detect after closure (as returned by the inverse alr-transformation), and yk, k 6= j, the corresponding
value for any other non-replaced element. Then the replaced non-detect in the original scale x∗j can
be recovered as

x∗j = yj
xk

yk
,

where xk is the value of element k in the original scale, taking advantage of the fact that the relative
ratios between elements are preserved. In addition, this strategy for not carrying out an a priori closure
of the data also prevent us from transforming the given detection limits according to a particular
closure constant.

% values BDL
BDL scenarios Cr Cu Hg U V Total

1. Some low and nothing 3.06 3.93 4.8 0 0 2.40%
2. All low 3.06 3.93 4.8 2.62 0 2.90%
3. Some moderate, rest low 8.73 8.73 14.85 2.62 0 7.00%
4. All moderate 8.73 8.73 14.85 9.61 0 8.40%
5. Some medium, rest moderate-low 20.52 16.59 14.85 2.62 0 10.90%
6. Some medium, rest moderate 20.52 16.59 18.78 9.61 0 13.10%
7. All medium 20.52 16.59 18.78 20.09 0 15.20%
8. Some med-high 28.82 44.98 18.78 9.61 0 20.40%
9. Some med-high, rest medium 28.82 44.98 37.99 20.09 0 26.40%
10. All medium-high 28.82 44.98 37.99 30.13 0 28.40%
11. Some high 62.88 65.07 37.99 20.09 0 37.20%
12. All High 62.88 65.07 53.28 54.15 0 47.10%

Table 4: Twelve synthetic non-detects scenarios and associate percentage of non-detects.

4 Results

The non-detect bootstrap scheme outlined in Section 2 was applied to each data set in {X1,X2, . . . ,X12}
considering the 5 different replacement methods for non-detects. For each bootstrap resample—
B = 1000 were generated—the distributional parameters geometric mean, median and percentiles p5,
p25 and p75 were computed for each chemical element.

For a better visualisation of the results, the bootstrap distribution of each distributional parameter
for each method was obtained by kernel density estimation based on a Gaussian kernel. Figures 2 and
3 show the kernel density distribution of the parameter p5 for each combination of chemical element,
imputation method and scenario. Analysing these distributions and their usual bootstrap statistics—
bootstrap mean, standard deviation and percentiles p25 and p97.5—the following general remarks are
made:
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Figure 2: Fort Union data: kernel density estimation for distributional parameter p5 in scenarios 1–6.

• For any method and any scenario the bootstrap distributions of the univariate parameters of V ,
the element without non-detects, are exactly the same.

• Conversely, the estimation of p5 is nearly always affected since its value is closely related with

Proceedings of the 4th International Workshop 
on Compositional Data Analysis (2011)

Egozcue, J.J., Tolosana-Delgado, R. and Ortego, M.I. (eds.) 
ISBN: 978-84-87867-76-7

6



the presence of non-detects in the chemical elements.
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Figure 3: Fort Union data: kernel density estimation for distributional parameter p5 in scenarios 7–12.

• In most of the scenarios no impact is observed in the estimates of larger percentiles: p25, median,
p75, and p95. Only when the number of non-detects is very high—say scenarios 10 to 12—the
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estimations are slightly different over the five methods.

• The estimation of the geometric mean is nearly always affected given that this measure deals
with all the values of the data distribution.

Because the crucial information in relation to the performance of the five methods relies on the
estimation of the smaller percentiles, we only present here the detailed results for the 5th percentile.
From the bootstrap estimates and the plots in Figures 2 and 3, the evaluation of the methods in the
twelve scenarios may be summarized as follows:

• Across all the scenarios it is observed that simple substitution and random uniform methods tend
to underestimate the parameter p5. Only for scenarios 8 to 12 the simple substitution method
overestimates the true value. The distributions produced by the random uniform method are
systematically located left of those from the simple substitution method. When the number of
non-detects increases the random uniform method produces distributions mostly located around
the half of the DL, whereas those from the simple substitution method are located by the 70%
of the DL.

• The random log-normal method sometimes underestimates the true values, however it predomi-
nantly tends to overestimate p5. In fact, in most of the cases, the distributions provided by this
method are located at the right-hand side of the plots. This suggests that it usually replaces
non-detects by values close to the DL.

• The method based on the alr-EM algorithm provides distributions more concentrated around the
mean than those produced by the random conditional ALN method. In addition, in most of the
scenarios, the alr-EM distributions are to the left of the random conditional ALN distributions.
This behavior could have been anticipated because the alr-EM method replaces non-detects by
expected values and then tends to underestimate the variability as the amount of non-detects
rises. On the other hand, the random conditional ALN imputations reproduce better the data
variability.

• Despite the poor correlation structure of the FU data set, we could say that the random condi-
tional ALN method, which generalizes the method proposed in Olea (2008), provides in general
better results than the other approaches.

5 Concluding remarks

In this work we suggest an extension of the univariate non-detect bootstrap method proposed in
Olea (2008) to a multivariate framework so as to take advantage of the information available in the
correlation structure of the data set. Two alternative multivariate imputation strategies for replacing
non-detects within the bootstrap iterations are proposed: the alr-EM algorithm (Palarea-Albaladejo
and Mart́ın-Fernández, 2008) and the random conditional ALN model. From our simulation results it
can be stated that the multivariate approach based on the random conditional ALN model represents
an improvement relative to a similar approach modeling each variable separately. This result is even
more remarkable considering the low correlations between the elements comprising the data set used
as a basis for the study. We have also observed that the alr-EM algorithm, which has been a reliable
method for dealing with BDL values in compositional data sets, does not appear to suit well within
the bootstrap scheme.
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