Experiències docents d’adaptació a l’EEES de l’Escola Politècnica Superior de la UdG
ÍNDICE

Presentació
ISABEL VILLAESCUSA GIL ... 9

ADAPTACIÓ D’ASSIGNATURES I DE PLANS D’ESTUDIS A L’EEES ... 11

Definició i assignació de competències en el màster en Medi Ambient
JOSEP CALBÓ ANGRILL ... 13

Experiència del disseny de l’assignatura Metodologia i tecnologia de la programació en el context de l’EEES
FRANCESC CASTRO VILLEGAS I MIQUEL FEIXAS FEIXAS ... 17

Experiències en un pla pilot d’adaptació a l’EEES: full de ruta per a coordinadors
JORDI FREIXENET BOSCH, JOSEP L. MARZO LÁZARO, JOSEP SOLER MASÓ ... 23

Treball en grup en l’assignatura Expressió gràfica i disseny assistit per ordinador
FERNANDO JULIÁN PÉREZ I XAVIER ESPINACH ORUS .. 29

Adaptació a l’EEES de l’assignatura de Visió per computador
XAVIER LLADÓ BARDERA .. 35

Adaptació a l’EEES de l’assignatura d’Estadística
GLÒRIA MATEU FIGUERAS, JOSEP DAUNIS I ESTADELLA I SANTIAGO THIÓ HENESTROSA ... 41

Adaptació a l’espai europeu d’educació superior de l’assignatura Electrònica analògica
CARLES POUS SABADÍ .. 47

Competències transversals de la Universitat de Girona: una lectura possibilista
PERE ROURA GRABULOSA ... 53

Estratègia de disseny de titulacions
JOSEP SOLER MASÓ .. 59

Adaptació a l’EEES de l’assignatura d’Introducció a les estructures de dades
JOAN SURRELL SAURÍ .. 63

Disseny de l’assignatura Aliments biotecnològics del màster oficial en Biotecnologia Alimentària
MÒNICA TOLDRÀ ALEGRET, DOLORS PARÈS OLIVA, ELENA SAGUER HOM I SÓNIA BAIXAS NOGUERAS 67
Experiències docents d’adaptació a l’EEES

Organització de l’assignatura de Fonaments físics de la informàtica: rendiment i percepcions

ESMERALDA ÚBEDA DE LA CASA I JOSEP-ABEL GONZÁLEZ GUTIÉRREZ ... 71

Primeres adaptacions a l’EEES a l’assignatura de Xarxes

PERE VILÀ TALLEDÀ I LLUÍS FABREGA I SOLER ... 75

DIVERSIFICACIÓ METODOLÒGICA .. 79

Avaluació de les competències: exemple pràctic de l’assignatura d’Enginyeria agroambiental

GERARD ARBAT PUJOLRÀS .. 81

Gironacel®: aprendre a gestionar la qualitat. Una experiència d’ensenyament semipresencial

MARTÍ CASADESÚS FA I GERUSA GIMÉNEZ LEAL .. 85

Estudi de butlletins d’anàlisi química reals

FLORENCIO DE LA TORRE YUGUEROS ... 89

Aprenentatge mitjançant projectes. L’experiència en l’assignatura de Disseny i desenvolupament de productes

XAVIER ESPINACH ORÚS I FERNANDO JULIÁN PÉREZ .. 93

Treball a classe dels apunts electrònics de les assignatures de Ciència dels materials

JORDI FAJAS SILVA I PERE ROURA GRABULOSA .. 99

L’aprenentatge actiu en l’experimentació en Enginyeria Química

NÚRIA FIOL SANTALÓ I MIQUEL F. LLOP MANERO .. 103

Aprenentatge cooperatiu aplicat a l’assignatura de Materials i control de qualitat

M. MERCE PARETA MARJANEDAS .. 107

Reflexions i experiències portades a terme en assignatures de Física

JESÚS PLANELLA MORATO, LLIUSA ESCODA ACERO I JOAN JOSEP SUÑOL MARTÍNEZ 111

ACME una eina estratègica dins el pla pilot: utilització i resultats

JORDI POCH GARCÍA, FERRAN PRADOS CARRASCO I JOSEP SOLER MASÓ .. 115

Treball col·laboratiu en l’assignatura de Matemàtiques

JORDI POCH GARCÍA, MARTA PELLICER SABADÍ I JAUME SOLER VILLANUEVA .. 121

Activitat d’aprenentatge cooperatiu: anàlisi i estudi d’accionaments. Elecció del tipus de motor més adequat

JOAN PUIGMAL PAIROT .. 127

Implicació dels estudiants en l’assignatura

LLUÍS RIPOLL MASFERRER ... 131
Experiències docents d’adaptació a l’EEES

Aprenentatge cooperatiu a l’assignatura Anàlisi aplicada a la indústria d’ETIQI
ISABEL VILLAESCUSA GIL .. 135

AVALUACIÓ DE L’APRENENTATGE ... 141

Avaluació responsable
XAVIER CAHIÓ CAROLA .. 143

Urbanisme I. Correcció entre iguals
NÀDIA FAVA .. 147

Portafolis com a eina d’aprenentatge en l’assignatura Indústries de l’oli, greixos i derivats
JESÚS FRANCÉS ... 151

Experiències en l’àrea d’Enginyeria Mecànica: seguiment de l’aprenentatge continuat en grup amb avaluació per portafolis
JOAN ANDREU MAYUGO MAJÓ, NARCÍS GASCONS CLARIÓ, PERE MAIMÍ VERT
I NORBERT BLANCO VILLAVERDE .. 155

Efectivitat de l’ús de proves d’autoavaluació a la intranet docent de la UdG
JAUME PUIG I BARGUÉS .. 161

Avaluació continuada: motivació de l’alumne, control del seguiment de l’assignatura i qualificació. Una experiència en l’assignatura de Comercialització dels productes agropecuaris
JOAN PUJOL PLANELLA .. 165
PRESENTACIÓ

Isabel Villaescusa Gil
Sotsdirectora per a l’EEES de l’EPS

L’Escola Politècnica Superior va començar el seu camí cap a l’adaptació a l’espai europeu d’educació superior durant el curs 2004-2005 participant en el Pla pilot de les universitats catalanes d’adaptació a l’EEES, projecte finançat per l’Agència per a la Qualitat del Sistema Universitari de Catalunya (AQU). Així, des del curs 2004-2005 les titulacions Enginyeria Tècnica d’Informàtica de Gestió (ETIG) i Enginyeria Tècnica d’Informàtica de Sistemes (ETIS), que s’imparteixen a la nostra escola, han quedat integrades en aquest pla pilot. Per altra banda, durant aquest mateix curs diversos professors de la nostra escola van participar en projectes de l’AQU per confeccionar guies per a l’adaptació a l’EEES, i també en projectes de l’Agència Nacional de Evaluació de la Calidad y Acreditación (ANECA) per confeccionar els llibres blancs que han de servir de base per dissenyar els nous plans d’estudi de grau.

L’adaptació a l’EEES no implica només canvis en els plans d’estudis i l’adopció d’un sistema de crèdits ECTS, sinó que implica un canvi de paradigma en l’ensenyament. El nou paradigma situa l’estudiant al centre del procés d’ensenyament-aprenentatge. Les titulacions cal dissenyar-les a partir de la formulació d’unes competències que els estudiants hauran d’adquirir fent unes activitats d’aprenentatge amb les quals hauran de treballar uns continguts determinats. També, pel que fa a l’avaluació, cal una bona reflexió i un canvi en les activitats i els criteris. L’avaluació de la progressió de l’aprenentatge dels estudiants no es pot fer al final del procés docent; així, caldrà utilitzar nous instruments d’avaluació que hauran de donar informació fidedigna i immediata a l’estudiant i als professors del procés d’aprenentatge de les competències assignades a l’assignatura.

Per tot això calia que, abans de planificar els nous estudis de grau i de màster, el professorat estigués entrenat per programar les seves assignatures en funció de les competències que li havien estat assignades. A la nostra escola, els pioners en aquest tipus d’experiència van ser els professors encarregats d’impartir la docència als estudis d’ETIS i d’ETIG en una experiència de Pla pilot de l’AQU. Actualment tenen una experiència de quatre anys (del curs 2004-2005 al curs 2007-2008). Un curs més tard del començament del pla pilot, la direcció de l’EPS va crear un grup de professors (un de cada àrea de coneixement) per tal de formar-los en tots els aspectes relacionats amb l’adaptació de les assignatures a l’EEES. Aquesta formació es va dur a terme mitjançant l’assistència a tallers, seminaris, xerrades, debats, etc. sobre formulació de competències, activitats d’aprenentatge, tècniques d’avaluació, programació d’assignatures amb la fitxa de disseny de La Meva UdG, etc. L’objectiu del pla de formació d’aquests professors era que, un cop finalitzat el procés, cadascun dels membres del grup fos formador dels professors de la seva àrea de coneixement perquè aquests adaptessin les seves assignatures a l’EEES. El pla de formació, que ha durat tres anys, s’acabará al final d’aquest curs acadèmic. Cal destacar que molts professors de l’Escola que no han participat en el pla pilot dels estudis
d'informàtica ni tampoc han format part del grup del pla de formació per a l'EEES han fet també innovacions i canvis importants en la programació de les seves assignatures per anar-les adaptant al nou model de docència. Els quaderns guia editats pel Vicerectorat de Docència i Política Acadèmica, així com els nombrosos cursos que ha organitzat l'Institut de Ciències de l'Educació Josep Pallach, han estat els elements motivadors i alhora els motors perquè la majoria d'aquests canvis es produïssin. Tots aquests professors van tenir l'oportunitat de presentar les seves experiències en tres jornades organitzades per l'Escola Politècnica Superior amb la col·laboració de l'ICE Josep Pallach. Precisament, les comunicacions recollides en aquest llibre han estat presentades en alguna d'aquestes tres jornades: Jornada de Presentació d'Experiències d'Adaptació d'Assignatures a l'EEES, al juliol del 2007; Jornada de Presentació d’Experiències del Pla Pilot ETIG/ETIS, a l’octubre del 2007, i II Jornada sobre Experiències d’Adaptació d’Assignatures a l’EEES, al febrer del 2008.

Els treballs que es recullen en aquest llibre s’han agrupat en tres blocs: “Adaptació d’assignatures i de plans d’estudi a l’EEES”, “Diversificació metodològica” i “Avaluació de l’aprenentatge”.

Espero que aquesta publicació serveixi de model i també de punt de reflexió, i que sobretot engresqui altres professors a emprendre aquesta gran aventura de canviar el paradigma de l’educació per entrar així en igualtat de condicions que altres països a formar part d’aquest espai europeu d’educació superior.
ADAPTACIÓ D’ASSIGNATURES
I DE PLANS D’ESTUDIS A L’EEES
DEFINICIÓ I ASSIGNACIÓ DE COMPETÈNCIES
EN EL MÀSTER EN MEDI AMBIENT

Josep Calbó Angrill
Àrea de Física Aplicada

Resum. Es presenta el procés que s’ha seguit per configurar el nou màster oficial en Medi Ambient i, concretament, per definir les competències que els estudiants haurien d’adquirir fent aquest màster, i també per distribuir aquestes competències entre les diverses assignatures programades. Cal tenir present que aquesta segona tasca encara no està acabada, ja que l’assignació de competències a assignatures es pot modificar en cada edició del màster com a resposta a l’experiència d’edicions anteriors.

1. Introducció
Cap a l’any 2005, en el marc de la incorporació a l’espai europeu d’educació superior, el procés de Bolonya, i, en definitiva, de l’harmonització en l’àmbit europeu dels estudis universitaris, la Universitat de Girona va prendre la decisió de convertir els programes de doctorat que gaudien del reconeixement de la menysió de qualitat en nous estudis oficials de postgrau, i concretament en titulacions de màster.

Així, el programa de doctorat de Medi Ambient, que des de feia uns set o vuit cursos s’impartia a la nostra universitat, va haver de redefinir-se com a màster. Cal tenir presents algunes característiques de l’esmentat programa de doctorat per entendre millor el procés de transformació. En primer lloc, el programa de doctorat va néixer en el si de l’Institut de Medi Ambient com a resultat de la unió de diversos programes anteriors que incidien en temes ambientals. D’aquesta manera, va quedar constituït en tres itineraris (Geografia en Ordenació del Territori i Gestió del Medi Ambient, Biologia Ambiental, Biodiversitat i Conservació, i Física i Tecnologia Ambientals), malgrat que els estudiants podien escollir matèries de diversos itineraris per assolir una formació multidisciplinària. A més, s’impartien algunes matèries comunes a tots tres itineraris. En segon lloc, i com a conseqüència de l’anterior, en el programa de doctorat hi intervenia professorat de molts departaments (5-7 segons el curs), que estava repartit almenys en tres centres docents (Facultat de Ciències, Escola Politècnica Superior i Facultat de Lletres). En tercer lloc, el nombre d’estudiants sempre havia estat un dels més alts entre els doctorats de la Universitat de Girona, i igualment el ritme de tesis llegides era molt notable. I finalment, com ja s’ha esmentat, el programa gaudia des de feia anys de la menció de qualitat atorgada pel Ministeri d’Educació i Ciència, com a reconeixement a la qualitat del professorat (propi i visitant), l’estructura del programa, la qualitat i quantitat de les tesis llegides, etc.

Un cop plantejada la conversió en un màster en medi ambient, els responsables vam tenir clar que calia mantenir totes aquelles características que havien fet del doctorat un programa amb èxit, afegint-hi si esqueia aquelles novetats que el podien fer encara més atractiu, competitiu, i obviament, de més qualitat. Pensant almenys en els primers anys en què s’impartiria el màster, durant el qual s’adreçaria bàsicament a estudiants que haguessin completat uns estudis de llicenciatura o enginyeria de quatre o cinc anys, vam
optar per un màster curt, de 60 ECTS. Es va mantenir l’estructura en tres itineraris, reforçant, però, la part comuna (ara anomenada transversal), i es va optar per oferir una versió professionalizadora (a més de la que era natural, dirigida cap a la recerca i el doctorat) mitjançant la possibilitat de fer pràctiques en empreses o entitats de l’entorn. El màster va ser avaluat positivament per la Generalitat de Catalunya i va aconseguir, doncs, la qualificació de màster oficial, i ha estat un dels pocs màsters, entre els que ha ofert la UdG, que ha obtingut un semàfor verd en les dues edicions que s’han fet fins ara.

2. Descripció de l’activitat

L’activitat que aquí presentem consisteix en el procés de definició i redacció de les competències del màster en Medi Ambient, i de l’assignació a les diverses assignatures en què es desenvolupa aquest màster.

En una primera fase, i reconeixint el desconeixement gairebé total del concepte de competeix, així com forçats per les presses pròpies de l’entorn universitari, la proposta que es va enviar a la Generalitat perquè fos avaluada descrivia el màster en Medi Ambient a partir de cinc capacitats, trenta-cinc competències genèriques i vint-i-una competències específiques. Les primeres consistien bàsicament en una redacció lleugerament modificada dels descriptors de Dublín per a estudis de màster. Per exemple, n’hi havia una que deia, de manera força criptica: “Hauran demostrat uns coneixements i una comprensió que els proporcionin una base o una oportunitat per a l’originalitat en el desenvolupament i/o l’aplicació d’ides, sovint en un context de recerca”. Entre les segones, que havíem aportat mitjançant una pluja d’ides i emmira llant-nos en altres processos semblants que es duien a terme a la UdG (plans pilote, etc.), un exemple és el següent: “CAPACITAT D’ANÀLISI I SÍNTESI”. I les terceres sorgien naturalment dels continguts que fins a aquell moment s’havien desenvolupat en el programa de doctorat, per exemple: “Restauració del medi natural”.

En la segona fase, un cop es va haver aprovat el títol de màster, i quan ja estava en marxa la primera edició, es va treballar per formular de nou les competències, tenint en compte sobretot les indicacions de les diverses guies editades per la UdG (UdG[1,2], 2006a; 2006b). Així, es van repartir les competències només en dues categories (vint-i-cinc competències transversals i dinou d’específiques) i es van escriure totes seguint les recomanacions, és a dir, emprant en primer lloc l’infinitiu d’un verb d’acció. Les competències que hem esmentat més amunt com a exemples van quedar transformades en: “Anàlitzar i sintetitzar la informació, i resoldre problemes” (transversal) i “Comprendre els temes mediambientals que proporcionen una base o una oportunitat per a l’originalitat en el desenvolupament i/o l’aplicació d’ides, sovint en un context de recerca”, o “Fer propostes de restauració del medi natural” (específiques). Malgrat aquest esforç, algunes competències encara presenten una formulació mica estranya, però no les vam poder eliminar ja que formaven part del màster tal com havia estat aprovat.

La tercera fase del treball va consistir —i podríem dir que encara consisteix, ja que no la considerem tancada— a assignar les competències a les diverses assignatures del màster. Per fer això, i també segons la guia corresponent (UdG[1], 2006a), podríem haver seguit dos esquemes: de baix a dalt (en què els professors de cada assignatura o el consell d’estudis escullen i reparteixen les competències) o de dalt a baix (en què el director del màster hauria de fer l’assignació). D’entrada es va descartar aquesta segona opció, que semblava molt atrevida, sobretot atinent la diversitat i complexitat del màster en Medi
Experiències docents d’adaptació a l’EEES

Ambient. Per tant, es va sol·licitar als professors responsables de cada assignatura que indiquessin quines competències estaven ja treballant (o es veien amb possibilitats de treballar) en les respectives assignatures. A aquesta demanda, les respostes van ser diverses, de manera que les hem classificat en quatre categories:
— “Silenciosa”. Es tracta del professor o professora que no va respondre, en general per oblit o desinterès, però algunes vegades per convenciment que no és una tasca que els pertongui.
— “Prudent”. Es tracta d’aquell professor o professora que indica només una o dues competències de la llista. Segurament no ha entès que la lectura que s’ha de fer de les competències és relativament oberta, i que per tant hi ha altres competències que també podria treballar. També es pot donar el cas que realment no hi hagi més competències que corresponguin a l’assignatura.
— “Responsable”. Aquesta resposta generalment correspon a professors ben informats i documentats sobre el significat de les competències. Escullen dues o tres competències transversals i dues o tres d’específiques per a les seves assignatures.
— “Ambiciosa”. En aquest cas, el professor o professora escull un gran nombre de competències (en alguns casos, més de vint) que diu que desenvolupa en la seva assignatura. Segurament es tracta d’un excés de zel, ja que, sense posar en dubte que moltes de les competències (especialment les transversals) segurament sí que es toquen en les assignatures, només algunes es tracten amb una certa profunditat.

Figura 1. La graella de competències per assignatures del màster en Medi Ambient (al juny del 2007). Independentment del nom de les assignatures i de la descripció de les competències, permet veure com es distribueixen les unes respecte a les altres en ambdós sentits.

3. Resultats
El resultat d’aquest procés és una graella (figura 1), confeccionada amb l’aplicació que a aquest efecte s’ha generat a la intranet de la UdG i que és a disposició dels directors de màster, en què es mostren les assignatures en les files i les competències en les columnes.
Aquesta matriu facilita la tasca de veure:

a) quines assignatures tenen competències assignades i quines no;
b) quantes competències i quines competències hi ha assignades a cada assignatura, i
c) quines competències es tracten en una o diverses assignatures (i si n’hi ha alguna que no és tractada en cap).

En el cas del màster en Medi Ambient, es pot considerar que el resultat del procés és acceptable, encara que s’hi han d’aplicar diversos ajustaments.

4. Conclusions
En tot aquest procés, tant els responsables del màster com els professors implicats han après que és important definir bé les competències i també que es necessita coordinació a l’hora de repartir-les. Encara hi ha molta feina per fer fins a arribar a l’estat desitjable, que és que en l’estudi del màster en Medi Ambient es treballi plenament a partir de competències. Entre altres coses, encara cal:

• Millorar l’assignació, de manera que totes les assignatures tinguin un nombre equilibrat de competències assignades i que totes les competències es treballin en un mínim d’assignatures.
• Coordinar-se amb el programa oficial de postgrau (POP) corresponent per assignar les competències (probablement transversals) a les assignatures anomenades transversals de POP i d’universitat.
• Introduir també les competències singulars i les competències transversals de la UdG en el moment que siguin àmpliament acceptades per la comunitat.
• Distingir, quan escaigui, diferents nivells de tractament de les competències.
• Treballar amb el professorat per iniciar un procés d’avaluació de l’adquisició de les competències assignades a cada assignatura (avaluar per competències).
• Redefinir algunes de les competències i afegir-hi o treure les que faltin o sobrin. Si els canvis introduïts són substancials, això pot comportar que el màster hagi de ser valorat de nou per la Generalitat.

Totes aquestes tasques formen part del procés continuat d’avaluació (espiral de qualitat) que ha de conduir a assolir el màxim nivell de qualitat per al àster en Medi Ambient.

5. Bibliografia
EXPERIÈNCIA DEL DISSENY DE L'ASSIGNATURA METODOLOGIA I TECNOLOGIA DE LA PROGRAMACIÓ EN EL CONTEXT DE L'EEES

Francesc Castro Villegas, Miquel Feixas Feixas
Àrea de Llenguatges i Sistemes Informàtics

Resum. En aquest treball volem descriure i valorar l'experiència de l'aplicació d'un model docent basat en les línies de l'espai europeu d'educació superior (EEES) a una assignatura troncal de les enginyeries informàtiques. Es tracta de l'assignatura Metodologia i tecnologia de la programació, en què s'estableixen les bases de la programació de computadors, aspecte bàsic d'aquests estudis. Descriurem les iniciatives que s'han dut a terme i intentarem valorar d'una manera crítica l'experiment.

1. Introducció
L'assignatura Metodologia i tecnologia de la programació (MTP) és troncal dins els estudis d'Enginyeria Tècnica en Informàtica de Gestió (ETIG) i Enginyeria Tècnica en Informàtica de Sistemes (ETIS). Forma part del pla d’estudis del 2001 i es va impartir per primer cop durant el curs 2001-2002. Els autors d’aquesta ponència són els que la van dissenyar i els que se n’han responsabilitzat des de llavors. Es tracta d’una assignatura fonamental i de gran importància en el context de les enginyeries informàtiques, ja que s’hi estableixen les bases de la programació de computadors.

2. Descripció
En l’assignatura MTP són més importants les habilitats que els alumnes desenvolupen al llarg del curs que no pas els coneixements que adquireixen. Nosaltres ho hem considerat així des de bon principi, fins i tot abans de la implantació del Pla pilot. El que ha comportat l’arribada del Pla pilot és, en general, el fet de donar més importància a aspectes com ara l’avaluació continuada, la valoració de les hores de treball dels alumnes1 i la realització de classes presencials més actives per part dels alumnes.

1 En el context del Pla pilot, a l’assignatura MTP se li han assignat dotze crèdits ECTS, corresponents a un total de 300 hores de feina per part dels alumnes. Els professors de l’assignatura intentem que el volum de feina s’ajusti a aquests requeriments.
2.1. Canvis en la metodologia docent
En les sessions de teoria hem introduït la realització d'exercicis en grup per part dels alumnes. El professor planteja un exercici durant la classe, relacionat amb la matèria que s'està tractant, i deixa entre vint i trenta minuts perquè els alumnes, en grups de tres o quatre, el resolguin i el lliurin en un paper signat. En la classe de teoria següent, el professor torna els exercicis corregits i avaluats als estudiants, i comenta les errades més freqüents. A la web de l'assignatura es penja una solució correcta. Aquests exercicis es fan, de mitjana, cada dues setmanes, i solen repercutir en la nota final. Hem observat que aquesta activitat fa les classes més amenes i, a més, permet que el professor tingui una percepció més gran de l'evolució dels alumnes. Durant el curs actual tenim previst fer a les classes de teoria exercicis individuals, a més dels de grup. S'incentiva els alumnes a venir a tutories per comentar les errades comeses.

2.2. Noves eines docents
Des de la implantació del Pla pilot s'ha incorporat a l'assignatura l'eina ACME (avaluació continuada per a la millora de l'ensenyament). Aquesta eina web, d'una banda, facilita que els professors puguin controlar més els progressos dels estudiants i, de l'altra, que els estudiants estiguin més motivats i siguin més conscients del seu procés d'aprenentatge. ACME permet, entre altres utilitats, gestionar col·leccions d'exercicis, rebre i corregir i enviar les solucions per part dels alumnes, indicar comentaris personalitzats als diferents problemes, etc.

Aquest curs hem incorporat una nova eina docent: el llenguatge de programació LOGO. Es tracta d'un llenguatge usat tradicionalment amb finalitats docents, que es caracteritza per una sintaxi molt simple i per una sortida gràfica que resulta motivant per als alumnes. De moment, els alumnes que han volgut han utilitzat LOGO en sessions extra de teoria (amb els seus ordinadors portàtils) per practicar els esquemes bàsics de la programació. També tenim previst fer servir LOGO per introduir i treballar el disseny recursiu.

Una altra eina que s'ha incorporat aquest curs han estat els anomenats fulls de seguiment. Es tracta d'un intent de supervisar la feina no presencial i no avaluable dels alumnes. Els alumnes emplenenc, per a cada tema de l'assignatura, un full anònim en què indiquen quins dels exercicis proposats han intentat fer, si els han resolt satisfactoriament o no i quines dificultats s'hi han trobat. D'aquesta manera es fa reflexionar l'alumne sobre el seu progrés, i a més el professor té una visió més acurada de la progressió dels alumnes.

2.3. Materials docents
Utilitzem la plataforma La Meva UdG per facilitar als alumnes els materials del curs. Entre aquests materials hi ha les diapositives usades com a suport de les sessions presencials. També disposen de les solucions dels exercicis avaluables que fan a classe de teoria. Altres materials facilitats són les llistes d'exercicis proposats (no avaluables), que, a vegades, s'offereixen dins la plataforma ACME.

2.4. Atenció personal a l'alumne
Intentem donar un suport individualitzat a l'alumne, oferint-li indicacions que el puguin guiar en el seu procés d'aprenentatge i desencallar els seus dubtes, però evitant donar-li directament la solució dels problemes. Vegem els principals punts en aquest sentit:
Tutories. Hem mantingut les tutories habituals al despatx, siguin individuals o en petits grups. Aquestes tutories considerem que són un recurs que de vegades no és prou aprofitat per l’estudiant, per diferents circumstàncies (mangria, vergonya, etc.). Hem procurat insistir als alumnes que utilitzin els horaris de tutoria.

Correcció de pràctiques al despatx. Els alumnes han de lliurar almenys una de les pràctiques de laboratori del curs al despatx del professor de laboratori. El professor corregirà la pràctica davant l’alumne i li farà les preguntes que consideri oportunes. Amb aquesta acció creiem que el professor de laboratori té una idea més clara del grau de progrés de l’estudiant, i a més l’estudiant rep la retroalimentació (feedback) de manera immediata.

Atenció telemàtica. Cada cop és més freqüent que els alumnes presentin els dubtes per correu electrònic. Considerem que aquest sistema és molt eficaç i eficient si es tracta de dubtes puntuals. En aquest cas, procurem respondre ràpidament aquests correus electrònics. Si, per contra, es tracta de dubtes més generals, llavors suggerim a l’alumne que visiti el professor al despatx.

2.5. Sistema d’avaluació i qualificació
L’adaptació de MTP a les directrius de l’EEES ha comportat un canvi en l’avaluació i la qualificació dels estudiants, que ha tendit cap a l’avaluació continuada. Hem passat d’una situació prèvia en què només s’avaluava els alumnes amb les pràctiques de laboratori i amb els exàmens (examen parcial i examen final), a la situació actual, en què, a més d’exàmens i pràctiques de laboratori, també avaluem els exercicis que s’han fet durant el curs, bàsicament a classe de teoria, que compten en la nota final. A part d’això, hem establert una puntuació mínima de laboratori que es requereix per aprovar l’assignatura.

Observem també la perdua de pes (del 80% al 60%) dels exàmens. Les taules següents descriuen els criteris de qualificació que hi havia abans de l’adaptació i els criteris que hi ha actualment:

<table>
<thead>
<tr>
<th>Abans de l’adaptació</th>
<th>1r quadrimestre</th>
<th>2n quadrimestre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pràctiques</td>
<td>10</td>
<td>10</td>
<td>20 (mínim 10)</td>
</tr>
<tr>
<td>Examen</td>
<td>24</td>
<td>56</td>
<td>80 (mínim 40)</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>66</td>
<td>100 (mínim 50)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curs 2007-08</th>
<th>1r quadrimestre</th>
<th>2n quadrimestre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercicis</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Pràctiques</td>
<td>10</td>
<td>15</td>
<td>25 (mínim 15)</td>
</tr>
<tr>
<td>Examen</td>
<td>20</td>
<td>40 (mínim 20)</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>65</td>
<td>100 (mínim 50)</td>
</tr>
</tbody>
</table>

D’altra banda, cal indicar que, en els estudis inclosos en el Pla pilot d’adaptació a l’EEES, l’Escola Politècnica Superior durant el curs fa unes enquestes de valoració dels estudiants...
de cada una de les assignatures. D’aquesta manera els professors rebem una avaluació dels estudiants sobre diferents aspectes de les nostres assignatures. Aquesta valoració ens és puntualment útil per programar-hi canvis per al curs següent o fins i tot per fer-hi modificacions sobre la marxa.

3. Resultats
El gràfic següent marca l’evolució en percentatge d’aprovats i també d’alumnes amb bona nota (entenent com a bona nota els notables, els excel·lents i les matrícules) sobre el total de matriculats. Hem agrupat ETIS i ETIG. Cal remarcar (encara que no aparegui en el gràfic) que hi ha un percentatge molt apreciable d’alumnes que no segueixen l’assignatura ja des del principi, o bé que l’abandonen a mig curs, i aquesta tendència sembla que augmenta, tot i que no en tenim dades quantificables.

La valoració d’aquests resultats ens indica que el percentatge d’aprovats sobre els matriculats no s’ha incrementat amb l’adaptació de l’assignatura a l’EEES (ans al contrari, ha baixat els dos primers cursos d’aplicació), però en canvi sembla que el percentatge d’alumnes amb bona nota sí que experimenta un cert increment. D’altra banda, atès que el nombre d’alumnes que abandonen l’assignatura abans del final de curs augmenta, resulta que els alumnes que no abandonen la matèria sembla que aprovien en un percentatge més elevat que no pas abans de l’adaptació.

A part d’això, hem observat que en els darrers cursos, tot i que l’assistència a classe ha baixat en certa manera, la participació dels alumnes a la classe (especialment a les sessions teòriques) s’ha incrementat. També creiem que els alumnes tendeixen a treballar més setmana a setmana, durant el curs, i no pas a deixar el gruix de la feina per al període d’abans dels exàmens. Això s’ha aconseguit a còpia de potenciar l’avaluació continuada.

4. Discussió i conclusions
L’adaptació de l’assignatura MTP a l’EEES, que s’ha dut a terme en els quatre darrers cursos, no ha suposat cap gran millora dels resultats pel que fa al percentatge d’aprovats. Tanmateix, és evident que, com que no sabem què hauria passat sense l’adaptació, és una mica difícil obtenir conclusions. Al nostre entendre, el fet d’adaptar aquesta assignatura ha representat millores en la docència. Un altre tema és l’actitud dels alumnes, la qual, també al nostre entendre, és molt millorable en alguns casos. Els reptes que se’ns plantejen a partir d’ara consisteixen a treballar en diferents línies:

- Incrementar l’assistència a les classes, ja que creiem que aquest aspecte és fonamental per al bon seguiment de l’assignatura.
- Fer classes encara més participatives.
• Augmentar encara més la filosofia de treball continuat i avaluació continuada.
• Fomentar més l’assistència dels alumnes a les tutories.
EXPERIÈNCIES EN UN PLA PILOT D’ADAPTACIÓ A L’EEES:
FULL DE RUTA PER A COORDINADORS

Jordi Freixenet Bosch,1 Josep L. Marzo Lázaro,1 Josep Soler Masó2
Àrees: 1 Arquitectura i Tecnologia de Computadors, 2 Llenguatges i Sistemes Informàtics

Resum. En aquest article es presenta una guia en forma de full de ruta que relata l’experiència de l’equip de direcció de l’àmbit informàtic en la posada en marxa de l’ECTS en les titulacions d’ETIG i ETIS. Durant el curs 2004-2005 a la Universitat de Girona es va iniciar un pla pilot d’adaptació de titulacions a l’EEES. Des de llavors hem desenvolupat un conjunt d’activitats que van des de la informació, la formació, la coordinació de cursos, la posada en marxa d’eines i mètodes, i la definició de competències, fins a l’avaluació tant d’assignatures com de titulacions. Els destinataris d’aquestes activitats han estat principalment el col·lectiu de professors i els estudiants de la titulació, però també s’hi ha involucrat el PAS i professorat d’altres titulacions. En aquest article es resumeixen les accions que s’han dut a terme en aquests tres cursos, i es convida a reflexionar sobre els èxits i els problemes que s’han trobat.

1. Introducció
A la primavera del 2004, la nostra universitat ens va plantejar participar en un pla pilot per adaptar-nos a l’espai europeu d’educació superior (EEES). Després de diverses reuniions sobre la conveniència de participar-hi, vam entendre que era una oportunitat per redissenyar la nostra docència sota el nou paradigma. Immediatament vam veure que no tot havia de canviar radicalment. Si una assignatura funciona, des del punt de vista del professor, dels estudiants i de l’aprenentatge que s’hi du a terme, per què s’ha de canviar? En tot cas, s’hi poden fer petites adaptacions. Com a punt de partida ens plantegem el paradigma del sistema europeu de transferència i acumulació de crèdits (ECTS) amb una perspectiva positiva, recollint idees de diferents fonts [2, 3, 4, 6]. Després de reflexionar sobre aquest tema, constatem diverses evidències, entre altres:

- Els estudiants han de saber per endavant i de manera clara quines són les competències i els objectius de cada assignatura.
- Els estudiants han de disposar d’eines que els facilitin saber si progressen adequadament en l’assignatura al llarg del curs.
- És millor aprendre l’essencial de la matèria a fons que no pas donar un temari molt extens, amb detalls de dubtosa utilitat.
- El desig que els nostres alumnes siguin més autosuficients, més enginyosos i capaços d’aprendre per si mateixos.

A partir d’aquestes evidències, vam creure convenient la revisió de la titulació i els mètodes docents. Però es podien aplicar tots aquests conceptes en una titulació? Com es podia convèncer tots els professors? En aquest article no facilitem “la solució perfecta” a aquestes preguntes, però relatem la nostra experiència com a coordinadors i promotors del Pla pilot d’adaptació de les enginyeries tècniques en Informàtica de Gestió i de Sistemes (ETIG i ETIS) a l’EEES.

2. Pla d’activitats desenvolupades
2.1 Coordinació del pla
Per organitzar el desenvolupament del pla pilot s'estableixen tres nivells de coordinació: (a) una comissió de coordinació d’universitat dirigida pel Vicerectorat de Docència i formada pels coordinadors de tots els plans pilot; (b) una comissió de coordinació del Pla pilot ETIG i ETIS, formada pel subdirector de l’àmbit de l’enginyeria informàtica i els coordinadors de les titulacions ETIG i ETIS, i (c) la coordinació de curs, en què els responsables de les assignatures de cada curs es reuneixen amb els coordinadors. A continuació detallarem les accions més importants de la coordinació en l’àmbit del curs.

A mitjan i al final de cada semestre s’analitzen tant les opinions dels estudiants (recollides en les enquestes) com les dels professors i tutors en el cas de primer curs (vegeu l’apartat 2.4). En finalitzar cada curs ens reunim amb els professors responsables d’assignatura amb l’objectiu de planificar, coordinar i consensuar el disseny de les assignatures per al curs següent. És a dir, s’informa de les activitats que es pensen dur a terme en cada una de les assignatures i s’analitzen i es discutixen. També avaluem els resultats acadèmics i el grau de satisfacció sobre el desenvolupament de les activitats de cada assignatura. En el curs actual aquestes reunions de coordinació es duen a terme de manera independent per a cada un dels tres cursos.

2.2 Formació de professors
A més dels cursos i les jornades organitzades per l’ICE i el Vicerectorat de Docència, vam creure convenient organitzar específicament les activitats següents:

Jornada de formació inicial. Durant tres anys s’ha organitzat aquesta jornada, que representa el punt de partida per a molts dels professors de la titulació. Encara que la jornada s’adreça especialment als professors d’un curs determinat, és oberta a qualsevol altre professor interessat. Durant la jornada es fan quatre presentacions:

1) L’EEES i els crèdits ECTS.
2) Experiències i exemples concrets d’assignatures i tècniques docents en el context ECTS. Algunes experiències les presenten professors d’altres universitats.
3) El pla pilot ETIG i ETIS. Presentació de les accions dutes a terme. Presentació del web del pla pilot.
4) Presentació de la fitxa d’assignatura del portal docent de la nostra universitat.

Finalment, s’aprofita la jornada per coordinar i consensuar el calendari per a la programació de les assignatures del curs.

“Els divendres docents”. Durant les primaveres del segon i tercer any s’organitza i es desenvolupa el cicle “Els divendres docents ETIG-ETIS”, com un conjunt de col·loquis, intercanvi d’experiències dels professors d’ETIG i ETIS que han intervingut en el disseny d’assignatures o noves metodologies docents en el marc del pla pilot. En cada sessió, de les cinc sessions efectuades, es presenten dues assignatures, i s’analitzen i es discutixen els dissenys, les experiències obtingudes i els plans de millora. Els materials del cicle es publiquen en el web del pla, que es desenvolupa amb la coordinació de l’Institut de Ciències de l’Educació (ICE).

2.3 Disseny de les assignatures en format ECTS
En l’actualitat totes les assignatures d’ETIG i ETIS ja s’han formulat seguint la filosofia de l’EEES, i es pot consultar el disseny i el pla d’activitats de cada assignatura a la web. Els estudiants tenen accés a la intranet docent, on totes les assignatures han estat formulades amb la mateixa eina, i entre altres recursos disposen d’un calendari i una agenda de cursos, accés a la plataforma d’aprenentatge virtual ACME [5] utilitzada en diverses assignatures, un fòrum, etc.

Definició i revisió de competències

Els plans d’estudis d’ETIG i ETIS corresponen a titulacions oficials regulades pel BOE, de manera que l’adaptació a l’EEES per a l’ensenyament basat en competències parteix d’unes assignatures amb continguts ja fixats [1]. Així, el treball que s’ha dut a terme en competències no ha estat de definició i construcció d’un pla d’estudis; és a dir, ens plantejem quines són les competències que volem per als titulats i en funció d’aquestes competències definim el pla d’estudis. Així, la definició de competències en el pla pilot resulta un exercici de revisió i actualització a partir dels objectius de cada una de les assignatures. En una fase posterior estudiarem quines competències no es treballen (o no es treballen prou) i de quina manera resulta apropriat introduir-les.

Com a resultat de diverses reunions de treball, i conjuntament amb la comissió de l’àmbit de la Universitat, es van establir uns criteris generals de redacció de competències:

- Cada assignatura ha de tenir entre quatre i vuit competències (entre les quals no n’hi hauria d’haver més de tres o quatre d’específiques).
- Les competències que apareixen en l’apartat “Altres competències” no apareixeran en el còmput general. D’aquesta manera es facilita la definició de les competències de la titulació.
- Recomanem seguir algunes normes senzilles que ajudin a definir i uniformitzar competències per donar la màxima claredat possible i orientar tant els professors com els estudiants.

2.4. Activitats amb els estudiants

Sens dubte el col·lectiu dels alumnes té un paper molt important en aquest pla pilot. Des d’un primer moment ens vam proposar que estiguessin ben informats respecte a l’EEES i el pla pilot que es du a terme. Per això vam establir diversos cursos de formació i informació Per exemple, durant la primera sessió de cada assignatura el professor informa del pla pilot, de les competències que s’han d’adquirir, de les activitats planificades, del treball que comporta un crèdit ECTS, etc. L’alumne troba aquesta informació en la fitxa de disseny de l’assignatura.

Finalment, considerem que tan important és tenir ben informats els alumnes com demanar-los l’opinió. Per això fem dues enquestes cada semestre (inspirades a partir de [6]) en què preguntem als estudiants, per exemple, si se senten ben informats sobre el seu progrés en l’assignatura, els demanem que ens indiquin el seu nivell de dificultat, les hores que hi dediquen, etc. A més, els demanem que escriguin com a mínim dos aspectes positius i dos aspectes negatius de cada assignatura per detectar possibles problemes i deficiències. Els professors valoren molt positivament aquestes enquestes per un doble motiu: d’una banda, els permeten reaccionar davant de problemes i, de l’altra, l’estudiant percep que la seva opinió és important per al professor.

3. Satisfacció d’estudiants i professors
Experiències docents d'adaptació a l'EEES

Per avaluar la satisfacció dels estudiants s'analitzen els resultats de les enquestes presentades en l'apartat 2.4. En general, els estudiants es mostren satisfeits amb les accions del pla pilot, com per exemple amb la utilització de l'eina d'autoaprenentatge ACME, la inclusió de l'avaluació contínua, el fet que els professors facin ressaltar què és realment important, indiquin exactament quins problemes feia falta solucionar i el temps estimat per resoldre'ls, etc.

D'altra banda, el grau de satisfacció dels professors respecte al pla s'ha avaluat mitjançant enquestes específiques per als professors, com ara si han redissenyat les assignatures o si creuen que han estat perdent el temps, etc. De les respostes a aquestes qüestions, se'n despren un grau molt elevat de satisfacció. A més, fruit de les reunións que hem mantingut amb ells, en general volem subratllar un grau de compromís, participació i implicació màxim. Tot i això, com és normal i en riquesa, hi ha opinions i crítiques de tot tipus, però no hi ha absentisme. En aquest sentit, volem constatar que no hi ha hagut cap professor que hagi expressat que no vol participar en el pla.

4. Resultats acadèmics
En general, amb les dades analitzades fins a aquest moment, no creiem que es puguin extreure conclusions sobre l'impacte del pla en els resultats acadèmics. Malgrat això, insistim ja d'entrada que no creiem que es pugui establir una relació directa entre la implantació del pla pilot i la millora o l'empitjorament dels resultats acadèmics. És evident que el pla serveix per reflexionar sobre la nostra tasca docent i millorar la nostra docència, però això no implica una millora directa dels resultats acadèmics. Amb seguretat hi ha altres factors que afecten els resultats acadèmics, com ara la preparació de base dels nous estudiants, la nota d'accés d'una determinada promoció o la sinergia que es pugui crear en el grup, etc.

5. Conclusions
En aquest article hem descrit les accions que hem dut a terme com a coordinadors d'ETIG i ETIS en el marc del pla pilot d'adaptació a l'EEES. Després de gairebé tres anys d'adaptació, som capaços d'assenyalar evidències, encerts i mancances. Agrupem les consideracions finals des de tres punts de vista: del professor, dels estudiants i de les assignatures.

Consideracions que fan referència al professorat:

- Malgrat algunes reticències inicials d'alguns professors, finalment tot el professorat s'ha involucrat activament en el pla. El grau de satisfacció és elevat.
- L'opinió dels professors sobre el nivell de formació dels nous alumnes els serveix de justificació del baix rendiment acadèmic. La percepció que tenen alguns professors és de poca capacitat i dedicació, absentisme excessiu i una actitud molt passiva, especialment en estudiants de primer curs.
- El simple fet de redissenyar les assignatures en el nou format ECTS comporta un millor enfocament docent. S'han replantejat les matèries impartides en totes les assignatures.
- Sens dubte ha comportat més dedicació i esforç per part de tots els professors.

Consideracions sobre els estudiants:
• El sistema d’avaluació continuada que s’ha proposat en la majoria d’assignatures, amb lliuraments de pràctiques més sovint, petits tests de seguiment, lliuraments de problemes, etc., ha estat valorat positivament, encara que en alguns moments pugui resultar-los una mica estressant.
• El correcte seguiment per part de l’alumne de l’avaluació contínua significa l’èxit en la majoria dels casos.
• Considerem que alguns estudiants es resisteixen a canviar d’hàbits i estan molt acostumats a estudiar només quan s’acosten els exàmens.
• La compaginació d’estudis i treball és un obstacle de vegades insalvable. Moltes assignatures s’han dissenyat amb dues opcions d’avaluació, una per als que segueixen l’avaluació contínua i una altra per a la resta. Alguns professors es plantejen com a opció addicional un enfocament semipresencial en algunes assignatures.
• L’assistència a classe ha baixat en els últims anys. Aquest és un dels reptes que encara tenim pendent. Un dels motius de la baixa assistència que ens comenten els alumnes és que tot el que s’explica a classe ho troben al web de l’assignatura. Aquest és un tema de reflexió.

Consideracions sobre les assignatures:

• En el procés de definició de competències hi va haver etapes alternatives entre excessiva simplificació i excessiu detall. Amb el temps es va veure la conveniència de reduir i ajustar el nombre i el grau de detall de les competències.
• L’assignació d’una mateixa competència a diverses assignatures en complica la gestió, per exemple en l’avaluació.
• En les assignatures amb un gran nombre d’estudiants és més difícil i complex aplicar noves metodologies docents. Cal continuar treballant i provant noves metodologies.
• És molt important definir amb claredat les activitats que es desenvoluparan en l’assignatura.
• És essencial disposar d’una pàgina web de cada assignatura, on figuri tota la informació necessària per a l’alumne, com ara el disseny de l’assignatura en format ECTS, l’avaluació, la bibliografia, etc., i on es pugui deixar el material.
• Un dels temes que tenim pendent és l’avaluació de les competències genèriques.
• La utilització de plataformes d’autoaprenentatge motiva els alumnes, i en general el rendiment obtingut ha estat molt bo.

Tal com hem descrit en aquest article, a la nostra universitat hem anat treballant noves propostes i mecanismes per adaptar les titulacions d’ETIG i ETIS a l’EEES. Ens fa la impressió d’haver fet moltes coses, però alhora som conscients que encara ens queda molt de camí per recórrer.

6. Agraïments
Volem donar les gràcies a tots els professors d’ETIG i ETIS i a tots aquells que ens han ajudat amb les seves idees i el seu treball durant aquests tres anys de pla pilot. També volem agrair als estudiants les seves iniciatives i idees i la seva predisposició a col·laborar. Gràcies també a la direcció de l’EPS, a l’ICE, al Vicerectorat de Docència i al Gabinet de Planificació i Avaluació, pel suport i el feedback que ens han donat.
7. Referències

TREBALL EN GRUP EN L’ASSIGNATURA EXPRESSIÓ GRÀFICA
I DISSENY ASSISTIT PER ORDINADOR

Fernando Julián Pérez i Xavier Espinach Orus
Àrea d’Expressió Gràfica en l’Enginyeria

Resum. La motivació i, amb ella, la participació activa de l’alumnat són elements fonamentals dels processos d’ensenyament i aprenentatge i tota una preocupació per a bona part del professorat. A vegades ens preguntem com podem aconseguir més implicació dels estudiants en aquest procés. Nosaltres pensem que el treball en grup i l’aprenentatge per projectes poden ser dues de les maneres que poden ajudar-nos a aconseguir aquest objectiu i fer que l’alumne estigui motivat, ja que amb motivació el procés es torna més valuós.

1. Introducció
Hi ha com a mínim dues maneres de transmetre el coneixement: mitjançant l’aprenentatge passiu de l’alumnat (el protagonisme l’assumeix únicament el docent) i mitjançant l’aprenentatge actiu, en què l’alumnat assumeix més protagonisme i participa més en l’ensenyament. L’aprenentatge actiu pretén que l’alumnat s’impliqui en el procés d’ensenyament i aprenentatge per consolidar-lo i donar-li més significat. Ara ens hem de moure en aquesta línia per aconseguir motivació i, per tant, que l’alumne aprofiti el seu aprenentatge. En el treball en grup i en l’aprenentatge per projectes és important el grau d’autonomia del alumne. Per tant, hem establert les tres situacions possibles:

- **Activitat presencial:** la presència de l’alumnat a l’aula permet treballar conjuntament amb diferents grups al mateix temps.
- **Activitat no presencial guiada:** configuració de grups d’aprenentatge que es troben amb el professor tutor per treballar diversos aspectes vinculats al procés d’aprenentatge que desenvolupen.
- **Activitat autònoma:** diàleg i intercanvi entre els components del grup.

Els objectius d’aquesta experiència són:

- Desenvolupar, aprendre i practicar estratègies metodològiques formatives que permetin introduir en les classes d’Expressió gràfica i disseny assistit per ordinador (EGDAO) la participació de l’alumnat.
- Desenvolupar i fonamentar estratègies d’aprenentatge actiu.

2. Procés de treball
L’assignatura estableix les competències específiques següents:

1. Ser capaç d’argumentar la necessitat del llenguatge gràfic com a element de comunicació entre tècnics.
2. Aplicar el dibuix a mà alçada, amb prou correcció, habilitat i destresa per obtenir resultats de qualitat.
3. Integrar i aplicar programes de disseny assistit per ordinador per resoldre les propostes planteades en croquis.
4. Interpretar i aplicar la normativa de dibuix industrial UNE i ISO a la resolució de problemes tècnics.
5. Reconèixer i representar un volum a partir de les vistes normalitzades, aplicant els talls corresponents per visualitzar els detalls interns.
6. Definir mètricament i geomètricament una peça i/o conjunt industrial, assegurant-ne el funcionament bàsic.

En aquest bloc nosaltres hem volgut treballar d’una manera especial aquestes altres competències que apareixen igualment en la pàgina de l’assignatura:

7. Identificar els elements d’una representació descriptiva, enumerar-los i resoldre exercicis d’aplicació.
8. Interpretar, manipular i enumerar en una posició determinada un mecanisme amb una funció tecnològica.

Els continguts de l’activitat se centren en aquests punts: bloc núm. 4. Muntatge de conjunts industrials (roscatges, soldadures i acoblaments). L’assignatura s’imparteix durant quatre hores per setmana, dividides en dues classes de dues hores cadascuna. Nosaltres desenvoluparem aquest bloc un dia per setmana durant tres setmanes. A més tenim dues hores de DAO cada quinze dies (aula específica).

1a setmana
- Classe exposició per part del professor: 45 minuts
- Exercicis individuals a l’aula: 1 hora
- Resolució d’exercicis (projecció i pissarra): 15 minuts
- Exercicis per desenvolupar fora de l’aula (per recollir la setmana següent): 2 hores
2a setmana
- Recollida dels exercicis de la setmana anterior
- Exercicis per desenvolupar a l'aula: facilitem quatre peces i l'alumne ha de dibuixar el muntatge de vuit peces, dissenyant les peces que falten (recollir): 45 minuts
- Creació de grups: 15 minuts
- Donem diversos conjunts muntats al grup (han d'identificar entre tots els errors de normativa i de funcionament representats) (grup): 15 minuts
- A partir d'una especificació, els alumnes han de dissenyar un conjunt amb una funció i amb un nombre de peces determinat (grup): 45 minuts
- L'últim exercici continua fora del aula (grup) (recollir): 4 hores

3a setmana
- El professor dóna els exercicis corregits
- Exposició dels resultats del treball fet fora de l'aula; per exemple, escanejar documents, passar a pdf, i projectar-ho a la pantalla. La resta de grups pregunten i critiquen: 1 hora
- A partir d'una especificació, dissenyar un conjunt amb una funció i amb un nombre de peces determinat (prova individual): 1 hora
- Un exercici fora de l'aula amb complexitat més gran (individual i amb entrega obligatòria): 3 h

L'exposició la farà tan sols un membre del grup. Això es important perquè obliguem a implicar-s'hi tots els membres del grup, ja que serà el professor qui decidirà quin alumne l'ha de presentar i la nota comptarà el mateix per a tots el membres del grup. L'assignatura es valorarà mitjançant avaluació continuada, de cadascun dels blocs temàtics del programa.

1. Exercicis pràctics que es desenvoluparan dins l'aula
2. Exercicis pràctics fets fora de l'horari lectiu i que s'hauran de presentar en les dates que s'indicaran
3. Proves de control (individual) que es desenvoluparan per a cadascun dels blocs, dins del període lectiu

Els alumnes que no superin els nivells òptims de l'avaluació continuada es podran examinar en les dates indicades per l'EPS, en primera i segona convocatòria, però hauran de presentar prèviament els exercicis proposats fora de l'horari lectiu. Per poder optar a l'avaluació continuada és necessari haver presentat els exercicis fets fora de l'aula en la data indicada.
Els alumnes que no superin els nivells òptims de l’avaluació continuada es podran examinar en les dates proposades per la Universitat, en primera i segona convocatòria, amb unes proves específiques.

Els alumnes que no hagin triat el sistema d’avaluació continuada optaran a les dues convocatòries establertes per la mateixa universitat amb una exigència diferent, amb proves de diferent complexitat, ja que el professor no té els mateixos inputs de valoració que els alumnes que han seguit l’avaluació continuada.

3. Resultats

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excel·lent</td>
<td>0 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Notable</td>
<td>22 %</td>
<td>31 %</td>
</tr>
<tr>
<td>Aprovat</td>
<td>43 %</td>
<td>57 %</td>
</tr>
<tr>
<td>Suspens</td>
<td>35 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

4. Discussió

En la creació de grups, el nombre d’alumnes per grup dependrà del nombre d’alumnes per classe i del temps dedicat. Nosaltres treballem amb grups de tres alumnes. Els grups els crea el professor. Aquí tenim dues opcions. La primera opció és deixar que siguin ells els que formin els grups i que després el professor faci algun canvi (en aquest cas es vol que els membres dels grups siguin com més homogenis millor). Aquest sistema és bo quan els alumnes encara no es coneixen, ja que d’aquesta manera afavorim la relació entre els companys de classe. La segona opció és deixar a ells mateixos que formin el grup. Aquest cas el trobem adequat per a cursos superiors, però no per al primer any. El professor demana que es donin les adreces i parlin una mica de les seves aficions, etc. Igualment, ha d’explicar la importància de fer un equip i que, quan en un grup busquen els defectes dels altres, la situació es torna tensa i negativa. En canvi, quan s’actua tractant de percebre els punts forts de cadascú és quan afloren els millors encerts.

5. Conclusions

El treball en grup ben dirigit fa que el procés d’aprenentatge es desenvolupi gràcies, en gran part, a les sinergies que es creen entre els diferents membres del grup i sobretot a la motivació que produeix treballar per un mateix objectiu. És clau l’actitud del professor,
tant pel que fa a motivar com a provocar la implicació de tots els membres. La valoració personal es fa igualment necessària per poder controlar més la situació.

6. Bibliografia

ADAPTACIÓ A L’EEES DE L’ASSIGNATURA DE VISIÓ PER COMPUTADOR

Xavier Lladó Bardera
Àrea d’Arquitectura i Tecnologia de Computadors

Resum. En aquest treball es presenten les experiències dins del Pla pilot ETIG/ETIS per a l’adaptació a l’EEES de l’assignatura de Visió per computador. Primerament s’introdueix l’assignatura i se’n descriu la nova formulació. A continuació es presenten i es discuteixen els resultats obtinguts. Finalment l’article acaba amb les conclusions i possibles milloros en el marc de l’assignatura.

1. Introducció
L’assignatura de Visió per computador és una assignatura optativa de tercer curs (primer semestre) dels estudis d’Enginyeria Tècnica en Informàtica de Sistemes. Aquesta assignatura la trobem dins del Departament d’Arquitectura i Tecnologia de Computadors de la Universitat de Girona.

Fins al curs anterior, i seguint un enfocament tradicional, l’assignatura constava de 6 crèdits, dels quals 4,5 estaven dedicats a classes teòriques i 1,5 a classes pràctiques. Per tant, es feien tres hores de teoria per setmana, més dues hores de pràctiques al laboratori amb dos grups diferents (A i B) cada quinze dies. En el marc del Pla pilot ETIG/ETIS i amb l’objectiu d’adaptar l’assignatura a l’espai europeu d’educació superior (EEES) [1-4], aquesta s’ha replantejat amb la proposta següent: 5 ECTS i una dedicació total de cent trenta-cinc hores. També s’ha de comentar que durant el curs acadèmic 2006-2007 l’assignatura va tenir vint-i-sis alumnes matriculats.

Abans d’entrar en detall en la reestructuració de l’assignatura i de parlar de les noves accions i activitats que s’hi han introduït, primer descriurem l’assignatura, així com els seus objectius. Bàsicament, es podria dir que el principal objectiu és que l’alumne adquireixi els coneixements necessaris per desenvolupar sistemes basats en visió per computador. Cal remarcar que l’assignatura s’orienta, tant des del punt de vista teòric com pràctic, a dur a terme processos de control de qualitat en l’entorn industrial. Això implica fer un èmfasi especial en les metodologies, els algorismes i els elements de maquinari necessaris per desenvolupar sistemes de detecció i classificació que ajudin a fer aplicacions de control de qualitat en la indústria.

2. Descripció de les activitats
Dins dels continguts de l’assignatura de Visió per computador es treballen les competències següents:

• **CE1.** Entendre la necessitat de la visió per computador. En quines aplicacions pot ser útil? Seleccionar les tècniques adequades per resoldre els problemes industrials.
• **CE2.** Conèixer com es forma la imatge: des de la detecció mitjançant sensors òptics, fins a la seva formació en el pla imatge.
• **CE3.** Conèixer diferents descriptors i algorismes de processament d’imatges, tant des del punt de vista global com local.
• **CE4.** Entendre la necessitat de calibratge de les càmeres i com es pot reconstruir el món real a partir de dues càmeres o més.

Concretament, al llarg del curs es treballen els temes següents: introducció a la visió per computador (2 h), sensors sensibles a la llum (3 h), la formació de la imatge (8 h), fonaments del processament digital d’imatges (14 h), visió per computador en l’entorn industrial (13 h) i reconstrucció 3D (3 h). També s’ha de remarcar que tot el seguiment de l’assignatura es fa a través de l’aplicació de La Meva UdG.

A grans trets, els continguts de l’assignatura continuen sent els mateixos que s’havien treballat fins a aquests moments. La diferència en la nova formulació de l’assignatura la trobem en la planificació i utilització de diferents tipus d’activitats. Concretament, s’ha optat per utilitzar quatre tipus diferents de classes amb els alumnes: (1) les classes expositives, les típiques classes magistrals; (2) les classes participatives, en què el que es pretén és que els alumnes participin activament en la seva formació, a través de treball en grup o individual; (3) les classes d’anàlisi o estudi de casos, en què es dediquen les hores de classe teòriques a analitzar i resoldre casos pràctics que es poden trobar en el món industrial, i (4) les classes pràctiques, en què els alumnes desenvolupen un conjunt de pràctiques als laboratoris de la Universitat. La taula següent (vegeu la taula 1) mostra les activitats, incloent-hi també les hores de dedicació.

<table>
<thead>
<tr>
<th></th>
<th>AP</th>
<th>SP</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes expositives</td>
<td>22</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>Classes participatives</td>
<td>11</td>
<td>28</td>
<td>39</td>
</tr>
<tr>
<td>Anàlisi o estudi de casos</td>
<td>10</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Classes pràctiques</td>
<td>14</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>57</td>
<td>78</td>
<td>135</td>
</tr>
</tbody>
</table>

Taula 1. Distribució de les activitats que es desenvolupen en l’assignatura amb el nombre d’hores corresponent (AP: classes amb professor; SP: classes sense professor).

Cal destacar que s’ha fet un èmfasi especial en la participació dels estudiants en totes les activitats que s’han descrit, incloent-hi també les classes expositives, que els estudiants consideren generalment avorrides. En aquest sentit, s’ha intentat fomentar l’aprenentatge per deducció, començant amb exemples petits per passar després a casos més grans, o fomentar també els treballs en grups dins la classe, en què els alumnes han de participar activament i exposar les seves idees. Com veurem en els resultats, aquesta experiència ha estat del tot satisfactòria, i s’ha constatat una gran participació dels estudiants en el transcurs de l’assignatura.

3. Avaluació

Per avaluar totes les activitats descrites en l’apartat anterior s’ha optat per la fórmula següent. La nota final de l’assignatura està composta per tres grans blocs: examen (65 %) + pràctiques (20 %) + activitats (15 %).

L’examen consta d’una part teòrica avaluada a través d’un examen de tipus test sense apunts (30 %) i una part de problemes feta amb apunts (70 %). S’ha de remarcar que per aprovar l’assignatura cal treure un mínim de 4 punts en l’examen.
Pel que fa a l’avaluació de les pràctiques, s’avalua tant la seva realització (80 %) com la seva presentació en la documentació (20 %). Les pràctiques, que es fan en grups de dues persones, es desenvolupen als ordinadors del laboratori i tenen com a eines de desenvolupament el Matlab (*image processing toolbox*) i el VC ++ / MIL (*Matrox imaging library*). Cal destacar que durant el curs es fan quatre pràctiques diferents i que en les dues últimes s’intenta que els estudiants competeixin entre ells per veure qui obté més bons resultats. Per altra banda, en l’avaluació també es té en compte la seva correcta execució i els terminis de lliurament.

Finalment, el tercer bloc de la nota final prové de les diferents activitats setmanals que es proposen al llarg del curs. Aquestes activitats (optatives) fomenten un treball continu i permeten a l’estudiant comprovar si segueix els continguts de l’assignatura adequadament. Aquestes activitats engloben diferents tipus de treballs, com ara exercicis pràctics, activitats de teoria, activitats d’algorísmica, etc. De totes aquestes activitats, els estudiants en reben les corresponents correccions i retroalimentacions (*feedbacks*). Cal destacar també la possibilitat que tenen els estudiants de sumar 0,5 punts extra a la nota final a través de dos treballs complementaris que es proposen durant el curs.

4. Resultats

Els resultats que es mostren en aquesta secció fan referència als resultats acadèmics obtinguts durant el curs 2006-2007, el primer any en què es van introduir els canvis per a l’adaptació a l’EEES. En termes generals, s’està molt satisfet de l’experiència realitzada. Per una banda, els resultats acadèmics obtinguts pels estudiants han estat bons, mentre que, per l’altra, també s’ha observat que han acollit bé els nous canvis i tipus d’activitats introduïts. En la figura 2 s’adjunten els resultats acadèmics obtinguts pels vint-i-sis estudiants (resultats comptabilitzant les dues convocatòries).

![Figura 2. Resultats acadèmics obtinguts durant el curs 2006-2007.](image)
4.1. Valoració de l'assignatura
Per tal d’obtenir una retroalimentació (*feedback*) i una valoració de l’assignatura des del punt de vista dels estudiants, es van elaborar diferents tipus d’enquesta. Per exemple, una enquesta confeccionada en el marc del Pla pilot ETIG/ETIS o una altra feta pel professor al final del curs. Observant els resultats obtinguts en les enquestes, volem destacar l’alt grau de satisfacció dels estudiants, que han fet activitats durant el curs i s’han sentit ben informats del seu progrés en l’assignatura. A continuació adjuntem un resum dels resultats obtinguts en l’enquesta efectuada pel professor a final de curs (mostra sobre vint-i-un alumnes).

- Dificultat [1-5], 1 més difícil: 2,40
- Nombre d’hores dedicació a la setmana: 7,07
- Les pràctiques s’ajusten a la teoria? 21 sí
- Les activitats ajuden a seguir l’assignatura? 20 sí, 1 +o-
- La valoració (6,5 + 2 + 1,5) és justa? 15 sí, 2 +o-, 4 NO

La figura següent mostra l’interès dels estudiants pel que fa a les classes teòriques i pràctiques, i les activitats efectuades durant el curs, així com l’interès per un seminari desenvolupat en el marc de l’assignatura.

Interès dels estudiants (5: molt)

![Diagrama amb resultats de l'interès dels estudiants](image)

Figura 3. Resultats de l’interès dels estudiants en les diferents activitats efectuades durant el curs.

5. Conclusions
Com ja hem comentat en els apartats anteriors, es vol deixar constància del grau de satisfacció amb els canvis introduïts en l’assignatura de Visió per computador, tant des del punt de vista del professor com dels estudiants. Cal remarcar que, a través de l’enquestes que s’han fet als estudiants, s’han detectat tot un seguit de punts positius i negatius que permetran millorar tot el procés d’adaptació en els anys vinents. Per exemple, els estudiants van remarcar com a punts positius els continguts de l’assignatura i les activitats, així com les pràctiques. Per contra, també s’ha detectat l’interès dels estudiants a fer alguna pràctica en un entorn més semblant al que es trobaran en un futur en la indústria. De ben segur que tots aquests aspectes es tindran en compte els anys vinents amb l’objectiu de millorar el disseny de l’assignatura.
6. Bibliografía

ADAPTACIÓ A L’EEES DE L’ASSIGNATURA D’ESTADÍSTICA

Glòria Mateu Figueras, Josep Daunis i Estadella i Santiago Thiò Henestrosa
Àrea d’Estadística i Investigació Operativa

Resum. S’exposa l’adaptació a l’EEES de l’assignatura d’Estadística de les titulacions d’ETIG i ETIS de l’Escola Politècnica Superior de la UdG. Aquesta es basa en una concepció diferent de la manera d’ensenyar i aprendre l’estadística, que es va començar a introduir amb el canvi de pla l’any 2001 i que ha estat reforçada en l’adaptació d’aquesta assignatura en el Pla pilot d’adaptació a l’EEES, mitjançant la concreció de les competències, l’establiment de diverses activitats, algunes de les quals efectuades amb la plataforma d’aprenentatge electrònic (e-learning) ACME i la formació que han rebut i portat a la pràctica els professors de l’àrea d’Estadística i Investigació Operativa.

1. Antecedents
És evident que el fet de proposar l’adaptació d’una assignatura en el marc del nou espai europeu d’educació superior (EEES) significa que ja es parteix d’uns orígens. I, en aquest cas, la base la trobem en les assignatures d’Estadística de les enginyeries tècniques d’informàtica de l’Escola Politècnica Superior (EPS) de la Universitat de Girona (UdG). Concretament, a Enginyeria Tècnica d’Informàtica de Gestió (ETIG), hi consta una assignatura de 9 crèdits, 4,5 de teoria i problemes i 4,5 de pràctica, en el primer quadrimestre del segon curs, i a Enginyeria Tècnica d’Informàtica de Sistemes (ETIS) trobem una assignatura de 6 crèdits, 3 de teoria i problemes i 3 de pràctica, en el segon quadrimestre del segon curs. En la reforma del pla d’estudis de l’any 2001 aquestes dues assignatures ja es van plantejar com dues assignatures en què es volia que els alumnes tinguessin un paper molt actiu, reforçant el vessant pràctic i d’aprenentatge guiat, però donant la iniciativa al treball autònom amb treballs pràctics que formaven part de l’avaluació. Aquest aprenentatge es va concretar establint clarament una sèrie d’activitats amb professor i altres activitats sense professor. Entre les activitats amb professor hi havia sessions de teoria (plantejades bàsicament com a classes magistrals amb exemples), sessions de problemes (basades principalment a plantejar els dubtes que han tingut els alumnes en la resolució i afrontar-los ara amb el professor per resoldre’ls), pràctiques (en què es treballen els continguts mitjançant una part dirigida i una altra part autònoma assistida pel professor) i tutories (tutories presencials a petició de l’alumne amb horaris predefinits o establerts ad hoc o tutories telemàtiques per a algunes qüestions breus amb el compromís de respondre en un temps força breu). Entre les activitats sense professor hi havia la resolució de problemes, a més de l’estudi personal, així com l’elaboració de dos treballs pràctics (un en el cas d’ETIS) amb dades i qüestions concretes que s’havien de treballar sobre aquelles dades. Això, a més, va comportar posar a l’abast dels alumnes una temporalització clara i elaborar tota una sèrie de materials, concretament un dossier de transparències (que servia de base a les explicacions del professor), un dossier de problemes amb solució, un dossier de pràctiques, un formulari amb les taules i fórmules estadístiques principals, una selecció de bibliografia que estava disponible a la biblioteca i un recull d’enllaços a webs sobre continguts i recursos estadístics.
2. El Pla pilot

Quan l’EPS i la UdG van plantejar iniciar un pla pilot d’adaptació a l’EEES, que incloïa les titulacions d’ETIG i ETIS, el professorat d’Estadística hi va participar des del principi activament, tant en la mateixa formació com en la definició de la nova estructura aplicada a l’assignatura d’Estadística dels dos estudis.

La gran feina feta fins a aquell moment va facilitar la tasca de definir les competències que es volien aconseguir, mitjançant unes activitats i uns procediments d’avaluació. Les competències específiques de l’assignatura d’Estadística van quedar definides de la manera següent:

- Ser capaç d’analitzar i sintetitzar problemes.
- Comunicar-se adequadament tant oralment com per escrit.
- Resoldre problemes i analitzar de manera crítica els resultats.
- Identificar i utilitzar els principis bàsics de la metodologia estadística (obtenció, organització i anàlisi de dades).
- Saber aplicar correctament els conceptes bàsics de probabilitat.
- Ser capaç de dur a terme procediments estadístics de tipus inferencial com a procés de presa de decisions i prendre consciència de la incertesa associada.
- Saber utilitzar un paquet de programari estadístic per fer una anàlisi estadística sobre un conjunt de dades.

La temporalització ja existent va permetre, amb força facilitat, veure quin era el cost d’assolir, per a un alumne estàndard, aquestes competències, lligades a una sèrie d’activitats d’aprenentatge ja existents i a d’altres que es començarien. Així doncs, el treball equivalent va quedar establert en 7,5 i 5 crèdits ECTS per a ETIG i ETIS, respectivament.

Pel que fa al replantejament de les activitats, en principi es va plantejar incidir en tres aspectes: les classes de teoria, els exàmens i l’ús d’ACME. Amb referència a les classes de teoria, s’hi van introduir exemples amb dades reals, cosa que va fer que el professor introduís l’ús del paquet estadístic Minitab en la classe de teoria i que amb aquest es poguessin fer exemples més dinàmics i veure més casuístiques i possibilitats de treball que les que proporciona un exemple estàtic. A més, es van buscar miniaplicacions (applets) de Java relacionades amb l’estadística per ajudar a fer simulacions i exemplificacions de propietats i teoremes lligats a l’atzar i a les famílies de distribucions. Un altre dels aspectes que es van treballar va ser l’avaluació. Per una banda, es van fer exàmens a l’aula informàtica, perquè l’alumne pogués treballar davant d’unes dades, com si fos un cas real, i fer servir les eines estadístiques necessàries per afrontar tota una sèrie de qüestions que se li plantejaven. Per l’altra, es van reconsiderar els percentatges de cadascuna de les activitats que eren d’avaluació, i això permetia donar entrada a la valoració de les noves activitats i es van ponderar d’acord amb la taula següent:

<table>
<thead>
<tr>
<th></th>
<th>ETIG</th>
<th>ETIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test i problemes teòrics</td>
<td>25 %</td>
<td>25 %</td>
</tr>
<tr>
<td>Problemes pràctics</td>
<td>30 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Treballs pràctics</td>
<td>15 %</td>
<td>20 %</td>
</tr>
<tr>
<td>ACME</td>
<td>20 %</td>
<td>15 %</td>
</tr>
</tbody>
</table>
Finalment, el tercer aspecte sobre el qual vam treballar va ser incorporar unes activitats d’aprenentatge continuat, sobre la plataforma ACME, que detallarem en la secció següent i que van ser presentades, en una fase inicial, al Congrés de la Sociedad de Estadística e Investigación Operativa (Daunis-i-Estadella et al., 2006).

3. Estadística a ACME
És evident que les noves tecnologies obren en el camp de l’ensenyament una sèrie de noves possibilitats que ens obliguen a replantejar la metodologia que apliquem en la nostra tasca diària. Un dels aspectes que es poden replantejar és el control i l’incentiu del treball continuat dels alumnes amb l’objectiu d’incrementar el seu rendiment acadèmic final, sense que es faci necessària la presència ni l’acció directa del professor. Aquest incentiu del treball regular és possible mitjançant les facilitats d’ús i la gran implantació de les tecnologies de la informació i la comunicació i, en particular, de la plataforma ACME.

El Projecte ACME (Avaluació continuada i millora de l’ensenyament) es va iniciar l’any 1998 en el Departament d’Informàtica i Matemàtica Aplicada (IMA) de la UdG i es va emmarcar en un replantejament de la docència en les assignatures de matemàtiques de les enginyeries de l’EPS de la UdG. Els principals objectius de la plataforma ACME consisteixen en implementar un sistema eficient d’avaluació i treball continuats, mitjançant l’assignació de problemes de manera personalitzada per a cada alumne, oferint un sistema d’ajuda per resoldre els problemes, facilitant la comunicació recíproca entre professor i alumne, i el seguiment i l’avaluació dels alumnes pel professor (Poch et al., 2003).

Paral·lelament, l’any 2000, els professors de l’àrea d’EIO del Departament d’IMA de la UdG van començar el Projecte ESTIC (L’estadística i les tecnologies de la informació i la comunicació) amb la creació d’una base de problemes de tipus test per a l’autoaprenentatge i l’exercitació no avaluables per part dels alumnes i per a l’avaluació (Barceló-Vidal et al., 2003). Es disposava també d’unes eines de seguiment d’usuaris i administració de preguntes basades en les funcionalitats de la Unitat de Suport a la Docència Virtual (USDV) de la UdG. L’extinció de l’USDV va truncar el desenvolupament del projecte.

Amb motiu de la implantació del pla pilota, es va plantejar la integració del projecte ESTIC en el projecte ACME per donar als alumnes noves activitats amb treball autònom que repercutissin d’una manera positiva en la seva formació i en la seva avaluació. El resultat va ser l’elaboració d’una base de 969 problemes, classificats segons diferents temes corresponents als continguts i amb diferents nivells de dificultat. Són problemes de tipus test amb quatre opcions de resposta, de les quals només una és correcta. Cadascun alumne disposa d’un dossier personalitzat amb quatre blocs de qüestions (tres blocs a ETIS) en què es permeten diversos intents de resolució però es penalitza la resposta en funció dels intents (1 punt si es respon bé en el primer intent, 0,5 punts o 0,33 punts en el segon i 0 punts en el tercer), i, per evitar una resposta sequencial, d’un intent a l’altre les respostes s’ordenen de manera diferent. Aquests blocs tenen uns terminis de lliurament prefixats que permeten als alumnes planificar i treballar segons les seves disponibilitats i conveniències.

La valoració de les activitats a través de l’ACME s’ha fet a partir de les enquestes que es passen als estudiants i els resums de resultats que proporciona l’ACME com a eina de seguiment. Pel que fa als estudiants, se’ls passa un qüestionari en què en diferents
44

Experiències docents d’adaptació a l’EEES

aspectes se’ls demana la resposta des de “molt d’acord” fins a “molt en desacord”, amb cinc nivells possibles. En la taula següent presentem els resultats d’ETIG i ETIS del primer any d’implantació dels blocs d’ACME per als alumnes que han contestat “d’acord” o “molt d’acord” en quatre aspectes. Tot i que els percentatges d’ETIG són una mica baixos, tots superen el 50 % i aquests són incrementats en ETIS, ja que el primer quadrimestre pot ser considerat com de fase de rodatge, atès que van sorgir alguns errors que es van corregir en el quadrimestre següent.

<table>
<thead>
<tr>
<th></th>
<th>M’ha ajudat a aprendre</th>
<th>Ajuda a programar millor l’estudi</th>
<th>Hi ha una col·lecció adequada de problemes</th>
<th>Feina suficientment valorada</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETIG</td>
<td>57,6 %</td>
<td>60,6 %</td>
<td>54,5 %</td>
<td>63,6 %</td>
</tr>
<tr>
<td>ETIS</td>
<td>83,3 %</td>
<td>55,5 %</td>
<td>88,9 %</td>
<td>66,7 %</td>
</tr>
</tbody>
</table>

Una altra eina de valoració i seguiment que proporciona l’ACME són els resums estadístics per temes i per exercicis i individualitzat per a cada alumne. Aquests resums ens han permès fer un seguiment d’aquells temes en què hem percebut que hi ha més dificultats de resolució i incidir en la correcció, reformulació o presentació diferent de certs conceptes, com ara la covariància, la regressió lineal, el treball amb variables aleatòries discretes i el concepte de fiabilitat i el seu ús. També hem pogut fer un seguiment individualitzat de les respostes i dificultats de cada alumne.

Globalment aquestes actuacions s’han reflectit en uns resultats acadèmics amb una disminució d’un 10 % aproximadament dels alumnes no presentats i, per a aquells que s’han presentat, s’obté un augment del 4 % o 5 % dels notables o excel·lents, un lleuger augment del percentatge d’aprovats i un manteniment dels percentatges de suspesos.

4. Adaptacions que s’han d’implementar

En el procés continu de millora de la docència, en relació intrínseca amb l’EEES, actualment es treballa en tres línies en l’horitzó del 2008. Aquestes línies són les millores en l’ACME, les classes de problemes i la lectura de textos científics amb component estadístic. Pel que fa a les millores de l’ACME, estem treballant la possibilitat d’enriquir els exercicis de tipus test amb problemes amb dades individualitzades per a cada alumne. Així, les respostes que s’ofereixin per escollir dependrien de les dades de l’alumne, i cada alumne tindria al seu dossier el mateix tipus de respostes però amb més varietat i riquesa. Aquesta fita també es pot aconseguir amb una segona línia de treballs dins l’ACME, que són els problemes de tipus test amb paràmetres. En aquest cas les respostes presentades dependrien dels paràmetres inclosos en el fitxer. En relació amb les classes de problemes, aquestes es volen plantejar com a casos d’aprenentatge basat en problemes, en què es presenta una situació real i es demana als alumnes que l’estudïn i que elaborin un informe final i un treball col·laboratiu. L’assistència a cursos de formació en aquest camp ens permetrà posar-ho en pràctica, tot i que som conscients de la ingent tasca de preparació que comporta una activitat així. Es pot preveure fer correccions creuades amb la supervisió del docent. Finalment, una darrera línia seria treballar la comprensió de textos científics, àrea en què hem detectat algunes mancances. Això es faria a partir de textos amb continguts estadístics, sobre el qual es planejarien preguntes concretes, com per exemple com s’obtenen les dades, quines variables i quins mètodes s’utilitzen, quins resultats s’obtenen i què signifiquen aquests resultats.
5. Referències

ADAPTACIÓ A L'ESPAI EUROPEU D'EDUCACIÓ SUPERIOR
DE L'ASSIGNATURA ELECTRÒNICA ANALÒGICA

Carles Pous Sabadí
Àrea d'Enginyeria de Sistemes i Automàtica

Resum. Aquest treball recull els resultats de l'experiència obtinguda en adaptar una assignatura de l'àmbit de l'enginyeria al format de crèdits europeus. Es proposen diverses activitats per fomentar la participació dels estudiants durant el curs i fer que el treball efectuat sigui compensat d'alguna manera en la nota final. Els resultats de l'experiència, però, mostren que, tot i la introducció de noves metodologies docents, el rendiment acadèmic va baixant amb el pas dels anys.

1. Introducció
Electrònica analògica és una assignatura troncal que s’imparteix a primer curs d’Enginyeria Tècnica Industrial, especialitat en Electrònica Industrial, durant el segon quadrimestre. Segons el criteri escollit per la UdG que 25 hores de treball de l’estudiant corresponen a 1 crèdit ECTS, aquesta assignatura representa una càrrega total de 5 ECTS.

Un dels primers reptes de l’adaptació és que les activitats proposades per a l’assignatura s’inclouguin en l’horari fixat per l’Escola Politècnica Superior (EPS). En particular, l’EPS estableix que per a l’assignatura d’Electrònica analògica els estudiants tenen 2 hores setmanals de teoria, 2 hores de problemes cada quinze dies i 2 hores de pràctiques també cada quinze dies.

Per altra banda, Coordinació d’Estudis ha fixat que les competències que ha de cobrir l’assignatura han de ser les següents:

| 1. Aplicar eines i coneixements matemàtics. |
| 2. Interpretar el comportament freqüencial de circuits elèctrics i/o electrònics. |
| 3. Identificar i interpretar el funcionament i utilitzar els components electrònics aplicats a la indústria. |
| 4. Interpretar les característiques tècniques i aplicar components comercials en el disseny electrònic aplicat a la indústria. |
| 5. Dissenyar i documentar dispositius electrònics aplicats a l’àmbit industrial. |
| 6. Utilitzar instruments per mesurar variables relacionades amb l’anàlisi de funcionament, el calibratge i l’operació de circuits electrònics. |
| 7. Ser capaç d’analitzar. |
| 8. Interpretar textos de caràcter tècnic escrits en anglès. |

La proposta que s’explica aquí mostra les diverses accions que s’han dut a terme perquè els estudiants aconsegueixin aquestes competències. Cal dir que l’elevat nombre d’alumnes matriculats en l’assignatura dificulta enormement l’aplicació d’alguns dels mètodes docents utilitzats en altres àmbits.

2. Descripció de l’activitat
Per donar suport a l’aprenentatge, s’utilitzen bàsicament tres tipus d’eines: classes expositives, resolució de problemes i realització de pràctiques. Amb les classes expositives es dota els estudiants amb els coneixements de les eines necessàries que s’han d’aplicar per poder dissenyar dispositius electrònics, interpretar característiques tècniques i tenir capacitat d’anàlisi (competències 1, 2, 3, 4, 5 i 7). D’altra banda, les classes de problemes han de permetre ajudar a desenvolupar més profundament les capacitats esmentades anteriorment, mentre que amb les sessions de pràctiques s’aprofundirà la interpretació de textos en anglès, així com l’ús de l’equipament del laboratori (competències 6 i 8).

La Figura 1 mostra la càrrega destinada a cadascuna de les tres eines de suport per aconseguir les competències fixades, així com quines activitats són d’avaluació.

![Figura 1. Distribució dels diversos mètodes docents.](image)

Com es pot observar, el total d’hores que hauria de dedicar l’alumne a l’assignatura durant el quadrimestre és de 136, i d’aquestes hores 55 són amb professor i les 81 restants són de treball sense la presència del professor. Un dels punts més difícils en aquest sentit és valorar la càrrega horària que representen les diverses activitats per a l’estudiant. Aquest càlcul s’explica seguidament, amb el detall de cada una de les activitats, i amb l’experiència dels anys s’haurà d’anar reajustant.

Classe presencial. Aquestes sessions continuen sent les majoritàries, bàsicament per l’elevat nombre d’estudiants matriculats en l’assignatura. S’ha considerat que cada hora de classe representa una hora d’estudi posterior per a l’alumne, sense professor.

Pràctiques. Cada sessió de pràctiques requereix la preparació d’un estudi previ per poder-la efectuar. Tot i que les pràctiques es fan en grups de dues persones, en començar la pràctica el professor fa preguntes sobre l’estudi previ a cada un dels alumnes assistents de
Experiències docents d’adaptació a l’EEES

manera individual. Aquest fet obliga els estudiants a haver de revisar la teoria i preparar els estudis previs a consciència, ja que un requisit indispensable per poder fer la pràctica és portar l’estudi previ fet i respondre adequadament a les preguntes que faci el professor. Durant la sessió pràctica, l’estudiant ha de muntar el circuit i comprovar, adoptant les mesures pertinents, que el circuit proposat funciona correctament i que els càlculs realitzats en l’estudi previ donen els resultats esperats. Pel que fa a la càrrega horària que representen les pràctiques per a un estudiant, s’ha comptat que cada hora de pràctiques requereix una hora de preparació prèvia. També cal dir que els enunciats de la pràctica s’han canviat. S’ha observat que les noves generacions d’alumnes tenen més dificultats per mantenir la concentració en la lectura. Per això s’ha destacat molt clarament què és estudi previ, s’han posat quadres recordatoris en què s’han destacat fets importants que s’han de recordar, etc., i al mateix temps s’ha dotat de colors per ajudar a identificar les diverses parts.

Problemes. Per a aquesta activitat, s’han considerat dues situacions diferents: els problemes que es fan a l’aula amb grups més reduïts que el de teoria i els problemes que poden fer els alumnes a casa mitjançant la plataforma informàtica ACME. En el cas dels problemes que es fan a l’aula, els alumnes disposen d’un dossier que conté més de cent problemes dels diversos temes de l’assignatura. En la sessió de problemes que es fan a l’aula, el professor proposa resoldre alguns dels problemes de la col·lecció. Durant les 2 hores que dura cada sessió de problemes, són els estudiants els que van resolent els problemes. És a dir que, atès un enunciat, el professor dona un cert temps perquè els estudiants facin l’exercici i després es resol de manera col·lectiva, recollint les propostes que fan els estudiants. És en aquest moment que es veuen els principals errors que solen cometre o bé les diverses maneres de resoldre un mateix problema. Al mateix temps, els estudiants disposen de la solució final de cada exercici, de manera que després a casa poden fer la resta dels exercicis proposats i comprovar que han assolit correctament el resultat final.

Avaluació. Per avaluar si s’han assolit les diverses competències es qualifica la realització de les pràctiques, la realització de l’examen final fixat per l’EPS i de dos exàmens parcials fets durant el curs amb l’ús de la plataforma informàtica ACME (avaluació continuada i millora de l’ensenyament). En aquest cas, s’ha comptat que la càrrega que representa per a l’alumne l’examen final és de 3 hores que dura l’examen en si mateix i 16 hores de dedicació a l’estudi els dies previs. En el cas dels exàmens parcials ACME, s’ha de comptar que la durada de cada un és de 2 hores i que cal una dedicació prèvia d’estudi de 6 hores sense professor.

3. Resultats

Els resultats obtinguts aplicant aquestes metodologies es mostren en les figures següents. La figura 2 i la figura 3 mostren el percentatge d’aprovats (respecte al de presentats) i de no presentats, en primera i segona convocatòria, respectivament. La Figura 4 dóna el rendiment acadèmic (nombre d’aprovats respecte al nombre de matriculats) en funció dels últimos anys acadèmics. La metodologia que hem explicat aquí es va començar a aplicar el curs 2005-2006.

Pel que fa als problemes ACME, s’ha vist que en l’últim curs acadèmic, dels aproximadament 120 estudiants matriculats a l’assignatura, han llegit els enunciats vint-i-cinc persones, de les quals vuit han intentat fer els exercicis (enviant solucions) i quatre han aconseguit resoldre exercicis de manera satisfactoria. En canvi, en els exàmens
Experiències docents d’adaptació a l’EEES

parcials amb ACME, els percentatges han estat els següents: al primer examen hi van assistir setanta-dos estudiants i vuit el van aprovar. Al segon, n’hi van assistir-hi només quaranta-dos i setze van aprovar.

Figura 2. Resultats en la primera convocatòria.

Figura 3. Resultats en la segona convocatòria.

Figura 4. Rendiment acadèmic.

4. Discussió
Dels resultats anteriors es pot veure que pel fet d’aplicar aquestes metodologies no ha millorat el rendiment acadèmic. S’observa que hi ha més percentatge d’alumnes aprovats en segona convocatòria que en primera, i una anàlisi més profunda ha mostrat que encara és més important el percentatge d’aprovats en tercera. Tot i disposar d’una eina com ACME, que facilita de manera interactiva l’aprenentatge, facilitant una correcció instantània dels problemes, s’ha vist que no ha despertat interès entre els estudiants. A la pràctica, un percentatge important dels estudiants no porta els estudis previs en condicions i el nombre d’abandonaments creix després del primer mes de classe. D’altra banda, sí que el nou format de les pràctiques sembla que ajuda a millorar la comprensió. El fet de fer exàmens parcials va ser motiu pels mateixos estudiants, que van demanar eines per obligar-los a estudiar. Veient, però, els resultats dels exàmens parcials ACME, és clar que, tot i que obliga a estudiar l’assignatura en el seu moment, els beneficiats són pocs.

5. Conclusions
Tots aquests factors, i veient que la reacció dels estudiants es produeix després de repetir el primer any, fan concloure que els alumnes estan avessats a aprovar amb la llei del mínim esforç. Els resultats mostren que, independentment dels mètodes emprats, el rendiment acadèmic no millora. La conclusió és que el problema no és la metodologia docent emprada, sinó els hàbits i costums adquirits pels estudiants durant la seva formació anterior. El fet que un alumne aprovi no depèn tant de la metodologia docent
emprada com del tarannà del professor i de les aptituds que ha anat desenvolupant l’estudiant anteriorment. Tot i que cal adaptar les metodologies docents als nous temps, la solució del problema no és fer grans canvis en aquestes metodologies, sinó fer que millori la base de coneixements i sobretot el nivell d’aptituds dels estudiants. D’aquesta manera, no hi haurà la necessitat d’haver d’abaixar el nivell.
COMPETÈNCIES TRANSVERSALS DE LA UNIVERSITAT DE GIRONA: UNA LECTURA POSSIBILISTA

Pere Roura Grabulosa
Àrea de Ciència dels Materials i Enginyeria Metal·lúrgica

Resum. L’adaptació de l’activitat docent a la declaració de Bolonya ens porta a la definició dels objectius i mètodes docents en termes de competències. La Universitat de Girona (UdG) ha publicat una llista de les competències transversals (CT) que s’haurien d’asegurar en qualsevol titulació. Atès que la docència ha de preveure de manera explícita continguts i habilitats que fins ara no s’encarregaven a cap assignatura ni professor concrets, hem pensat que el nou marc dóna l’oportunitat per resoldre una mancança important del sistema actual. Per això proposem una possible concreció de les CT en termes de continguts comuns i d’eines comunes.

1. Introducció: concreció de les competències transversals a l’Escola Politècnica Superior

La Universitat de Girona ha formulat un conjunt de tretze competències transversals (CT) que van des de la capacitat d’analitzar situacions complexes fins al domini de la llengua anglesa (vegeu la guia corresponent). Amb independència de la simpatia que cadascú pugui sentir pel conjunt d’aquestes competències, el fet és que aviat les haurem de tenir en compte en la nostra programació docent. Es tracta, doncs, de mirar de treure profit de les oportunitats que aquest nou marc ens ofereix.

Des del nostre punt de vista, les CT ens poden ajudar a resoldre una deficiència del sistema docent actual: la seva compartimentació. Repetidament, els professors constatem mancances importants en continguts que no ens són propis. També constatem la utilització deficient que els alumnes fan de les eines d’ús general, com ara els editors de textos. Tanmateix, com que ni aquests continguts ni aquestes eines no formen part de l’encàrrec docent particular de cap professor, en general, no ens en sentim responsables. Creiem, sincerament, que, sense desvirtuar el sentit de les CT, els continguts útils per a un ampli ventall d’ensenyaments i d’assignatures (continguts comuns), així com les eines d’ús generalitzat (eines comunes), haurien de servir per concretar una part important de les CT.

2. Continguts comuns respecte a continguts fonamentals

Tradicionalment, entre les assignatures d’una titulació tècnica trobem aquelles que imparteixen els anomenats continguts fonamentals. La física i les matemàtiques en són un exemple. Situades en el primer curs o quadrimestre, es pretén que estableixin els fonaments teòrics que permetin desenvolupar els continguts més específics de les assignatures tècniques. La veritat és que, malgrat que un alumne hagi aprovat les assignatures fonamentals, el seu domini dels continguts fonamentals és molt deficient. Per exemple, constatem les dificultats que molts alumnes dels darrers cursos tenen per plantear equacions algebraiques ordinàries, utilitzar els sistemes d’unitats, expressar-se correctament per escrit i un llarg etcètera. Es tractaria de canviar el concepte. En lloc de parlar de continguts fonamentals s’hauria de parlar de continguts comuns. El sentit és el següent: el càlcul algebraic no té cap relació conceptual amb moltes de les matèries que
Experiències docents d’adaptació a l’EEES

54

s’imparteixen; tanmateix, és fonamental per al correcte aprenentatge d’aquestes matèries. El seu coneixement facilita, per tant, la feina docent de la majoria de professors. És en aquest sentit que aquests continguts esdevenen comuns. Tots estem, doncs, interessats que els alumnes els adquireixin. Per tant, tots n’hauríem de ser coresponsables. Podríem dir que els continguts comuns s’ensenyen en les assignatures corresponents (per Exemple, matemàtiques) però s’aprenen durant toda la carrera.

Aquesta nova perspectiva requereix una manera diferent d’impartir la docència. Fins ara un professor, per exemple de Mecànica, evitava el plantejament d’una equació diferencial per no generar tensions “innescessàries” amb els alumnes o bé per evitar una pèrdua de temps que s’hauria de dedicar a explicar mecànica. Aquesta actitud té una certa lògica si entenem la docència com a compartimentada. En el moment en què, per exemple, les equacions diferencials es consideressin continguts comuns, tindriem el deure d’utilitzar-les allí on el seu ús fos natural. Per tant, seguint l’exemple, els alumnes aprenen equacions diferencials també tot estudiant mecànica. D’aquesta manera, l’ús reiterat en assignatures diverses d’aquests continguts comuns ha de fer que l’alumne al final els vegi com a naturals i els acabi adquirint malgrat la seva dificultat.

Per als ortodoxos que aposten per una distinció clara entre competències i continguts, voldríem argumentar a favor de considerar els continguts comuns com a competències. La resolució d’una integral, que és clarament un contingut concret de l’assignatura de Càlcul, es converteix a l’últim en una habilitat molt útil (fins i tot imprescindible) per a l’aprenentatge de matèries més específiques. En la pràctica professional, la capacitat de fer raonaments precisos utilitzant el llenguatge matemàtic representa un valor afegit indubtable. Sense cap mena de dubte es tracta d’una competència que es podrà aplicar a una infinitat de situacions concretes.

3. Eines comunes
Complementàriament als continguts comuns relacionats, com hem vist, amb aquelles matèries que tradicionalment s’han considerat fonamentals, l’activitat docent també hauria d’incentivar la utilització d’eines comunes. El cas més clar, encara que no pas l’únic, serien les eines informàtiques. Tot i que la distinció entre continguts i eines pot semblar arbitrària, si que respon a una diferencia significativa. Mentre que els continguts tenen un valor més perdurable, les eines poden ser substituïdes per altres de més útils en el transcurs del temps. Per una altra banda, les eines s’aprenen més per l’ús continuat dels alumnes que no pas com a resultat de cap explicació teòrica del professor. Es tractaria que, paral·lelament a l’adquisició de coneixements, l’alumne aprengués a utilitzar eines de validesa general per poder comunicar-se, analitzar dades, representar-les, etc.

4. Competències transversals (CT) a l’EPS: continguts comuns i eines comunes
Tot seguit, veurem que tant els continguts comuns com les eines comunes poden constituir una part important del contingut de bona part de les CT. Aquesta proposta s’ha de prendre com a guia, amb el benentès que s’hauria d’obrir un debat ampli perquè la concreció de les CT sigui consensuada al màxim. (Les CT s’identifiquen amb l’ordre en què apareixen a la Guia (Ti)) i amb una breu descripció.)

Experiències docents d’adaptació a l’EEES

55

T2. Llegir i comprendre

a) Llegir qualitativament i quantitativament informació en format gràfic:

- Llegir gràfics en format científic, extreure’ns valors numèrics precisos i interpretar qualitativament la informació.
- Ídem per a gràfics en format estadístic.
- Interpretació qualitativa i quantitativa de plànols.

b) Conèixer les unitats dels sistemes d’unitats més coneguts fent un èmfasi especial en el sistema internacional. Adquirir agilitat en els canvis d’unitats. Saber analitzar la coherència dimensional de les fòrmules.

T3. Comunicar-se oralment i per escrit

La comunicació científica i tècnica requereix precisió en el llenguatge oral i escrit. A més d’aquesta consideració general, creiem que s’han de cuidar especialment els codis de comunicació més propis de l’àmbit tècnic. Estem parlant de les habilitats complementàries a les habilitats que hem detallat en l’apartat “Llegir i comprendre”. Per exemple, a la primera li correspondria:

- Representar manualment les dades en gràfics de format científic. Ús adequad de les escales lineal i logarítmica.

T4. Analitzar situacions complexes

En l’àmbit tècnic, l’anàlisi de problemes complexos requereix agilitat en l’ús del llenguatge matemàtic i de les seves eines. Podem esmentar, entre altres, les següents habilitats necessàries comunes:

a. Agilitat en el càlcul numèric.

b. Capacitat de plantejar i manipular equacions algebraiques.

c. Comprensió de les equacions diferencials i capacitat de solucionar les més comunes.

d. Agilitat en el càlcul integral.

Les CT detallades fins aquí (T2, T3 i T4) s’han concretat a través de coneixements comuns característics de l’àmbit científic i tècnic. Les dues CT següents les concretarem en termes d’eines comunes. Val a dir que, pel seu caràcter més genèric, la majoria d’eines comunes ho són per a qualsevol estudiant de la UdG.

T5. Recollir i seleccionar informació

Destacariem aquí, simplement, la utilització de bases de dades com una pràctica que es podria potenciar. D’altra banda, considerem que l’activitat de recerca i selecció d’informació, sigui a la biblioteca o a la xarxa, no hauria d’anar en detriment de l’activitat més reflexiva pròpia d’un estudiant universitari.

T6. Tecnologies de la informació i la comunicació

Creiem que aquesta competència transversal és el lloc adequad per situar les eines comunes complementàries a la majoria de coneixements comuns ja exposats més amunt. Es tractaria de definir el mínim comú denominador de les eines informàtiques que...
qualsevol estudiant de l’EPS hauria d’utilitzar correctament. L’EPS hauria de definir el programari bàsic que s’utilitzaria.

5. Com es concreta el contingut de les competències transversals (CT) a l’EPS
Si l’EPS decidiu apostar pels continguts comuns i les eines comunes, s’hauria de fomentar un debat per identificar-los i assignar-los a les diverses CT. Així seria més fàcil assignar les CT a les diverses assignatures. Un procediment podria ser el següent.

a) Identificació dels continguts comuns i les eines comunes
Creem que resulta imprescindible elaborar una llista exhaustiva dels continguts concrets que s’han de conèixer. Per exemple:

Plantejament d’equacions lineals del tipus:

a) \[5x + 8y - 4 = 0 \]

O bé proposar maneres comunes de fer. Per exemple:

“Utilitzar sempre el sistema internacional (SI) d’unitats. Només en aquells casos en què sigui clarament inconvenient es podran utilitzar altres sistemes d’unitats. Ara bé, sempre el resultat s’acabarà convertint al SI.”

Fora d’algum cas molt especial, els continguts comuns haurien de formar part del temari de les corresponents assignatures troncals de primer curs. Serien els professors d’aquestes assignatures els encarregats de fer la primera proposta de continguts comuns.

Igualment, caldria definir les eines comunes per a tots els estudiants de l’EPS i establir la manera d’incentivar l’alumne perquè les faci servir, així com definir una certa progressió. Per exemple:

“En el primer curs, els treballs s’han de presentar editats amb algun programa de tractament de textos. En el segon curs, s’ha de treballar amb un full de càlcul […].”

b) Assignació a les assignatures
Amb la llista anterior confeccionada, es podria consultar als professors de totes les assignatures quins són els continguts comuns que utilitzarien de manera més natural. Sobre aquesta base es podria planificar en quines assignatures s’ha de procurar insistir més en uns continguts que en uns altres. Un cop definit, els professors s’haurien de comprometre a no donar per sabuts aquests continguts. Per exemple, el professor de Mecànica hauria de plantear clarament l’equació diferencial i explicar els passos que s’han de fer per resoldre una equació d’aquest tipus. Els continguts definits per a cada assignatura haurien de formar part de manera explícita tant de les explicacions teòriques com dels problemes i exercicis, i s’hauria de verificar el seu aprenentatge en els exàmens i treballs de l’alumne.

c) La progressió en l’aprenentatge: continguts comuns mínims
És important remarcar que l’aprenentatge dels continguts comuns es fa al llarg de tota la carrera i que és progressiu. Per fer palesa la progressió en l’adquisició dels continguts comuns, s’haurien de definir els continguts comuns mínims que evolucionarien
Experiències docents d’adaptació a l’EEES

quadrimestre a quadrimestre. Per exemple, en el primer quadrimestre no es podria permetre que un alumne fos incapaç de resoldre una equació lineal ordinària, i en el segon trimestre hauria de ser capaç de resoldre equacions ordinàries que continguessin qualsevol tipus de funció corrent (trigonomètrica, exponencial, etc.). Perquè els estudiants poguessin millorar en qualsevol moment el seu coneixement sobre aquests continguts comuns mínims, es podria editar un material específic que estigués disponible a la xarxa i indiqués clarament en quin quadrimestre de la carrera s’hauria d’assolir cada nivell.

6. Conclusions
A tall de conclusió, remarcarem alguns dels avantatges que creiem que comportaria apostar pels continguts comuns i les eines comunes:

1. Fan possible una lectura de les CT no revolucionària.
2. Les CT no serien una cosa extra al contingut de la mateixa assignatura, sinó una oportunitat per adquirir una formació de manera més progressiva.
3. Un cop assignats a les diverses assignatures, la necessitat de coordinació entre professors seria mínima.
4. L’avaluació de les competències deixaria de tenir aquella aurèola d’inabastable.
5. Els continguts comuns i les eines comunes podrien definir una manera de fer docència de l’EPS.
ESTRATÈGIA DE DISSENY DE TITULACIONS

Josep Soler Masó
Àrea de Llenguatges i Sistemes Informàtics

Resum. En aquesta ponència es presenta una metodologia per al disseny dels nous plans d’estudis ja emmarcats en l’espai europeu d’educació superior (EEES) i basada en quatre fases. D’entrada, les dues primeres fases consisteixen a obtenir les competències i els condicionaments i criteris que s’han de seguir. Amb aquesta informació, i en la tercera fase, ja es pot elaborar l’estructura general del nou pla. Finalment, per a cada assignatura s’assignaran les competències, els continguts i les activitats, i se’n detallarà l’avaluació.

1. Introducció
Des del curs 2004-2005 es du a terme un pla pilot d’adaptació a l’EEES en les carreres d’Enginyeria Tècnica en Informàtica de Gestió i Enginyeria Tècnica en Informàtica de Sistemes. Per a l’alumne ha comportat l’inici d’un canvi de mentalitat que implica una major participació i implicació en els seus estudis. Pel que fa al professorat, el pla pilot ens ha permès:

- La formació de cara a l’EEES.
- La formació i el treball en noves metodologies docents.
- La integració en la metodologia de disseny d’assignatura de la UdG.
- L’obtenció de primeres conclusions.

Ens ha servit també per reflexionar sobre la feina feta i ens deixa molts interrogants oberts, com per exemple els següents: s’han aconseguit les competències fixades?, els alumnes saben fer més coses?, i els rendiments acadèmics?, i les competències genèriques?

Ara, i aprofitant l’experiència i el coneixement adquirits durant aquests anys, el pas següent després del pla pilot és dissenyar els nous plans d’estudis de grau en informàtica. Una de les maneres de dissenyar-los és seguir una metodologia que ens permeti obtenir un pla adequat a les necessitats de l’entorn socioeconòmic actual. La metodologia que presentem es basa directament en els articles [1] i [2], en què s’han fet petites adaptacions.

2. Descripció de la metodologia de disseny de titulacions
Tot i que aquesta metodologia s’ha dissenyat per a estudis de grau en informàtica, és prou general per aplicar-la a qualsevol altra titulació. La metodologia es basa en quatre fases:

Fase 1. Elaboració d’una llista de competències.
En aquesta fase cal determinar totes les competències que haurà d’adquirir l’alumne en la carrera. Per això cal determinar:
- Les competències específiques (tècniques) pròpies de la titulació.
- Les competències genèriques i transversals.
- Altres competències (competències deonto lògiques, les competències pròpies de la Universitat, etc.)
Experiències docents d'adaptació a l'EEES

Per obtenir aquestes competències ens hem de basar en la informació obtinguda a través de diferents fonts, com per exemple les següents:

- La legislació vigent, per obtenir per exemple les competències professionals regulades per llei.
- Els organismes especialitzats en dissenys de currículums, com per exemple de l’ACM o de l’IEEE.
- Els llibres blancs de cada titulació, en què es recull molta informació.
- Els acords que estableixen diverses comissions en els diferents àmbits i que fixen unes competències de compliment obligatori.
- Les empreses, per obtenir informació de l’entorn socioeconòmic.
- Els col·legis professionals.

Per fer totes aquestes tasques el centre ha de nomenar una comissió d’experts que serà l’encarregada de treballar les competències. Pot estar formada per professors i també per professionals externs al món universitari.

Fase 2. Elaboració d’una llista de condicionaments per al pla d’estudis

Aquesta fase es pot desenvolupar paral·lelament a la fase 1 i consisteix a obtenir totes les restriccions i els condicionaments per estructurar el pla d’estudis, entre els quals podem esmentar els següents:

- Restriccions i condicionaments legals. Per exemple, els que estableix el Reial decret d’ordenació dels ensenyaments universitaris.
- Acords que estableixen diverses comissions en els diferents àmbits i que fixen unes matèries per a cada carrera de compliment obligatori.
- Criteris específics de la universitat. En el cas de la UdG, els criteris establerts en el document *Criteris per a la planificació i programació dels estudis de grau de la Universitat de Girona*. Complint la normativa d’aquest document, cal determinar aspectes com ara:
 - L’estructuració del pla (per mòduls, per assignatures, etc.)
 - Les assignatures semestral i/o anuals
 - Les assignatures bàsiques
 - El nombre màxim i mínim de crèdits ECTS per assignatura
 - El grau d’optativitat i oferta
 - Les estades en entorn laborals
 - La càrrega del projecte final de carrera, etc.
- Altres criteris establerts pels centres o per la Universitat:
 - Establiment d’especialitats i/o itineraris
 - Dobles titulacions
 - Normativa de permanència i progressió dels alumnes en l’estudi
 - Semipresencialitat
 - Matrícula anual i/o semestral
 - Recursos

Aquesta fase la porta a terme una comissió encarregada, que pot ser la mateixa de la fase 1. Una vegada es tenen tots els condicionaments i la llista de competències, es pot passar a desenvolupar la fase següent.
Fase 3. Fixar l'estructura del pla d'estudis

En aquesta fase ja treballem sobre una graella matricial on, per una banda, tenim els diferents cursos i semestres, i, per l'altra, les diferents assignatures. Cal anar ponderant les competències i avaluar el grau de dedicació per adquirir-les, sempre tenint present la capacitat docent i els criteris del centre. Sobre aquesta graella es va dissenyant l'estructura general del pla d'estudis, amb les possibles assignatures i els crèdits ECTS assignats a cadascuna. S'han d'anar distribuint les competències entre les assignatures i comprovar que tot quadri. Es pot partir de blocs grans, de molts ECTS, i anar-los refinant fins a concretar les assignatures específiques. És important que hi hagi tant una coordinació vertical, entre cursos, com horitzontal, entre assignatures del mateix curs. S'ha de comprovar que la càrrega de treball quedí ben compensada entre els diferents cursos.

El resultat final d'aquesta fase és l'assignació de les competències entre les diferents assignatures, la seva distribució en els diferents semestres i l'establiment de crèdits ECTS per a cada assignatura. Aquestes tasques les ha de fer una comissió d'experts del centre, que pot ser la mateixa de les fases precedents.

Fase 4. Definir les assignatures de manera precisa

Una vegada acabada la fase 3, la comissió distribueix les assignatures als departaments més idonis per impartir-les. Cada departament assigna un o més professors a cada assignatura, que en funció de les competències assignades prepararan les activitats i els continguts més adients. També determinen l'avaluació de l'assignatura. Per a cada àrea o bloc d'assignatures, fóra bo nomenar un coordinador general per analitzar dependències i evitar encavallaments.

Al final d'aquesta fase i per a cada assignatura, s'ha de disposar de:

- Les competències específiques i genèriques assignades.
- Una llista detallada d'objectius formatius a partir de les competències assignades.
- La definició de les activitats i els continguts que s'han de desenvolupar durant el curs.
- La metodologia docent.
- El mètode d'avaluació

Mentre es porta a terme la fase 4, segurament es detectaran problemes i possibles millors de la fase 3. En aquest cas hi haurà d'haver una bona comunicació entre la comissió i els departaments. En totes les fases es fa indispensable una bona predisposició i capacitat de diàleg entre els diferents membres de les comissions i el departament amb la finalitat d'arribar a acords per consens en totes les fases.

Finalment, s'ha de comentar que periodídicament caldrà fer una avaluació i actualització a diferents nivells. Per avaluar el pla caldrà fer diverses actuacions, entre les quals podem esmentar les següents:

- Avaluat si s'han assolit les competències definides.
- Elaborar enquestes sobre la incorporació dels graduats al món laboral.
- Fer enquestes a graduats per esbrinar si la formació que han rebut és la més escaient per al perfil de professional que esperen les empreses.
- Fer enquestes a empreses per obtenir la seva opinió.
També caldrà detectar l’aparició de noves competències professionals per anar actualitzant el catàleg de competències i detectar possibles desajustos. Aquests fets poden comportar correccions en el pla d’estudis per oferir un ensenyament actualitzat i de màxima qualitat.

3. Bibliografia

Resum. En aquest treball es presenta l’evolució que ha tingut l’assignatura d’Introducció a les estructures de dades en aplicar el pla pilot de les titulacions d’informàtica (ETIG i ETIS), i es mostren els resultats obtinguts, així com les idees de futur que es preveu posar en pràctica després de dos anys d’experiència.

1. Introducció
En el curs 2003-2004 es va començar a aplicar el pla pilot a les assignatures de les titulacions d’ETIG i d’ETIS. Va ser una introducció progressiva que es va fer curs a curs, de manera que en tres anys totes les assignatures es van adaptar a una nova manera de fer la docència: definint competències que s’havien d’assolir, planificant les activitats, introduint canvis en el sistema d’avaluació, etc.

En aquest document es presentaran els canvis que s’han fet en l’assignatura Introducció a les estructures de dades, comparant la docència que es feia abans del pla pilot amb la que s’ha fet un cop introduït. Es presentaran els resultats obtinguts, així com un conjunt d’idees de futur en vista de l’experiència de l’assignatura.

2. Descripció de l’activitat
L’assignatura Introducció a les estructures de dades és troncal a les dues carreres d’informàtica de la UdG (ETIG i ETIS) i es desenvolupa durant el primer quadrimestre del segon curs. La càrrega docent és de 6 crèdits repartits en 3 crèdits de teoria, 1,5 crèdits de laboratori i 1,5 crèdits de problemes. Els 3 crèdits de teoria es fan en una aula amb tots els alumnes (dos grups, un per especialitat), mentre que la part pràctica es desenvolupa en grups més reduïts al laboratori. Pel que fa al còmput d’ECTS, aquesta assignatura en va rebre 5, cosa que implicava entre 125 i 150 hores de feina.

El professorat de l’assignatura ha estat el mateix durant els darrers anys (teoria: Joan Surrell, i laboratori: Dídac Barragan, Santi Espigulé i David Figuls). Cal remarcar com a problema de coordinació que els tres professors de laboratori són a temps parcial, aspecte que dificulta la coordinació de l’assignatura ja que no es poden fer reunions durant el quadrimestre: només es pot fer una única reunió abans de començar el curs. Qualsevol circumstància que s’hagi de discutir durant el curs entre els professors s’ha de fer de manera virtual, bàsicament usant el correu electrònic.

Quan es va voler aplicar el pla pilot a l’assignatura es van definir les competències de l’assignatura, que no han variat gaire en els darrers cursos. Actualment són les següents, tal com consten en la fitxa de l’assignatura:
• Ser capaç d’analitzar, dissenyar i implementar un algorisme i la seva estructura de dades.
• Ser capaç d’analitzar i sintetitzar problemes.
• Fomentar l’ús d’una llengua estrangera.
• Resoldre problemes i fer una anàlisi crítica de resultats.
• Fer un raonament crític.
• Adquirir motivació per la qualitat.
• Aprendre a gestionar la memòria interna de la màquina creant i alliberant els objectes adequadament.
• Estudiar les principals estructures de dades de memòria interna.
• Conèixer els algorismes de manipulació d’estructures de dades de memòria interna.
• Saber dissenyar estructures de dades complexes.

El temari de l’assignatura no es va canviar en entrar al pla pilot. El que sí que es va canviar va ser la manera d’organitzar les classes. Abans d’entrar al pla pilot es feien 2 h de teoria a la setmana, amb una exposició que era una barreja de teoria, exemples i problemes (alguns per resoldre a casa i altres a classe). Quan es va començar a fer el pla pilot es van dedicar més hores a resoldre problemes (individualment abans de la classe i en grup a l’aula) i es van dedicar 4 hores a teoria durant la primera i la segona setmanes, deixant sense classes de teoria les dues darreres setmanes del quadrimestre. El segon any de pla pilot es va modificar la dinàmica dels problemes: no es donava l’enunciat del problema, sinó el tema sobre el qual versaria. A més, es va introduir un examen d’autoavaluació al final del quadrimestre.

També es van introduir alguns canvis en l’organització del laboratori. Abans d’entrar en funcionament el pla pilot, l’assignatura tenia quatre mànuls de laboratori que es desenvolupaven entre les sessions presencials i una part de la feina es feia a casa. Quan es va introduir el pla pilot, es va aprofitar la plataforma ACME de què disposa el Departament: un dels mànuls estava basat en la resolució de programes en ACME, dos mànuls eren mixtos, entre ACME i treball sobre la màquina, i el darrer mànul es va replantejar com una pràctica final de l’assignatura amb més contingut que no tenia prèviament. En vista de l’experiència del primer any, es va introduir un examen de laboratori en el segon mànul també usant ACME, es va simplificar el tercer i es va donar encara més contingut a la pràctica final.

3. Resultats
És en fer l’avaluació dels resultats quan realment es mesura el grau d’assoliment de les competències de l’assignatura. Prèviament al pla pilot es feia una avaluació clàssica en què l’examen final tenia un pes important (70 %), les pràctiques en tenien menys (25 %) i els problemes tenien un pes mínim (5 %). Quan es va introduir el pla pilot es va reduir el pes de l’examen final (60 %) i es va augmentar el pes dels problemes i les pràctiques (40 %), posant una nota mínima de cada part (4,5). El segon any de pla pilot es va fer un pas més (50 % l’examen i 50 % els problemes i les pràctiques) per valorar més la feina feta durant el curs.

En les figures següents es poden veure els resultats obtinguts en els quatre darrers cursos, dos sense pla pilot i dos amb pla pilot. La figura 1 correspon a l’evolució de notes dels alumnes presentats, mentre que la figura 2 mostra les notes de tots els alumnes de
l’assignatura. En amb’dós gràfics s’han agrupat les notes per categories: no presentat (només a la figura 2), suspens (≤4), aprovat (5-6) i nota superior (≥7). Les dades presentades són percentuals perquè així es poden tenir valors comparables entre els diferents cursos.

![Notes IED](image1)

Figura 1. Resultats dels alumnes presentats.

![Notes IED](image2)

Figura 2. Resultats totals de l’assignatura.

4. **Discussió**

Vistos els resultats que mostren les dues gràfiques anteriors, no sembla que l’experiència hagi estat gaire positiva. Cal introduir una dada addicional: la nota de tall dels alumnes d’informàtica de les dues carreres s’ha anat reduint en els darrers anys, cosa que explicaria, en part, els mals resultats dels dos darrers cursos. De totes maneres, es pot veure que el nombre de suspesos augmenta i que baixa el nombre d’aprovats. Més encara: de fet s’accentuen els extrems de la distribució, ja que també ha augmentat el nombre de persones que tenen notes superiors a l’aprovat just. Aquest aspecte s’ha de destacar: els canvis en les classes han ajudat a fer que més gent assoleixi millor les competències de l’assignatura.

Hi ha un altre aspecte que també s’ha de tenir en compte: la quantitat de feina que els alumnes fan. Si bé no es tenien dades d’abans de la introducció del pla pilot, amb les enquestes fetes durant aquests dos cursos es pot veure que la mitjana d’hores que dediquen a la setmana a l’assignatura és signif icaativament inferior a la mitjana esperada: caldrien entre 8 i 10 hores a la setmana (per 5 ECTS), mentre que els valors que donen les enquestes està entre 5 i 6 hores per setmana.

Cal esmentar també com a punt negatiu l’increment de no presentats que s’ha produït en els darrers anys, especialment en la segona convocatòria: el fet que un 40 % dels alumnes decideixin no assistir a l’examen és una mala dada, es miri com es miri. L’origen d’aquest problema és la normativa de permanència de la UdG i, segurament, la baixa assistència que hi ha a les classes. Encara que hi ha diverses causes que provoquen aquest absentisme, se’n poden destacar dues: alguns alumnes treballen i altres no veuen gaire la necessitat d’assistir a classe quan tot el material de l’assignatura (apunts, transparències, exercicis i solucions) es pot trobar a la web. També cal dir que la nova forma com s’ha plantejat l’assignatura (moltes activitats fetes a classe) fa difícil superar-la si no es pot assistir regularment a classe.
Com a aspecte positiu, s’ha de destacar que ha augmentat l’assistència a les tutories: abans que entrés en funcionament el pla pilot hi havia molt pocs alumnes a les tutories, bàsicament concentrats en els pocs dies abans dels exàmens. En aquests dos anys de funcionament del pla pilot han vingut més alumnes a les tutories i durant la major part del quadrimestre, si bé encara hauria d’augmentar més en vista dels resultats.

5. Conclusions i idees de futur
Vistos els resultats i la discussió, es poden destacar alguns aspectes positius:

- Es disposa d’una fitxa amb les dades de l’assignatura que ajuda a organitzar més bé la docència.
- Fer més hores de teoria al començament del quadrimestre ajuda a coordinar millor la teoria amb les pràctiques.
- Ha augmentat el nombre de persones que han assolit millor les competències de l’assignatura.
- Hi ha més persones que assisteixen a les tutories.

I també cal esmentar els següents aspectes que cal millorar:

- El nombre de no presentats és molt elevat.
- La quantitat de persones que han suspès no ha disminuït.
- Els alumnes dediquen menys hores de les esperades a l’assignatura.
- El plantejament actual no ajuda els alumnes que treballen.
- Disposar de molt material a la web no és sinònim de més bons resultats

Vist aquest resum es proposen algunes idees de cara al futur:

- Ampliar el nombre de problemes que es puguin resoldre usant l’ACME per ajudar les persones que no poden assistir regularment a classe.
- Usar un sistema d’avaluació que permeti a les persones que no assisteixen a classe poder superar l’assignatura.
- Usar eines d’avaluació durant el quadrimestre que permetin millorar la retroalimentació (feedback) que reben els alumnes, de manera que siguin conscients abans de la comprensió que tenen de l’assignatura.
- Augmentar el nombre de problemes que es resolen a classe, ja que motiven els alumnes assistir a les tutories per resoldre els seus dubtes.
- Disminuir el nombre d’hores dedicades a teoria per poder-hi encabir les hores de problemes.
- Revisar la normativa de permanència perquè no afavoreixi els no presentats (això és una tasca de la UdG i no una tasca pròpia de l’assignatura).

Aplicar aquestes idees de cara al futur no és simple, ja que algunes semblen contradictòries (fer més problemes a classe i tenir en compte la gent que treballa). Tanmateix, es pot aconseguir adoptant sistemes múltiples d’avaluació i que cada alumne usi el que s’adapti més bé a la seva situació. Més difícil és aconseguir que la Universitat canviï una normativa de permanència que no afavoreix l’aprenentatge.
Resum. En aquesta comunicació es descriu el disseny de l’assignatura Aliments biotecnològics, del màster oficial en Biotecnologia Alimentària de la UdG, com un exemple de l’experiència en l’adaptació de la docència a l’espai europeu d’educació superior, en l’àrea de Tecnologia dels Aliments de l’àmbit agroalimentari de l’EPS. Es mostren les diferents activitats d’ensenyament i aprenentatge, tant presencials com no presencials, que es desenvolupen, així com els criteris que s’utilitzen per avaluar i qualificar les activitats d’aprenentatge.

1. Introducció
El màster en Biotecnologia Alimentària pertany al programa oficial de postgrau en Tecnologia de la UdG i es va començar a impartir en el curs acadèmic 2006-2007. Es tracta d’un màster adaptat a l’EEES de tipus mixt, de recerca i/o professionalitzador, promogut per l’Institut de Tecnologia Agroalimentària (INTEA). Consta d’un total de 90 crèdits ECTS i té una durada de dos cursos acadèmics (tres semestres). És de modalitat presencial i la docència tant pràctica com teòrica s’imparteix en horari de tarda, en la franja de 16 a 20 h. L’estructura curricular del màster és la següent:

a) Mòdul instrumental (9 ECTS): assignatures transversals d’universitat i del programa oficial de postgrau.

b) Mòdul de formació bàsica (39 ECTS): Tècniques avançades en biotecnologia; Bioinformàtica; Biotecnologia animal; Biotecnologia vegetal; Biotecnologia microbiana; Aliments biotecnològics, i Biotecnologia enzimàtica.

c) Mòdul de formació complementària (12 ECTS): Legislació i aspectes ètics de la biotecnologia; Anàlisi i control de qualitat de productes biotecnològics; Seguretat alimentària i traçabilitat, i Protecció i explotació de resultats.

d) Mòdul de formació pràctica (30 ECTS): seminaris de recerca, pràctiques tutoritzades en empreses i centres de recerca i treball d’iniciació a la recerca.

L’assignatura Aliments biotecnològics és una matèria obligatòria, que pertany al mòdul de formació bàsica del màster i consta de 6 crèdits ECTS. Aquesta assignatura està programada per desenvolupar-la de manera intensiva durant cinc setmanes consecutives en el segon semestre del primer curs del Màster. Per estimar la dedicació horària de l’estudiant a l’assignatura, s’ha considerat que cada crèdit ECTS es correspon a unes 25 hores, tant presencials com no presencials. Per tant, les hores de dedicació són aproximadament 150 en total.

2. Competències i continguts de l’assignatura
Les competències assignades a Aliments biotecnològics en el curs acadèmic 2006-2007 són les que es detallen a continuació:

• Competències genèriques o transversals:
 1. Capacitat per transmetre coneixements i comunicar-se oralment i per escrit.
2. Capacitat d’autoavaluació i esperit de millora personal continuada.

• **Competències específiques:**
 1. Comprendre els fonaments bioquímics, microbiològics i funcionals dels aliments i els seus components.
 2. Interpretar els processos tecnològics de transformació i/o conservació més rellevants en la indústria alimentària.
 3. Analitzar les aplicacions de la biotecnologia en diferents sectors de la indústria alimentària.
 4. Aplicar les tecnologies de transformació que s’utilitzen en l’obtenció d’aliments biotecnològics.
 5. Identificar els indicadors de qualitat dels aliments biotecnològics.
 6. Seleccionar i aplicar les tècniques apropiades per avaluar els paràmetres d’un procés biotecnològic específic.

Aquestes competències s’adquireixen fent una sèrie d’activitats associades als continguts de l’assignatura, que estan estructurats en diversos blocs temàtics:

- bloc 0: seminaris d’introducció;
- blocs 1, 2, 3 i 4: aplicacions de la biotecnologia en diferents sectors de la indústria alimentària (indústries de la carn i del peix, indústries làcties i d’ovoproductes, indústries de cereals, fruites i hortalisses, i indústries enològiques: vi i cervesa).

3. Descripció de les activitats d’ensenyament i aprenentatge

Els diferents continguts de l’assignatura es desenvolupen mitjançant diverses activitats d’ensenyament i aprenentatge (E/A), tant presencials (AP) com no presencials (SP), que es mostren a la taula 1.

3.1. Activitats d’ensenyament i aprenentatge presencials (AP)

 a) Classes expositives i participatives.
 b) Pràctiques de laboratori.
 c) Sessions interactives associades a les classes expositives: identificació, caracterització i classificació d’aliments obtinguts per processos biotecnològics.
 d) Seminaris de discussió associats als treballs de recerca d’informació complementària: realització de treballs tutoritzats, presentació oral i sessió de preguntes i debat.
 e) Presentació dels resultats de pràctiques de laboratori en forma de pòster: sessions d’exposició oral i discursió dels resultats.

3.2. Activitats d’ensenyament i aprenentatge no presencials (SP)

A continuació es descriuen algunes de les tasques associades a les activitats de l’assignatura que els alumnes han de portar a terme durant el desenvolupament de l’assignatura.

 a) Treball en equip: elaboració i presentació d’un informe de cadascuna de les pràctiques de laboratori. Ha d’incloure: (1) les incidències que hi ha hagut durant el desenvolupament de la pràctica, (2) els càlculs relacionats amb els processos tecnològics i (3), si s’escau, les respostes a qüestions plantejades pel professor responsable de la pràctica.
b) Treball en equip: presentació d’una de les pràctiques de laboratori en forma de pòster. Ha de contenir els apartats següents: introducció, material i mètodes, resultats i discussió, conclusions i referències (un pòster cada grup).
c) Treball individual: recerca d’informació complementària sobre temes relacionats amb els continguts de l’assignatura.
d) Treball individual: comentaris d’articles, resolució de problemes, estudi, etc.

Taula 1. Activitats d’ensenyament i aprenentatge desenvolupades (presencials i no presencials) i hores de dedicació de l’estudiant

<table>
<thead>
<tr>
<th>Activitats</th>
<th>AP (h)</th>
<th>SP (h)</th>
<th>Total (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposició dels diferents temes presentats en l’apartat de continguts</td>
<td>28</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Activitats a l’aula participatives</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Pràctiques de laboratori</td>
<td>18</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Treball en equip (elaboració d’informes i presentació dels resultats de les pràctiques)</td>
<td>2</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Cerca d’informació complementària</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Treball individual (comentaris d’articles, resolució de problemes, estudi, etc.)</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Prova escrita d’avaluació</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>90</td>
<td>152</td>
</tr>
</tbody>
</table>

4. Avaluació i qualificació

Els criteris d’avaluació i qualificació es basen en el grau d’assoliment de les competències de l’assignatura. Els criteris que s’han utilitzat per avaluar les diferents activitats desenvolupades es mostren a la taula 2.

Taula 2. Activitats i criteris d’avaluació

<table>
<thead>
<tr>
<th>Descripció de l’activitat</th>
<th>Criteris d’avaluació</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposició dels diferents temes presentats en l’apartat de continguts</td>
<td>Assistència. Superació d’una prova escrita amb apunts</td>
</tr>
<tr>
<td>Treballs individuals o en grup a l’aula</td>
<td>Assistència. Participació activa en les sessions de treball (debat i discussió)</td>
</tr>
<tr>
<td>Pràctiques de laboratori</td>
<td>Assistència. Actitud al laboratori. Habilitats demostrades. Informe i presentació de resultats</td>
</tr>
<tr>
<td>Elaboració d’informes i presentació dels resultats de les pràctiques</td>
<td>Valoració dels informes i del pòster</td>
</tr>
<tr>
<td>Recerca d’informació complementària</td>
<td>Presentació d’un resum del treball</td>
</tr>
<tr>
<td>Prova escrita d’avaluaci</td>
<td>Valoració de la prova escrita</td>
</tr>
</tbody>
</table>
La qualificació final de l’assignatura es fa segons els criteris de qualificació següents:

a) La qualificació de la prova escrita representa un 40 % de la nota final. En la prova escrita es poden portar els apunts.

b) La qualificació del treball en equip (presentació de resultats de les pràctiques en forma d’informes i pòsters) representa el 20 % de la nota.

c) La qualificació de les tasques individuals corresponents als informes i la presentació oral dels resultats de la recerca d’informació complementària en els seminaris de discussió constitueix un 20 % de la nota.

d) L’avaluació continuada (assistència a les activitats i participació activa, actitud, interès i habilitats demostrades, capacitat d’autoavaluació i esperit millora personal) constitueix un 20 % de la nota final.

5. Conclusions i reflexions

- Cal revisar i replantejar el nombre d’hores que l’estudiant dedica a l’assignatura, mitjançant una disminució de les hores presencials (classes expositives) i l’adequació de les tasques i les activitats d’avaluació al temps real d’hores no presencials.

- Cal millorar la coordinació entre les diferents assignatures del màster: coordinar els continguts i les activitats d’avaluació (treballs, seminaris, informes, etc.) i implementar el calendari de l’estudiant.

- Es proposa la realització d’enquestes de valoració de l’assignatura per part dels estudients que permetin un feedback sobre la organització i el desenvolupament de l’assignatura, així com l’avaluació de les activitats desenvolupades, hores dedicació reals, etc.
Resum. Es presenten les iniciatives dutes a terme per l’adaptació a l’EEES de l’assignatura Fonaments físics de la informàtica, quadrimestral, de primer curs de les titulacions d’ETIG i ETIS. Els objectius i iniciatives s’han centrat en la millora de la programació de les activitats a partir del temps de dedicació a l’assignatura declarat pels estudiants, la motivació d’aquests cap a l’assignatura, el foment de l’assistència i la participació a classe i l’avaluació de l’estudiant de manera més continuada.

1. Introducció

2. Descripció de l’activitat
La Universitat de Girona ha desenvolupat i implantat una intranet acadèmica, La Meva UdG, que és, entre altres, un vehicle de comunicació dins de la comunitat universitària i una eina amb la qual es dissenyen i planifiquen les assignatures tenint en compte les competències, els continguts i les activitats. L’avaluació és un altre aspecte previst en el disseny de les assignatures i que també té un espai dedicat a la intranet. En l’adaptació de l’assignatura de Fonaments físics s’ha fet ús sistemàticament de les diverses possibilitats que ofereix La Meva UdG. Els objectius que s’han perseguit i les iniciatives preses han estat:

1. Millorar la programació de les activitats considerant, entre altres aspectes, el temps (esforç) de dedicació a l’assignatura declarat pels estudiants. Al llarg del curs els alumnes han anat responent a unes enquestes setmanals sobre la seva dedicació a l’assignatura. Les enquestes es responen via web utilitzant el sistema d’avaluació de la intranet. La millora de la programació ha inclòs una estimació prèvia de la càrrega setmanal dels alumnes a partir de les activitats previstes, incloent-hi les avaluacions.

2. Augmentar la motivació dels estudiants envers l’assignatura. S’ha reformat parcialment el contingut d’alguns temes per fer-los més interessants a l’alumne d’informàtica, incloent també en les activitats l’ús d’eines informàtiques per a la resolució de problemes i pràctiques de laboratori, i s’ha millorat el procediment de lliurament i control de treballs pràctics.
3. Fomentar l’assistència a classe i la participació en les diverses activitats de l’assignatura, en particular les no avaluables.

4. Millorar el coneixement que l’alumne té en cada moment del seu progrés en l’assignatura. A aquest efecte, hem optat per aplicar un mètode d’avaluació continuada que permeti a l’alumne anar superant etapes al llarg del període docent.

5. Com a darrer objectiu, però en absolut menys important, millorar la competència de l’alumne en la matèria. Per això hem augmentant l’exigència per superar l’assignatura però sense apujar (ni tampoc abaixar) el nivell.

No es preveia en principi com a objectiu prioritari de les accions preses augmentar el rendiment (raó aprovats/matriculats) de l’assignatura, però evidentment aquesta variable ha estat analitzada.

3. Resultats
Presentem aquí breument els resultats principals obtinguts en relació amb els objectius especificats abans.

Primer, hem comprovat, a partir d’enquestes realitzades durant dos cursos consecutius, que el temps de dedicació personal manifestat pels estudiants ha estat dues hores menor que el previst pels professors. Concretament, la mitjana setmanal de treball no presencial previst per als cursos 2005-2006 i 2006-2007 ha estat de 5,2 i 5,3 hores, respectivament, mentre que els estudiants van manifestar 3,2 i 3,3 hores, respectivament.

Quant a la motivació dels estudiants cap a l’assignatura, s’ha anat percebent una millor disposició dels estudiants a mesura que s’han anat adaptant els continguts. La motivació és més baixa cap als continguts més fonamentals, com ara el tractament dels camps elèctric i magnètic, i més alta en els temes més aplicats, com per exemple l’anàlisi de circuits, el tractament del comportament dels semiconductors o l’estudi dels transitoris en línies de transmissió.

La participació dels alumnes en les proves d’avaluació ha anat evolucionant al llarg de cada curs. S’ha estabilitzat entorn del 50 % dels alumnes matriculats, i, d’aquests, l’èxit ha estat entorn del 85 %, com s’observa a les figures 1 i 2. Per altra banda, com es despréu de les diverses enquestes realitzades al llarg del període, els alumnes es consideren en general ben informats del seu progrés en l’assignatura.

La participació dels estudiants en les activitats no avaluables ha continuat sent una batalla encara per guanyar. L’assistència a classe, com a la resta de les assignatures dels estudis informàtics, és particularment baixa, al voltant del 50 % durant els dos terços finals del període lectiu. Aquest percentatge coincideix amb el d’estudiants que participen en l’avaluació continuada.
4. Discussió
Abans de l’inici del Pla pilot, el sistema d’avaluació de l’assignatura permetia compensar el baix domini d’alguns temes amb una major competència en altres. La situació no era satisfactòria, ja que hi havia el perill que l’assignatura fos superada per alumnes que arrosseguessin encara dèficits importants. Durant el període de Pla pilot s’ha implantat un sistema d’avaluació que garanteixi alhora una competència mínima en els diversos blocs en què ha estat repartida l’assignatura (cal superar-los tots), i un domini global d’aquesta, ja que superar el darrer bloc requereix un domini dels anteriors. El sistema d’avaluació permet anar superant els diversos blocs comptant amb diverses oportunitats.

Així, malgrat el canvi cap a un sistema d’avaluació més exigent, el rendiment de l’assignatura no ha baixat. La figura 3 mostra l’evolució del rendiment i de la taxa d’èxit en els darrers cursos, des de l’inici del Pla pilot. El rendiment s’ha mantingut al voltant del 50% per a ETIG i ETIS. La taxa d’èxit sí que ha evolucionat i ha pujat fins al 85%. L’avaluació continuada, que requereix una dedicació bastant mantinguda a l’assignatura, provoca abandonaments iniciaus en un cert percentatge d’alumnes que assumeixen de seguida que no poden seguir l’assignatura.
5. Conclusions
La intenció principal del conjunt d’experiències de millora de l’ensenyament-aprenentatge ha estat incidir sobre la motivació, la regularitat en el treball de l’assignatura i en el necessari canvi d’actitud, habitualment negativa, de l’alumne d’Informàtica envers l’assignatura de Fonaments físics.

S’ha exigit més per superar l’assignatura, sense apujar el nivell, de manera que l’alumne que ha aprovat hauria de “saber més i millor”, o bé, “ser més competent”. Com a conclusió principal des del punt de vista de l’avaluació, pensem que hi ha marge per augmentar l’exigència en la competència de l’alumne en la matèria, però cal oferir més oportunitats de demostrar-la.

La participació en l’avaluació continuada s’ha anat mantenint, però una part important dels alumnes abandona aviat i deixa de presentar-se sistemàticament. Seria important actuar sobre aquest grup d’estudiants per mirar d’evitar els abandonaments prematurs.

Finalment, cal dir que encara es pot fer molt per millorar la motivació dels alumnes a aprendre els fonaments físics i fer que l’aprenentatge d’aquesta matèria quedi desligat de les pures exigències de l’expedient: cal continuar adaptant els continguts als interessos de l’enginyer tècnic en informàtica, millorar i actualitzar els exemples, els problemes i les pràctiques de laboratori, i fomentar la discussió i l’aprenentatge profund dels conceptes.

6. Referències
PRIMERES ADAPTACIONS A L’EEES A L’ASSIGNATURA DE XARXES

Pere Vilà Talleda i Lluís Fàbrega i Soler
Àrea d'Arquitectura i Tecnologia de Computadors

Resum. En aquest article es comenten les experiències i resultats de l’assignatura de Xarxes durant els dos primers cursos (2005-2006 i 2006-2007) de Pla pilot EEES dels estudis d’informàtica de l’Escola Politècnica Superior. Xarxes és una assignatura de segon curs troncal a ETIS i obligatòria a ETIG que es fa conjuntament. L’experiència presentada inclou el disseny de l’assignatura en crèdits ECTS, competències i activitats, així com una anàlisi dels resultats basada en les enquestes del Pla pilot i en els resultats acadèmics.

1. Introducció
L’assignatura de Xarxes és quadrimestral (segon quadrimestre) de segon curs de les enginyeries tècniques informàtiques, en Gestió i en Sistemes (ETIG i ETIS). Es tracta d’una assignatura força teòrica on es concentren molts conceptes nous i bàsics per entendre com funcionen les xarxes en general (i Internet en particular). Es tracta de la primera assignatura de xarxes de la carrera i en molts casos l’única, ja que només hi ha dues assignatures optatives posteriors més (Administració i utilització de xarxes i Sistemes públics de transport de dades). En el pla docent vigent té assignats 6 crèdits repartits en 3 de teoria (2 h/setmana), 1,5 de problemes a classe (1 h/setmana) i 1,5 de pràctiques en aula informàtica (1 h/setmana). En el pla pilot té assignats 5 crèdits ECTS i això vol dir que els estudients han de treballar en total entre 125 i 150 hores per superar l’assignatura.

El temari està organitzat en 3 grans blocs de teoria (Protocols i arquitectura de xarxes, Transmissió del senyal, Xarxes de comunicacions). Totes les classes de teoria es fan amb transparències i la majoria de classes de problemes també. Una possible millora per al futur és que aquesta assignatura es presta molt al fet que les transparències siguin amb animacions. Això, però, requeriria una quantitat d’hores de feina important, ja que l’assignatura ara mateix utilitza unes 350 transparències força complexes. Les classes de pràctiques estan organitzades en 3 entregues i consisteixen bàsicament en el desenvolupament de programes informàtics (poden escollir de fer-ho en C o en Java) i l’ús d’una aplicació d’anàlisi de protocols.

Abans d’iniciar el pla pilot els principals problemas detectats eren la desmotivació dels estudiants (assignatura teòrica, densa, algunes parts no agraden gaire, etc.), cosa que es traduïa en un alt nivell d’absentisme a classe i abandonament. Sobretot en el cas de les pràctiques, els estudiants no treballen setmana a setmana i no aprofiten prou les sessions.

Els objectius principals són, doncs, millorar l’assistència a classe i la dinàmica de les classes, oferir una certa avaluació continuada perquè els estudiants puguin anar veient com van durant el quadrimestre i intentar que els estudiants treballin setmana a setmana.
2. Descripció de l'activitat
Per fer una adaptació inicial a l'EEES es proposen les actuacions següents:

1) Dissenyar l'assignatura amb el nou format adaptat a l'EEES de La Meva UdG, definint, per tant, els continguts, les competències (específiques i transversals) i les activitats hora a hora de tota l'assignatura. S'ha consultat el Llibre blanc de l'ANECA, on es defineixen les competències dels futurs estudis de grau en informàtica [2].

2) Realitzar 3 exàmens parciaus (test + problemes) aprofitant que l'assignatura està organitzada en tres grans blocs teòrics. Si s'aproven els parciaus ja es pot aprovar l'assignatura, i si no, es poden recuperar per separat a la primera i segona convocatòries (de fet, això és equivalent a partir l'assignatura en 3 i donar 3 oportunitats per aprovar cadascuna de les parts, cosa que millora considerablement les opcions d'aprovar). Això també proporciona feedback als estudiants. A més, s'ha fixat un incentiu important (+1 punt a la nota final) en el cas dels estudiants que ho aprovin tot per parciaus.

3) Calcular la nota final d'una manera diferent, que consisteix en la mitjana ponderada de les 3 notes parciaus de teoria i les 3 notes de pràctiques. La ponderació correspon a les hores dedicades a cada part i s'exigeix un mínim de 4 de cada part per aprovar l'assignatura.

4) Organitzar totes les classes de teoria en sessions de 2 h que tinguin principi i final (que no continuin d'una setmana a la següent), i les sessions de problemes escollint els exemples més significatius que ajudin a entendre la teoria.

5) Exigir l'assistència a classe (control per signatures) i l'entrega d'uns exercicis de deures si es vol tenir l'oport un d'aprovar per parciaus.

6) Planificar cadascuna de les sessions de pràctiques perquè els estudiants sapiguin fins on haurien d'haver arribat i què han de fer per a la propera sessió.

7) Ús de l'entorn ACME [1][3], que permet als estudiants veure com estan respecte a la teoria. Actualment no s'utilitza per a l'avaluació, però els estudiants hi poden practicar amb els exercicis de test dels exàmens d'anys anteriors.

3. Resultats
Pel que fa a l'assistència a classe, s'ha millorat notablement, però els estudiants estan descontents que se'ls obligui a assistir a classe. La dinàmica de les classes de teoria i problemes ha canviat (ja que totes tenen un començament i final clars), però, a causa del fet que l'assignatura és molt densa, es fa difícil fer-la més amena. A les classes de pràctiques es dedica una estona a cada sessió a comprovar si els estudiants van progressant segons la planificació establerta. Normalment no segueixen la planificació i després tenen problemes greus una setmana abans de l'entrega de la pràctica.

Quant als resultats acadèmics, es pot veure a la figura 1 que s'ha reduït el nombre de no presentats (ja que, si entreguen qualsevol cosa d'avaluació, ja no es considera un no presentat). Es comprova el fet, per tant, que hi ha un cert nombre de matriculats que no apareixen ni entreguen res durant tot el curs (d'un 15% a un 17%). També han augmentat els notables i excel·lents a costa de reduir els aprovars. Realment no ha augmentat d'una manera significativa el total d'estudiants que superen l'assignatura (i es mantenen al voltant del 15-20% els matriculats que són repetidors). És important comentar que no són gaires els estudiants que aproven exclusivament per parciaus (curs 2005-2006, 26 de 146 —un 18%—, i el curs 2006-2007, 14 de 83 —un 17%—).
S’esperava que fossin més i en canvi detectem que aprofiten els parcials per planificar-se la feina i repartir-se-la com els interessen.

De les enquestes del pla pilot (els resultats que es mostren a les figures 2 i 3 són del curs 2005-2006) es destaca que molts dels estudiants treballen (al voltant d’un terç), alguns a mitja jornada i altres el cap de setmana. Això sens dubte afecta seriament els seus estudis, ja que se solen matricular de força assignatures o fins i tot del curs complet. És realment difícil poder combinar bé el treball amb els estudis presencials. Altres coses que cal destacar de les respostes comunes (figura 2) és que se senten ben informats del seu progrés i que no troben l’assignatura especialment difícil.

A les enquestes del pla pilot hi ha una part que permet als estudiants escriure lliurement 2 o 3 aspectes positius i 2 o 3 aspectes negatius. És difícil recopilar això, però a la figura 3 es mostren algunes de les respostes que s’han donat més.
Experiències docents d’adaptació a l’EEES

4. Discussió
És molt difícil discernir si les millores que s’han produït són degudes als canvis introdúits, o, dit d’una altra manera, què hauria passat aquests darrers cursos si s’hagués continuat sense cap canvi. També cal pensar si és suficient el suport institucional (l’eina de La Meva UdG per al disseny de l’assignatura, els diferents cursos de l’ICE, etc.) per realitzar aquest canvi tan significatiu, o si caldria més ajut i suport (des de suport tècnic per generar nous materials, un equip especialitzat en el tema que aconsellés els professors sobre quins canvis cal fer i en fes un seguiment, rebaixos de càrrega durant els primers anys del canvi, etc.). Si no, es corre el risc que aquesta adaptació sigui superficial i un pur maquillatge.

5. Conclusions
La conclusió principal és que els professors de l’assignatura tenen una càrrega de feina molt més gran (més exàmens, planificació i seguiment de pràctiques, ACME, etc.) i que la millora dels resultats no és gaire gran. Els professors es plantegen si caldria anar més enllà (plantejar l’assignatura amb tècniques de treball cooperatiu, per exemple) o, amb l’experiència acumulada del pla pilot, replantejar l’assignatura tot reduint una mica la càrrega de treball (exàmens i pràctiques) dels estudiants (i dels professors).

6. Bibliografia
DIVERSIFICACIÓ METODOLÒGICA
Experiències docents d’adaptació a l’EEES

AVALUACIÓ DE LES COMPETÈNCIES: EXEMPLE PRÀCTIC DE L’ASSIGNATURA ENGINYERIA AGROAMBIENTAL

Gerard Arbat Pujolràs
Àrea d’Enginyeria Agroforestal

Resum. En aquest treball es presenta l’avaluació de les activitats que es van portar a terme per a l’aprenentatge de competències en l’assignatura Enginyeria Agroambiental, de tercer curs d’Enginyeria Tècnica Agrícola durant el curs 2006-2007. Es comenten els resultats que la nova metodologia va tenir a criteri del professor de l’assignatura, i finalment s’extreuen unes reflexions finals sobre el que representa l’adopció de la nova metodologia.

1. Introducció
En el marc de l’espai europeu d’educació superior, la planificació de les assignatures es basa en la definició de competències, que cal desenvolupar a partir de diverses activitats (Vicerectorat de Docència i Política Acadèmica de la Universitat de Girona, 2006). L’assoliment d’aquestes competències s’ha d’avaluar i d’aquesta manera permetre a l’estudiant reflexionar fins a quin grau ha adquirit una competència determinada, i sobretot, donar-li les claus per saber on ha de millorar (Vicerectorat de Docència i Política Acadèmica de la Universitat de Girona, 2007 [1] i [2]). Però quan aquestes línies generals s’apliquen a casos concrets, apareixen dubtes sobre com cal definir les activitats per poder desenvolupar les competències i sobre com es poden avaluar aquestes competències. En aquest treball es presenten les diferents activitats en relació amb les competències i com s’han avaluat en el cas concret de l’assignatura d’Enginyeria agroambiental, de la titulació d’Enginyeria Tècnica Agrícola, especialitat Explotacions Agropecuàries.

2. Descripció de les activitats
A la taula 1 s’enumeren les activitats que es van dur a terme durant el curs 2006-2007 per desenvolupar algunes de les competències de l’assignatura. En la descripció de les competències s’ha intentat que siguin com més concretes millor i que quedí clara l’acció que caldrà fer per assolir-les.

Taula 1. Relació entre competències i activitats

<table>
<thead>
<tr>
<th>Competències</th>
<th>Activitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Raonar la interrelació entre l’activitat agrícola i el medi ambient</td>
<td>1. Llegir un article proporcionat pel professor que analitzi la relació entre agricultura i medi ambient</td>
</tr>
<tr>
<td>2. Redactar el pla de gestió de dejeccions ramaderes en una granja</td>
<td>2. Plantejar el pla de gestió de dejeccions ramaderes d’una granja</td>
</tr>
<tr>
<td>3. Identificar els agents que intervenen en la gestió de les aigües regenerades i en els</td>
<td>3.a. Lectura d’un article relacionat amb el problema de l’aigua en l’agricultura</td>
</tr>
<tr>
<td></td>
<td>3.b. Visita tècnica a una EDAR, reg amb aigües</td>
</tr>
</tbody>
</table>
3. c. Debat al final de la visita

<table>
<thead>
<tr>
<th>Competències</th>
<th>Activitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.b. Presentar un tema a la resta de companys</td>
<td>4.b. Formulació de preguntes per part dels companys</td>
</tr>
<tr>
<td>4.c. Responder a les qüestions plantejades</td>
<td>4.c. Valoració de la presentació per part dels companys</td>
</tr>
</tbody>
</table>

Cada competència s’associa a una activitat o a més d’una activitat, que s’avaluaran al llarg del curs i configuraran la qualificació de l’assignatura. Seguidament es comenta com es van avaluar cadascuna de les activitats que figuren a la taula 1.

Activitat 1. Es va avaluar mitjançant una prova de comprensió curta en què es tractaven les principals qüestions plantejades en l’article. En el cas que no se superés la prova es deixava l’opció que l’estudiant presentés un resum en el qual comentés l’article.

Activitat 2. Va consistir en el fet que cada grup de dos estudiants apliqués els coneixements tècnics i administratius que es van impartir en les classes prèvies per plantejar un cas pràctic en què es resolgué la gestió de les dejeccions ramaderes d’una manera adequada a la legislació vigent i raonada des d’un punt de vista agronòmic. La prova es va avaluar mitjançant la presentació del pla de gestió, que posteriorment es va presentar davant de la resta de companys, i es van posar en comú els resultats obtinguts pels diferents grups per extreure’n conclusions generals. Es va fer una valoració tant de l’informe com de la presentació.

Activitat 3. Després d’haver llegit un article sobre el tema dels diferents agents implicats en el tractament i la reutilització de les aigües residuals, es va fer una visita tècnica a una planta de tractament, a una explotació agrícola i un camp de golf que són usuaris de les aigües regenerades. Després es va fer un debat amb els diferents agents implicats en el tractament i ús d’aquestes aigües. L’avaluació d’aquesta part es va fer a partir d’un qüestionari que es va passar l’endemà de la sortida.

Activitat 4. Consisteix en l’elaboració d’un cas pràctic relacionat amb el temari de l’assignatura per part de grups de dos estudiants. L’avaluació d’aquesta part es fa a partir de l’informe que ha de presentar cada grup i de la valoració de la presentació.

En aquest cas es passa un formulari com el que s’indica en la figura 1 perquè tots els estudiants facin una valoració i, a més, facin preguntes.
Valora els aspectes següents amb una puntuació d’entre 0 i 10:

1. Interès del treball en relació amb l’assignatura.
2. Interès personal en relació amb el tema tractat en el treball. (Comenta-ho breuement.)
3. Seguiment de la presentació. S’entén bé el que s’explica.
4. Necessitat de coneixements previs fora dels impartits en altres assignatures de la carrera. (0: No necessito cap coneixement previ fora del de les assignatures de la carrera.)
5. Ordre en la presentació
6. Elaboració de les diapositives
7. Claredat en l’expressió oral
8. Anota un mínim de tres qüestions que t’ha suggerit la presentació.

Per valorar les presentacions dels estudiants es va fer una matriu com la següent:

<table>
<thead>
<tr>
<th>Nom de l’estudiant</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

Figura 1. Qüestionari per valorar les presentacions dels companys

3. Resultats i discussió

Aquest apartat fa referència a la resposta que van tenir els estudiants en relació amb les diferents activitats i les propostes que el professor fa per millorar les diferents activitats.

Activitat 1. En general tots els estudiants van acabar demostrant una bona comprensió de l’article, i la seva lectura va ajudar a refermar els continguts teòrics de l’assignatura. Com a millora, de cara a cursos posteriors es proposa fer un debat després de la lectura per posar en comú les conclusions extretes per cadascú.

Una altra variació d’aquesta activitat podria consistir en la recerca per part dels estudiants d’articles de premsa que afectin l’agricultura i el medi ambient i que els intercanviessin entre diferents grups per comentar-los entre ells i extreure’n conclusions comunes.

Activitat 2. Aquesta activitat va funcionar bé en els grups en què es va fer un treball de camp per recollir informació realista sobre una explotació agrícola i ramadera. Es veu oportú que en cursos vinents el professor plantegi casos pràctics en què es descriguï de manera realista la tipologia de l’expolació, el nombre de caps de bestiar, la superfície de terra disponible i els cultius que s’hi semblen, i que els estudiants proposin el pla de gestió sobre el cas pràctic.

Activitat 3. El debat que es va generar entre els diferents actors que intervenen en el tractament de les aigües i la seva reutilització (cap de planta de la depuradora, tècnic del Consorci de la Costa Brava, agricultor, cuidador del camp de golf, etc.) va resultar enormement enriquidor, ja que es van mostrar els diferents punts de vista. Els criteris que van presentar les diferents parts van ajudar a fer que els estudiants entenguessin un problema complex i que en traguessin la conclusió final que, a més de les solucions tècniques, cal una coordinació de totes les parts per aconseguir una bona gestió d’aquest tipus d’aigües.
Activitat 4. El diferents grups van mostrar dinàmiques molt diferents: alguns tenien una gran iniciativa i altres no van acabar de centrar-se en el tema fins a les darreres setmanes del curs. Va ser important fixar dies de tutoria per veure com progressaven en la seva realització. En la presentació davant dels companys va ser positiu passar-los una graella en què s’indicaven els diferents aspectes formals en què calia que es fixessin i que calia que valoressin en la presentació.

4. Reflexions finals
De l’experiència desenvolupada al llarg del curs 2006-2007 en l’àmbit de l’assignatura d’Enginyeria agroambiental s’extreuen una sèrie de reflexions que caldrà anar validant en pròximes promocions d’estudiants.

1. L’aprenentatge a partir d’activitats referma la seguretat dels estudiants en els coneixements i conceptes presentats, però resulta més costós pel que fa al temps necessari en relació amb la transmissió de coneixements que es feia en les classes magistrals.

2. Resulta interessant integrar l’avaluació en el procés d’aprenentatge, ja que d’aquesta manera els estudiants no veuen el procés d’avaluació separatament de l’aprenentatge.

3. Els resultats dels estudiants que han seguit el procés d’avaluació continuada han millorat respecte a altres anys, però hi ha hagut un petit percentatge d’estudiants que no han pogut seguir totes les Activitats que s’havien de desenvolupar al llarg del curs.

5. Bibliografia

GIRONACEL®: APRENDRE A GESTIONAR LA QUALITAT. UNA EXPERIÈNCIA D’ENSENYAMENT SEMIPRESENCIAL

Martí Casadesús Fa i Gerusa Giménez Leal
Àrea d’Organització d’Empreses

Resum. Aquest projecte es basa en l’elaboració d’una eina que permeti l’aprenentatge dinàmic dels nous reptes empresarials, a partir d’experiències reals d’empreses, dins un marc teòric mínim. Així, l’objectiu d’aquest projecte d’innovació docent ha estat facilitar als estudiants la comprensió de què és un sistema de gestió a partir de la norma ISO 9001, i com s’implementa d’una manera pràctica.

1. **Introducció**
En el marc del procés d’adaptació de la UdG a l’EEES, creiem molt important fomentar l’ús de les noves tecnologies de la informació i la comunicació i el desenvolupament de materials docents en suport informàtic per atendre les necessitats formatives integrals dels estudiants d’una manera més adequada. Així doncs, hem cregut oportú elaborar una eina que permeti l’aprenentatge dinàmic dels nous reptes empresarials, a partir d’experiències reals d’empreses dins un marc teòric mínim.

L’objectiu d’aquest projecte d’innovació docent ha estat facilitar als estudiants la comprensió de què és un sistema de gestió i com s’implementa d’una manera pràctica.

En les classes de teoria es pot arribar a explicar què és un sistema de gestió i com funciona, però és molt difícil d’entendre’n l’ aplicació pràctica si no se’n veu un de real funcionant. Aquest coneixement és també molt difícil de transmetre a les classes pràctiques, ja que és necessari utilitzar una empresa fictícia per treballar-hi. Per evitar aquests problemes, aquest projecte ha plantejat la possibilitat de crear una empresa virtual, Gironacel®, que a través del web ens mostra com s’implementa un sistema de gestió. Concretament, el sistema de gestió que es va implementar és un dels més utilitzats en l’actualitat: el sistema de gestió i assegurament de la qualitat ISO 9001:2000.

Aquesta empresa virtual ens mostra com s’ha implementat el sistema de gestió, quins reptes i problemes hi ha hagut i quins beneficis han tingut. L’objectiu és que, mitjançant la interacció amb l’aplicació, l’alumne pugui aprendre’n el funcionament.

2. **Descripció de l’activitat**
L’empresa virtual, per motius docents, s’ha estructurat en sis estats diferents d’implantació de la normativa, que són els sis estats reals en què es pot trobar una empresa durant la implantació d’un sistema d’aquestes característiques (vegeu la figura 1).
Estructura: Fases del projecte

Cada fase anirà apareixent periòdicament i reflectirà l’evolució real de les activitats que es duen a terme en relació amb la implantació del sistema. En cadascuna d’aquestes fases, i seguint el punt de vista de diferents responsables de l’empresa virtual, s’ha adjuntat un conjunt d’informacions, que estan dividides en els apartats següents:

- Explicació de la situació. Depèn del punt de vista, és a dir, de quin departament de l’empresa fictícia estem parlant.
- Què he de fer? Per on comencem? Quin és l’objectiu que he de perseguir i per què? Una vegada aconseguit, l’usuari pot passar a l’apartat següent.
- Què puc usar? Referències, llibres, idees, etc.
- Com ho he fet? Com ha solucionat el problema l’empresa fictícia. En definitiva, és l’exemple de tot el que s’ha explicat abans.
- Preguntes més freqüents. D’una manera molt senzill i ràpida, per a cada pantalla es pot accedir a les tres o quatre preguntes més freqüents sobre el tema, així com a la seva resposta o la manera de resoldre el problema.
- Downloads. Procediments i informació.

3. Resultats
Aquesta eina ja s’ha utilitzat en les titulacions d’Enginyeria Industrial i enginyeries tècniques, en les assignatures d’Administració d’empreses, Gestió de la qualitat o Estratègies integrals de qualitat, i també en l’assignatura Organització i administració d’empreses, dins els estudis de Ciències Empresarials.
Figura 2. Percentatge de resultats obtinguts en l’avaluació de les qüestions relacionades amb els sistemes de gestió.

L’experiència viscuda en l’assignatura d’Organització i administració d’empreses, que és la que fa més temps que porta a terme aquest projecte docent, és del tot satisfactòria. La figura 2 mostra els resultats obtinguts en relació amb els continguts d’examen associats als sistemes de gestió al llarg dels diferents cursos. En aquesta evolució es pot veure clarament que el percentatge d’alumnes que no contesta a les qüestions que fan referència als sistemes de gestió ha anat disminuint al llarg dels anys, i que alhora ha augmentat el percentatge d’alumnes que respon correctament a les qüestions plantejades.

4. Discussió

El projecte Gironacel® se centra en una formació majoritàriament pràctica, a partir d’una empresa fictícia que serveix de model i mostra els seus encerts i errors. S’explica com Gironacel® ha resolt cada problema particular, però amb l’objectiu de mostrar una possible manera general de resoldre’ls. També es vol destacar que mitjançant aquesta eina no només es posa a disposició de l’alumne el coneixement necessari per implantar la normativa, sinó també altres eines que van més enllà del que es pot trobar en una sessió teòrica. Analitzant els avantatges i els inconvenients, volem destacar que, com a avantatges principals, creiem que Gironacel® té un caràcter dinàmic i més atractiu per a l’estudiant, la plataforma permet actualitzar la informació al moment i es pot arribar a un nombre il·limitat d’usuaris. Com a principal inconveni destaquem que potser, en alguns casos, la interacció amb l’estudiant pot ser més difícil que en una sessió de formació de caràcter clàssic.

5. Conclusions

Mitjançant aquesta eina no només es pretén posar a disposició de l’estudiant la informació necessària per implantar la normativa ISO 9001, sinó també capacitar l’alumne en l’aprenentatge autònom, així com en la identificació i resolució dels diferents tipus de problemes que poden sorgir durant la implantació d’un sistema de gestió. Així mateix, aquesta eina es mostra com una activitat facilitadora de l’aprenentatge, que fa que els alumnes assoleixin d’una manera més clara els continguts associats a la competència en qüestió.
6. Bibliografia

Experiències docents d’adaptació a l’EEES

ESTUDI DE BUTLLETINS D’ANÀLISI QUÍMICA REALS

Florencio de la Torre Yugueros
Àrea d’Edafologia i Química Agrícola

Resum. En aquest treball es descriu una activitat de tipus cooperatiu que es va implementar el curs 2006-2007 en l’assignatura de Fonaments químics de primer d’Enginyeria Tècnica Agrícola. L’activitat consisteix a interpretar la informació que donen butlletins reals elaborats per laboratoris d’anàlisi de productes agrícoles i que l’alumne el·abori un butlletí propi. Tota aquesta activitat es desenvolupa mitjançant una plataforma en línia, que permet la comunicació entre els alumnes i amb el professor, i la publicació de documents que poden ser consultats per tots els participants en l’activitat.

1. Introducció
Dins la filosofia del nou espai europeu hi ha la potenciació d’activitats docents destinades a fer que l’alumne treballi en grup. Això té importància formativa, ja que en la majoria de treballs futurs l’alumne haurà de posar-se d’acord amb altres companys de feina per aconseguir uns objectius determinats, i no sempre amb persones que ell esculli. D’altra banda, cal fer treballs que estiguin basats en documents i situacions reals. Això motiva l’alumne i fa que la seva formació sigui més adaptada a les situacions amb què es trobarà.

Una dificultat per fer un treball cooperatiu és trobar coincidències horàries per fer la feina que ha de ser compartida, principalment a causa dels alumnes que treballen o que tenen diferents assignatures i la consegüent incompatibilitat d’hòraris de diferents components del grup. Una eina que ajuda són les plataformes de compartició de documents, com per exemple Moodle o BSCW. Aquests sistemes en línia permeten crear fòrums on es poden desar missatges i respondre’ls. Permeten un sistema de carpetes jerarquitzat on es poden penjar documents que poden ser consultats pels altres alumnes o pel professor, de manera que es posen revisar abans de fer la versió definitiva.

2. Descripció de l’activitat
Objectius acadèmics: conèixer la informació que es dóna en un butlletí d’anàlisi. L’alumne haurà de ser capaç d’identificar els paràmetres més usuals d’anàlisi d’un producte agrícola i coneixerà diferents maneres d’expressar el resultat.

Objectius transversals (socials): practicar l’argumentació per justificar la proposta de l’informe que presenta el grup. Practicar la crítica de les propostes d’altres grups. Practicar la cerca d’un acord amb els altres companys per arribar a una proposta final.

Grups: tres alumnes per subgrup i sis subgrups per grup (o curs) de carrera (agrícoles i alimentàries), de manera que cada subgrup de carrera pot treballar tres productes agrícoles i finalment haurà d’arribar a una proposta de grup. Hi haurà una interacció també entre subgrups de diferents grups.
Materials
Butlletins reals de laboratoris oficials, protocols oficials d’anàlisi en bibliografia de la biblioteca, qüestionaris individuals per a cada alumne que ha treballat els materials anteriors i per a cada subgrup. Aquests qüestionaris ajuden a dirigir l’anàlisi de la informació i a obtenir els resultats desitjats sense que l'alumne es disperi o es perdi en aspectes irrellevants. Finalment, s’elabora una proposta provisional de butlletí d’anàlisi de cada subgrup (un full) en el format final i s’escull (justificadament), entre tots els alumnes de cada curs, el millor butlletí.

La plataforma Synergeia
El mitjà de comunicació i d’emmagatzematge de la informació per a tota l’activitat és una plataforma a través d’Internet que permet que els alumnes puguin treballar per grups, editar, valorar i revisar documents, i que el professor en faci el seguiment. El nom d’aquesta plataforma és Synergeia. Està basada en l’entorn BSCW i és de lliure utilització en línia.
En el gràfic següent es mostra un diagrama del funcionament d’aquesta plataforma. Cada usuari té una carpeta on pot tenir arxius o enllaços als quals els altres no poden accedir. Hi ha una carpeta d’assignatura on hi ha els arxius als quals tothom pot accedir i hi ha subcarpetes de grup a les quals només poden accedir els alumnes del grup i el professor. Aquí es poden fer les revisions del professor i les correccions del grup. Si el grup passa un document a la carpeta de l’assignatura, serà visible per tots els altres alumnes.

Desenvolupament de l’activitat
L’activitat s’ha desenvolupat en tres parts molt diferenciades:

Primera part. Interpretació de la informació que apareix en el butlletí d’anàlisi. Hi ha una primera etapa de treball individual i una segona de posada en comú i treball en grup. Totes dues etapes donen com a resultat un qüestionari que s’ha de emplenar. Aquest qüestionari és específic per a cada butlletí i aprofundeix en el seu estudi.
Segona part. Estudi del protocol d’anàlisi d’un paràmetre tret del butlletí. És un treball individual en el qual l’alumne ha de buscar en la bibliografia un protocol analític i fer-ne un esquema per entendre els processos de què consta.

Tercera part. Disseny d’un butlletí d’anàlisi. S’assigna a cada subgrup un material agrícola i ha d’elaborar un butlletí. A continuació es fa una votació entre tots els subgrups per escollir el millor. Aquesta votació és individual i raonada. El sistema Synergeia disposa d’un procediment per a aquestes votacions.

Resum de les etapes de l’activitat:

<table>
<thead>
<tr>
<th></th>
<th>Objectius</th>
<th>Agrupament</th>
<th>Resultat</th>
<th>Temps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a part</td>
<td>Interpretar informació</td>
<td>Individual</td>
<td>Qüestionari 1</td>
<td>3 hores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subgrup</td>
<td>Qüestionari 2</td>
<td>1 hora</td>
</tr>
<tr>
<td>2a part</td>
<td>Protocol d’anàlisi</td>
<td>Individual</td>
<td>Esquema analític</td>
<td>8 hores</td>
</tr>
<tr>
<td>3a part</td>
<td>Disseny del butlletí</td>
<td>Subgrup</td>
<td>Proposta butlletí</td>
<td>3 hores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grup o curs</td>
<td>Millor butlletí</td>
<td>1 hora</td>
</tr>
</tbody>
</table>

3. Resultats i discussió
El resultat ha estat positiu, ja que la majoria dels alumnes han assolit les tres parts del treball i han emplenat els documents requerits. L’objectiu de conèixer i saber interpretar les dades reals s’ha assolit, ja que en el disseny d’un nou butlletí es veu que els alumnes han incorporat dades importants que no coneixien abans. Aquesta part els ha motivat especialment, i han mostrat una gran creativitat.

L’eficàcia de l’activitat augmenta quan els objectius són molt concrets. Per exemple, en el qüestionari 1; no obstant això, en el qüestionari 2 els objectius no eren tan clars i s’han limitat a fer una addició del que tenien en el qüestionari 1. En cada part de l’activitat (i sobretot en els documents que es demanen) s’ha d’especificar molt detalladament el que s’ha de fer.

S’ha observat una gran dificultat per valorar el temps que tenen per fer una activitat i adequar el grau de profunditat o detall al temps de què es disposa; això, sobre tot en els treballs en grup. Crec que aquest és un aspecte important que s’ha de treballar, ja que el temps és un condicionant molt important en l’activitat professional que desenvoluparan en el futur.

En general, els alumnes han mostrat una gran dificultat per fer servir la nova plataforma, malgrat que objectivament la seva utilització és simple i la interfície que té és força clara. Per exemple, molts estudiants preguntaven com es feia per pujar o baixar documents. Això ens porta a valorar com a positiu el fet d’incorporar una nova plataforma informàtica, no tant pel seu coneixement intrínsec, sinó com a pràctica de diferents eines informàtiques de treball. Creiem que és important l’exercici d’adaptació a noves eines, en
Experiències docents d'adaptació a l'EEES

un entorn en què els programes informàtics tenen una durada molt curta i continuament n'apareixen de nous.

En resum, l'experiència ha estat positiva ja que s'han treballat els tres objectius: estudi de casos reals, treball en grup i utilització d'una nova plataforma en línia. Com a factors que s'han de millorar, hi ha el disseny del treball en grup perquè sigui més interdependent, i no simplement una addició de treballs personals. S'ha de concretar més la informació que es demana en cada etapa de l'estudi. I també s'ha d'aprofundir en el procés d'avaluació per simplificar i estimar a partir d'uns objectius principals, i no anar avaluant cada petita part treballada.

4. Bibliografia
APRENENTATGE MITJANÇANT PROJECTES.
L’EXPERIÈNCIA EN L’ASSIGNATURA DE DISSENY
I DESENVOLUPAMENT DE PRODUCTES

Xavier Espinach Orús i Fernando Julián Pérez
Àrea d’Expressió Gràfica en l’Enginyeria

Resum. L’assignatura de Dibuix i disseny industrial té uns continguts i unes competències amb un fort vessant pràctic. Els professors hem considerat que el treball en grup i l’aprenentatge mitjançant projectes eren les estratègies més adients per aconseguir desenvolupar les competències. Presentem la nostra experiència indicant el procés seguit i els resultats obtinguts.

1. Introducció

Dibuix i disseny industrial és una assignatura que s’ofereix als estudianots de segon cicle d’Enginyeria Industrial (20 places) i de tercer curs d’Enginyeria Tècnica Mecànica (20 places), i a més s’hi poden matricular els estudianots d’Erasmus (aquest any, un estudiant). El cost és de 6 crèdits, repartit en 3 d’aula de teoria i 3 d’aula informàtica.

En les sessions d’aula es repassen els conceptes de disseny industrial (diferenciant-lo de l’artesania i l’art), la seva història i les metodologies de suport al procés. D’aquesta manera es treballen els estudis de mercat, l’anàlisi funcional, l’anàlisi d’us i ergonòmica, l’anàlisi tècnica, l’anàlisi formal, les especificacions de producte, la planificació, les tècniques de creativitat i les tècniques d’esbós.

Els crèdits d’aula informàtica es dediquen a l’aprenentatge de conceptes relacionats amb la generació de geometries complexes. Cal explicar què s’entén per geometria complexa, quines són les condicions frontera de continuitat i quines les conseqüències en l’aparença física del producte. Així mateix, cal aprofundir en les estratègies de modelització mitjançant un sistema de disseny assistit per ordinador (CAS, computer aided styling), en aquest cas Rhinoceros 3D. Es dediquen algunes sessions a la representació fotorealista, tenint en compte materials, il·luminació i enquadrament.

L’objectiu és donar una visió del procés de disseny de productes i lligar-lo amb el desenvolupament tècnic necessari per definir totalment un producte. D’aquesta manera, suposem que els estudianots disposen de prou coneixements per idear, dissenyar i desenvolupar les parts mecàniques, elèctriques i electròniques d’un producte, però no dels necessaris per dissenyar el seu continent. Per tant, el contingut tracta les metodologies, els processos i els mètodes utilitzats en la praxi professional del disseny de productes.
En el disseny de l’assignatura es defineixen les següents competències addicionals:

- Interpretar l’orientació actual del disseny de productes en el marc de la innovació.
- Identificar i valorar el disseny i desenvolupament industrial de productes a partir d’un projecte.
- Aplicar els diferents processos i metodologies durant el seu projecte.
- Exposar el projecte d’un producte i defensar-lo davant dels companys.

I això tenint en compte que cal fomentar (competències personals) l’autoconfiança, l’automotivació, la credibilitat, la responsabilitat, les capacitats d’innovació, les capacitats per cercar informació, la flexibilitat, la tolerància a l’estrès, l’eficiència, la presa de decisions, el pensament analític, les capacitats conceptuals, les capacitats de llenguatge i comunicatives, la iniciativa, l’optimisme, les capacitats de lideratge, l’empatia, les capacitats per gestionar conflictes, les capacitats per treballar en grup (totes aquestes capacitats estan definides com a centrals per a la gestió de projectes).

2. Descripció de l’activitat
Per desenvolupar les competències hem considerat que l’estratègia més encertada és l’aprenentatge per projectes. Aquesta metodologia se centra en l’aprenentatge; per això els estudiants tenen un pes específic significatiu en la tria dels temes dels projectes que realitzaran (aquesta tria quasi sempre està d’acord amb els seus interessos i habilitats). En termes molt senzills, l’aprenentatge per projectes ajuda els estudiants a adquirir coneixements i habilitats, aprendre a resoldre problemes complexos i a executar feines difícils usant aquests coneixements i habilitats.

D’aquesta manera, es proposa un projecte als alumnes i aquests el fan avançar a mesura que es desenvolupen els continguts teòrics. A la vegada pensem, a causa de la complexitat d’un projecte de disseny, que cal treballar en grup. Els alumnes són els responsables de crear els grups i de gestionar-los. Els professors només poden actuar com a mitjancers en cas de problemes.

Hi ha una etapa inicial d’arrencada, en què es crea el grup i es proposa de projecte. Tots els projectes han de ser petits electrodomèstics o similars.

En segona instància comença la realització dels estudis de la història del producte, la redacció de l’especificació tècnica del producte, els estudis de mercat, l’anàlisi funcional, l’anàlisi d’ús, ergonòmica i funcional. Tots els documents es referiran al projecte triat.

L’última etapa va dirigida a la creativitat, de manera que a partir dels estudis efectuats els alumnes dibuixaran esbossos d’almenys tres propostes innovadores de producte que compleixin les especificacions i els objectius. Els conceptes han de ser discutits, raonats i validats amb els professors. Dels tres conceptes cal triar-ne un i desenvolupar-lo al màxim que permetin les capacitats del grup (recordem que hi ha grups de dues a cinc persones, i per tant la quantitat de treball entre grups no és equilibrada).

Finalment, cada grup ha de presentar el resultat davant de tots els seus companys. S’insisteix que ha de ser una presentació del resultat del projecte, no del procés de projecte. Els grups han de presentar de manera prou clara als seus companys el seu producte.
L’avaluació de l’assignatura és continuada i no dependrà del resultat final (ja que és virtualment impossible dissenyar al 100 % un producte en el termini d’un quadrimestre), sinó de la correcció de les solucions aplicades en cada una de les etapes. D’aquesta manera, encara que una etapa es pugui considerar deficient, el projecte (acadèmic) pot continuar.

3. Resultats
Des del punt de vista acadèmic, hi ha dispersió de resultats, encara que aquesta no és uniforme.

Excel·lent	21	51 %
Notable	13	32 %
Aprovat	5	12 %
Suspens	2	5 %
Total	41	100 %

Figura 5. Avaluació final de l’assignatura.

Mentre que no s’observa cap correlació entre titulació i avaluació, sí que se’n genera una de molt evident entre nombre de persones del grup i nota, i assistència mitjana dels membres del grup i nota.

S’observa que els grups de dues persones no funcionen, ja que els dos grups formats per aquesta quantitat de membres són els que han suspès o els que han obtingut pitjors qualificacions. D’altra banda, els grups de més de cinc persones són difícils de gestionar, a menys que dins el grup destaquí algú amb un fort lideratge. La resta de combinacions (tres, quatre i cinc integrants) funcionen bé o molt bé, i el rendiment depèn de la implicació de tots els membres. L’agrupació més regular en nota és la de quatre alumnes, amb notes de 8 a 9.

Figura 6. Exemple del resultat final aconseguit per un grup de quatre alumnes.

L’aplicació de l’aprenentatge per projectes ha mostrat que els alumnes tenen més facilitat per assumir els continguts teòrics. El fet que haguessin d’aplicar els coneixements impartits al seu projecte ha fet que millorés l’assistència i l’interès per les sessions. A la
vegada, durant els torns de preguntes, aquestes eren més especialitzades i feien referència a problemes particulars. En alguns casos alguns membres d’un grup van ajudar altres membres a resoldre alguns supòsits.

Considerem que conceptes com ara ergonomia, anàlisi d’ús o anàlisi funcional són molt aplicats, i l’única manera d’interioritzar-los és aplicant-los.

4. Discussió
Els aspectes que s’han de millorar estan relacionats amb els grups de treball i el desenvolupament de les competències personals.

Els grups tindran un límit de tres a cinc estudiants i no s’admetran excepcions.

Cal desenvolupar més l’autoconfiança dels alumnes. Alguns estudiants no creien en el seu projecte, i això era molt notable al llarg de les presentacions. Aquesta mancança és més acusada en els estudiants d’ETIM que en els d’EI.

S’han de millorar les capacitats expressives: els estudiants no estan habituats a les presentacions orals i en públic i fan errors fàcilment esmenables. Aquest punt és crític, ja que tots ells han de presentar un projecte final de carrera. Afegirem presentacions intermèdies de resultats per ajudar-los a millorar les habilitats.

5. Conclusions
Tenint en compte l’experiència d’altres cursos lectius durant els quals s’aplicava un mètode clàssic de sessions lectives teòriques i avaluació de l’alumne mitjançant exàmens, l’aplicació de l’aprenentatge per projectes i del treball en grup ha permès:

1. Millorar l’interès dels alumnes per l’assignatura.
2. Crear sinergies positives entre grups i dins dels grups de treball.
3. Obtenir una millora molt notable dels resultats.

Així mateix, el treball amb supòsits pràctics permet al docent centrar-se en l’assimilació de les competències per part dels alumnes, ja que els coneixements s’adquireixen d’una manera natural mitjançant l’ús o com a eina de resolució de problemes.

6. Bibliografia

TREBALL A CLASSE DELS APUNTS ELECTRÒNICS DE LES ASSIGNATURES DE CIÈNCIA DELS MATERIALS

Jordi Farjas Silva¹ i Pere Roura Grabulosa²
Àrees: ¹Física Aplicada i ²Ciència dels Materials i Enginyeria Metal·lúrgica

Resum. En aquest treball presentem una nova metodologia alternativa a les classes magistrals de teoria, que té com a objectius millorar l’assistència i millorar l’ús dels apunts electrònics. Els resultats indiquen que s’ha aconseguit millorar l’assistència. En canvi, no s’observa un canvi significatiu de rendiment acadèmic. Pel que fa a la valoració dels estudiants, és positiva en el cas d’assignatures conceptualment assequibles, mentre que és negativa en el cas de temaris complexos.

1. Introducció
Amb l’objectiu que els estudiants estiguessin més atents durant les classes magistrals, es van editar en format electrònic els apunts de diverses assignatures de l’àrea de Ciència dels Materials i Enginyeria Metal·lúrgica.¹ Com a resultat d’aquesta iniciativa, es va produir un descens de l’assistència a les classes magistrals que no es corresponia amb un descens de presentats als exàmens finals. Segons alguns estudiants, no tenia cap interès assistir a les classes magistrals atès que la informació que es donava ja estava recollida en els apunts.

La iniciativa docent que aquí presentem té una doble finalitat: recuperar i fins i tot millorar l’assistència a classe i optimitzar l’ús que es fa dels apunts electrònics. Aquesta iniciativa s’ha dut a terme en tres assignatures:

- Fonaments de ciència de materials: assignatura troncal de primer curs d’Enginyeria Tècnica Industrial, especialitat de Mecànica (FCM).
- Tecnologia de materials: assignatura troncal de quart curs d’Enginyeria Industrial (TM).
- Tecnologia de materials polímers: assignatura optativa de quart curs d’Enginyeria Industrial i tercer curs d’Enginyeria Tècnica Industrial especialitats Mecànica i Química (TMP).

2. Descripció de l’activitat
S’abandona el format de la classe de teoria magistral per una sessió de 50 minuts que comprèn, en primer lloc, una lectura individual dels apunts (de 20 a 30 minuts), seguida d’una sessió de preguntes i comentaris dels estudiants en grup i, finalment, si es disposa de temps el professor comenta aquells aspectes que considera rellevants i que no s’han analitzat en la sessió de preguntes.

Cal indicar que no s’ha implementat cap tipus d’avaluació diferent; l’avaluació ha consistit en un únic examen final. De tota manera, a mig curs es va fer una prova d’autoavaluació que no comptava en la nota però que permetia als estudiants determinar el seu nivell, així com fer una simulació del que seria l’examen final.
Finalment, tampoc no s’ha modificat el format de les classes de problemes, que consisteix bàsicament en la resolució i correcció de problemes a la pizarra per part del professor.

3. Resultats
En aquest apartat presentarem l’evolució del rendiment acadèmic de l’assignatura de FCM, atès que és l’assignatura de la qual disposem de més dades. A més, també aportarem els resultats d’una enquesta d’opinió dels estudiants respecte a aquesta iniciativa.

Evolució

![Evolució del rendiment acadèmic corresponent a l’assignatura de FCM.](image)

Figura 1. Evolució del rendiment acadèmic corresponent a l’assignatura de FCM.

A la figura 1 s’ha representat l’evolució del rendiment acadèmic durant els darrers quatre cursos. Durant els primers tres cursos les classes de teoria eren magistrals, i el curs 2007-2008 es va introduir la nova metodologia per a les classes de teoria. Podem comprovar que no s’observa una millora significativa ni en el nombre de presentats a l’avaluació final ni el rendiment acadèmic. Cal notar que en el curs 2005-2006 només es disposa de les dades del grup de tardes, mentre que la resta les dades inclouen els dos grups (matins i tardes). Això fa que el nombre d’estudiants sigui significativament més baix, i per tant les dades són menys representatives. Finalment, a partir de la figura 2 també podem constatar que no hi ha una millora significativa en les qualificacions dels estudiants que superen la matèria.
Experiències docents d’adaptació a l’EEES

Figura 2. Evolució del rendiment acadèmic corresponent als estudiants que superen l’assignatura de FCM.

D’altra banda, durant el curs 2007-2008 es va passar l’enquesta següent als tres grups (FCM, TM i TMP):

1. Creus que aprofites millor la classe?
2. Et trobes més a gust durant la classe?
3. Creus que així millora la comprensió del temari?
4. Dediques menys temps a repassar els apunts a casa?

El resultat de les enquestes es resumeix en les taules I (FCM), II (TM) i III (TMP).

4. Discusió

La nova metodologia proposada aporta dos avantatges significatius respecte a les sessions magistrals: la lectura prèvia dels apunts ajuda els estudiants a mantenir l’assignatura al dia, i les sessions de preguntes fomenten la participació activa dels estudiants. Pel que fa a aquest segon punt, considerem que ha estat fonamental per millorar l’assistència; creiem que la interacció directa del grup amb el professor és un al·licient que fomenta l’assistència. A banda, aquestes sessions de preguntes aporten informació molt valuosa al professor: per una banda, permeten un coneixement més directe de quins aspectes de la matèria són més difícils d’assimilar o són més interessants, i per l’altra, permeten fer un seguiment qualitatiu del nivell d’aprenentatge del grup.

Pel que fa el rendiment acadèmic, només disposem de les dades de tres cursos amb la metodologia tradicional i d’un curs amb la nova metodologia. El sistema d’avaluació i el professor han estat els mateixos durant els quatre cursos, cosa que dóna més fiabilitat als resultats. No obstant això, no s’observa cap tendència significativa, per la qual cosa a priori podem concloure que el rendiment acadèmic no ha millorat (tant pel que fa al nombre d’aprovats com pel que fa a les qualificacions). De tota manera, serà interessant fer un seguiment del rendiment acadèmic per confirmar aquest resultat, atès que els resultats d’un curs acadèmic no són prou significatius.

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>60%</td>
<td>60%</td>
<td>83%</td>
<td>37%</td>
</tr>
<tr>
<td>No</td>
<td>7%</td>
<td>0%</td>
<td>3%</td>
<td>10%</td>
</tr>
<tr>
<td>Igual</td>
<td>33%</td>
<td>40%</td>
<td>13%</td>
<td>53%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>41%</td>
<td>14%</td>
<td>36%</td>
<td>5%</td>
</tr>
<tr>
<td>No</td>
<td>45%</td>
<td>45%</td>
<td>48%</td>
<td>52%</td>
</tr>
<tr>
<td>Igual</td>
<td>14%</td>
<td>41%</td>
<td>16%</td>
<td>43%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>67%</td>
<td>11%</td>
<td>89%</td>
<td>11%</td>
</tr>
<tr>
<td>No</td>
<td>0%</td>
<td>11%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Igual</td>
<td>33%</td>
<td>78%</td>
<td>11%</td>
<td>89%</td>
</tr>
</tbody>
</table>

Finalment, observem que la valoració que fan els estudiants depèn molt de l’assignatura. En les assignatures FCM i TMP la valoració és molt positiva. És especialment rellevant la pregunta 3: “Creus que així millora la comprensió del temari?” Pel que fa a les assignatures de FCM i TMP, el nombre de respostes afirmatives ha estat del 83% i el 89%, respectivament. En canvi, la valoració ha estat significativament negativa en el cas de TM (la pregunta 3 ha obtingut el 36% de respostes positives). Aquesta diferent apreciació per part dels estudiats l’atribuïm al grau de dificultat conceptual de les assignatures. De fet, FCM i TMP són conceptualment molt més assequibles que TM. És a dir, per una banda, el nivell d’acceptació de l’assignatura millora quan aquesta és més assequible. Per l’altra, la lectura individual dels apunts permet una bona assimilació quan els conceptes són més entenedors; en canvi, considerem que quan els conceptes són més complexos és més necessària la intervenció del professor per facilitar-ne la comprensió.

5. Conclusions
Tal com es pretenia, s’ha aconseguit recuperar i fins i tot millorar l’assistència a les classes de teoria. Val a dir que aquesta millora s’ha aconseguit sense introduir cap obligatorietat o al llicent associat a l’avaluació.

No hi ha cap indici que hagi millorat el rendiment acadèmic.

Finalment, en les assignatures conceptualment més assequibles la iniciativa ha estat valorada positivament per part dels estudiants, mentre que en el cas contrari la valoració ha estat negativa.

6. Bibliografia
L’APRENETATGE ACTIU EN L’EXPERIMENTACIÓ EN ENGINYERIA QUÍMICA

Núria Fiol Santaló i Miquel F. Llop Manero
Àrea d’Enginyeria Química

Resum. Les assignatures experimentals tenen com a objectiu l’aprenentatge actiu per part dels estudiants. En el marc actual de convergència a l’espai europeu d’educació superior, aquestes assignatures són la pedra de toc perquè també s’assoleixin competències específiques i transversals. En aquest treball es proposa un canvi de metodologia docent en l’assignatura Experimentació en enginyeria química, dels estudis d’Enginyeria Tècnica Industrial en Química Industrial (ETIQI), que fa possible una didàctica més racional i una millora en l’aprenentatge.

1. Introducció
Resulta prou evident que, per situar les metodologies docents en l’espai europeu d’educació superior, sovint han d’experimentar importants canvis que facin possible els objectius que marca la convergència cap a aquest espai europeu. Són objectius prioritaris que els estudiants, en els seus aprenentatges, adquireixin capacitats, habilitats, aptitudes, actituds i destreses perquè assoleixin les competències necessàries per a un desenvolupament adequat de la seva vida professional.

En el cas de l’assignatura Experimentació en enginyeria química, de la titulació d’Enginyeria Tècnica Industrial en Química Industrial (ETIQI), es proposa un canvi de metodologia docent que faci possible assolir aquests objectius de convergència. Aquesta assignatura de pràctiques és troncal de tercer curs. Els estudiants, quan la cursen, ja han assolit els fonaments teòrics sobre el funcionament i el disseny dels equips d’enginyeria química en altres assignatures. Per desenvolupar les pràctiques experimentals al laboratori, els estudiants han de participar activament en la seva execució, manipulant els equips i variant les condicions d’operació per obtenir la resposta a aquests canvis en forma de mesures experimentals. A partir de les dades experimentals poden verificar lleis, estudiar comportaments, optimitzar processos o determinar paràmetres dels equips.

El procediment clàssic de l’assignatura consistia a facilitar als alumnes un guió de pràctiques amb els fonaments teòrics, els objectius i el mètode operatiu per executar l’experimentació. Els alumnes havien de preparar prèviament la pràctica abans de començar les sessions al laboratori i executaven l’experiment següint el procediment especificat en el guió per obtenir les dades experimentals. Finalment, havien d’elaborar un informe en què constaven aquestes dades experimentals obtingudes i els càlculs fets per assolir els objectius de la pràctica. Finalment, el professor avaluava l’informe a partir dels resultats presentats. Aquesta metodologia didàctica resultava cada vegada menys satisfactòria, tant per al professor com per als estudiants, ja que els alumnes assistien poc motivats a les pràctiques i amb una tendència cada vegada més acusada a no preparar la pràctica d’antuvi. A més, durant la sessió al laboratori, l’estudiant feia l’experimentació mecànicament, seguint metòdicament les pautes del guió, però sovint desconeixien la finalitat de les manipulacions que feia en l’equip. Aquest desconeixement quedava reflectit en l’informe, encara que els alumnes determinessin correctament els paràmetres buscats.
Tampoc no quedava palès si havien assumit els fonaments teòrics i els havien relacionat adequadament amb l’objectiu de la pràctica.

Per tot això, ens vam proposar fer un canvi de metodologia de treball al laboratori per estimular la iniciativa, la creativitat i l’esperit crític dels estudiants, de manera que els facilités l’adquisició de coneixements i la predisposició a analitzar situacions reals en equips i instal·lacions industrials. Es pretén incentivar els alumnes a participar més activament en tot el procediment de la pràctica i d’aquesta manera aconseguir que s’impliquin en el seu aprenentatge.

2. Descripció de l’activitat
El canvi metodològic introduït consisteix a incloure quatre noves etapes en el desenvolupament de la pràctica, entre les quals cal destacar la primera, de caràcter mes creatiu, en la qual es proposa el disseny de l’execució de la pràctica. Aquesta primera etapa ha d’ajudar els estudiants a relacionar més fàcilment els models teòrics amb les dades experimentals i el funcionament real dels equips. La nova configuració de la pràctica consta d’un total de sis etapes. Les quatre primeres, que són de nova introducció, són les següents: planificació, posada en comú del treball individual, supervisió del professor, disseny de l’experiment, execució pràctica i elaboració de l’informe. A continuació es detallen cadascuna de les etapes (Llop i Fiol, 2006).

1. Planificació del disseny de l’equip i mesures experimentals
Abans de començar la sessió de pràctiques, els alumnes han de preparar individualment l’experiment que han de fer al laboratori, ja que han d’haver fet un exercici previ de reflexió sobre la finalitat de la pràctica i les característiques de l’equip. Se’ls facilita la informació teòrica de l’equip bàsic objecte de l’estudi (amb les equacions o els models matemàtics relacionats amb l’equip) i l’objectiu de l’experimentació. La seva tasca consisteix a determinar, a partir de les equacions, les dades experimentals que s’han d’adquirir al laboratori. Una vegada definides aquestes dades, els alumnes han de dissenyar el muntatge de l’equip, situar-hi els punts de mesura de les dades experimentals i proposar l’equip de mesura que s’ha d’utilitzar per prendre aquestes dades. Després de l’etapa prèvia efectuada individualment, comença la sessió presencial al laboratori.

2. Posada en comú del treball individual.
A partir d’aquesta etapa es formen grups de tres o quatre estudiants. El treball al laboratori comença en una part específica amb equipaments d’aula teòrica en què cada grup treballa separatament i allunyat de l’equip experimental. El grup posa en comú el treball fet individualment. Cada component del grup explica als altres membres la seva proposta d’equip i entre tots analitzen les diferents solucions aportades i decideixen els components i punts de mesura més idonis per aconseguir l’objectiu de l’experimentació.

3. Supervisió del professor
Els alumnes expliquen el disseny proposat al professor, i se’n analitza conjuntament la viabilitat. Cal tenir en compte que, tot i que hi pot haver diversos dissenys de l’equip adequats per fer l’experiment, al laboratori hi ha una única configuració de l’equip que el professor explica als alumnes i compara amb el disseny proposat.
4. **Disseny de l’experimentació**
Els alumnes prenen contacte amb l’equip i veuen la configuració i els elements de control i mesura reals de què consta l’equip al laboratori. Una vegada feta la presa de contacte, el grup dissenya l’execució de l’experiment i elabora el protocol que s’ha de seguir per obtenir les dades experimentals que prèviament han definit com les necessàries per aconseguir l’objectiu en l’etapa de planificació.

5. **Execució pràctica**
Els alumnes executen la pràctica seguint el protocol que ells mateixos han dissenyat, variant les condicions d’operació per obtenir les dades experimentals per als càlculs.

6. **Elaboració de l’informe**
Finalment, i de manera individual, els alumnes elaboren un informe de la pràctica en què queda constància del treball previ, el protocol de realització de l’experimentació, les dades experimentals mesurades i els càlculs i procediments matemàtics seguits per dur a terme amb èxit la pràctica.

3. **Discussió**
La tasca de la primera etapa efectuada pels alumnes, sigui de manera individual o en grup, fa possible establir la relació entre els fonaments teòrics, ja adquirits en diferents assignatures, i el funcionament dels equips d’enginyeria química. És important destacar aquest fet, ja que als estudiants els costa relacionar teoria i pràctica. El fet d’haver de preparar prèviament la pràctica utilitzant el material proporcionat pels professors de l’assignatura i d’haver de consultar el d’altres assignatures facilita en gran manera la relació i connexió entre les diferents assignatures. Així doncs, el fet que hagin d’unificar coneixements de diferents matèries per resoldre la primera etapa de l’activitat representa una activitat molt positiva que permet integrar coneixements.

La discussió de les diferents propostes de cada estudiant en el grup fomenta la competitivitat entre ells, ja que cadascú defensa la seva proposta. En aquesta etapa cal, però, que els alumnes organitzin les discussions per debatre raonadament totes les possibilitats, cosa que fomenta la discussió constructiva.

El fet que algun alumne no faci la tasca de planificació prèvia perjudica seriosament el correcte desenvolupament de la sessió. És molt important insistir que aquests alumnes no quedin al marge al començament de la sessió i segueixin el grup en les diferents etapes d’execució de l’experimentació.

En l’etapa de supervisió del professor cal assegurar-se que els alumnes han entès la relació entre les variables del model teòric i les dades que s’han de mesurar en l’equip. En molts casos necessiten orientació del professor per simplificar i acabar correctament el desenvolupament matemàtic de l’experimentació. Per contra, una vegada especificades les variables operacionals necessàries en l’equip, els grups no tenen dificultats per dissenyar la instal·lació experimental ni el protocol d’adquisició de dades. Aquest nou procediment de treball fa possible que els alumnes coneguin la finalitat del protocol de treball abans d’executar l’experimentació, així com la importància de cadascuna dels dades experimentals que n’obtenen.
La capacitat que mostren els grups per dissenyar un procediment experimental apropriat per executar la pràctica i comprovar-ne la validesa immediatament proporciona als alumnes un element d’autoconfiança i satisfacció.

Les competències que pot adquirir l’estudiant amb aquest mètode d’aprenentatge són diverses. En primer lloc, desperta l’esperit creatiu, de manera que ha d’utilitzar l’enginy per solucionar el problema de dissenyar una instal·lació destinada a verificar els conceptes adquirits en altres matèries. En segon lloc, resulta evident que adquireix competències transversals com ara les d’haver de buscar i recopilar informació i el treball en equip. Finalment, fomenta l’esperit crític, la capacitat d’anàlisi i la de síntesi.

Cal destacar que la limitació de professorat representa un seriós inconvenient en la metodologia proposada, ja que cada professor ha de supervisar diversos grups d’estudiants simultàniament, fet que representa un excessiu sobreesforç per part del professor al principi de les sessions al laboratori.

El 90 % dels estudiants considera que el canvi metodològic de la didàctica ha estat profitós, mentre que aproximadament un 10 % dels alumnes es mostren reticents a executar el treball de laboratori amb aquesta metodologia d’aprenentatge, probablement per un augment de feina que els representa el treball previ que han de dur a terme. Aquest fet ja s’ha observat en altres treballs (Bourret, 2006).

4. Conclusions

La realització de les sessions de pràctiques de l’assignatura d’Experimentació en enginyeria química mitjançant la nova metodologia de treball proposada requereix un treball més intens i actiu durant la sessió de laboratori que el que es feia en les sessions tradicionals, però ha permès millorar el desenvolupament de l’assignatura. Amb el sistema d’aprenentatge actiu proposat, els estudiants poden adquirir més habilitats i assolir altres competències que amb la forma de treball més passiva de la metodologia anterior.

La nova metodologia de treball facilita que els alumnes assimilin els objectius de l’experimentació i els procediments de càlcul, i, a més, desperta l’interès dels alumnes i augmenta la col·laboració entre ells.

5. Bibliografia

APRENENTATGE COOPERATIU APLICAT A L’ASSIGNATURA DE MATERIALS I CONTROL DE QUALITAT

M. Mercè Pareta Marjanedas
Àrea de Construccions Arquitectòniques

Resum. L’activitat proposada s’ha dut a terme en la part de teoria de materials de l’assignatura de Materials i control de qualitat, impartida a segon d’Arquitectura Tècnica. És una activitat molt senzilla que té com a finalitat implementar la competència transversal inclosa en l’EEES anomenada aprenentatge cooperatiu. En l’aprenentatge cooperatiu es tracta de treballar en grup i que tots els membres que hi intervenen ho sàpiguen tot sobre el que han estudiat. Desapareix l’individualisme i s’imposa la cooperació col·lectiva.

1. Introducció
L’experiència que presentem és la posada en pràctica d’una de les competències transversals que apareixen en els postulats dels acords de Bolonya, concretament l’anomenada aprenentatge cooperatiu.

És molt simple d’entendre i de dur a terme, però ens ha ajudat a veure com es poden fondues quesions que segur que ja practicàvem en la docència quotidiana, amb algunes de les variants que s’han proposat en l’espai europeu d’educació superior.

La finalitat d’aquesta competència transversal és treballar en grup i que tots els individus que participen en el grup ho sàpiguen tot. Han de saber-ho tot sobre allò que han estat elaborant. Deixen de ser individus per passar a ser grup.

2. Presentació de l’assignatura
Materials i control de qualitat és una assignatura troncal que s’imparteix a segon d’Arquitectura Tècnica durant tot el període lectiu.

En realitat, però, aquesta assignatura és com si en fossin dues de diferents:
— Materials
— Control de qualitat

L’assignatura consta de 12 crèdits repartits entre teoria i pràctiques. D’aquests, 9 crèdits anuals són de teoria, 2,5 són de pràctiques de laboratori (assaigs de materials) i els 0,5 restants són d’exercicis d’aula (problemes de control).

La teoria la tenim organitzada de manera que mig curs és de materials i l’altre mig és de control.

Hi ha un equip de quatre professors, dels quals un imparteix la teoria de control, un altre la de materials i els altres dos, les pràctiques.
La part que s'ha assignat a l’autora d’aquesta comunicació és la teoria de materials i serà a aquesta part a la que a partir d’ara ens referirem.

En l’horari tenim posades 3 hores seguides de classe de teoria, cada setmana. Això té avantatges i inconvenients. Si ens cenyim estrèntament a l’activitat que volem plantejar, és un avantatge perquè la possibilitat d’aprofitament del temps, sense arribar a l’avorriament, és més gran.

El temari consta de diversos apartats. El primer fa referència a una sèrie de generalitats sobre el que vindrà després i la resta es remet a famílies de materials concrets, per exemple fustes, pintures, vidres, resines sintètiques, materials bituminosos, etc.

El gruix principal de les classes és farcit a còpia d’explicacions de la professora i de l’aportació de mostres reals (quan es pot) o d’imatges dels diversos materials. S’admet sempre la intervenció dels alumnes.

El sistema d’avaluació correspon als exàmens de les diverses convocatòries oficials.

3. Descripció de l’activitat
Del temari s’ha triat un del temes; per tant, s’ha triat una família de materials, per exemple les resines sintètiques. L’activitat relacionada serà, doncs, la cerca d’informació sobre les resines sintètiques.

La manera com s’ha plantejat als alumnes és la següent:
A partir d’una paraula clau (o diverses paraules clau segons la dificultat) donada per la professora a cada grup, han de buscar informació que hi estigui relacionada. En aquest cas les paraules poden ser, per exemple, policarbonats, polímers, termoplàstics, etc.

Els grups són de quatre persones i hauran d’exposar oralment a classe el resultat de la seva cerca. A qualsevol membre del grup li pot tocar ser ponent del que s’han preparat (per sorteig, per exemple). Aquí es demostrará si realment el treball ha estat cooperatiu o no, o si simplement han fet el que sovint passa quan es plantejen treballs en grup: que cadascú executa una part i la resta ni s’assabenta del que han elaborat els altres.

Perquè la resta d’estudiants dels altres equips no es mantinguin passius (que és un dels altres problemes que sòl aparèixer), poden fer preguntes a qui està parlant. La professora, tanmateix, a més de preguntar, intervé per fer els aclariments, els comentaris o les aportacions addicionals que consideri necessàries.

Una manera d’incentivar la participació de tothom és puntuant les intervencions, no només dels alumnes a qui toca exposar, sinó també de tots els altres. Per tant, si les preguntes dels que estan escoltant són d’un cert interès, la professora ho anota i puntea (sempre en positiu). Això els ajudarà a incrementar la nota que treguin de la seva part. La puntuació serà per a tot el grup, encara que la iniciativa hagi estat d’una persona concreta. Ja hem dit que l’individu, com a tal, desapareix. Creiem que això els motiva i anima a participar; els fa estar actius.

Un cop feta l’exposició de cada grup i els comentaris pertinents, el tema es dóna per acabat. Si apareixen dubtes, s’han de resoldre en horari de tutoria.
Se’ls especifica que el tema desenvolupat d’aquesta manera diferent dels altres també pot ser objecte de preguntes en els exàmens ordinaris de l’assignatura.

Finalment, es recopilen els diversos treballs i es reparteixen als grups, a fi que tots ho tinguin tot.

Aquesta activitat, com de fet ja hem insinuat abans, és una activitat d’avaluació. És una consideració que també pren força en l’espai europeu d’educació superior: el fet que la nota final no es deixi sencera a les mans d’uns únics exàmens finals.

L’activitat valdrà un punt de l’examen de teoria. La manera com es punta és la següent: cada grup puntua la resta (no a si mateixos, no és autoavaluació). El punt final surt d’un 70 % de la nota que posa la professora i d’un 30 % de la nota que posen els estudiants a cada grup.

Se’ls prepara una graella per fer les puntuacions, que és la mateixa que utilitza la professora:

<table>
<thead>
<tr>
<th>Grup</th>
<th>Paraules clau</th>
<th>Nota dels alumnes</th>
<th>Nota de la professora</th>
<th>Nota final</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La distribució temporal de l’activitat és:

- Total d’hores per cada estudiant = 9, de manera que 6 són amb professora i 3 sense. Per al grup seran 18 hores, 6 amb professora i 4 × 3 = 12 sense.
- Aïns que en cada curs hi ha uns cent vint alumnes distribuïts en dos grans grups de seixanta cadascun, es formen uns quinze petits grups de quatre persones.
- La durada de l’exposició oral és de 20 minuts per grup; per tant, 20 × 15 = 300, és a dir, un total de 5 hores per a l’activitat. Són dos dies de classe; l’hora que queda per arribar a les 6 s’omple amb les explicacions prèvies, finals o fetes durant la mateixa exposició, de la professora.

4. Resultats

1. Els estudiants que no poden o no volen col·laborar s’autoexclouen. La resta també discrimina els que no treballen pel grup.

2. Els estudiants aprenen a fons la part que han treballat, però la resta continua fluixa com sempre.

3. Els repetidors no fan l’activitat.

4. Els estudiants, a partir de l’exposició oral, es mostren molt més oberts amb la professora.

5. En la nota final de l’assignatura no es noten millor respecte a cursos anteriors.
5. Conclusions
Algunes de les conclusions són fruit del debat que es va establir en el moment en què es va acabar de presentar la ponència en la Jornada. Altres conclusions ja s’aportaven, d’entrada, en el discurs.

1. Es pot detectar, de rebot, el nivell d’oratòria dels alumnes, que també és una competència que s’ha de tenir en compte dins l’EEES.

2. A la vegada, també se’ls demana explícitament que dins l’activitat facin èmfasi en l’efecte que poden tenir els diversos materials tractats sobre la sostenibilitat del planeta. De fet, és una competència que trebalem al llarg de tot el curs i que tenim com a objectiu principal.

3. L’assistència a classe és pràcticament total els dies que hi ha l’exposició. Si algú no pot venir, s’excusa per algun motiu justificat. Això no passa la resta de l’any.

4. És possible que la nota adjudicada a l’activitat sigui massa poc important en el global de l’assignatura i per la feina que suposa, i que per això als repetidors no els interessi.

5. Si les classes fossin de molt pocs alumnes, estem convencuts que seria un sistema bo per aplicar a tots els temes, però de manera que tothom ho treballés tot. Això ara com ara és impensable.

6. Potser hauríem de valorar l’ús de la informàtica i les noves tecnologies per a les presentacions, cosa que no fem perquè hem detectat que des de la secundària obligatòria vénen molt ben preparats en aquesta matèria i no cal insistir-hi. Ho dominen molt bé.

7. Finalment, cal dir que aquesta experiència només l’hem portat a terme tres vegades i per tant creiem que falta repetició del fenomen i dels resultats per poder-los estudiar més bé i fer les modificacions pertinentes. De totes maneres, de negatiu no ho és de cap de les maneres, ans al contrari.
REFLEXIONS I EXPERIÈNCIES PORTADES A TERME
EN ASSIGNATURES DE FÍSICA

Jesús Planella Morato, Lluïsa Escoda Acero i Joan Josep Suñol Martínez
Àrea de Física Aplicada

Resum. En aquesta treball es presenten dues experiències emprant noves metodologies docents tot pensant en l'espai europeu d'educació superior: una experiència d'aprenentatge basat en problemes aplicada a l'assignatura de Fonaments físics, dels estudis de Disseny Industrial, i una altra d'aprenentatge cooperatiu aplicada a l'assignatura d'Electromagnetisme i materials per a l'electrònica, dels estudis d'Enginyeria Tècnica, especialitat en Electrònica Industrial. També s'aporten diverses reflexions sobre les experiències i el context en què es porten a terme.

1. Introducció
Els treballs realitzats referents a continguts pràctics d'assignatures de l'àmbit de la física que es presenten s'han d'entendre, en el nou marc de referència europeu, com un impuls al desenvolupament d'activitats per part de l'estudiant, sota l'orientació del professor. Les activitats es fonamenten en els coneixements, la capacitat d'adquirir-los i la necessitat de comunicar-los.

L'aprenentatge de competències, habilitats i continguts no és un procés que comença i acaba a l'aula o al laboratori. Encara que l'ensenyament és un mitjà fonamental d'ajuda a l'estudi, no és l'únic. Un disseny curricular correcte obre diverses possibilitats per concretar aquest tipus de treball personal fora i dins de l'aula i la seva avaluació.

2. Descripció de l'activitat
El projecte d'aprenentatge basat en problemes (APB) correspon a l'assignatura de primer curs de Fonaments físics en els estudis de graduat en Disseny Industrial. En el grup d'aplicació de l'experiència hi havia 38 alumnes matriculats, i d'aquests n'hi havia 34 que assistien assíduament a les classes.

En un vídeo es mostra als estudiants la història en què el doctor Frankenstein retorna un cadàver a la vida durant una tempesta elèctrica. Tot seguit es planteja la pregunta següent:

Podriem reproduir aquest experiment per recuperar la vida d'en Floquet de Neu?

Evidentment, el tema escollit cerca cridar l'atenció dels aprenents. Tal vegada, en assignatures de cursos superiors caldria pensar en un problema o cas més específic de la titulació.

Els alumnes hi han de dedicar un total de 24 h distribuïdes al llarg de tres setmanes amb un nombre aproximat de 8 h a la setmana. Els alumnes han d'assolir els conceptes durant el projecte. Els grups formats cooperen en el projecte, en el desenvolupament i la comprensió dels exercicis i en la resolució de dubtes respecte a la matèria relacionada amb el projecte.

3. Resultats
Els criteris generals de qualitat han de ser consensuats pels professors que formen part de l’equip avaluator de l’aprenentatge cooperatiu.

<table>
<thead>
<tr>
<th>Nom avaluable</th>
<th>Avaluable</th>
<th>Avaluació</th>
<th>Percentatge</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Contextualitzar el problema: Dibuix esquemàtic a escala de l’experiment. Descriure, des del punt de vista teòric, els diferents fenòmens naturals implicats: tempesta i efecte punxa.</td>
<td>Grup</td>
<td>10 %</td>
</tr>
<tr>
<td>A2</td>
<td>Eines teòriques necessàries per desenvolupar el projecte: 1. Equacions físiques i matemàtiques.</td>
<td>Grup</td>
<td>10 %</td>
</tr>
<tr>
<td>A3</td>
<td>Resolució i entrega de problemes procedents: Fes-ho tu! Classes expositives</td>
<td>Individual</td>
<td>40 %</td>
</tr>
<tr>
<td>A4</td>
<td>Presentació de resultats: Presentació escrita Raonament crític dels resultats obtinguts</td>
<td>Grup</td>
<td>40 %</td>
</tr>
</tbody>
</table>

Cal fomentar diversos aspectes: interdependència positiva, exigibilitat personal, interaccions cara a cara, habilitats interpersonals i de treball en grup, i reflexions sobre el treball.

Es combina l’avaluació a través d’APB (dreta) amb la tradicional (esquerra). L’aplicació del mètode d’APB comporta la disminució del nombre d’estudiants suspesos.

Respecte a l’activitat d’aprenentatge cooperatiu portada a terme en la titulació d’ETIEI, cal explicitar diversos aspectes:

Lectura d’informatació bibliogràfica relativa al tema en estudi. Idealment hauria de ser prèvia. Els diferents membres del grup il·lueixen el material proporcionat després d’una introducció del professor. Els tres membres del grup s’expliquen el que han comprès.

Resposta d’una sèrie de qüestions curtes relacionades amb el material aportat. Cada estudiant analitza unes qüestions separatament i després posen en comú les respostes. Normalment és una part molt activa de la sessió i amb una gran interactivitat entre ells i amb el professor. A continuació, es posa per escrit la solució de la qüestió que ha explicat.
Experiències docents d’adaptació a l’EEES

l’altre company. Com que es tracta d’una activitat de tres hores, un dels grans problemes és la gestió del temps. A vegades, han entregat les respostes de manera conjunta.

Tutorització del procés. El control del temps és important. El professor ha de poder reorientar les sessions. El professor visita els grups i resol els dubtes puntuals o de funcionament. Es fomenta la tutorització posterior del tema desenvolupat amb altres qüestions no resoltes a l’aula.

4. Discussió
Hi ha diversos aspectes que cal tenir en compte en analitzar les activitats presentades. Un dels més remarcables és que els anomenats nous mètodes docents es basen principalment en l’alumnat, en el seu aprenentatge, tot afavorint el treball en equip. A més, l’anàlisi temporal de les activitats es basa en la seva dedicació temporal. Tal vegada seria necessari que aquests conceptes també s’apliquessin als professors. Caldria que determinades activitats docents les planifiqués un grup de professors, amb independència de quin professor la dugui a terme a l’aula, i es formessin equips específics. En l’actualitat es porten a terme moltes activitats generades per professors individualment. Probablement mai no s’havien dut a terme a terme tantes experiències docents com ara. Nogensmenys, la impressió és que la majoria no s’acabaran consolidant perquè no hi ha una direccionalitat compartida. D’altra banda, caldria avaluar la dedicació temporal real d’aquests professors a les diferents activitats. Per tant, no cal només un canvi de paradigma en l’aprenentatge; també és necessari pel que fa al professorat.

Un dels problemes que pot comportar la socialització, a través de la cooperació, de l’aprenentatge és que els estudis universitaris esdevinguin com els preuniversitaris. De fet, el percentatge d’estudis universitaris actual a Catalunya supera el d’estudis de batxillerat de fa quaranta anys. Entre els docents, un dels discursos predominants és que el nivell d’exigència als estudiants és inferior al de fa deu o vint anys. Respecte a l’anomenat fracàs de molts estudiants, una solució fàcil ha estat responsabilitzar el professorat de la manca d’interès de l’alumnat. Tal vegada, el problema real prové del model de societat actual. Els professors universitaris no podem transformar la societat, però podem intentar modular-la.

Es pot desenvolupar un aprenentatge autònom, però dirigir. Aquest fet comporta la cerca d’un equilibri entre el control i la pedagogia. Plantejar un sistema d’aprenentatge obert es fa moltes vegades limitant, fixant aquest autoaprenentatge.

En el fons, l’experiència ens diu que tots els nous mètodes docents són benvinguts si esdevenen una metodologia, no un objectiu per si mateixos. Per tant, totes les activitats docents han d’estar pensades per aconseguir objectius vinculats a competències i coneixements. Si no, l’alumnat i el professorat hi dedicarem moltes hores, molt d’esforç, però construirem, com en el conte, cases de palla, i no de maons.

5. Conclusions
L’adequació a l’espai europeu d’educació superior ha estat associada a la introducció de noves metodologies en l’ensenyament dels estudis universitaris. La introducció d’aquestes metodologies ha de ser un mitjà per fomentar l’aprenentatge de competències i coneixements, i no un objectiu. S’estan desenvolupant moltes experiències de forma variada i dispersa i, caldria una coordinació i integració. En aquest treball s’han presentat
dues experiències: d’aprenentatge basat en problemes i d’aprenentatge cooperatiu. La valoració general en ambdós casos, dels alumnes i professors, és en general positiva.

6. Bibliografia

Resum. En aquest treball mostrem com s'ha utilitzat la plataforma ACME dins del pla pilot d'ETIG/ETIS. Comencem amb una breu descripció de la plataforma ACME com a quadern d'activitats de l'alumne. Enumerem els diferents tipus de problemes que corregix de manera automàtica i els que s'hi han incorporat recentment de correcció manual. Fem una breu descripció dels diferents tipus d'activitats que es poden seguir amb el suport de la plataforma i acabem amb una descripció de com s'ha fet servir en les diferents assignatures i quins resultats s'han obtingut.

1. Introducció
La plataforma d’aprenentatge electrònic (e-learning) ACME (Avaluació continuada i millora de l’ensenyament), desenvolupada en el nostre departament, és una plataforma virtual de suport a la docència que des de fa uns anys s’utilitza com a eina de suport en diverses titulacions d’àmbit tecnològic i científic de la Universitat de Girona. L’esperit de la plataforma és funcionar com a quadern d’activitats de l’alumne. El funcionament bàsic és el següent: el professor mitjançant l’ACME assigna els exercicis al dossier de treball dels alumnes i, quan aquests accedeixen al sistema, escullen un exercici dins l’activitat, el visualitzen, el resolen i envien la resposta per corregir. Automàticament el sistema corregix l’exercici i respon a l’alumne (vegeu la figura 1).

Figura 1. Seqüència de treball de l’alumne.

Els professors, per la seva banda, poden fer el seguiment del treball de l’estudiant, veure quins exercicis ha fet, quants intents i quines són les respostes que ha enviat. El sistema també disposa de diferents eines de comunicació que permeten que el professor faci observacions o comentaris als alumnes i al revés, que els alumnes facin consultes al professor. A més, el sistema disposa d’un repositori d’exercicis de cada matèria.

2. Tipus de problemes o exercicis que suporta l’ACME
Una característica de la plataforma és la correcció automàtica d’exercicis. En l’actualitat la plataforma corregix una gran varietat de problemes per a matèries científiques o tècniques específiques de carreres universitàries. D’aquesta manera, ACME permet corregir en aquests moments:
Experiències docents d’adaptació a l’EEES

- Qualsevol problema que requereixi un plantejament matemàtic, des de problemes de càlcul o àlgebra fins a problemes d’estadística, física, economia, química, electrònica, etc. (Prados et al. 2005)
- Programes informàtics, escrits en la majoria de llenguatges i també en pseudocodi (Prados et al. 2006b)
- Exercicis de bases de dades, des de diagrames d’entitat-relació fins a esquemes de bases de dades relacionals, sentències SQL, etc. (Prados et al. 2006a) (Soler et al. 2006)

També corregeix els que podem anomenar estàndard, que es troben en la majoria de plataformes d’aprenentatge electrònic, com són:

- Tipus test. Seleccionar una resposta entre diverses alternatives.
- Omplir blancs. Completar un text on falten paraules que podem escriure lliurement o que podem escollir d’una llista d’alternatives.
- Cert/fals. D’una llista de frases, dir quines són certes i quines falses.

Més recentment hem incorporat diversos tipus d’exercicis de correcció manual:

- Comentaris de text, imatges, vídeos, etc. Donat un text, imatge o vídeo fer-ne un comentari o recensió en un espai limitat.
- Lliurement de fitxers. A partir d’una determinada proposta, l’alumne elabora un document, cerca o crea una imatge, construeix una presentació o un pòster i en fa el lliurement.
- També permet elaborar treballs amb una wiki, elaborar glossaris i portfolis, sigui per a treballs en grup o individuals.

Malgrat que no corregeix automàticament aquests exercicis, l’ACME ens aporta eines de seguiment, de manera que podem saber què ha fet cada estudiant a cada moment.

3. Tipus d’activitats formatives amb ACME

Les característiques de la plataforma ens permeten utilitzar-la en diferents activitats formatives, tant presencials com no presencials. El principal avantatge de fer-les a través de la plataforma és que sabem a cada moment quins són els alumnes que les fan i quins no. Entre aquestes activitats destaquem:

- Activitats d’avaluació continuada. La plataforma permet agrupar els exercicis i fixar uns terminis per resoldre’ls.
- Activitats d’aprenentatge autònom, com poden ser: lectures o treballs previs a classes expositives presencials, problemes d’ajuda, de reforç i autoavaluacions.
- Exàmens. Proves d’avaluació presencials o no presencials.
- Classes de problemes o pràctiques.
- Treball en grup. Una de les competències genèriques que s’especifiquen en tots els estudis és que l’alumne ha de saber treballar en grup.

4. Experiències d’ús de l’ACME en el Pla pilot d’ETIG/ETIS

En la taula I podem veure que en el curs 2006-2007 l’ACME s’ha fet servir en totes les assignatures anuals i en una de quadrimestral de primer curs, i en diverses assignatures quadrimestrals de segon que a continuació detallen.
Experiències docents d’adaptació a l’EEES

Taula 1. Distribució d’assignatures d’ETIG/ETIS que fan servir ACME

<table>
<thead>
<tr>
<th></th>
<th>ETIG</th>
<th></th>
<th>ETIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACME</td>
<td></td>
<td>ACME</td>
</tr>
<tr>
<td>1r curs</td>
<td>3</td>
<td>1r curs</td>
<td>3</td>
</tr>
<tr>
<td>Assignatures anuals</td>
<td>3</td>
<td>Assignatures anuals</td>
<td>3</td>
</tr>
<tr>
<td>Assignatures quadrimestrals</td>
<td>4</td>
<td>Assignatures quadrimestrals</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>7 4</td>
<td>Total</td>
<td>8 4</td>
</tr>
<tr>
<td>2n curs</td>
<td>2 0</td>
<td>2n curs</td>
<td>2 0</td>
</tr>
<tr>
<td>Assignatures anuals</td>
<td>0</td>
<td>Assignatures anuals</td>
<td>2 3</td>
</tr>
<tr>
<td>Assignatures quadrimestrals</td>
<td>6 4</td>
<td>Assignatures quadrimestrals</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>8 4</td>
<td>Total</td>
<td>9 3</td>
</tr>
</tbody>
</table>

Matemàtiques
Matemàtiques és una assignatura de primer curs i l’ACME s’ha fet servir per fer el seguiment de tres tipus d’activitats: (i) activitats d’avaluació continuada que consisteixen a resoldre setanta problemes que s’han d’anar resolent al llarg del curs i que es valoren amb un 15 % de la nota final; (ii) l’entrega de cinc treballs de correcció manual valorats amb un 20 % de la nota final, i (iii) la realització de pràctiques d’aula informàtica que consisteixen en resoldre problemes. Els resultats obtinguts de l’avaluació continuada es mostren en la figura 2, en què podem veure l’evolució de la participació dels alumnes (nombre d’alumnes que han intentat resoldre els problemes de cada bloc i nombre d’alumnes que han resolt correctament el 50 % dels exercicis del bloc). Això dóna una mitjana de seixanta-dos alumnes que resolen el 50 % dels exercicis, valor que coincideix amb el nombre d’aprovats.

Metodologia i tecnologia de la programació
Metodologia i tecnologia de la programació és una assignatura anual de primer curs en què l’ACME s’ha fet servir per fer pràctiques de laboratori que consisteixen a elaborar algorismes amb dificultat creixent. S’han assignat un total de vuitanta-sis problemes distribuïts en vint sessions i valorats amb un 25 % de la nota. Els resultats són similars als de l’assignatura de Matemàtiques pel que fa al treball dels alumnes al llarg del curs.

Estructura i tecnologia de computadors
Estructura i tecnologia de computadors és una assignatura anual de primer curs i l’ACME s’ha fet servir per fer activitats d’avaluació continuada que consisteixen a contestar un quadern individualitzat de cent trenta-quatre qüestions de tipus test com les que
Experiències docents d’adaptació a l’EEES

apareixen en els diferents exàmens de l’assignatura. La seva valoració és d’un 15 % de la
nota final.

Introducció als fitxers i a les bases de dades
Introducció als fitxers i a les bases de dades és una assignatura quadrimestral de primer
curs. ACME s’ha fet servir per fer activitats d’avaluació continuada que consisteixen a
resoldre problemes com a complement dels que s’han fet a classe i que tenen una
valoració en la nota final d’un 15 %.

Introducció a les estructures de dades
Introducció a les estructures de dades és una assignatura quadrimestral de segon curs i
l’ACME s’ha fet servir per fer activitats d’avaluació continuada que complementen la part
d’exercicis sobre algoritmes de manipulació d’estructures dinàmiques i algoritmes simples
sobre arbres binaris, relacionats amb les pràctiques de laboratori. Tenen una participació
directa en la nota final.

Estadística
Estadística la composen dues assignatures quadrimestrals de segon curs, una d’ETIG i
l’altra d’ETIS. ACME s’ha fet servir per fer activitats (quatre d’ETIG i tres d’ETIS)
d’avaluació continuada que consisteixen a resoldre problemes organitzats en blocs de deu
exercicis, valorades en un 20 % i 15 % de la nota final respectivament. El seguiment global
daquestes activitats ha permès detectar dificultats que han portat a replantejar alguns
temes. També s’ha fet servir per fer exàmens de tipus test, tant de la part de teoria com
de problemes. La participació dels alumnes ha estat del 75 % a ETIG i del 80 % a ETIS.

Bases de dades
Bases de dades és una assignatura quadrimestral de segon curs d’ETIG en què l’ACME
s’ha fet servir per fer activitats d’avaluació continuada que consisteixen a resoldre
diagrames d’entitat-relació, esquemes de bases de dades relacionals i de normalització,
valorades en un 15 % de la nota final. Un 75 % del alumnes ha resolt correctament més
del 50 % dels exercicis i tots els alumnes que aproven l’assignatura han resolt més del
50 % dels exercicis ACME.

Xarxes
Xarxes és una assignatura quadrimestral de segon curs en què l’ACME s’ha fet servir per
fer activitats d’autoavaluació i autoaprenentatge que consisteixen a contestar un quadern
individualitzat de qüestions de tipus test. L’ús era voluntari i no comptava per a
l’avaluació. La participació ha estat baixa ja que només l’han fet servir aproximadament un
15 % dels alumnes presentats a l’examen, principalment repetidors.

5. Conclusions
Hi ha una relació directa entre els alumnes que fan servir l’ACME i els que aproven. Si no
es valora, la participació del alumnes és baixa. És una eina molt interessant per treballar
competències com ara la resolució de problemes i l’anàlisi crítica de resultats, o ser capaç
d’analitzar i sintetitzar problemes.
6. Bibliografía
TREBALL COL·LABORATIU EN L’ASSIGNATURA DE MATEMÀTIQUES

Jordi Poch García, Marta Pellicer Sabadi i Jaume Soler Villanueva
Àrea de Matemàtica Aplicada

Resum. L’assignatura de Matemàtiques d’ETIG/ETIS forma part del Pla pilot d’adaptació de la titulació a l’EEES i, per tant, s’han de treballar certes competències que es descriuen a la introducció. En aquest treball es descriu com hem dissenyat l’assignatura i, més concretament, com hem fet ús del treball cooperatiu per treballar algunes competències.

I. Introducció
L’assignatura de Matemàtiques d’ETIG/ETIS és una assignatura de primer curs de 12 crèdits ECTS dins del Pla pilot d’adaptació de les titulacions d’ETIG/ETIS a l’espai europeu d’educació superior. Les competències que s’han de treballar en aquesta assignatura són:

1. Aplicar eines i coneixements matemàtics
2. Ser capaç d’anàlitzar i sintetitzar problemes
3. Ser capaç d’organitzar i planificar
4. Comunicar-se adequadament tant de forma oral com escrita
5. Resoldre problemes i fer una anàlisi crítica dels resultats
6. Aplicar un raonament crític
7. Aconseguir un aprenentatge autònom

Per precisar, remarcar o posar de manifest alguns aspectes que hem cregut necessari remarcar, hi hem afegit com a competències complementàries les següents:

- Ser capaç d’explicar i redactar l’anàlisi i la resolució d’un problema segons els estàndards habituals.
- Ser capaç de modelitzar en llenguatge matemàtic un problema, una situació o una qüestió expressada en llenguatge natural.
- Ser capaç de resoldre un problema fins al final sense errors de càlcul.
- Ser capaç de fer comprovacions parcials o redundants en un problema o càlcul per augmentar la confiança en el resultat.

Centrem-nos en les primeres. És evident que les competències 1, 2 i 5 són competències que tradicionalment s’han treballat en una assignatura de matemàtiques i que millor o pitjor sabem com ho hem de fer, però com ho podríem fer per treballar les competències 3, 4, 6 i 7? Això ens va portar a incloure entre les activitats de l’assignatura treballs individuals per escrit i treballs en grup.
2. Disseny de l'assignatura
A partir de les competències, dels continguts clàssics d'una assignatura de matemàtiques de primer curs d'enginyeria tècnica informàtica i la distribució horària hem dissenyat l'assignatura. Comencem analitzant la distribució horària que ens donarà les hores disponibles per organitzar activitats de tipus presencial.

- 3 hores a la setmana amb el grup sencer
- 1 hora a la setmana de problemes amb grups reduïts.
- 1 hora cada quinze dies de pràctiques a l'aula d'informàtica amb grups de vint alumnes com a màxim.

Comptant entre tretze i quinze setmanes per quadrimestre, tenim un total de 116 i 134 hores per organitzar les sessions presencials, i la resta, fins a un total de 300 hores, que corresponen als 12 crèdits ECTS, per organitzar activitats no presencials.

Tenint en compte que en el pla d'estudis hi ha una assignatura d'introducció a la lògica i una altra de matemàtica discreta, els continguts de l'assignatura han de ser bàsicament de càlcul, àlgebra i introducció als mètodes numèrics, i els hem agrupat en els quatre blocs següents:

- Representació numèrica
- Estudi de funcions
- Integral d'una funció
- Geometria i àlgebra lineal

Aquesta distribució de continguts, les competències que s'han de treballar i la distribució horària ens han portat a programar per a cada bloc activitats del tipus següent:

- Exposició dels continguts i anàlisi de situacions
- Resolució de problemes
- Pràctiques a l'aula d'informàtica
- Resolució individual d'exercicis amb ACME
- Prova de validació de coneixements

A més, cada quadrimestre es proposa als alumnes:

- un treball individual, en què es treballa l'organització, la planificació, la comunicació escrita i l'aprenentatge autònom, i
- un treball col·laboratiu en grup, en què es treballa, a més, la comunicació oral i el raonament crític.

Ara, ja situats en el context de l'assignatura, vegem com s'ha organitzat el treball en grup i quins han estat els resultats obtinguts.

3. Treball col·laboratiu
El treball en grup l'organitzem de la manera següent. Es formen grups de quatre o cinc alumnes a elecció dels mateixos alumnes. Tots els grups han de fer el mateix treball, que consisteix a desenvolupar un tema (una part dels continguts de l'assignatura que en gran part ja coneixen, amb més o menys detall, del batxillerat). Per això els donem un guió en què es detallen: els continguts que ha de contenir el treball; indicacions de com s'ha de fer
Experiències docents d’adaptació a l’EEES

123

el treball i de quina ha de ser la dinàmica del grup; el repartiment de tasques entre els diferents membres del grup; i el calendari de treball i la bibliografia de consulta.

Per desenvolupar el treball es preveuen sis sessions presencials, quatre d’1 hora i dues de 2 hores en què es fa el seguiment i control del treball, i la presentació oral, en què cada grup presenta una part del treball i s’obre un debat amb la resta de grups.

La distribució de les sessions presencials de treball és:

• **Primera sessió.** En aquesta sessió es formen els grups, s’explica en què consisteix el treball, quina ha de ser la dinàmica, i es reparteixen les tasques.

• **Segona sessió.** Es demana que cada alumne porti un guió de la seva part i es fan reunions d’experts perquè confrontin el que han preparat i perquè el professor supervisi que hi ha els continguts mínims.

• **Tercera sessió.** Es demana que cada alumne porti la seva part escrita, es verifica la correcció del treball, se suggereixen les modificacions o els canvis pertinents i s’inicia el procés d’intercanvi amb els companys del grup. En aquesta etapa cal que cada membre del grup expliqui als seus companys la seva part ja que al final del procés tots han de poder respondre sobre la totalitat del treball. Per tant, es recomana als grups que es reuneixin per debatre les diferents parts i als que no es poden reunir se’ls ofereix un espai en l’ACME per fer-ho.

• **Quarta sessió.** Es continua el debat, de manera que cada alumne explica als companys la seva part i els altres li plantegen les dudas i/o les dificultats. Nosaltres supervisem el procés per evitar males interpretacions.

• **Cinquena sessió.** Sessió de control del treball. Cada grup ha de respondre un qüestionari de forma oral, de manera que cada alumne ha de respondre a preguntas corresponents a la part que han fet els seus companys.

• **Sisena sessió.** Presentació oral d’una part del treball: cada grup prepara una presentació de 10 minuts d’una part del treball prèviament establerta i els altres grups han de preparar qüestions, i així obrir un petit debat. Lliurament del treball escrit.

En l’avaluació del treball es té en compte l’adquisició de coneixements, l’organització del treball, l’expressió oral i escrita, l’ús del llenguatge matemàtic i l’estructuració del raonament. Per això s’avalua el control oral, la presentació i el treball escrit de la manera següent:

• **Control.** Es valoren els coneixements i la manera d’expressar-se. La nota és diferenciada per a cada alumne. Compta un 25 % de la nota.

• **Presentació.** Es valoren l’expressió oral, l’ús del llenguatge matemàtic i el raonament. La nota és igual per a tot el grup. Computa un 30 % de la nota.

• **Treball escrit.** Es valora l’organització del document, l’expressió escrita i l’ús del llenguatge matemàtic. La nota és igual per a tot el grup. Computa un 45 % de la nota.

4. Problemes i dificultats que han sorgit

En el dos cursos en què s’han fet treballs cooperatius han sorgit diverses dificultats que exposem a continuació. La més freqüent és la no assistència a algunes de les sessions presencials dedicades al treball, cosa que comporta que no es pugui fer el seguiment de la part corresponent i que dificulta la dinàmica del grup. En part similar a aquesta dificultat hi
ha el problema de trobar-se fora de les hores de classe, cosa que va en perjudici de la cooperació en el grup, però que en bona part es pot corregir oferint als grups un espai virtual on es puguin trobar, intercanviar documents, comentaris, etc., i que en el nostre cas s’ha fet amb el suport de la plataforma ACME. Un altre tipus de dificultats són les relacionades amb el fet que hi ha alumnes que no fan la seva part o, al contrari, només fan la seva part i no es preocupen de la resta, i per tant tot el grup té dificultats i mancances en aquella part i en les parts relacionades amb aquella. Si això es detecta al principi, es pot repartir la feina entre els altres, però si no és difícil de solucionar. Finalment, hi ha el problema dels alumnes o grups que copien els continguts dels llibres o webs sense treballar-los, sense entendre’ls, i creuen que amb això ja tenen el treball fet. Aquest és un problema que se’ns ha presentat amb una certa freqüència amb el tipus de treball que propossem i cal que estiguem atents per evitar-lo.

5. Resultats
S’han fet i avaluat fins ara un treball en grup en el curs 2006-2007 i un altre en el primer quadrimestre del curs 2007-2008. Creiem que els resultats són satisfactoris, ja que la majoria dels alumnes que participen fan el treball correctament (vegeu la figura 1), cosa que de fet és l’objectiu d’aquest tipus de treballs.

![Figura 1. Resultats dels treballs del curs 2006-2007 (esquerra) i del curs 2007-2008 (dreta)](image)

També podem observar un alt grau d’absentisme, que no es dóna només en aquests treballs, sinó que és general en totes les assignatures de primer.

6. Conclusions
- És una bona eina per treballar les competències següents: ser capaç d’organitzar i planificar; comunicar-se adequadament tant oralment com per escrit; aplicar un racionament crític, i aconseguir un aprenentatge autònom.
- El control oral ajuda molt a avaluar el grau d’aprenentatge.
- Hem de millorar l’apropiatament del temps.
- Comporta un esforç importat per al professor.
- És difícil de gestionar quan el nombre de grups és elevat.
7. Bibliografia

ACTIVITAT D'APRENENTATGE COOPERATIU: ANÀLISI I ESTUDI D'ACCIONAMENTS. ELECCIÓ DEL TIPUS DE MOTOR MÉS ADEQUAT

Joan Puigmal Pairot
Àrea d'Enginyeria de Sistemes i Automàtica

Resum. Es presenta una activitat d'aprenentatge cooperatiu que desenvolupa diverses competències associades a l'assignatura optativa de Complements d'electricitat i màquines elèctriques, de la titulació Enginyeria Tècnica Industrial, especialitat d'Electrònica Industrial. Els alumnes treballen a partir de descripcions d'accionaments extretes d'un catàleg tècnic. Mitjançant el treball cooperatiu en grup, han d'analitzar els requeriments dels accionaments i la solució proposada pel fabricant.

1. Introducció
L'assignatura Complements d'electricitat i màquines elèctriques és quadrimestral i optativa de tercer curs de la titulació d'Enginyeria Tècnica Industrial, especialitat d'Electrònica Industrial. Aquesta assignatura té dos grans blocs diferenciats. El primer bloc més extens té com a objectiu complementar la formació de l'alumne en relació amb la tecnologia i el control de motors elèctrics d'ús industrial. El segon bloc complementa els coneixements de l'alumne relacionats amb les tècniques de protecció contra el risc elèctric en instal·lacions de baixa tensió.

Al llarg del quadrimestre, en el desenvolupament d'aquesta assignatura es fan les activitats següents:

- Classes expositives.
- Anàlisi de preguntes d'exàmens de cursos anteriors amb la participació dels alumnes.
- Seminaris.
- Estudi i anàlisi de documentació tècnica.
- Pràctiques de laboratori.
- Respostes a preguntes prefixades relacionades amb les pràctiques de laboratori.
- Examen.
- Anàlisi i estudi d'accionaments. Elecció del tipus de motor i control més adequat.

La disponibilitat d’un extens i ben documentat catàleg tècnic de motors pas a pas (estàndard, micropàs i lineals) i de servomotors sense escombretes (brushless), amb vint-i-vuit exemples d’aplicació, ens va permetre plantejar l’activitat “Anàlisi i estudi d’accionaments. Elecció del tipus de motor i control més adequat”. Aquesta activitat incideix en més o menys grau en la majoria de les competències assignades a l'assignatura i s'estructura de manera que assegura la interdependència positiva de tots els membres del grup de treball.
2. Descripció de l'activitat

Comptències i continguts relacionats amb l'activitat

Aquesta activitat ajuda a adquirir les següents competències de la titulació assignades a l'assignatura:

- Identificar, interpretar el funcionament i utilitzar màquines elèctriques.
- Interpretar les característiques i aplicar dispositius comercials en el disseny d'instal·lacions d'automatització i control.
- Dissenyar i documentar sistemes d'automatització i control de processos industrials.
- Ser capaç d'analitzar.
- Treballar en equip.
- Seleccionar i utilitzar adequadament els mitjans idonis per a la comunicació oral, escrita i gràfica en l'entorn tècnic de la titulació.
- Interpretar textos de caràcter tècnic escrits en anglès.

També incideix especialment en l'adquisició d'una altra competència formulada exclusivament per a l'assignatura:

- Seleccionar el tipus de motor i variador adequat pels requeriments d'un determinat accionament.

L'activitat es relaciona amb els següents continguts de l'assignatura:

- Motors sense escombrete (brushless)
- Motors pas a pas
- Servoaccionaments i servomotors
- Selecció i aplicació de motors i variadors

Objectius formatius

A més d'incidir en l'adquisició de les competències abans esmentades, en finalitzar aquesta activitat l'estudiant ha de ser capaç de:

- Analitzar una màquina o procés i identificar els requeriments que han de complir els motors dels corresponents accionaments.
- Justificar l'elecció d'un tipus de motor i control adequat per als accionaments d'una màquina.
- Presentar diferents solucions tècniques aplicables a un mateix accionament.
- Conèixer el significat del vocabulari tècnic d'electromecànica en angles.

Materials

Es reparteixen a cada grup de tres persones sis descripcions d'exemples d'aplicació de motors pas a pas i motors sense escombrete (brushless). Són pàgines escanejades del catàleg tècnic Step Motor & Servo Motor System and Controls, de Parker Motion and Control. Cada alumne té assignats dos exemples. Es procura que els sis exemples repartits a cada grup siguin prou variats, amb problemes diferenciat. També es lliuren a cada grup les característiques tècnicas dels motors i controls que el fabricant proposa com a solució tècnica per a aquests exemples d'aplicació.

En la figura 1 es pot observar un dels exemples d'aplicació. La cinta que transporta les caixes té un moviment continu sense pausa i pot anar a velocitat variable. S'ha d'accelerar
Experiències docents d’adaptació a l’EEES

la cinta transportadora d’alimentació de productes per situar, d’una manera sincronitzada i en un temps adequat, el producte en la posició correcta per poder ser empès a dins d’una caixa.

Figura 1. Un exemple d’aplicació per analitzar.

El coneixement del significat del vocabulari anglès en aquest àmbit tècnic és un dels objectius importants de formació d’aquesta activitat. El significat de determinades paraules angleses en aquest context tècnic no és obvi, i per tant també es facilita a cada grup una llista de vocabulari tècnic d’electromecànica en anglès amb el respectiu significat en català.

Tasques que s’han de fer

Per a cada exemple d’aplicació, l’alumne analitza la màquina o procés i identifica els requeriments que ha de tenir el motor o motors dels accionaments respectius. Analitza de manera crítica la idoneïtat de la solució proposada pel fabricant i fa una llista de justificacions, i a la vegada analitza la possibilitat d’aplicar altres tipus de motors. Cal tenir en compte que la solució del fabricant està naturalment dirigida a l’aplicació dels seus productes i que per tant és interessant i enriquidor fer una anàlisi crítica i estudiar l’aplicabilitat d’altres alternatives.

A classe, amb la supervisió del professor, cada grup fa una discussió i posada en comú en què cada alumne explica els seus dos exemples i el treball d’anàlisi fet. Finalment, han d’escollir un exemple i preparar una presentació a la resta de la classe.

En sessions posteriors cada grup fa una exposició a la resta de la classe de l’exemple d’aplicació escollit.

Criteris d’avaluació

De manera ponderada s’avalua el treball de grup i l’aportació individual de cada alumne. Es valora especialment la coherència de les justificacions de la idoneïtat del motor aplicat presentades individualment i pel grup en l’exposició pública final. També es valoren les aportacions per acceptar o descartar la possible aplicabilitat d’altres tipus de motors.
3. Resultats
En general el treball i l’anàlisi que han fet els grups de treball en els dos cursos en què s’ha plantejat aquesta activitat han estat satisfactoris. L’assignació inicial de dos exemples a cada alumne perquè posteriorment se’n faci una posada en comú ha assegurat la interdependència positiva.

Per a l’exposició a la resta de la classe, cal explicar que en alguns casos el professor ha conduit l’elecció de determinats exemples perquè aquests presentaven peculiaritats úniques que convenia presentar a tota la classe. En aquestes exposicions, encara que s’ha convidat els alumnes oients a fer pregunes, aquests més aviat hi han participat poc.

4. Discussió
Encara que es tracta d’una activitat de curta durada, amb una estimació de 3 hores de càrrega sense professor i 4 hores amb professor, creiem que cal millorar la conducció d’aquesta activitat d’aprenentatge cooperatiu.

Es volen millorar alguns aspectes per a cursos vinents. Com que és una activitat que permet desenvolupar determinades competències transversals com ara el treball en grup o el lideratge, seria interessant establir que els alumnes del grup assumissin diferents rols.

Es vol reduir la informació que es dóna als alumnes de cada exemple eliminant la part corresponent a la solució del fabricant de manera que els alumnes facin l’anàlisi sense disposar prèviament d’una solució tècnica. També s’estan cercant altres exemples de màquines o processos que aportin altres aspectes peculiars.

Finalment, plantegem eliminar la classe expositiva corresponent als continguts “Selecció i aplicació de motors i variadors”, que estan més directament relacionats amb l’activitat. Així, l’aprenentatge cooperatiu d’aquests continguts també formaria part de l’activitat.

5. Bibliografia
IMPLICACIÓ DELS ESTUDIANTS EN L’ASSIGNATURA

Lluís Ripoll Masferrer
Àrea d’Enginyeria Mecànica

Resum: en aquest treball s’explica una experiència de treball en equip que es realitza en l’assignatura Disseny de màquines, dels estudis d’ETIM, per donar a conèixer als estudiants la finalitat de l’assignatura i fer-los participar en la responsabilitat d’adquirir el seu propi aprenentatge.

1. Introducció
Els professors solem donar per suposat que els estudiants estan interessats per la temàtica de la nostra assignatura, o almenys creiem que s’engrescaran amb les nostres explicacions al llarg del curs. Els estudiants ho veuen a la seva manera: alguns creuen d’entrada que els continguts seran útils, però la majoria, potser més escèptics, es preguntren: de què em servirà?. Segurament tots coincideixen en l’objectiu a curt termini de voler aprovar l’assignatura. Aquesta realitat ens ha de portar a reflexionar sobre el sentit que té per a l’estudiant assistir a una assignatura.

L’objectiu d’aquesta comunicació és exposar l’experiència d’una activitat implantada en l’assignatura Disseny de màquines, encaminada a donar a conèixer als estudiants la finalitat de l’assignatura, de manera que participin en la responsabilitat del seu propi aprenentatge.

L’activitat que s’exposa no és nova; fa quatre anys que es realitza. Això ha permès introduir petits canvis per millorar-la, de manera que actualment és una activitat suficientment madura. També ha permès conèixer més a fons l’opinió dels estudiants. S’ha comprovat que l’interès per l’activitat es manté al llarg de tota l’assignatura, i es pot dir que en les quatre edicions ha anat augmentant. També s’ha comprovat que aquesta opinió es manté temps després de cursar l’assignatura. En una enquesta sobre la valoració global de la carrera en finalitzar els estudis, el 62 % dels graduats opinen que aquesta assignatura està entre les dues o tres de la carrera on més han aprendit. Aquestes valoracions o altres tipus de verificacions són sempre molt interessants a l’hora de donar a conèixer una nova activitat docent.

2. Descripció i millores en l’assignatura Disseny de màquines
L’assignatura Disseny de màquines, on s’ha implantat aquesta activitat, és una assignatura normal, semblant a moltes altres dins els estudis d’Enginyeria Tècnica Industrial Mecànica. La seva durada és quadrimestral, de tipus troncal, i s’imparteix a segon curs. És de cinc hores setmanals, amb una estructura molt habitual dins la carrera: 4 hores de teoria més problemes d’aula i una hora de pràctiques, que alterna el laboratori amb l’aula d’informàtica. A més, tradicionalment es feia un treball que s’havia de lliurar al final de curs. S’avalua mitjançant un examen final consistent en la resolució de problemes, juntament amb les notes del treball i de les pràctiques. El nombre d’estudiants per curs és elevat, al voltant de cent per curs, tots dins un únic grup de teoria.
El contingut principal de l'assignatura és el càlcul de components de màquines. S'expliquen els mètodes de càlcul per a cada tipus d'element amb l'objectiu de comprovar-ne el bon disseny. S'exposen segons el sistema tradicional, començant pels principis bàsics, i s’arriba a les aplicacions en problemes pràctics.

Els resultats de l'assignatura no eren dolents, però es tenia la sensació que la motivació dels estudiants podia millorar, ja que es semblava que es movien més per aprovar l'examen que per entendre el disseny de màquines. Per això es va creure convenient dedicar un temps a donar a conèixer la finalitat dels càlculs abans d'explicar-ne la teoria. Una manera fàcil va ser modificar el plantejament del treball en grup. El treball tradicional, que consistia en un recull d'informació sobre un cas pràctic i que es realitzava cap al final de curs, es va modificar per una activitat realitzada des de l'inici de curs. Consistia a plantejar a cada estudiant el càlcul d'una peça real, amb l'objectiu que entengués la finalitat del càlcul abans d'exposar la teoria, i despertar així l'interès pel tema.

3. El treball en grup
La metodologia de l'activitat és simple; es fa en grups de tres estudiants, assignats pel professor per fomentar la integració de criteris. Comença el primer dia de curs i es realitza en diferents etapes al llarg de l'assignatura.

El tema l'han de proposar els mateixos estudiants. Cada grup ha de buscar un element mecànic simple, del qual coneixen l'aplicació real. Aquests poden ser de molts tipus, per exemple, una eina de taller, una peça de bicicleta o d’una altra màquina, sempre que en coneguin l’ús. La proposta ha de ser acceptada pel professor amb la finalitat d’assegurar un nivell de dificultat mínim, però alhora limitat. És especialment important, segons l’experiència d’aquests anys, encertar en l’elecció dels temes, ja que condiciona molt l’eficàcia de l’activitat.

El treball consisteix a demostrar que la peça és suficientment resistent en la seva aplicació real. Per fer-lo més atractiu, es pretén que es desenvolupi en un marc semblant a com es faria en una indústria, on el professor és, per exemple, el cap del departament de disseny, i els estudiants són els tècnics encarregats del disseny de la peça.

Al llarg del curs s’han de fer quatre lliuraments, seguint les etapes successives del càlcul de la peça, i que coincideixen amb els capítols principals de l'assignatura. D’aquesta manera, abans que el professor expliqui a classe la teoria d’un tipus de càlcul, l’estudiant ja té plantejat un problema d’aplicació. A més, aquest problema és totalment real i propi per a cada estudiant, de manera que s’hi sent molt identificat.

Cada grup ha de lliurar els quatre informes següents:
1. Dibuix i càlculs de forces.
2. Càlcul de tensions en els punts més desfavorables.
3. Càlcul en condicions estàtiques amb les càrregues màximes reals.
4. Càlcul en condicions de fatiga per una vida estimada real.

Al final han de resumir els quatre informes en una memòria global i defensar-la oralment davant del professor. No és una exposició oral clàssica, sinó una sessió d'aclariments similar a la que es pot fer en una empresa, on es té confiança en el tècnic però és necessari assegurar la correcció de la solució. La memòria ha d’estar signada per tots els
membres, excepte en el cas que un d’ells no hagi participat en el treball i els altres companys considerin que no té dret a signar. Així mateix, en la defensa el professor pregunta individualment a cada membre per comprovar que hi ha participant i és capaç de justificar-ne tot el contingut.

4. Condicions de l’activitat
L’activitat ha d’ocupar un temps limitat, tant per als estudiants com per al professor. L’estudiant no hi ha de dedicar gaire temps, poc més del que l’ocupa un problema de classe extens, llevat de la realizació dels dibuixos i les discussions entre els companys. També els informes han de ser breus, semblants als informes interns d’una empresa, on es valora més l’efectivitat que el lluïment. En els informes sempre han de quedar molt clars els punts principals: les dades de partida, el sistema de càlcul i els resultats.

La correcció del treball per part del professor tampoc no ha de ser gaire exhaustiva, n’hi ha prou de tenir la certesa que el càlcul justificatiu és correcte. Es dóna més importància a les dades de partida i al resultat final que al desenvolupament matemàtic del càlcul. Per tant, el temps de dedicació del professor també és breu.

En tot el treball els estudiants porten la iniciativa, són ells els que coneixen l’aplicació real de la peça i assumeixen la responsabilitat de les dades de partida. També han de prendre totes les decisions de càlcul, encara que d’entrada els suposi un cert respecte. El professor es fia sempre del seu criteri, llevat que no sigui clarament erroni.

5. Conclusions
Després de l’experiència d’aquests anys, es veu que val la pena dedicar un cert temps a donar a conèixer l’objectiu de l’assignatura, de manera que l’estudiant es faci responsable de la finalitat de l’assignatura.

Amb aquesta activitat s’ha aconseguit l’objectiu de millorar l’atenció i l’interès per les explicacions de classe i per l’assignatura en general, ja que l’estudiant veu la seva aplicació a un cas real.

Finalment, també s’ha modificat lleugerament la relació entre professor i estudiant. El professor no és qui planteja el problema, sinó que és la persona d’experiència que ajuda l’estudiant a resoldre el problema que té plantejat prèviament.
APRENENTATGE COOPERATIU A L’ASSIGNATURA ANÀLISI
APLICADA A LA INDÚSTRIA D’ETIQI

Isabel Villaescusa Gil
Àrea d’Enginyeria Química

Resum. Aquest treball recull els resultats de l’experiència obtinguda en aplicar la metodologia
d’aprenentatge cooperatiu en una de les activitats proposades en l’assignatura Anàlisi aplicada a la indústria,
dels estudis d’Enginyeria Tècnica Industrial, especialitat Química Industrial. Després de tres anys d’aplicació,
ers als resultats demostren que la introducció d’aquesta nova metodologia docent, si bé no millora el
rendiment acadèmic, té, entre altres, l’avantatge que el professor pot individualitzar el treball que fa cada
alumne i que els alumnes adquireixen competències transversals.

1. Introducció
L’assignatura Anàlisi aplicada a la indústria és una assignatura optativa de tercer curs dels
estudis d’Enginyeria Tècnica Química, especialitat en Química Industrial, de l’Escola
Politècnica Superior. Cal dir que el pla d’estudis, que data del 2002, no ha estat adaptat a
l’espai europeu d’educació superior. Fins al curs 2004-2005 la docència de l’assignatura
s’impartia a través de classes expositives (30 hores), classes de problemes a l’aula (15
hores) i pràctiques al laboratori (15 hores). A més d’assistir a totes les activitats descrites
anteriorment, els alumnes, en grups de tres, havien de presentar un pòster en què es
recollia un treball sobre l’aplicació d’una tècnica instrumental d’anàlisi en un procés
industrial. Aquest treball representava un 15 % de la nota final. Tot i que els resultats
obtinguts eren força bons (una mitjana d’1,2 punts sobre un total d’1,5 punts), a l’hora
da’avaluar els alumnes individualment, el professor tenia dubtes, ja que era impossible
saber quina era la implicació individual de cada alumne en el treball, i també tenia dubtes
que realmente haguessin treballat en equip.

Aprofitant l’impuls que el govern de la UdG va donar a l’adaptació de les assignatures a
l’EEES de cara a la implantació dels nous estudis de grau, es va decidir aplicar la
metodologia d’aprenentatge cooperatiu per a la realització del treball en grup abans
esmentat. En principi ja es va veure un avantatge important, com és el fet d’implicar els
tres alumnes del grup en la realització del treball i no tenir dubtes a l’hora de donar la
mateixa nota a tots els membres del grup. I el que és més important és el fet de poder
avaluar competències transversals que fins ara no s’havien tingut en compte. Ens vam
proposar d’avaluar les següents competències transversals, que coincideixen amb algunes
de les competències que havia proposat la UdG: recollir i seleccionar informació de
manera efcàcia i eficient, treballar en equip establint les relacions que més poden ajudar a
fer aflorar potencialitats de cooperació, comunicar-se de manera efectiva oralment i per
escrit, i seleccionar i utilitzar les tecnologies de la informació i la comunicació més
adequades.

Tenint en compte que es tracta d’un canvi metodològic en una assignatura d’uns estudis
no adaptats, l’activitat té una durada de 12-14 hores i es du a terme majoritàriament dins
l’horari de classes per no donar una càrrega extra de treball als alumnes, que aniria en detriment de la seva dedicació a altres assignatures.

2. Descripció de l’activitat
L’activitat s’anuncia i es presenta des del començament del curs i ja des de llavors el professor convida els alumnes a anar pensant quins seran el tres components de cada grup. A continuació es descriuen les sessions en què s’organitza l’activitat:

Primera sessió: 2 hores (presentació de l’activitat)
Durant la primera hora el professor fa una sessió introductòria sobre l’aprenentatge cooperatiu. S’expliquen les bases del mètode fent èmfasi en què significa que hi hagi entre els membres del grup una interdependència positiva [1], què són les competències [2] i quines competències es treballen en el desenvolupament d’aquesta activitat, i finalment s’expliquen els criteris d’avaluació i el tipus d’avaluació. S’insisteix en el fet que l’aprenentatge cooperatiu és com emprendre una aventura en un vaixell en el qual cadascú té la seva tasca, i que l’èxit o el fracàs a l’hora d’assolir un objectiu comú es basa en la confiança, el compromís, el respecte i la paciència de tots els membres de l’equip.

Se’ls comunica que el treball que hauran de desenvolupar l’hauran de presentar oralment davant dels companys de la classe i que la presentació i la defensa del treball la farà un dels membres del grup escollit a l’atzar; també que la presentació l’avaluaran els companys i el professor seguint una plantilla i que la nota de l’activitat representarà un 15 % de la nota final de l’assignatura.

La segona hora es dedica a descriure la tasca individual que haurà de fer cada un dels membres del grup i que haurà de presentar davant dels seus companys en la sessió següent. Concretament, la tasca consisteix a buscar informació sobre l’aplicació d’una tècnica instrumental d’anàlisi en una indústria. Aquesta aplicació pot ser en una indústria real o bé inventada. El treball consta de tres parts ben diferenciades: la descripció del procés químic, la necessitat d’analitzar un o més compostos i les tècniques instrumental adients per fer l’anàlisi.

Segona sessió: 2 hores (distribució de tasques)
Al començament de la sessió els grups es distribueixen en diferents espais de l’aula. Cadascun dels membres de l’equip presenta als altres dos l’aplicació que té pensada. Durant aquest temps, el professor té l’oportunitat de veure com ha treballat cada alumne individualment, com ha organitzat l’exposició del treball i com la comunica. També pot observar com va la relació entre els membres del grup. No cal dir que durant aquest temps es crea una interacció entre el professor i els membres dels diferents grups per anar aclarint els dubtes que puguin sorgir. El professor convida els alumnes a preguntar al seu company tot allò que no els queda clar sobre els projectes que presenten els seus companys. Un cop acabada l’explicació individual, el professor demana que discutueixin la viabilitat de dur a terme cadascun dels projectes, analitzant-ne els pros i els contres, i que triïn el que més els escaiguí.

Un cop decidit el projecte que duran a terme, cal que cada grup es posi d’acord i decideixi quin membre fa cadascuna de les parts. El professor pren nota tant del projecte escollit com del repartiment de les tasques que han decidit.
Experiències docents d’adaptació a l’EEES

Tercera i quarta sessió: 2 hores (cerca d’informació)
Aquestes dues sessions estan dedicades a la cerca d’informació i tenen lloc a la Biblioteca del campus de Montilivi; concretament es reserva o bé una sala o bé taules amb ordinadors. Cada estudiant busca informació en llibres, articles, Internet o altres fonts sobre la part del treball que se li ha encomanat. El professor actua com a assessor. Si durant aquestes dues sessions l’alumne creu que no ha tingué temps de buscar informació per completar la seva part, ho haurà de fer fora de l’horari de classes.

Cinquena sessió: 2 hores (desenvolupament del treball)
Els membres de cada grup posen en comú la informació que ha trobat cadascuna de les tres parts. El professor els anima a fer preguntas sobre les diferents parts i a ser crítics pel que fa al treball dels altres companys. Durant la discussió, el professor té l’oportunitat de veure com funciona el grup pel que fa al lideratge, la negociació, l’acceptació de les diferents maneres d’aprendre, el respecte, etc. Al final de la sessió han de decidir quina estructura tindrà la presentació del treball.

Sisena sessió: 2 hores (preparació de la presentació oral)
Aquesta sessió es fa en una aula informàtica, de manera que cada grup disposi d’un ordinador per preparar el PowerPoint que servirà de suport a la presentació oral del treball. Els alumnes saben que disposen de 10 minuts per fer la presentació i que podran ser sotmesos després a preguntas durant 5 minuts tant per part dels companys com del professor. Durant aquesta sessió, el professor té un altre cop l’oportunitat de veure el funcionament del grup. És important que el professor resolgui els problemes tècnics que se’ls puguin presentar en utilitzar el programa informàtic.

Setena sessió: 2-4 hores (presentació i defensa del treball)
Per saber quin dels tres membres de cada grup presenta el treball, el professor demana que cadascun dels membres dels diferents grups es numeri de l’1 al 3. El professor l’escull d’entre tres paperetes numerades. L’alumne de cada grup que té el número escollit fa la presentació.

La presentació l’avaluen el professor i els components dels altres grups (avaluació entre iguals). Tots els avaluadors disposen d’una plantilla que conté els diferents aspectes que s’han d’avaluar. La plantilla conté aspectes relacionats amb el treball (novetat del tema, acompliment dels objectius, coneixement del tema), la presentació (gestió del temps, disseny de les diapositives, exposició ordenada) i les aptituds personals (domini del mitjà audiovisual, comunicació: empatia i claredat en l’exposició). Cada apartat es pot valorar de 0 a 3. El percentatge obtingut en l’avaluació es multiplica per 1,5 i aquesta és la nota per als tres components del grup.

3. Resultats
En la taula 1 es presenten les notes (sobre un màxim d’1,5) corresponents a l’avaluació del treball en equip que han fet els alumnes dels darrers quatre cursos acadèmics. Només en els tres últims cursos s’ha aplicat la metodologia d’aprenentatge cooperatiu.
4. Discussió
Tal com es pot veure en la taula 1, la nova metodologia no aporta millores en la qualificació del treball. Nogensmenys, des del punt de vista de l’aprenentatge, els alumnes practiquen i per tant adquireixen una sèrie de competències que fins al moment que es va canviar de metodologia no es treballaven. ELS mateixos se n’han adonat i ho manifesten en l’enquesta que se’ls passa sobre el funcionament de l’activitat. En aquesta enquesta se’ls demana que escriguin els aspectes positius i els aspectes negatius. En la taula 2 es presenta un resum de les principals percepcions dels alumnes (columna de l’esquerra), juntament amb alguns dels avantatges que el canvi de paradigma en l’educació ha de representar segons el pla de Bolonya (columna de la dreta).

<table>
<thead>
<tr>
<th>Curs acadèmic</th>
<th>Nombre d’estudiants</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2005*</td>
<td>25</td>
<td>1,2±0,2</td>
</tr>
<tr>
<td>2005-2006</td>
<td>12</td>
<td>1,3±0,1</td>
</tr>
<tr>
<td>2006-2007</td>
<td>9</td>
<td>1,2±0,1</td>
</tr>
<tr>
<td>2007-2008</td>
<td>6</td>
<td>1,2±0,1</td>
</tr>
</tbody>
</table>

*No es va aplicar la metodologia d’aprenentatge cooperatiu.

<table>
<thead>
<tr>
<th>Aspectes positius</th>
<th>Avantatges de l’adaptació a l’EEES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajuda a aprendre com es poden entendre els membres del grup.</td>
<td>— Estimula la cooperació entre alumnes</td>
</tr>
<tr>
<td>Facilita l’intercanvi d’informació entre els companys.</td>
<td>— Ajuda a respectar les diferents formes d’aprendre</td>
</tr>
<tr>
<td>Facilita la coneixença entre els companys de classe.</td>
<td></td>
</tr>
<tr>
<td>Provoca la presa de contacte amb una empresa real.</td>
<td></td>
</tr>
<tr>
<td>Proporciona l’oportunitat de conèixer techniques emprades en una indústria real.</td>
<td></td>
</tr>
<tr>
<td>Permet adquirir experiència a fer cerques per Internet.</td>
<td>— Estimula l’aprenentatge actiu.</td>
</tr>
<tr>
<td>Permet adquirir destresa per utilitzar el PowerPoint.</td>
<td>— —</td>
</tr>
<tr>
<td>S’aprenen hàbits de comunicació.</td>
<td></td>
</tr>
<tr>
<td>Permet iniciar-se en les exposicions orals.</td>
<td></td>
</tr>
<tr>
<td>Permet contrastar diferents opinions.</td>
<td>— Potencia les competències transversals.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspectes negatius</th>
</tr>
</thead>
<tbody>
<tr>
<td>És difícil trobar les hores i les dates per trobar-se.</td>
</tr>
<tr>
<td>És difícil prendre contacte amb les empreses.</td>
</tr>
<tr>
<td>És difícil inventar un procés i el treball en si mateix.</td>
</tr>
<tr>
<td>És difícil avaluar els companys de classe.</td>
</tr>
</tbody>
</table>

En la taula s’observa clarament que els punts positius que els alumnes manifesten en les enquestes són precisament alguns dels avantatges que s’esperen obtenir amb l’adaptació dels plans d’estudi a l’EEES.
5. **Conclusions**

Els resultats presentats demostren que l’experiència resulta positiva tant per als alumnes com per al professor, ja que no els representa una càrrega addicional de treball, i també que el treball en equip amb la metodologia de l’aprenentatge cooperatiu serà una eina molt adequada i que s’haurà de tenir molt en compte a l’hora de programar els nous estudis de grau.

6. **Bibliografia**

AVALUACIÓ DE L’APRENENTATGE
AVALUACIÓ RESPONSABLE

Xavier Cahis Carola
Àrea d’Enginyeria de la Construcció

Resum. Quan en el procés d’aprenentatge l’avaluació és marcadament de caràcter final, l’activitat docent dels estudiants es concentra principalsment en els períodes d’avaluació. Per incentivar la regularitat de l’alumne en el seu treball i fomentar una distribució més uniforme de l’activitat tutorial del professorat, es planteja un mètode que l’autor anomena *avaluació responsable*. Aquest tipus d’avaluació consisteix en la realització periòdica, per part de l’alumne, d’exercicis avaluables i voluntaris, sempre vinculats amb la nota final. L’experiència pràctica, en una assignatura amb grups de seixanta persones per professor, ha permès apreciar que el procés pot millorar els resultats acadèmics si hi ha complicitat amb l’alumne, però que aquesta complicitat és baixa en la majoria dels casos.

I. Introducció
La classe magistral, expositiva, és un element molt utilitzat en la pràctica docent. Als alumnes, a partir de l’exposició del professor sobre uns coneixements determinats, se’ls demana que resolguin treballs, exercicis o problemes, i que plantegin els seus dubtes mitjançant tutories. El procés avaluador que sol acompanyar aquest procés formatiu es produeix en la fase final, mitjançant un examen. El que finalment sol passar és que l’estudiant concentra el procés d’aprenentatge (estudi, comprensió i realització d’exercicis pràctics) al voltant de les dates d’examen, i que l’acció tutorial, un element de *feedback* importantíssim en el procés d’aprenentatge, tant per al professor com per a l’alumne, passa a un segon pla.

Dues raons per les quals aquesta pràctica formativa és tan estesa (tot i l’existència d’alternatives en alguns casos probablement més eficients) podrien ser les següents:

1. Les polítiques universitàries incentiven molt més la recerca i la publicació que la pràctica docent. La classe magistral, juntament amb l’examen final, permet conciliar millor la docència amb les altres tasques que ha de dur a terme el professorat (la gestió, la recerca i la transferència de la tecnologia), ja que requereix menys dedicació.

2. Una gran part del col·lectiu del professorat universitari no està al corrent de les tècniques formatives alternatives a les tradicionals.

Des de la declaració de Bolonya, les universitats catalanes en general, a través dels òrgans de govern, es mostren més sensibles i promouen l’ús de sistemes formatius alternatius als tradicionals. A títol personal, l’autor ha optat, en una assignatura amb una certa massificació, per una variant del sistema tradicional. Aquesta variant pretén incentivar el treball regular i la utilització de la tutoria (individual o en grup) mitjançant un procés d’avaluació continuada. Els alumnes que volen treure profit d’aquest procés d’aprenentatge (més afectiu) ho fan de manera voluntària i responsable.
2. Mètode
El mètode que es proposa, anomenat *avaluació responsable*, està pensat en principi per a assignatures amb una ràtio d'alumnes i professors relativament elevada. L'avaluació responsable es basaria en conceptes tradicionals, com ara la classe expositiva i la realització d'exercicis pràctics. Com a element nou, aquest mètode pretén fomentar l'aprenentatge continuat mitjançant una avaluació periòdica voluntària. Aquests serien els trets bàsics del procés d'aprenentatge proposat:

1. En la classe expositiva el professor introdueix els elements de coneixement bàsics que han de permetre als alumnes un treball posterior, necessari. Aquest treball es facilita setmanalment i es fixa en uns exercicis o problemes escollits i amb una demanda de dedicació raonable per part de l'alumne.

2. Els exercicis es poden treballar individualment o en grup. Es fomenta que, un cop fet l'esforç per resoldre els exercicis, l'alumne o el grup d'alumnes sol·licitin una tutoria. La funció de la tutoria és doble: resoldre dubtes i donar feedback al professor sobre el procés d'aprenentatge.

3. Cada tres o quatre classes es fa un exercici pràctic a classe, que és avaluable. El fa tothom, però s'entrega de manera voluntària.

4. L'exercici se soluciona i es penja al web, perquè tots els alumnes puguin contrastar la solució proposada amb la seva solució. A petició de l'alumne, hagi o no presentat l'exercici, es pot comentar el procés de resolució en una tutoria, de manera particular o, preferiblement, en grup.

El fet que aquest exercici avaluable s'entregui de manera voluntària i responsable és determinat pel mètode d'avaluació. El procés es basa en el fet que els exercicis entregats (que poden ser tots els exercicis o bé una part) són avaluats i computen en la nota final, juntament amb la nota de l'examen final, tant si s'han aconseguit bons resultats com mals resultats. Com més exercicis entrega l'alumne, més pes tenen les proves en la nota final. L'entrega d'una prova no és, per tant, un simple exercici de sort, sinó un acte de responsabilitat per part de l'alumne.

El procés introdueix diversos elements que es poden considerar positius: (i) l'alumne pot escollir entre un sistema amb avaluació continuada o un sistema amb avaluació final, i ho fa de manera responsable, implicant-se en el procés; (ii) tots els alumnes s'enfronten a situacions d'avaluació prèvies a un examen final, i prenen consciència de la seva capacitat real per desenvolupar exercicis pràctics; (iii) l'aprenentatge i l'avaluació continuats resulten menys costosos en temps, ja que l'esforç addicional del professor va destinat principalment als alumnes involucrats de manera responsable.

3. Aplicació pràctica

El procés d'avaluació responsable es va introduir en el curs acadèmic 2004-2005. L'avaluació comprenia quatre exercicis voluntaris avaluables i un examen final (amb dues convocatòries), amb un valor que podia oscil·lar entre els 5,5 punts (en el cas de quatre proves entregades) i els 10 punts (si l'alumne no havia entregat cap prova). Segons la taula
1, els resultats en el curs 2004-2005 es poden considerar satisfactoris, atès que es va reduir la taxa de no presentats i de suspesos i que es va elevar el percentatge d’alumnes amb bons resultats acadèmics. El nombre d’exercicis avaluables entregats va ser reduït (Cahís, 2007), però es va constatar un augment en la regularitat d’assistència a tutories amb exercicis previs realitzats. En el curs acadèmic 2005-2006 els resultats van ser pitjors que els esperats, amb una taxa de suspesos i no presentats que superava el 60 %. L’ús que va fer l’alumne de l’avaluació responsable va ser molt inferior que el que s’havia fet durant el curs anterior, i es va considerar que l’alumnat no estava prou incentivat per continuar el procés. Amb aquests resultats, durant el curs 2006-2007 s’hi va afegir un nou incentiu: es podia aprovar per curs si s’entregaven i aprovaven totes les proves parciais. L’alumne en general no es va implicar en el procés i els resultats, tal com es pot veure en la taula 1, van ser els pitjors resultats obtinguts des que es va implementar el mètode i no es va produir una millora qualitativa substancial en relació amb el mètode tradicional.

Taula 1. Resultats acadèmics en l’assignatura Fonaments de resistència de materials

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCEL·LENT /M.H.(9-10)</td>
<td>1.5%</td>
<td>0.0%</td>
<td>1.4%</td>
<td>4.2%</td>
<td>0.0%</td>
<td>0.81%</td>
</tr>
<tr>
<td>NOTABLE (7-8.99)</td>
<td>2.3%</td>
<td>5.0%</td>
<td>6.4%</td>
<td>16.0%</td>
<td>10.6%</td>
<td>5.69%</td>
</tr>
<tr>
<td>APROVAT (5-6.99)</td>
<td>22.0%</td>
<td>18.0%</td>
<td>32.1%</td>
<td>34.7%</td>
<td>28.3%</td>
<td>30.89%</td>
</tr>
<tr>
<td>SUSPÈS (0-4.99)</td>
<td>41.7%</td>
<td>41.7%</td>
<td>23.6%</td>
<td>17.4%</td>
<td>31.0%</td>
<td>21.95%</td>
</tr>
<tr>
<td>NO PRESENTAT</td>
<td>32.6%</td>
<td>35.3%</td>
<td>36.4%</td>
<td>27.8%</td>
<td>30.1%</td>
<td>40.65%</td>
</tr>
</tbody>
</table>

4. Conclusions

El procés d’avaluació responsable és positiu per a l’alumnat que l’adoptà, ja que li permet aconseguir un aprenentatge continuat amb feedback i millors resultats acadèmics. El procés es positiu per al docent, ja que li comporta menys dedicació que en un procés d’avaluació continuada normal, li permet una dedicació tutorial i d’avaluació molt valiosa, amb un treball previ i continuat per part de l’alumne, i que li dóna feedback sobre el procés d’aprenentatge molt abans d’arribar als exàmens finals. Tot i aquests elements a favor, el sistema requereix fonamentalment la implicació de l’alumnat, com demostren els resultats. Aquesta implicació ha estat diversa en els tres anys en què s’ha dut a terme l’experiència, amb una evolució negativa dins d’aquest període, contrariament al que s’esperava.

5. Referències

Experiències docents d’adaptació a l’EEES

URBANISME I. CORRECCIÓ ENTRE IGUALS
Nàdia Fava
Àrea d’Urbanística i Ordenació del Territori

Resum. En aquest treball es presenta una experiència d’avaluació per correcció entre iguals que es va dur a terme en l’assignatura d’Urbanisme 1, dels estudis d’Arquitectura. Els estudiants corregeixen el treball que han fet en grup i participen així en l’avaluació del seu propi treball juntament amb els professors.

1. Introducció
L’adaptació de la universitat espanyola a l’espai europeu d’ensenyament superior, segons el Conveni de Bolonya del 1999, no només significa un canvi tècnic pel que fa al càlcul dels crèdits i la seva distribució, sinó que comporta sobretot —i és l’aspecte més interessant i suggeridor— l’anomenat canvi cultural, en què tot el cos docent ha d’implicar-se en l’aplicació del nou model.

Aquest model implica canvis sobre diversos aspectes de l’ensenyament, dels quals val la pena remarcar dos àmbits específics: la importància d’adaptar la docència a les necessitats i les noves expectatives del món actual, sigui professional, sigui del mateix alumnat, i la modificació de les metodologies docents, en què l’experiència serà el primer motor de l’aprenentatge per als estudiants i per als professors.

Aquest canvi, pel que fa al cas específic dels estudis d’Arquitectura —en què la metodologia tradicional d’ensenyament de les matèries projectuals, projecte i urbanisme, ha estat des del segle XIX el taller—, comporta fonamentalment una adaptació, un ajust o una modificació, més que un canvi radical. Aquesta es converteix en una cerca sobre els aspectes més rellevants en l’àmbit de la comunicació entre alumnes i cos docent, i més fonamentals de l’ofici.

Igualment, en termes més genèrics, posar en dubte el sistema clàssic d’ensenyament basat fonamentalment en classes magistrales i proves de coneixement vol dir qüestionar el paper del professorat i donar més protagonisme a la docència com a treball actiu i de recerca de noves metodologies sempre passibles als nous canvis.

La comunicació explica una experiència d’ensenyament, una pràctica, una prova possiblement útil per al futur, en què s’intenten corregir alguns dels problemes que s’han detectat durant el curs acadèmic precedent, entre els quals el més remarcable i sintètic és una participació dels alumnes en la classe dificilment comparable amb les expectatives del professorat. L’objectiu és fer émfasi en la importància d’una actitud activa del professorat respecte a la docència, cosa que comporta una major dedicació, però també les típiques gratificacions, positives i negatives, de la recerca científica.
2. Experiència

Als estudiants d’Urbanisme I del primer curs dels estudis d’Arquitectura de l’Escola Politècnica Superior se’ls va proposar l’anàlisi d’un barri de Girona, un entorn fàcilment accessible per tothom, segons una metodologia explicada a classe.

Els estudiants van haver de decidir els grups de treball, de tres persones, escollir la zona d’estudi entre les cinc que el professor va proposar i treballar en grup i, en cas d’imposse, superar-lo.

El professorat va tenir fonamentalment dues funcions: la funció de referent per superar les dificultats del treball en grup i la funció de docent per explicar la metodologia de desenvolupament de l’exercici.

Durant l’any precedent, i al llarg la primera part del semestre, es va proposar la correcció dels treballs mitjançant una exposició pública dels treballs elaborats, que tenia com a objectiu practicar l’expressió oral mitjançant un discurs formal i l’autocorrecció a partir de les experiències dels altres estudiants.

El professorat va tenir dos problemes principals: mantenir l’atenció de tot l’alumnat quan els companys explicaven i decidir si era millor deixar parlar els alumnes o interrompre’ls per ajudar-los a construir un discurs més coherent. Pel que fa al primer aspecte, segurament en aquest cas la figura hegemònica del professor va dificultar la capacitat d’escollir de l’alumnat, que va tenir una actitud més passiva.

Pel que fa a l’alumnat, es va palesar clarament una dificultat per escoltar i aprofitar les experiències dels altres i saber treure profit dels treballs que no tractessin exactament el mateix tema, però fets amb la mateixa metodologia explicada pel cos docent.

Per resoldre les qüestions exposades, es va proposar una experiència de correcció entre iguals. Aquesta pràctica es va preparar durant quatre o cinc sessions amb unes correccions dels treballs dels estudiants més personalitzades i a vegades més confidencials, de manera que els estudiants poguessin aprendre els criteris d’avaluació adoptats per a aquest curs.

El mateix dia de l’activitat de correcció entre iguals es van donar els criteris de correcció amb el mateix esquema amb què es feia la correcció i es va avisar que els correctors que havien de fer l’avaluació en termes numèrics però també en forma discursiva, perquè fos útil com a darrera correcció abans de lliurar la tasca final. De fet, una de les finalitats fonamentals d’aquesta activitat va ser també donar la possibilitat de dur a terme una experiència de crítica exterior com a primer pas cap a l’autocritica en una activitat definida en el temps.

L’activitat consisteix principalment en el fet que un grup correggeix un altre grup. Es va intentar que les correccions es fessin entre grups que treballaven el mateix tema específic. Durant l’activitat el professorat va ajudar els grups durant la correcció per controlar i al mateix temps ajudar perquè tothom pogués aprofitar el resultat.
Entre els resultats positius des del punt de vist pràctic, val la pena remarcar la possibilitat de corregir tots els grups d’una vegada amb un treball acabat en el temps i l’espai, cosa que motiva l’alumnat a participar-hi.

Pel que fa a l’avaluació de l’activitat, es va escollir d’utilitzar-la com a activitat d’avaluació no numèrica però d’indicis sobre la capacitat de treballar en grup i d’atenció al treball fet a classe pel professorat.

3. Conclusions
Per concloure es pot especificar un altre aspecte molt important que els estudiants van poder experimentar durant l’activitat proposada i que té una importància fonamental durant el treball professional. Durant aquesta experiència l’alumnat va poder resoldre l’impasse que és possible equivocar-se, i al mateix temps els va demostrar que el projecte d’urbanisme i d’arquitectura avança sempre pel procés de proves, errors i confrontacions. Per al professorat va ser una prova de la seva capacitat de comunicació amb els estudiants durant les correccions.

Un aspecte que probablement s’hauria de millorar és el sistema d’avaluació, que hauria de passar d’indicis a numèric, però tenint en compte de manera ponderada diversos conceptes: els resultats dels treballs lliurats segons el criteri del cos docent, el resultat del treball de correccions dels estudiants i també les notes donades entre grups.
PORTAFOLIS COM A EINA D’APRENETATGE EN L’ASSIGNATURA INDÚSTRIES DE L’OLI, GREIXOS I DERIVATS

Jesús Francés
Área de Producción Vegetal

Resum. En aquest treball s’ha utilitzat el portafolis com a eina d’aprenentatge i d’avaluació en l’assignatura Indústries de l’oli, greixos i derivats dels estudis d’ETA-IAA. Els resultats extrets d’aquest treball en comparació del sistema clàssic són que hi ha hagut menys suspesos, ha millorat l’assistència a classe, el nombre d’alumnes que abandonen és més baix, no comporta gaire més treball d’organització i els alumnes treballen més i hi dediquen més hores. Així mateix, en les enquestes responen que els ha agradat més aquesta metodologia.

1. Introducció
El portafolis aplicat a una assignatura d’enginyeria constitueix una oportunitat del professor per comprometre’s amb ell mateix com a docent, en un procés de millora continu de l’assignatura impartida. El portafolis és un instrument d’autoavaluació de la qualitat docent, permet comprovar la capacitat pedagògica i és la base d’una nova cultura pedagògica institucional (Dlenowski, 2005).

La definició més comunament utilitzada de portafolis docent és un mètode d’ensenyament, aprenentatge i avaluació que consisteix en l’aportació de produccions de diferent índole per part de l’estudiant a través de les quals es poden jutjar les seves capacitats en el marc d’una disciplina o matèria d’estudi.

El portafolis ha de ser específicament personal, significant els treballs (filmacions, anàlisis de sessions d’aprenentatge, lectures, comentaris, programes de simulació, etc.), i ha de caracteritzar l’acompliment docent individual. Cal tenir en compte el cicle en el qual s’elabora un portafolis per estructurar correctament cadascuna de les facetes o l’ús de diferents estratègies utilitzades en el procés de l’ensenyament. Ha d’explicar clarament quines seran les aportacions que ha de fer l’alumne perquè totes les activitats de l’assignatura puguin ser avaluades en funció de diverses aportacions i de les competències de l’assignatura adquirides (Shulman, 1999; Fernández, 2004; Barragán, 2005).

2. Descripció de l’activitat
En aquesta comunicació es detalla la implementació del portafolis (o carpeta docent) com a eina d’aprenentatge en l’assignatura Índustries de l’oli, greixos i derivats. La carpeta docent de l’assignatura es divideix en carpeta de documentació del professor i carpeta de documents aportats pels alumnes (figura 1).
Figura 1. Carpeta docent de l’assignatura Indústries de l’oli, greixos i derivats

Competències

1. Aplicar tècnicament els processos i equips necessaris per elaborar i transformarolis i greixos comestibles.
2. Determinar i executar les fases del procés productiu: saber escollir la matèria primera i la tècnica de producció, i utilitzar la metodologia de control adequada.
3. Dissenyar i desenvolupar un protocol d’utilització d’un trull.
4. Implementar sistemes de gestió de la qualitat en les indústries d’oli d’oliva (APPCC).
5. Fer controls de qualitat (físic i organolèptic) en la indústria d’olis i greixos.
6. Analitzar els trets identificatius dels trulls de les comarques gironines.

Activitats

1. Exposició de les parts del temari de l’assignatura
2. Pràctiques de laboratori en EPS
3. Visionament de vídeos i DVD
4. Resolució de casos pràctics (detecció de fraus, interpretació del butlletí d’anàlisis, problemes de càlcul en les variables d’extracció per solvents, visionament i caracterització de les matèries primeres)
5. Tast, anàlisi sensorial, mètodes de puntuació d’olis i full de valoració de la qualitat organolèptica
6. Pràctiques d’aula
7. Visites col·lectives amb professor
8. Visites individuals de cada alumne a un trull de les comarques de Girona per fer el seu treball pràctic. Pràctica de control de qualitat individuals en el trull que li ha tocat. La llista d’indústries disponibles per anar a visitar en l’assignatura Indústries d’olis, greixos i derivats està composta pel 100 % d’aquest tipus d’indústria a les comarques gironines (trulls o molí d’oli).

Les competències de l’assignatura queden perfectament adquirides amb les activitats efectuades (figura 2).
Figura 2. Quadre de competències i activitats en l’assignatura Indústries d’olis, greixos i derivats.

Aportacions de l’alumne

Les aportacions fetes pels alumnes es detallen a la taula 1. El sistema d’avaluació és la suma de l’avaluació del professor, l’avaluació externa del responsable de la indústria i una part d’autoavaluació de l’alumne. No totes les parts temàtiques tenen les mateixes activitats, ni totes les activitats tenen el mateix nombre d’aportacions, ni totes les avaluacions tenen els mateixos paràmeters d’avaluació.

Taula 1. Aportacions de l’alumne i sistema d’avaluació per portafolis en l’assignatura Indústries d’olis, greixos i derivats

<table>
<thead>
<tr>
<th>Aportacions alumne (N.A)</th>
<th>Avaluació</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proves de contingut teòric (2)</td>
<td>A.P.</td>
</tr>
<tr>
<td>Participació en Debat (1)</td>
<td>A.P.</td>
</tr>
<tr>
<td>Resolució de casos pràctics (1)</td>
<td>A.P. + AA alumno</td>
</tr>
<tr>
<td>Informe visites (1)</td>
<td>A.P.</td>
</tr>
<tr>
<td>Reflexió oral visionat vídeos (1)</td>
<td>A.P.</td>
</tr>
<tr>
<td>Butlletí de tast (1)</td>
<td>A.P. + AA alumno</td>
</tr>
<tr>
<td>Treball escrit + Esborrany qüestionari (1)</td>
<td>A.P.</td>
</tr>
<tr>
<td>Exposició oral treball (1)</td>
<td>A.P.</td>
</tr>
<tr>
<td>Informe del responsable del trull</td>
<td>A. EXTERNA</td>
</tr>
</tbody>
</table>

NA = nombre d’aportacions; AP = avaluació del professor; AA = autoavaluació de l’alumne; A. EXTERNA = avaluació externa

3. Resultats i discussió

Els resultats extrets d’aquest treball en comparació del sistema clàssic són els següents:

- Hi ha menys suspensos.
- Millora l’assistència a classe.
- El nombre d’alumnes que abandonen és més baix.
- No comporta gaire més treball d’organització (una vegada ho has implementat per primera vegada)
- Els alumnes treballen més i hi dediquen més hores. (Així mateix, en les enquestes responen que els ha agradat més aquesta metodologia.)
Experiències docents d'adaptació a l'EEES

- El temps necessari per corregir les aportacions és més gran.

A més, cal destacar que, d'acord amb la bibliografia consultada (Agra i col l. 2002), la implantació del portafolis en aquesta assignatura ha suposat per al docent:

- Més interès en la tasca educativa.
- Més conscienciació per a la seva actualització permanent.
- Millora en la programació setmanal de les activitats. S'ha programat tenint en compte les necessitats i els interessos de l'estudiant.
- Més coneixement i utilització d'un conjunt d'estratègies metodològiques per desenvolupar sessions d'aprenentatge adequat per temes i activitats.
- Més adequació de les competències d'aprenentatge tenint en compte els interessos i les necessitats dels estudiants.
- Millor programació i implementació de sessions d'aprenentatge que permeten aconseguir els objectius plantegats.
- Major elaboració i ús de material educatiu elaborat amb recursos propis de la zona.
- El fet de disposar de dades per fer una selecció de diferents estratègies d'avaluació (autoavaluació, avaluació externa, etc.) fa que el docent estigui més segur de que l'avaluació sigui més real i els èxits siguin més significatius.

4. Conclusions
El portafolis implica tota una metodologia de treball i d'estratègies didàctiques en la interacció entre docent i alumne. És un mètode que permet unir i coordinar un conjunt d'evidències per emetre una valoració de si s'han adquirit les competències més ajustada a la realitat que el sistema tradicional. La implementació del portafolis ha estat una experiència positiva.

5. Bibliografia
EXPERIÈNCIES EN L’ÀREA D’ENGINEERIA MECÀNICA: SEGUIMENT DE L’APRENENTATGE CONTINUAT EN GRUP AMB AVALUACIÓ PER PORTAFOLIS

Joan Andreu Mayugo Majó , Narcís Gascons Clarió, Pere Maimí Vert i Norbert Blanco Villaverde
Àrea d’Enginyeria Mecànica

Resum. En aquesta comunicació es descriu i s’analitza l’experiència de millora docent que s’ha dut a terme en algunes de les assignatures de l’àrea de coneixement d’Enginyeria Mecànica de la Universitat de Girona. S’ha establert una metodologia que estimuli l’estudiant a fer un conjunt de problemes en grup, creant una interdependència positiva entre els membres del grup. S’ha aprofitat l’organització de les sessions de laboratori en grups petits (20 alumnes) per fer el seguiment d’aquesta activitat.

I. Introducció
En l’àrea de coneixement d’Enginyeria Mecànica de la Universitat de Girona s’ha dut a terme una experiència de millora de la qualitat de la docència durant els cursos 2006-2007 i 2007-2008 amb l’objectiu de fomentar l’aprenentatge continuat i la interdependència positiiva entre els estudiants. Aquesta experiència s’ha implementat en diverses matèries de primer cicle que imparteix el personal docent de l’àrea (vegeu la taula 1). Són assignatures en què es donen metodologies d’anàlisi de sistemes mecànics que són bàsiques per afrontar més endavant altres matèries propies d’Enginyeria Mecànica. L’aprenentatge es basa en la resolució de problemes definits pel professor. Aquestes assignatures s’avaluen mitjançant un examen final en què els alumnes resolen exercicis.

Taula 1. Assignatures en què s’ha dut a terme l’experiència docent

<table>
<thead>
<tr>
<th>Assignatura</th>
<th>Tipus</th>
<th>Curs</th>
<th>Titulació</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mecànica bàsica</td>
<td>Troncal</td>
<td>2n</td>
<td>Eng. Industrial</td>
</tr>
<tr>
<td>Teoria de màquines</td>
<td>Troncal</td>
<td>3r</td>
<td>Eng. Industrial</td>
</tr>
<tr>
<td>Fonaments de mecànica</td>
<td>Obligatòria</td>
<td>1r</td>
<td>Eng. Tècnica Industrial Mecànica</td>
</tr>
<tr>
<td>Mecànica i teoria de mecanismes</td>
<td>troncal</td>
<td>2n</td>
<td>Eng. Tècnica Industrial Mecànica</td>
</tr>
<tr>
<td>Sistemes mecànics</td>
<td>troncal</td>
<td>2n</td>
<td>Electrònica Industrial</td>
</tr>
</tbody>
</table>

Es tracta d’assignatures amb un alt nombre d’alumnes en les sessions de teoria i problemes (de seixanta a cent setanta alumnes), fet que fa difícil al docent d’aquestes sessions fer un seguiment del treball continuat de l’alumne durant el curs. Tradicionalment el professor proposa una sèrie d’exercicis que l’alumne hauria d’anar efectuant en el seu treball fora de classe. A classe, en les sessions de problemes, el professor resol dubtes sobre aquests exercicis i, ajudat pels alumnes, els resol a la píssarra. S’ha detectat que l’estudiant cada vegada té més dificultats per autogestionar aquest treball fora de l’aula i s’ha tingut poc èxit a l’hora de fomentar que l’alumne faci aquests exercicis o intenti resoldre’ls abans de les sessions de correcció de dubtes a
Experiències docents d’adaptació a l’EEES

156

classe. Això es manifesta en el baix índex d’èxit de les assignatures i, sobretot, en l’alt percentatge de no presentats a l’examen final. Quan s’acosta el període d’avaluacions, l’alumne s’adona que no ha treballat prou l’assignatura i s’estima més no assumir el risc de perdre la convocatòria (estratègia fomentada per l’actual normativa de permanència de la Universitat de Girona [1]). Per una altra banda, s’ha detectat una baixa qualitat en les resolucions escrites dels problemes d’examen (entre altres coses, mala organització del text en el full, valors sense unitats i no remarcar convenientment els resultats).

S’ha dissenyat una activitat voluntària, però subjecta a una normativa molt estricta, per induir els alumnes a fer exercicis de manera continuada per evitar l’abandonament de l’assignatura. En l’activitat es vol fomentar l’autocorrecció entre els companys de grup (grups cooperatius formals de tres alumnes), mentre que en l’avaluació es valora que la presentació escrita sigui adequada.

2. Descripció de l’activitat

Les assignatures estan estructurades en sessions de teoria i problemes (en grup gran) i sessions de pràctiques (en grups de vint persones). Després dels diferents temes teòrics, aquests es tracten en les sessions de pràctiques. Les sessions de laboratori comencen la segona setmana de classe i els alumnes han d’assistir a pràctiques cada quinze dies, en total sis sessions per quadrimestre. Durant aquestes sessions, a més dels continguts propis de pràctiques i laboratori, es desenvolupa l’activitat de seguiment de l’aprenentatge continuat (SACO)

L’activitat consisteix a proposar un dossier amb enunciats de problemes a cada grup de tres estudiants. Els alumnes tenen quinze dies entre que se’ls proporcionen els enunciats dels problemes i la seva avaluació. L’activitat la fan els alumnes en grup fora de l’aula; per tant, és bàsicament una activitat no presencial. Tanmateix, poden utilitzar els horaris de tutories per resoldre els dubtes que els puguin sorgir durant la resolució dels exercicis.

Els dossiers proposats consten de sis a nou enunciats de problemes que es poden resoldre amb paper i calculadora (similars als de l’examen) i, en algunes assignatures, un o dos problemes per resoldre amb l’ajuda d’eines informàtiques (sobretot amb un fulla de càlcul). El material necessari per a l’estudiant són els enunciats dels problemes (disponible a través de l’aplicació informàtica en xarxa La Meva UdG). Aquests enunciats es publicen al llarg del curs just després de cada sessió de pràctiques i s’avaluen en la sessió següent.

Les activitats es duen a terme seguint una programació semblant a l’esquema que es mostra en la figura 1.

![Figura 1. Distribució de l’activitat en un quadrimestre docent (SACO: activitat de seguiment de l’aprenentatge continuat; PLAB: pràctiques de laboratori)](image-url)

Durant la primera sessió de pràctiques es dediquen 30 minuts a explicar als alumnes en què consisteix l’activitat, donar les instruccions per a la formació dels grups, les instruccions per accedir al material, els criteris d’avaluació, i el seguiment que es durà a terme.
Es proposa una pauta molt detallada sobre la presentació del treball i el format per fomentar la millora de competència en la presentació d’exercicis resolts. Les instruccions fan èmfasi en la idea que l’estudiant procedeixi seguint l’esquema que es mostra a la figura 2.

L’activitat s’avalua a través d’un “portafolis”. Ho fa el docent de les sessions pràctiques de l’assignatura ja que treballa amb els alumnes al laboratori en grups reduïts:

- hi ha 20 alumnes per grup de pràctiques assignat, i
- s’han de gestionar uns 7 subgrups per grup de pràctiques.

Figura 2. Pauta de format per al lliurament d’exercicis en l’activitat SACO.

L’avaluació és estricta, ja que per obtenir una qualificació positiu els estudiants han de tenir tots els exercicis resolts correctament i han de saber defensar oralment la resolució davant el professor de pràctiques. Aquest tipus d’avaluació es realitza per promoure l’autocorrecció entre el grup d’estudiants durant els 15 dies que tenen entre la presentació dels enunciats i l’avaluació. En aquest període tenen temps per realitzar:

- consultes entre els diferents companys de grup i revisions entre ells,
- consultes amb la resta de subgrups per comparar resultats i resolucions, i
- tutories amb els professors de teoria i problemes i amb els de pràctiques.
La qualificació obtinguda amb l’activitat SACO representa un 25 % de la nota de l’assignatura; el 75 % restant és la nota de l’examen. Aquesta ponderació només s’aplica si l’examen té una qualificació igual o superior a 4 punts sobre 10 i només si representa una millora de la nota de l’examen. En els altres casos la nota final és la de l’examen.

3. Resultats i discussió
A continuació es presenten els resultats obtinguts amb l’aplicació de la nova metodologia per a la millora de la qualitat docent en l’àrea d’Enginyeria Mecànica de la UdG mitjançant l’activitat SACO. En concret, s’analitzen els resultats corresponents a l’assignatura anual Mecànica i teoria de mecanismes (ETIM). Es presenta la participació a l’activitat durant els dos últims anys (taula 2) i els resultats obtinguts pels alumnes en la primera convocatòria del primer parcial del curs 2005-2006 (figura 3).

<table>
<thead>
<tr>
<th>Curs 2005-06</th>
<th>Curs 2006-07</th>
<th>Curs 2007-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumnes matriculats</td>
<td>123</td>
<td>129</td>
</tr>
<tr>
<td>Alumnes que participen en l’activitat SACO</td>
<td>-</td>
<td>84 %</td>
</tr>
</tbody>
</table>

Figura 3. Índex de presentats i índex d’èxit en diferents cursos en l’assignatura Mecànica i teoria de mecanismes d’ETIM.

La comparació dels resultats obtinguts mostra una sensible recuperació en els dos últims cursos de l’índex de presentats i de l’índex d’èxit. A més, es constaten millors resultats en els dos índexs per als estudiants que participen en l’activitat SACO.

4. Conclusions
L’activitat principalment indueix a l’aprenentatge continuat pel fet de realitzar problemes distribuïts al llarg de tot el quadrimestre. Addicionalment fomenta les competències de:

— saber aplicar els coneixements de l’assignatura en la resolució de problemes,
— saber gestionar el treball en grup,
— obtenir capacitat d’autocorrecció, i
— millorar la presentació escrita de problemes

S’ha observat que la generació de problemes porta molta feina al docent. Els exercicis han de ser originals perquè els alumnes no facin ús de les resolucions de companys d’anys anteriors. Emprar un sistema informatitzat de generació d’exercicis originals, com el sistema ACME [2], pot reduir el treball del professorat. Al mateix temps, l’avaluació de
l'alumnat està resolta pel mateix sistema i el professor es concentra a solucionar els dubtes dels alumnes. Les assignatures on s'expliquen els principis bàsics de l'estàtica i la dinàmica són òptimes per a la utilització d'aquest sistema, ja que permet la generació d'exercicis parametrizats. Per altra banda, en les assignatures on s'estudia la concepció i el disseny mecànic, la generació de problemes i correccions parametrizades és impossible, ja que l'estudiant ha de justificar les seves decisions. En aquests casos, part de la tasca assignada als alumnes pot ser la creació de nous exercicis. Aquests podrien ser emprats l'any següent com a material original.

5. Bibliografia
Resum. En aquest treball s’analitza quin ha estat l’ús de les proves d’autoavaluació disponibles en la plataforma docent de la UdG per part dels estudiants de tres assignatures de l’àmbit agroalimentari de l’EPS al llarg de quatre cursos acadèmics. S’ha comprovat que els alumnes que responen les proves d’autoavaluació es presenten més i aprovem més l’examen que els que no accedeixen a la intranet docent. Malgrat això, hi ha un nombre important d’alumnes que no realitzen aquestes proves.

1. Introducció
L’ús de noves tecnologies permet disposar d’eines que poden afavorir l’aprenentatge per part dels alumnes. Entre les eines que estan disponibles a la majoria d’intranets docents hi ha les proves d’autoavaluació (Area, 2005), les quals permeten una correcció immediata, de manera que l’estudiant pot conèixer els errors que comet i esbrinar-ne les causes. Això permet consolidar l’aprenentatge de l’estudiant i aconseguir que tingui un paper actiu (De Miguel, 2006). A més de la utilitat que aquesta eina pot tenir per a l’alumnat, per al professorat també és interessant ja que permet fer un seguiment acurat de l’activitat dels estudiants.

2. Descripció
Es van preparar proves d’autoavaluació perquè els estudiants poguessin conèixer quin era el grau d’assimilació dels continguts de les següents assignatures impartides per l’àrea de coneixement d’Enginyeria Agroforestal a l’EPS de la UdG: Instal·lacions agroindustrials (troncal, 2n curs d’ETAIAA), Instal·lacions agropecuàries (troncal, 2n curs d’ETAEA) i Enginyeria ambiental a les agroindústries (troncal, 3r curs d’ETAIAA). En aquestes assignatures l’avaluació consistia en exàmens parciais i/o finals en què es comprovava que l’estudiant havia adquirit una sèrie de concepts i que els sabia aplicar mitjançant la resolució de problemes. Atesa la tipologia de problemes que calia solucionar, les proves d’autoavaluació es van limitar als concepts i a aplicacions senzilles. Les primeres proves d’autoavaluació es van desenvolupar el curs 2000-2001 dins el projecte d’innovació docent AgroTIC (Tecnologies de la informació i la comunicació en els estudis agroalimentaris de la Universitat de Girona). Fins al curs 2003-2004, aquestes proves eren accessibles a través de la Unitat de Suport a la Docència Virtual de la UdG. A partir de l’any 2004, amb la posada en marxa de la plataforma docent La Meva UdG, que disposava d’un espai de suport per a proves d’avaluació de resposta tancada, es van ampliar els exercicis d’autoavaluació i es van adaptar al format previst a La Meva UdG. Les proves d’autoavaluació van tenir característiques diferents en funció de les assignatures:

- Instal·lacions agroindustrials: els alumnes disposaven de preguntes d’autoavaluació de dos blocs de l’assignatura. Del primer, havien de respondre 10 preguntes de tipus veritat o fals que el sistema escollia a l’atzar d’un total de 218 qüestions. En el segon bloc, els estudiants podien respondre 4 preguntes d’elecció múltiple elegides aleatoriament entre 53 preguntes disponibles.
• Instal·lacions agropecuàries: els alumnes podien accedir a exercicis d’autoavaluació de dos blocs de l’assignatura. En el primer bloc, havien de respondre 10 preguntes de tipus veritat o fals que el sistema escollia aleatoriament d’un total de 211 qüestions. En el segon bloc, els estudiants podien respondre 4 preguntes del tipus veritat o fals entre 30 preguntes preparades.

• Enginyeria ambiental a les agroindústries: els alumnes havien de respondre entre 10 i 14 preguntes del tipus veritat o fals que el sistema escollia aleatoriament d’un total de 103 qüestions preparades.

Es permetia que els estudiants disposessin com a màxim de dos accessos diferents en què poguessin respondre qüestions. La realització d’aquestes proves no comportava cap qualificació addicional a l’estudiant, ja que el que es pretenia era que l’estudiant analitzés com dominava l’assignatura, de manera que pogués reorientar el seu aprenentatge i consultar els dubtes que poguessin sorgir amb el professor. De tota manera, una part dels examens d’aquestes assignatures consistia en un qüestionari que tenia el mateix format que el de les proves d’autoavaluació. Per aquest motiu, les qüestions s’activaven, per regla general, uns quinze dies abans de la prova d’avaluació dels continguts, que era un examen parcial o final, depenent dels casos.

El sistema de La Meva UdG permetia que el professor consultés els resultats obtinguts individualment per cada estudiant, així com els resultats acumulats de tots els estudiants per a cada una de les preguntas. Aquesta darrera opció possibilitava la detecció d’aquelles qüestions que acumulaven més errades, de manera que es podia determinar si el motiu era una redacció incorrecta, una correcció incorrecta o bé una resposta incorrecta per part de l’estudiant. Aquest darrer cas indicava que era necessari incidir en l’explicació dels continguts sobre els quals es preguntaven perquè no havien quedat prou clars.

3. Resultats
Es van analitzar els accessos que es van produir a les proves d’autoavaluació, com van respondre els alumnes i si hi ha va haver alguna relació amb els resultats acadèmics. Aquest estudi es va realitzar sobre les dades de tots els cursos acadèmics en què les proves s’havien activat a La Meva UdG. Així, per a l’assignatura d’Enginyeria ambiental a les agroindústries les dades es van obtenir entre els cursos 2004-2005 i 2007-2008, amb un total de 63 alumnes matriculats; per a l’assignatura d’Instal·lacions agroindustrials entre els cursos 2004-2005 i 2006-2007 i un total de 130 alumnes, i per a l’assignatura d’Instal·lacions agropecuàries entre els cursos 2004-2005 i 2007-2008, amb un total de 178 alumnes.

En la figura 1 es mostra la proporció, per a cada assignatura analitzada, entre els alumnes que van accedir a les proves i les van respondre, els que hi van accedir però no les van respondre i els que no hi van accedir. Es pot observar que el comportament és diferent en cada assignatura, però, mentre que en les assignatures de 2n curs (Instal·lacions agroindustrials i agropecuàries) pràcticament hi ha els mateixos alumnes que accedeixen i responen les proves que els que no hi accedeixen, en l’assignatura de 3r curs (Enginyeria ambiental a les agroindústries) són clarament majoritaris els alumnes que responen. Hi ha també entre un 7,3% (en assignatures de 2n curs) i un 17,5% (en l’assignatura de 3r) d’alumnes que accedeixen a la intranet però no responen les preguntas en línia, ja sigui perquè imprimeixen les qüestions per contestar-les en altres moments o perquè no fan cap acció posterior.
Experiències docents d’adaptació a l’EEES

Figura 1. Percentatge d’alumnes que responen, que accedeixen a les proves d’autoavaluació de les diferents assignatures analitzades però no responen, i que no hi accedeixen.

Si s’analitzen les respostes dels alumnes (figura 2), aquestes majoritàriament van ser correctes, amb un 77,7 % de mitjana, considerant els dos intents disponibles. Les respostes incorrectes van suposar, per al conjunt de les assignatures, un 20,1 %. El nombre de pregunes contestades en blanc va ser molt baix, d’un 2,1 %.

Figura 2. Percentatge de respostes de les qüestions d’autoavaluació de les diferents assignatures contestades correctament, erròniament o en blanc.

Respecte al rendiment, a la taula 1 es compara el percentatge dels alumnes que van aprovar, suspendre o no es van presentar a les diferents assignatures en funció de si havien respost les preguntes d’autoavaluació o no havien accedit a la plataforma docent. El resultat de l’anàlisi estadística mostra que els alumnes que responien els exercicis d’autoavaluació es presentaven més a l’examen i aprovaven més que els que no hi accedien. No hi va haver, però, diferències significatives pel que fa als suspensos. De fet, en dues de les tres assignatures analitzades, hi va haver més percentatge d’alumnes que havien respost les qüestions i que havien suspès que els que no hi havien accedit.
Taula 1. Distribució dels alumnes que aproven, suspenen o no es presenten a les diferents assignatures en funció de si responen o no accedeixen als exercicis d’autoavaluació. Per a cada qualificació i assignatura s’indica el nivell de significació resultant d’aplicar el test χ²:

<table>
<thead>
<tr>
<th>Assignatura</th>
<th>Qualificació</th>
<th>Responen (%)</th>
<th>No accedeixen (%)</th>
<th>Nivell de significació</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enginyeria ambiental a les agroindústries</td>
<td>Aprovat</td>
<td>82,8</td>
<td>17,2</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Suspens</td>
<td>73,3</td>
<td>26,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No presentat</td>
<td>37,5</td>
<td>62,5</td>
<td>n. s.</td>
</tr>
<tr>
<td>Instal·lacions agroindustrials</td>
<td>Aprovat</td>
<td>71,4</td>
<td>28,6</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Suspens</td>
<td>62,9</td>
<td>37,1</td>
<td>n. s.</td>
</tr>
<tr>
<td></td>
<td>No presentat</td>
<td>16,8</td>
<td>83,2</td>
<td>***</td>
</tr>
<tr>
<td>Instal·lacions agropecuàries</td>
<td>Aprovat</td>
<td>73,8</td>
<td>26,2</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Suspens</td>
<td>46,9</td>
<td>53,1</td>
<td>n. s.</td>
</tr>
<tr>
<td></td>
<td>No presentat</td>
<td>13,9</td>
<td>86,1</td>
<td>***</td>
</tr>
</tbody>
</table>

Llegenda: (n. s.) no significatiu; (*) P< 0,05; (***) P<0,001.

4. Discussió
Els resultats indiquen que hi ha un nombre destacable d’alumnes que no realitzen els exercicis d’autoavaluació, ja sigui perquè creuen que no els aporten gran cosa o perquè han decidit abandonar l’assignatura. De tota manera, respecte a anàlisis anteriors (Llorente et al., 2004), ha augmentat el nombre d’alumnes que accedeixen al sistema i responen a aquests exercicis. Es podrien incorporar també millors a la intranet, com per exemple que cada vegada que l’alumne respongués a les qüestions, li sortissin noves preguntes, de manera que li fos més interessant realitzar l’autoavaluació. Tot i que han estat poques les consultes fetes al professor que han tractat de les qüestions d’autoavaluació, sí que consta que aquests exercicis han propiciat el debat entre els estudiants, cosa que ha afavorit una espècie d’aprenentatge cooperatiu. Caldria, però, fer un estudi de l’opinió dels estudiants per conèixer la seva valoració.

5. Conclusions
Les proves d’autoavaluació disponibles en la intranet docent de La Meva UdG no són utilitzades per bona part dels estudiants, però aquells alumnes que les utilitzen tenen més èxit acadèmic que els que no ho fan.

6. Bibliografia
AVALUACIÓ CONTINUADA: MOTIVACIÓ DE L’ALUMNE, CONTROL DEL SEGUIMENT DE L’ASSIGNATURA I QUALIFICACIÓ.
UNA EXPERIÈNCIA EN L’ASSIGNATURA DE COMERCIALITZACIÓ DELS PRODUCTES AGROPECUARIS

Joan Pujol Planella
Àrea d’Economia, Sociologia i Política Agrària

Resum. En aquest treball s’analitza la implementació d’un sistema d’avaluació continuada en una assignatura de la titulació d’Enginyeria Tècnica Agrícola, especialitat Explotacions Agropecuàries. S’exposa la motivació d’aquesta implementació, la metodologia emprada i s’analitzen els resultats obtinguts, que en aquest cas concret han estat molt discrets.

1. Introducció
L’avaluació continuada (d’ara endavant, AC) és un sistema d’avaluació amb un gran nombre de defensors. Alguns dels avantatges que se li atribueixen són que facilita a l’estudiant l’assimilació i el desenvolupament progressius dels continguts de la matèria i de les competències que s’han d’assolir, i per tant, la superació de l’assignatura; que li proporciona informació sobre el ritme d’aprenentatge, donant-li l’oportunitat de rectificar els errors comesos i reorientar el seu procés d’aprenentatge, i, a més, que permet al professor fer un seguiment del progrés en l’aprenentatge (Delgado et al., 2005). Partint d’aquestes suposicions i amb l’ànim d’impulsar una millora en la docència, l’autor va decidir implementar aquest sistema d’avaluació en una de les assignatures que imparteix.

2. Descripció de l’activitat
A l’hora d’aplicar l’AC en una assignatura, es va realitzar el següent plantejament: a priori, es va suposar que el més efectiu seria emprar aquesta metodologia en una assignatura d’un grau de dificultat mitjà-alt, com podria ser, d’entre les assignatures que imparteix l’autor, Economia de l’empresa agropecuària (de la titulació d’Enginyeria Tècnica Agrícola, especialitat Explotacions Agropecuàries, troncal, de segon curs, anual, de 9 crèdits, i amb un nivell mitjà d’aprovats proper al 50 % dels matriculats). Tot i això, i com que tenia poca experiència prèvia en el tema, es va decidir començar aplicant-la a una assignatura d’un grau de dificultat més baix, concretament la de Comercialització de productes agropecuaris (de la mateixa titulació, troncal, de tercer curs, quadrimestral, de 4,5 crèdits, i amb un nivell mitjà d’aprovats proper al 90 % dels matriculats).

Un cop escollida l’assignatura es va escollir el métode de qualificació que calia emprar. Aquí es van tenir en compte dos factors importants: la poca experiència del professor amb el sistema d’AC, amb la incertesa de resultats que això suposava, i la problemàtica dels alumnes que treballaven i que difícilment podien assistir a classe amb regularitat, pels quals era molt complex seguir un sistema d’AC. Per aquests motius es va decidir que l’assignatura tindria 2 vies d’avaluació: una per als alumnes que voluntàriament s’acollissin al sistema d’AC, en la qual la qualificació final provindria en un 50 % de la qualificació obtinguda en l’AC, i un 50 % de l’examen final; i una altra via per als alumnes que renunciessin a l’AC, la qualificació dels quals provindria exclusivament de l’examen final. A
més, per fer més atractiva l’AC, es va oferir com a incentiu als alumnes la possibilitat de renunciar en qualsevol moment a l’AC (fins i tot a final de curs, si la qualificació de l’AC afectés negativament la qualificació final).

L’aplicació pràctica de l’AC es va realitzar partint de la hipòtesi que l’assistència a classe podia ser un indici de la motivació de l’alumne, i que a més, aprofitaria la seva comprehesió de l’assignatura. Així, es va dissenyar un sistema pensat per promoure aquesta assistència. El procediment consistia a dedicar al principi de cada classe uns 10 minuts per realitzar una petita prova (responder 10 qüestions curtes) per avaluar els coneixements impartits en la sessió anterior. Després de realitzar la prova s’exposaven les respostes correctes de les qüestions plantejades, perquè els alumnes fossin conscients del seu nivell de comprehsió de l’assignatura i poguessin prendre nota dels seus errors.

La qualificació final de l’AC es va obtenir fent la mitjana dels resultats de totes les proves. En cas que un alumne no es presentés a una prova i no justificés la seva absència, la puntuació sobre la mateixa prova era 0. Si es justificava l’absència a una prova, el seu resultat no es tenia en compte a l’hora de fer la mitjana de l’AC.

Amb aquest sistema es pretenia afavorir l’assistència a classe, la motivació, el treball personal responsable i l’aprenentatge continuat de l’assignatura.

3. Resultats

En el primer quadrimestre del curs 2007-2008 es van fer 11 proves d’AC (corresponents als 13 dies de classe, excepte el primer i l’últim). En la figura 1 es poden observar els resultats de realització de les proves de l’AC. El nombre total d’alumnes matriculats era 18, tot i que dos d’ells no van assistir a cap classe ni a l’examen final. De la resta cap alumne va renunciar formalment a l’AC, tot i que a la pràctica 7 d’ells no van realitzar 3 o més de les proves d’AC (sense justificar l’absència). Només 7 alumnes van fer totes les proves (o bé van faltar a alguna de manera justificada).

![Figura 1. Nombre de proves realitzades per alumne matriculat](aclariment: es comptabilitzen tant les proves realitzades com les no realitzades però d’absència justificada, és a dir, que no afecten negativament la nota mitjana).
Naturalment, aquesta dada té unes implicacions directes en les qualificacions de l’AC, ja que dels 18 alumnes només 9 es van presentar a un nombre d’exàmens suficient per tenir possibilitats de superar l’AC, i de fet només 6 la van superar. En la figura 2 es pot observar la distribució de qualificacions de l’AC.

Dels 6 alumnes que van aprovar l’AC, sols 4 van poder aprofitar aquest resultat per millorar significativament la qualificació de l’examen final. Els casos en què l’AC va tenir un efecte més important sobre la qualificació final van ser els de dos alumnes que van aprovar l’assignatura gràcies a l’AC.

Continuant amb les qualificacions finals, a la taula 1 es mostra una comparació entre els resultats acadèmics de l’assignatura corresponents al curs 2007-2008 (amb avaluació mixta AC i examen), i els dels 4 cursos anteriors, amb avaluació exclusivament per examen final.

Taula 1. Comparació de resultats de l’assignatura entre diferents cursos. L’únic curs amb avaluació continuada ha estat el 2007-2008.
4. Discussió
Els resultats globals de l’aplicació de l’AC en aquesta assignatura han estat francament decebidos. Analitzant les dades del nombre de proves realitzades per cada alumne, s’observa una baixa participació en el procés, tot i la gran quantitat d’avantatges i incentius donats a l’alumne. La meitat dels alumnes no van participar en el procés; de la resta, 3 no van aprovar l’AC, 2 la van aprovar però amb una nota que no els va servir per millorar la qualificació de l’examen final, i 4 la van aprovar i van poder millorar la nota de l’examen final (d’aquests, 2 van aprovar l’assignatura gràcies a l’AC). Es tracta d’uns resultats extremadament discrets des de qualsevol punt de vista, i més encara tenint en compte que els dos alumnes més beneficiats, els que van aprovar gràcies a l’AC, ho van fer en la primera convocatòria. Si no hi hagués hagut l’AC, hi ha una elevada probabilitat que haguessin aprovat l’assignatura en la segona convocatòria.

Finalment, si es comparen els resultats del curs 2007-2008 amb els de cursos anteriors (taula 1), s’observa que l’adopció de l’AC no ha millorat ni el nombre de no presentats de l’assignatura, ni el d’alumnes que han superat l’assignatura, ni tan sols la qualificació dels aprovats.

És evident que les dades disponibles són limitades a una experiència molt concreta, durant un sol curs acadèmic, en una assignatura particular i uns alumnes també concrets; tot i això, els pobres resultats obtinguts tenen un missatge implícit que no es pot passar per alt. A més, altres treballs realitzats en escoles d’enginyeria espanyoles, com per exemple Munilla et al. (2005), plantegen dubtes d’aquest sistema com a mètode de suport a l’aprenentatge.

5. Conclusions
Les conclusions de l’aplicació de l’avaluació continuada en aquesta assignatura concreta, en el format emprat i durant aquest curs concret són clares: no ha millorat el rendiment dels estudiants.

Tot i això, i sense tenir-ne proves, es creu que la seva aplicació en el context d’una assignatura amb un grau de dificultat més elevat potser sí que podría ser més efectiva, motivant més els estudiants a participar en l’avaluació continuada, per minimitzar el risc associat a jugar-se tota l’avaluació de l’assignatura en un únic examen final.

6. Bibliografia