Universitat de Girona Escola Politècnica Superior							
Incoming Exchange Student - Master Thesis Erasmus x Techno D Other (specify):							
Title of master course: Master Enginyeria Industrial							
Title of master thesis: Investigation and optimization of 3D printers setting and surface treatment							
Document: Master Thesis							
Student (Name & Surname): Bence Pál Gávay							
EPS Advisor: Dr. Norbert Blanco Department: Eng. Mecànica i de la Construcció Industrial							
Delivered on (month/year): 1/2016							

Acknowledgements

First of all I would like to say thanks to my supervisors; to Jordi Torrent and Norbert Blanco they helped me a lot to solve my problems in this study.

I would like to say also to Yunior Batista and his colleagues in the test laboratory for preparing and testing the specimens.

I am very thankful to the Erasmus+ Student Exchange Program which provided expertise that greatly assisted the research and to Patricia Eyskens Erasmus coordinator for her support and patience.

Abstract

In the recent years the fused deposition modelling (FDM) became one of the most popular rapid prototyping (RP) techniques. With this method we are able to build a composite object number layer-by-layer. However, because only a limited of materials. such as thermoplastics have been used as a feedstock for FDM, the final products have limited mechanical properties. The fiber reinforcement materials can significantly increase the mechanical properties, such as stiffness and strength, of the final product, especially in the direction of the filament. Nevertheless, the mechanical properties of the final part on the transverse directions still relay on the poor adhesion between filament layers.

In this study the main purpose is to investigate the 3D printed object structures and fiberorientation, and find the best settings in case of carbon fiber reinforced plastic 3D printing. The study also considers the need of the tuning of different manufacturing parameters and the modification of certain parts of the 3D printer to adapt it to the new material configuration. Furthermore this study includes the effect of surface-treatment with acetone at the printed objects in order to improve the transverse mechanical properties of the final parts.

To carry out the study, different test specimens will be manufactured according to different manufacturing configurations and the mechanical properties of the material will be characterized by means of different standard tests.

In my study to reach the desired quality I will print specimens with several parameters and investigate the effect of the settings to obtain the best setting for the best results. After I reached the proper settings in printing of both materials I printed more than 40 specimens in 3 directions to investigate the effect of the printing direction.

Independently from the thickness of the layers the surface of the printed object never will be perfectly smooth. To reach the smooth surface to use acetone vapor as a surface treatment is a feasible way. In my study I would like to examine the effect of acetone, the necessary time for the treatment.

After I prepare all of the specimens I can them with a tensile test machine. With this experiment I will be able to obtain the following mechanical properties: tensile stress, Young's modulus, Yield strength and Poisson ratio.

Table of content

1.	Intro	oduction
2.	Rap	id Prototyping
3.	Fuse	ed Deposition Manufacturing (FDM)7
3	.1.	Parts of the 3D printer
4.	Mod	leling of Large Scale Reinforced Polymer Additive Manufacturing 10
5.	Mat	erials for FDM
5	.1.	Acrylonitrile Butadiene Styrene (ABS)
5	.2.	Carbon Fiber Reinforced Plastics (CRFP)
6.	Prin	ter settings
6	.1.	Print settings
6	.2.	Filament settings
6	.3.	Printer Settings
7.	Prin	ting from neat ABS
7	.1.	First type of specimens
7	.3.	Third type of specimens
8.	Prin	ting from carbon fiber reinforced ABS
8	.1.	Observations with microscope
9.	Effe	ct of acetone surface treatment
10.	R	esults of printing
1	0.1.	Tensile strenght test
1	0.1.1.	Comparison of specimens I. – Maximum stress
1	0.1.2.	Comparison of specimens II Young modulus
1	0.1.3.	Comparison of specimens III Poisson ratio
1	0.1.4.	Comparison of specimens IV Strain at failure
11.	С	onclusions
12.	В	ibliography
13.	А	ppendix A – Test results

1. Introduction

In the recent years the 3D modelling and 3D printing has become one of most popular engineering field. With these printers we can easily give shape to our plans quasi without any boundaries. These 3D printer works from a computer aided design (CAD) file. Who is able to use this kind of program it will be easy to print 3D objects. In the early years the type of manufacturing was developed to create rapid prototypes on a cheaper way before the fabrication process. Nowadays these methods are used for education, research projects, personalized medical equipment. From the other side these days the price of the small, entry level 3D printers allows to the users to print cellphone adds, gifts, replacements or use the printer for do-it-your-project.

The companies, who are fabricating feedstock for this technology, developed a lot of kind of material for printing, wide variety of colors and material quality of thermoplastics. One of the newest and the most advanced material is the carbon fiber reinforced ABS that is becoming more popular for desktop printers also. With these materials the mechanical properties are even better than in case of neat polymers. This fact allows the spreading of engineering field were we can use this technology.

2. Rapid Prototyping

The rapid prototyping (RP) is a group of manufacturing techniques wherewith we are able to produce the prototype version of the final product. The greatest advantage of this method is that the production time is much shorter and the manufacturing cost is much lower than in case of traditional techniques. The other benefit of RP is that we don't waste material in the manufacturing process compared to the original subtractive methods.

Every RP process starts with designing the product in a computer aided design (CAD) software then we have to save this file in stereolithographic (.stl) format. We can put the file in slicer software then this software creates a tool-path for our RP machine.

Nowadays we have several solutions to fabricate our prototype as you can see in the Fig. 1.

Figure 1 Classification of rapid prototyping

In my study I used fused deposition modelling which is one of the most popular 3D printing techniques. The rapid prototyping name doesn't fit for this process anymore because of the quality of materials and printers thus we are able to print the final product.

3. Fused Deposition Manufacturing (FDM)

In FDM, 3D plastic parts can be built layer by layer depositing build material which are heated and extruded through extrusion nozzles on the liquefier head, as shown in Figure 2.

Figure 2 Fused deposition manufacturing

The process begins with creating a 3D model by a modeling software, saved us stereolithographic file format (STL). The second step is mathematically slicing and orienting the model for the build process. In some cases if it is necessary, support structures may be generated by the slicing program.

The machine may use multiple materials to achieve different goals with two nozzles: one may use one material to build up the model and use another as a soluble support structure.

The model or part is produced by extruding small flattened strings of molten material to form layers as the material hardens immediately after extrusion from the nozzle.

A plastic filament or metal wire is unwound from a coil and provides material to an extrusion nozzle which can turn the flow on and off. There is typically worm-drive that pushes the filament into the nozzle at a controlled rate.

The nozzle is heated to melt the material. The thermoplastics are heated past their glass transition temperature and are then deposited by an extrusion head.

The nozzle can be moved in both horizontal and vertical directions by a numerically controlled mechanism. The nozzle follows a tool-path controlled by a computer-aided-manufacturing (CAM) software package, and the part is built from the bottom up, one layer at a time. Stepper motors or servo motors are typically employed to move the extrusion head. The mechanism used is often an X-Y-Z rectilinear design, although other mechanical designs such as Deltabot have been employed.

Although as a printing technology FDM is very flexible, and it is capable of dealing with small overhangs by the support from lower layers, FDM generally has some restrictions on the slope of the overhang, and cannot produce unsupported stalactites. [1]

Each single layer will be deposited repeatedly in the same way on the previous one, being fed by the filament spools of the two types of materials until the part is completed. Finally, support material can be removed by water-based cleaning solution in tank with no surface damages.

There are several benefits to the Additive Manufacturing (AM) process. A key benefit of AM lies in the fact that AM processes are able to produce parts free of geometrical constraints, and provides complete flexibility in design and construction. The fact that materials are added rather than subtracted, results significant reduction of waste material. Furthermore, parts are built directly from a CAD model, without the direct need of application-specific tooling. This makes AM feasible for low-volume production of complex parts. The geometrical freedom means AM technologies are capable of producing freeform channels and lattice structures.

3.1. Parts of the 3D printer

The printer, what I used is a Cooking-hacks Prusa it3. Fig. 3 shows the printer and the most important parts of printer.

Figure 3 Cooking Hacks 3D printer

- 1. Servomotors: There are 3 servomotors in the printer. These motors are responsible for keeping the nozzle in the right position while printing and to follow the path as the G-code supposed.
- 2. Filament: The feedstock can be pellets and filament also. To use filament is a common method, you can find it usually above the printer in spooled form. (It isn't in the picture.)
- 3. Worm-drive: There is a typically worm drive, which is responsible to transmit the filament from to the bed from the spool. This process is controlled by computer also.
- 4. Liquefier head: The worm-drive push the filament in the direction of the nozzle through the liquefier head. This part of the printer melts the filament and the temperature is controlled by computer between 0-260 Celsius degree.
- 5. Extrusion nozzle: The liquid filament comes out from the nozzle and it solidifies on the top of the last layer. The diameter of the nozzle is usually 0.35 mm, but it depends on the material, what we print.
- 6. Heated bed: In our printer we can heat the bed which is quite important to print an object with excellent quality. The maximum bed temperature is 110 Celsius degree. The temperature, what we set depends on the material and the circumstances.

4. Modeling of Large Scale Reinforced Polymer Additive Manufacturing

The dilatation, warp and residual stresses frequent design problems. Nowadays the engineers are able to build significantly bigger 3D printer systems then the entry level 3D printers. In collaboration of Cincinnati Inc. and ORNL has a large FDM system developed. This system usually build formations several meters in size at rates between 5 kg/hr and 50 kg/hr using a combination of robotic and extrusion deposition technology. (A desk-3D printer produced objects measured in centimeter with material deposition rates ranging from 0,010 to 0,081 kg/hr.) The material that used for this project was carbon fiber reinforced ABS.

With this system the engineers were able to print a frame of vehicle, it is called Strati Vehicle. The common problems warps, cracks and deformations were also visialbe in this project. The cracks usually occur in thin features. The thermally inducated stresses caused by differential cooling of the CFRP material from nearby melt temperature close to the extruder to ambient temperature of the vehicle. Because of the size of the model, the quantity and quality of the material to develop a virtual tools to analyse the model was required.

The first step is to generate Finite Element Method (FEM) mesh of the compound structure. Alpha Star Inc. combined a device in their Genoa software for meshing of 3D printed structures. This device creates a regular rectangular mesh using a G-code from path generation software. The tool path is threaded through the background grid and activates the elements for the FEM model.

All of the finite elements contain information about the time, orientation and printing parameters from the G-code based on the traversal path and its residence time in the element. This orientation information is then used for generation of anisotropic mechanical and thermal properties within each element.

For each layer, finite elements with orientation information can then be assembled into an FEM mesh representing partially built structure.

"The solution approach depends on available computer resources and the available simulation time. For the simplest solution, the thermal profile as a function of time can be assigned to each element based on g-code information and previous observations for similar builds. Such observations can be obtained from infrared camera or strategically placed thermocouples. Alternatively, the thermal problem involving conduction, convection and radiation can be solved along with the deformation and stresses. The utilized solution was the following. The fully coupled thermal-stress analysis is by knowing the temperature field from the test. The temperature field data (which might be influenced by stress responses) are used as the input to the analysis. Distortion (due to thermally induced residual stresses) during the FDM process is vital information for subsequent assembly of additional components connected to the vehicle. Figure 31 shows predicted crack initiation locations calculated from the stress state of the printed part. The predicted crack locations correspond to empirically observed problem areas with the thin section of the front fender being particularly susceptible to crack."

Figure 31 Possible cracks locations caused by residual stress

After the mesh of the vehicle is generated, additional loads can be applied to the structure whichever in an un-deformed state. The rectangular nature of the FEM mesh will likely result in artificial localized stress concentration, however global stiffness and predicted deformations may add helpful data about the performance of the structure in service.

With this project a feasible computational approach demonstrated for simulation ED process of large complex structures. [13]

5. Materials for FDM

However, there is only a limited number of materials, such as thermoplastics and some engineering plastics have been used as a feedstock for FDM, the final products have limited mechanical properties. The disadvantages are given by this phenomenon.

The most frequently used as a feedstock for fused filament fabrication (FFF) is ABS (acrylonitrile butadiene styrene), followed by PC (polycarbonate), PLA (polylactide), PPSF (polyphenylsulfone), and mixtures thereof. [2]

5.1. Acrylonitrile Butadiene Styrene (ABS)

ABS is a frequent thermoplastic polymer, made by polymerizing styrene and acrylonitrile in the presence of polybutadiene as shown in Figure 4. The portions can be the following:

- ▶ 40-60 % styrene provides shiny and impervious surface,
- ▶ 15-35 % acrylonitrile gives the strength,
- ▶ 5-30 % butadiene (a rubbery substance) grants the toughness to the material. [3] [4] [5]

Figure 4 Monomers in ABS polymer

Properties of ABS											
Features	Limitation										
Dimensional stability	It can be sensible for the sunlight										
Very high impact strength	Poor weather ability										
Excellent ductility	➢ Poor solvent resistance (ketones,										
 Good chemical resistance 	acetone, esters etc.)										
➢ Rigid											
Excellent toughness											
Good creep resistance											
➢ Useful characteristics within a											
temperature range from -20 to 80 C											
relatively low cost											

 Table 1 Properties of ABS

Mechanical properties for ABS (Extruded)									
Properties	Average value	Unit							
Density	1,05	g/cc							
Hardness, Rockwell R	102	-							
Ultimate tensile strength	38,2	MPa							
Yield tensile strength	41,5	MPa							
Glass transition temperature	108	Celsius degree							
Melt temperature	221	Celsius degree							
Nozzle temperature (for processing)	229	Celsius degree							

Table 2 Mechanical properties for ABS [6]

ABS is used in very wide variety of everyday life, for example:

- household goods
- ➤ mobile phones
- \succ car industry
- ➤ toys (Lego)
- \triangleright electrical segment

5.2. Carbon Fiber Reinforced Plastics (CRFP)

To enhance the aforementioned limited mechanical properties we have few methods. Using carbon fiber for reinforcing of the neat material is a feasible possibility.

Effect of carbon fibers

Fu-da Ning et al. [7] investigated the effect of carbon fibers and then compared the effect of

100 μ m and 150 μ m fiber lengths and the effect of different carbon fiber content. For this experiment they used 150 μ m carbon fiber reinforced ABS.

The first step was to manufacture the filament. The fabrication process started with mixing the plastic pellets and the carbon fibers in a blender, then extruded the material with an extruder machine to achieve the filament that used for the FDM process. The following mechanical properties can be obtained from strainstress curves: tensile strength, Young's

modulus, toughness, ductility, and yield strength. The result of different carbon fiber content is

visible in the Figure 5. The largest tensile strength value (42 MPa) was at carbon fiber content of 5 wt% and the smallest value was at carbon fiber content 10 wt% (34 MPa) that is close to the value of neat ABS.

The Young modolus was increased between 0-7,5 wt% carbon fiber content (25 MPa), after the fiber content exceed this value the Young's modolus started to decrease but the smallest value was in case of neat ABS specimens (19 MPa). In case of toughness and yield strength had an overall decreasing tendency when carbon fiber content increased from 0 wt% to 10 wt%. When they invastigated the ductility, the results were the following. The best ductility was in the neat ABS and then the values decreased until the fiber content reached the 10 wt%. After 10 wt% fiber content the ductility value started to increase.

The carbon fiber reinforced plastic composites specimen with 150 μ m carbon fiber had larger tensile strength and Young's modulus than that with 100 μ m carbon fiber. Compared with CFRP composites specimen with 100 μ m carbon fiber, specimen with 150 μ m carbon fiber had smaller toughness and ductility. The yield strengths of these two kinds of specimen are nearly the same.

6. Printer settings

The printing process starts with the creation of the 3D model then we can put the file in the slicer program. In this program we have to set the printer parameters before we slice the object for layers. The printers use a special programming language it's called G-code. The G-code is used in general AM techniques to control automated machine tools. With this method the engineers can tell to the computerized machine tools how to make the appropriate object. In this case "how" determine information on how fast to move, where to move, what path to move how many materials to use etc. [8]. The parameters what we set can define the G-code. These settings are the following.

6.1. Print settings

In this part we can set the infill and perimeters, so the height of the layers and the number of vertical/horizontal (top and bottom) shells. We can also define by the infill part the density and pattern of filling inside of the object and the top and bottom layers also. In those case, where the layers should be printed "in the air" without underpinning part we can use support material as shown in Figure 6-7.

Figure 6 Object before slicing without support material Figure 7 Support material after slicing

We can set the speed of the printing. From the point of quality, the speed is an important factor. There are two toothed belts in the printer. One of them is responsible for moving the nozzle in X direction, the other moves the bed in Y direction. The fast moves can load the toothed belt dynamically and if the belts are not tight enough, the perimeter of layers above to each other can't be in one plane. From the other hand the shorter printing time would be better for the connection between the layers, because we don't let enough time for the layers to cool down therefore the whole object can cool down at the end of the printing. In this case the chance for the breaking by dilatations is smaller, but it depends on the size and the shape of the object, the

number and thickness of layers. In the setting we can add another nozzle which is able to work with the basic nozzle and add support material to the object in the same time. We use just only one nozzle.

6.2. Filament settings

In this section we can set the properties of filament. We can tell the printer how many materials have to be used for printing; we have to set the diameter of the filament and multiplier of extrusion. The commercial filaments are prepared usually 2.5-5 mm diameter, but to measure the accurate diameter is recommended. With modifying the parameter (for example, add 3% more material) we can influence the connections between the lines and layers.

6.3. Printer Settings

By printer setting we can define mainly the start G-code and end G-code, and the diameter of the nozzle. In our printer this size is 0.35 mm. The number of lines in one layer depends on this parameter. For the basic specimens I set 0.3 and 0.35 mm also. The difference between this two size, that the printer create more or less lines in one layer. If we set smaller value, the printer will print more lines. In the basic specimen the result are the following:

- nozzle diameter: 0.35 28 lines in the middle part of the specimen
- nozzle diameter: 0.30 37 lines in the middle part of the specimen

To use smaller diameter means that we push more material in the same object, causes better connection between the layers and lines. So the result is better quality specimens.

7. Printing from neat ABS

To find the accurate settings for the proper quality I printed four test-cubes and more than 15 specimens. The quality of the printing depends on the connection between the layers and lines. This line deposited in raster patterns (in a pattern that is composed in parallel lines). If we set the printer with the basic parameters, the results are going to be the following. The printer will push just enough material for the object (so we don't waste material) but at the same time the connection between lines and layers are going to be a bit weaker because of the voids which are between the lines as illustrated in Figure 8. Between these parallel lines there are voids that can significantly decrease the mechanical properties. Therefore this phenomenon causes highly anisotropic 3D printed object, the strength of the printed object depends on the direction of loading and printing. [9] If we modify the setting and use more material for the same model, we can decrease the number and the size of the voids in the printed object as illustrated in Fig. 9.

Figure 8 Lines with the original settings

Figure 9 Decreasing the size of the voids

The question is, what can we set for the better quality. We have several setting to modify:

- > nozzle diameter: We can push more material by aforementioned factors.
- Filament diameter: Use smaller diameter in the setting means that we can push more material while printing.
- extrusion multiplier: The original value is one, we can set it to 1.03 which means we push 3% more material.
- bed temperature: The bed temperature can be set between 0-100 Celsius degree. Because of dilatation the temperature difference is an important factor in the connection between the layers. If the printed object can cool down at the end of printing it leads better result than printer create a new warm layer above a cold layer.
- ➢ nozzle temperature: Every FDM-compatible material has a recommended printing temperature range. In case of ABS this range is 240-260 Celsius degree. If we set the

temperature from the higher part of the range it means the more molten printed lines can connect more to each other. The higher temperature can influence the color of the material.

In one line the material continuity is given by the specificity of printing process, the mechanical properties are much better in the direction of printing. In this case we have three methods to print a specimen.

To investigate the mechanical properties of specimens I had to print at least seven pieces from each form for the tensile strenght test. I put a mirror above the surface of the bed to save it. To fix the first layer of the object I used strong hairspray. The "dog-bones" based on ASTM standard D638 Type I. and the dimensions of the specimens were illustrated in the Figure 10. The parameters that I used for printing are summarized in Table 3.

Figure 10 Dimensions of specimens, ASTM, D638 Type I.

Input variables	Value	Unit
Bed temperature-first layer	100	С
Bed temperature-other layers	95	С
Extruder temperature-first layer	250	С
Extruder temperature-other layers	246	С
Nozzle diameter	0,35	mm
Extrusion multiplier	1,03	-
First layer thickness	0,3	mm
Other layer thickness	0,2	mm
Velocity of perimeter printing	60	m/s
Velocity of first layer printing	30	m/s
Velocity of infill printing	80	m/s

Table 3 Printer parameters for ABS printing

7.1. First type of specimens

In the first case the lines are parallel to each other and the direction of loading and printing concur. This type is shown in the Figure 11.

Figure 11 Direction of printing in the first type in the slicing software

First of all in generally the first layer can't stay on the bed without external help. It means, somehow we have to create a tacky surface on the bed. I prefer for this to use strong hairspray. The hairspar can fix the first layer on the bed and at the end of printig process one layer from the hairspray usually stuck on the first layer of specimen. After the specimen and the heated bed cooled down it's easy to remove the specimen from surface of bed than we can clean the first layer from the hairspray with water. Another viable method to use thermostable ducktape. The first layer is critically important in the printing process. As you can see in the following picture (Figure 12) if the first layer doesn't stuck (because the hairspray wasn't storng enough), the whole printing process can be false.

Figure 12 Faulty specimen

On the right side of the specimen the connection between the line seems strong enough while on the left side the lines are broken and the connection between the layers are also faulty. Because this specimen was one of the first I didn't set the printer to print more material. In this case the link between the lines can't be strong enough causes by the distance among the lines. At the end of printing the specimen had this curved shape. This is the effect of dilatation. The liquid material hardens immidiately after extrusion and becomes colder than 90-100 C degrees. Since the printer heats the bed there is a temperature difference among the first heated layer and the last

layer. The colder layer becomes a bit smaller it can constrict the top of the specimen and results this curved shape. If the hairspary is strong but the dilatation is stronger, it causes some cracks amid layers. In this case the first and the last layer are going to be suitable but the quality won't be appropriate, as shown on the Figure 12.

Figure 12 Warping

We can solve the problem of weak connection by using more material. If we push more material every line is going to be connected to the following one. From the other hand if we puch too much material the dog-bones can inadequate. In the following pictures (Figure 13) you can see the result.

Figure 13 Example for weak connection between the lines and for using too much material

Spaaiman's	Adjusted	Extrucion	Temperature						
specifien s	Aujusteu	EXITUSION]	Bed	Nozzle				
number	utameter	munipher	First layer	Other layers	First layer	Other layers			
1.	2,9 mm	1,03							
2.	2,9 mm	1,05							
3.	2,9 mm	1							
4.	2,95mm	1	100	95	250	245			
5.	3 mm	1							
6.	3,1 mm	1							
7.	3 mm	1,02							
8.	3 mm	1,02	100	95	245	240			
9.	3 mm	1,03							
10.	3 mm	1,03	100	05	250	246			
11.	3 mm	1,03	100	95	230	240			
12.	3 mm	1,03							
13.	2,85 mm	1,03							
14.	2,85 mm	1,03				246			
15.	2,85 mm	1,03							
16.	2,85 mm	1,03	100	95	250				
17.	2,85 mm	1,03							
18.	2,85 mm	1,03							
19.	2,85 mm	1,03							

The parameters of fabrication process was summarized in the Table 4.

 Table 4 Test the effect of parameters

In the following picture (Fig. 14.) you can see the first type of specimens what I printed for the tensile strenght test. Interesting, that from 1 to 12 the color of the filament is white and from 13-19 it's "natural". At the end we tested just the last 7 specimens.

Figure 14 Neat ABS, first type of specimens

7.2. Second type of specimens

In the second case the lines are parallel to each other but the direction of printing is perpendicular to the direction of loading.

Figure 15 Second type of specimens, the lines are perpendicular to the direction of loading

As aforementioned the printer works by slicing software generated G-code. In the slicing program (Repetier Host) we have the possibility to modify the G-code that is already generated. With the basic setting we can slice the specimen but every second layer is going to be created in perpendicular to the previous layer. To reach the proper model I modified the G-code to print every layer like the first one. In the second type I could use the same parameters what I obtained from the experiment of first type thus the printing process was correct and accurate.

7.3. Third type of specimens

In this case we can investigate the connection between the layers. One specimen contains 825 layers. The layers are parallel to the surface of bed so the direction of the load is perpendicular to the printing direction. To print this type of dogbones I had to design a new model for printing. To stabilize the object in the first and second case I printer 8 specimens together. The specimens were connected to each other in the first case with sticks as you can see in the following picture. (Fig. 16) The idea to print the specimens together with stick came from the stabilization. It's easy to remove the support-sticks and they are strong enough to fix the model. Even though the result are not suitable for the test. I had the following problems:

- Printing time (18 hour)
- ➢ Dilatation
- ➢ Model size
- Quantity of specimens

Figure 16 Third type of specimens with sticks

The estimated printing time was more than 18 hours so the temperature difference is too big between the night and daytime in the laboratory of the university. (The radiators start to heat the rooms at 6 am.) Because of this circumstanses the previous layers were too cold while printing and the connenciton between the solid and molted material was too weak. To reach the better quality I had four option:

- Decrease the printing time
- Design a more stabil model
- ➢ Use more support material
- Secure the constant temperature

I had two possibilities to decrease the printing time. The first one is to enhance time printing speed. The problem is with this that the surface of the layer is approximately small so the dynamic effects can be stronger. The other solition is to create a more stabil model. In this model I reduced the distance among two specimens (so the printer had not move

the nozzle needlessly long time). To stabilize the model I Figure 17 Walls among the specimens designed walls among the specimens. It didn't enhance the printing time and I thought with this method I can decrease the dynamic effect. Because this walls were related to the side surface of specimens, I had to decrase the size of the wall in the area of specimen (Figure 17). With this little modification easier to remove the support wall without ruination the side surface of the

Figure 18-19. Cracks and broken parts in the third type

specimen. You can see the result on following pictures.

As you can see two of the eight specimens are broken. One of them broked in the night while printing so the printer pushed molted material in the air. This phenomenom is also a sign for dilatation so I searched another way to reach the perfect model. Because the soulution of walls was a suitable method I designed the same model but with just only four specimens. The estimated printing time was only nine hour. I printed 8 specimens with this method. The first model was printed at nighttime. The result are better then the previous but some layer aren't suited perfectly to the previous layer. Because the model was already proper, the printing time didn't take a long time I had to stabilize the temperature. To reach the stabil temperature I build a box around the printer from paper. Then I put a thermometer in the box. The temperature in the laboratory was 17 C degrees, inside of the box it was 26 C degrees. Too high temperature can harm the electrical parts of the printer so I have cut a hole on the top of the box to let the air flow thtrough to box.

8. Printing from carbon fiber reinforced ABS

I used ColorFabb XT-CF20 filament for printing. As we can see on the site of the company, it's higly recommended to use stainless steel nozzle and its diameter must be at least 0,4 mm. "A special point of attention is the abrasive nature of the carbon fibers. In general these fibers will accelerate the nozzle-wear of brass nozzles, much faster than unfilled filaments." [10] Because of

this reasons I desgined a new nozzle shown in the Figure 21.

I needed to face many challenges beneath the manufacturing of specimens. The carbon fibers in the molted material could clog the extrusion nozzle while printing at lower temperature. [9] Some of the users on specialized sites recommend even bigger hole diameter for the nozzle to avoid the problem of clogging so I chose 0.5 mm nozzle hole. The bigest problem was that some molted material stucked on surface of the nozzle then this little, already solid pieces could stuck on the last layer. In my case after the first layer the printing process was stopped by this phenomenon. You can see the result in the following picture.

Figure 22 Printing was not possible with bigger thickness

After failed at printing of 18 specimens I found the solution. The most important modifications (compare to neat ABS parameters) are in the velocity, extrusion multiplier, layer thickness and extruder temperature. To avoid the aforementioned problems the higher temperature was needed with slower velocity. I used 20% more material to avert the void between the lines and layers. I made the molted material stuck on the surface of the last layer by decreasing the thickness of the layers. This way the nozzle was close enough the last layer and because I used more filament, the material could not stuck on the nozzle.

Input variables	Value	Unit
Bed temperature-first layer	100	С
Bed temperature-other layers	100	С
Extruder temperature-first layer	265	С
Extruder temperature-other layers	265	С
Nozzle diameter	0,45	mm
Extrusion multiplier	1,2	-
First layer thickness	0,15	mm
Other layer thickness	0,1	mm
Velocity of perimeter printing	30	m/s
Velocity of first layer printing	30	m/s
Velocity of infill printing	30	m/s

The settings are summarized in the following table. (Table 5)

Table 5 Parameters for carbon fiber reinforced ABS printing

Unfortunately with this parameters the real thickness of the specimen was only 2.4 mm instead of 3 mm. To solve this problem I designed a new model and the model's thickness was 3.5 mm. After printing the real thickness was 3 mm. To compare the materials to each other I printed all the three types of specimens on the same way as in case of the neat ABS with the proper parameters.

8.1. Observations with microscope

To investigate the accuracy of the printer I checked the layers with an electrical microskope (500x magnification). In the first type of specimens the lines were not linked to each other in every case (Fig. 20) and from the other side there were some cracks between the layers as I mentioned before.

In the second type of specimens the perpendicular lines were short so the dynamic effect was significant from the pont of accuracy as you can see in the Fig. 21. The first layer was a bit bigger than the others in every case.

In the third type of neat ABS the bigest problem was the cracks between the layers. This cracks makes stress concentration points on the surface of the specimen and this phenomenom decrease significantly the strength of the specimen.

In case of CF-ABS the problems were the same but the degree of accuracy was higher. In Fig. 23 you can see next to the void a little material bubble that first stucked on the surface on the nozzle, after it was big enough reached the surface of the layer and stucked on it. Since the thickness of the layers were smaller and the hole of the diameter was bigger thus the surface of the specimens was more coherent. It means the connenctions between the layers are better I

predict the mechanical properties of the third type of the CF-ABS will be higher than in case of neat ABS.

Figure 20 Voids between the lines

Figure 21 Difference between layers

Figure 22 Small cracks between layers

Figure 23 Voids between lines, CF-ABS

9. Effect of acetone surface treatment

To use acetone for surface treatment is a very popular method to reach a smooth and shiny surface. The basis of the idea is that the aceton solve the ABS by breaking the secondary bonds between the ABS polymer chains. This way the chains are able to glide past each other and move to more stable positions. The inperfect surface of the 3D printed object is a common problem at design objects. My opinion is that the original surface looks nicer, but I was interested in the effect of aceton from the point of mechanical properties. [11]

We have more possibility to do this treatment. Because the aceton as a liquid can totally destroy our printed object we have to put them into aceton vapor. The effect of the treatment depends on the time and the temperature. I will write the whole method step by step.

The equiqment mainly consist of a can or jar and a piece of aluminium (or foil) and we can put our printed object on it. Because the aceton vapor is heavyer than the air it is recommended to use a ventilator to circular the aceton vapor inside of the can so te aceton-humadity will be equable in every part of the can. (The specimens were too big for one can so I fixed 2 together with a ducktape. In every case I put the same types of specimens together in the can.)

Figure 24 Equipment for acetone surface treatment

To fix the specimens I used Blinder Clips without handles then I put them into the can. I took some aceton inside of the can then closed the whole system. If we have not enough time for this method we can put our can on the bed of the printer thus we can heat them to reach higher humadity. (I did not use heating for the treatment.) To reach the optimum time for the treatment I put the failed and broken specimens into the vapor. In case of neat ABS after 25 minutes we can see the difference and the surface is shiny and smooth, the treatment is effective and controllable. When I left the specimens in the vapor for 1 our and 20 minutes the surface was still shiny but the outer lines/beads were too much molted furthermore there stucked some air while molting so we can see some bubble

under the molted surface. Therefore I limited the treatment time at 50 minutes. Thus I was able to compare the difference between the two treatment time (25 min / 50 min).

The effect of aceton depends on the direction of printing too. The printed object highly anisothropic so we can not improve the mechanical skills in every direction because we can not make the lines stronger than originally they were, just the connection between the layers and lines. In the following pictures of SEM microscope I would like to show the difference before and after treatment (Fig. 25 and Fig. 26).

Figure 25-26 SEM pictures before and after acetone treatment [11]

As we can see on the left side of the right picutre the outer lines of the layers are molted and bonded together. In the printed objects it would be important to ignore the cracks between the layers. Because this craks and warps are stress concentrations I predict we can enhance the mechanical properties by removing these stress points.

In the first type the tensile strenght depends on the strenght of the lines so if we use aceton we can only destroy the outer surfaces of the specimens but we can not improve the strenght of the lines.

Because the layer thickness was 0.2 mm and in case of neat ABS and 0,1 mm in case of CF-ABS this values can influence the result of the test. To illustrate the effect on the cross sections I created this drawing (Fig. 27).

Figure 27 Cross sections in the second and third type

The red cirles mark the places of the stress concentrations (meeting points of layers and lines). I drawn the toolpath above the cross sections of the specimens. The arrows mean the direction of loading. For printing the CF-ABS I changed the nozzle as I mentoined. The hole of the nozzle is bigger thus the printer use less and bigger liner in one layer. I suppose in case of CF-ABS the aceton can solve the ABS part but not the carbon fibers so the acetone can make more stress concentrations on the surface of the specimen. I took photos about the surface of CF-ABS specimen after and before aceton treating (Fig. 28 and Fig. 29).

Figure 28-29 Surface of the third type of specimen from CF-ABS, before and after acetone treatment

We can see the aceton wapor didn't make uniformly related surface as in case of neat ABS. The errors on the surface can decrease the mechanical properties.

In the following picture (Fig. 30) we can see the effect of the acetone in the third type of specimens from neat ABS. The outer surface of the specimen is completely melted without cracks.

Figure 30 Third type of neat ABS, before and after treatment

10. Results of printing

The quality and the mechanical properties in my case depends on 3 things:

- > quality of material
- direction of printing
- \succ surface treatment method

Because I would like to investigate the effect of the aceton surface treatment, the difference between the two material and the effect of printing direction I printed 42 specimens and then I created 16 types as you can see in the following sheet. In the last row the numbers means of the printed specimens. In case of neat ABS without aceton in the third type one specimen broked while prepearing for the tensile strenght test. For the same reason I tested only one specimen after the 25 minutes aceton treatment in case of carbon fiber reinforced ABS's third type I summarized the types in the following table (Table 6).

Specimens															
Without-Acetone							Aceton-25					Aceton-50			
ABS				CF-Al	BS		ABS		CF-ABS		ABS		CF-ABS		
I.	II.	III.	I.	II.	III.	I.	II.	III.	I.	II.	III.	II.	III.	II.	III.
5	3	4	5	2	4	2	2	2	2	2	1	2	2	2	2

Table 6 Types of the specimens. The numbers in the last row mean the number of the tested specimen.

10.1. Tensile strenght test

For the tensile strenght test I followed the principles of the ASTMD638-10 standard. First of all the thickness of the specimens were measured by a micrometer at three section of the specimen then the avarage thickness was used for the calculating. In case of width of this three parts the measuring method was the same. For the test we used a MTS Insight (Electromechanical – 100 kN Standard length) machine. For measuring the axial displacement and the transversal deformation a biaxial extensometer was used. As the standard recommend the speed of testing, it was set to 5 mm/min. One of the specimen (16-0088 ABS 3_3) broke while preparing the test. Originally we should have test at least 5 specimens from each type but because of the time unfortunately I had not possibilities to print bigger quantity.

From the tensile strenght test we can obtain the following parameters.

1. Ultimate axial force, F [N]

- 2. Maximum stress [MPa]
- 3. Strenght at failure, [MPa]
- 4. Young modulus [GPa]
- 5. Poisson ratio [-]
- 6. Strain at failure, ε , [%]

The sheets of the results can be found in the appendix.

10.1.1. Comparison of specimens I. – Maximum stress

The printed objects (especially the fiber reinforced printed object) are highly orthotrophic. In case of maximum stress we can see the significant effects of the carbon fibers and the difference between the printing direction. The tendences are the same in both of the materials and the characteristics look like as I predicted. If the loading and printing direction are the same the tensile strenght is much higher then in case of other directions.

In the third type in case of neat ABS the specimens act like as I mentoined before in the part of effect of the acetone.

In the second type the effect of aceton are not tested properly because of the scant number of the tested specimens. To obtain more accurate values I should test more specimens.

10.1.2. Comparison of specimens II. - Young modulus

Young's modulus (which is also known as the elastic modulus) is a mechanical property of linear elastic solid materials and it defines the connection between stress and strain in a material. The stiffer material have higher Young modulus. Most of the specimens were softly elastic independently form the aceton treatment.

According to the Young modulus we can see the significant effect of the carbon fibers. Thanks to the orthootropic behavior the stiffness can not be the same in every direction, the connection was very strong between the lines in the second type of neat ABS so the stiffness of the specimens was higher then in other cases. This result doesn't fit for our experiences, I suppose there was a problem in the test. To clarify this problem I should print more specimens and repeat the test. The degree of rigidity is not the same in a line in different direction, so this value depends on the connection between the lines because the lines are perpendicular to the direction of loading.

10.1.3. Comparison of specimens III. - Poisson ratio

When a specimen is loaded in one direction it generally tends to expand in the other two directions perpendicular to the direction of compression. This phenomenon is called the Poisson effect. [12] The aceton vapor increased the poisson ratio in every case. The original values are higher than the usual and in case of aceton they are even higher.

10.1.4. Comparison of specimens IV. - Strain at failure

As we can see the effect of the aceton and printing directions are important factors. The aceton typically increased the flexibility of specimens (except of case in third type at CF ABS, here this value more or less constant). The first type from the neat ABS was generally more flexible than the first type of CF ABS. At the second and third type the effect of acetone was

significant caused by the less stress concentration points. The first type of the CF ABS had higher degree of toughness than the other specimens. The behavior of carbon fiber is highly rigid but the aceton with the ABS solving can improve the flexibility.

11. Conclusions

The FDM technology is deservedly the most populist rapid prototyping method. Nowadays, thanks to the quality and price of the technology and materials we can create any kind of object quasi without boundaries. With this technology we are able to print the final product that is a big step in the history of manufacturing.

To reach the desired quality in printing we have to set all of the parameter properly thus we have to understand to whole process. In my study I printed more than 60 specimens with several parameters and investigated the effect of the settings to obtain the best setting for the best results. After I experimented the printing options in case of neat ABS I used this knowledge to examine the printing with carbon fiber reinforced ABS. After I reached the proper settings in printing of both materials I printed more than 40 specimens in 3 directions to investigate the effect of the printing direction.

Independently from the thickness of the layers the surface of the printed object never will be perfectly smooth. To reach the smooth surface to use acetone vapor as a surface treatment is a feasible way. In my study I examined the effect of acetone, the necessary time for the treatment and the effect from the point of mechanical properties in case of 25 and 50 minutes of treatment.

After I prepared all of the specimens we tested them with a tensile test machine. With this experiment we were able to obtain the following mechanical properties: tensile stress, Young's modulus, Yield strength and Poisson ratio.

In my study I found the best parameters for the desired quality and understood the whole printing process. I convinced that the parameters can significantly influence the quality and the mechanical properties of printed object.
12. Bibliography

[1] https://en.wikipedia.org/wiki/Fused_deposition_modeling (2016. 01. 18.)

[2] Dudek, P., 2013, "FDM 3D Printing Technology in Manufacturing Composite Elements," Archives of Metallurgy and Materials, 58(4), pp. 1415-1418.

[3] https://en.wikipedia.org/wiki/Acrylonitrile_butadiene_styrene (2016. 01. 14.)

[4] http://www.absmaterial.com/ (2016. 01. 14.)

[5]http://www.matweb.com/search/DataSheet.aspx?MatGUID=3a8afcddac864d4b8f58d40570d2 e5aa&ckck=1 (2016. 01. 14.)

[6]http://www.matweb.com/search/DataSheet.aspx?MatGUID=3a8afcddac864d4b8f58d40570d2 e5aa&ckck=1 (2016. 01. 4.)

[7] Fu-da Ning, Junhua Wei, Shiren Wang Additive manufacturing of CFRP Composites using fused deposition Modeling: effects of carbon fiber Content and length

[8] https://en.wikipedia.org/wiki/G-code (2016. 01. 18.)

[9] Halil L, Vlastimil K, Gregorio M. V, Chad E. D, Lonnie J. L, Amit K. N, Craig A. B, Soydan

O. Highly oriented carbon fiber-polymer composites via additive manufacturin

[10] http://learn.colorfabb.com/colorfabb-xt-cf20/ (2016.01.15.)

[11] https://benchapman4.wordpress.com/2014/05/08/increasing-toughness-of-3d-printed-plastic-using-acetone-vapor/ (2016. 01. 22.)

[12] https://en.wikipedia.org/wiki/Poisson%27s_ratio (2016. 01. 24.)

[13] Vlastimil Kunc¹, Brett Compton¹, Srdjan Simunovic¹, Chad Duty¹, Lonnie Love¹, Brian

Post¹, Craig Blue¹, Farid Talagani², Renly Dutton², Cody Godines², Saber DorMohammadi²,

Harsh Baid², Frank Abdi²; 1. Oak Ridge National Laboratory, 2. Alpha Star Corporation

Corresponding author: Vlastimil Kunc, kuncv@ornl.gov, (865) 919 - 4595

Modeling of Large Scale Reinforced Polymer Additive Manufacturing;

13. Appendix A – Test results

Tens	ile test- ASTN	Result	s Report	Validated by:	External code: Internal code: JRE		CF_3-4 16-0139 Validation date:	Page 1 of 1 2014.01.14
				SPECIMEN MATE	RIAL			
Mate	rtal Type:			Carbon fiber reinfo	rced ABS		Batch:	CF
Manu	ufacturer:			3D Printe	d		Orientation:	1
				SPECIMEN DIMEN	SIONS			
Spec	imen:	Cf	⁼ 3-4	Date:	2016.0	1.22	Technicians:	CMA/DPI
Tool	used:	MICROMETRE/02	MICROMETRE/02	2				1
(mm))	Width	Thickness	_				
	1	13,389	3,520	-	-	+	•	
	2	13,467	3,702	_	w1. ±1	55 M (1.20	- 14 CT 14	
	3	13,476	3,650					
Mear	n Width:	13,44	Mean thickness:	3,62	4 Area:	48,72	2 mm ⁻	
s	Specimen reco	eption conditions are standard:	according to the	YES	Specify:		-	
			STR	AIN GAUGE/EXTEN	ISOMETER			
Туре	6	_	Blaxial ex	tensometer		Blaxia	i extensometer	
Gage	e types and nu	umber:			-			
Resis	stence (Ω):		-	Dimension (mm):	,	-	-	
Strah	n gauge Facto	Dr.	-	Temp. Comp. (10	°/°C):	-		
Trans	sverse Sensit	wity:	-	Other information			-	
_				TEST DATA		_		
spec	imen:	C	34	Date:	2016.0	1.26	Technicians:	YBA
spee	ed (mm/min):		0,5	Lab Temperature	(***):	24,2	Rel.Hum. (%):	46,0
Char	Machine:		M I S Insight	Load Cell/Range.	(80)-		10 KNV100 %	
Tom	nper.	ured by:	-	rest temperature	(~6).	0,0	Soak ume (min).	-
Tenny	perature meas	ourcu by.		TENRI E TERTRE	en re			
⊢		Bassill		IN IN	30213			
Stren	oth at fallure:	POREALS.	0.2	MPa	Stress at yield:		10.2	MPa
Youn	ngur at landre.		2.3	GPa	Strain range:	450	4000	mr a
Polse	son ratio:	(141	ora	Strain range:	1000	3000	μc
Strain	n at failure:	(.45	%	Elongation at vi	eld:	0.4	%
Date	:	2016.01.27	Technician:	YBA/BGA	Data file:		16-0139.xlsx	
Stres	s - Strain nint	-			•	•		
- acc	12	-						
Stress (MPa)	10 8 6 4 2					Stress-Str Modulus o Yield poin	ein I elaaticity range t	
	0	0,0005 0,00	1 0,0015	0,002 0,002 Strain (mm	5 0,003 /mm)	0,0035	0,004 0,004	45 0,005
				00000				
⊢				COMMENTS				

	1	Results	s Report		External code:		CF_1-2	Den dada
Tens	slie test- ASTM	D638-10		Validated by:	JRE		Validation date:	2014.01.14
				SPECIMEN MATER	ALL .			
Mate	erial Type:			Carbon fiber reinfor	ced ABS		Batch:	CF
Man	ufacturer:			3D Printed			Orientation:	1
_				SPECIMEN DIMENS	10NS	22	Technickers	CHAIDDI
Spec	cimen:	UCPONETRE/02	· 1-2 MICRONETRE/02	Date:	2010.0	.22	rechnicians:	CMAUDPI
/mm	useu.	Width	Thickness	4				
	1	13,495	3,054			4		
	2	13,257	3,024		w1. ±1	w≝,120	- 2. T 2	1
	3	13,442	3,028					
Mea	in Width:	13,40	Mean thickness:	3,035	Area:	40,67	mm*	
	Specimen rece	ption conditions are standard:	according to the	YES	Specify:		-	
			STRA	AIN GAUGE/EXTEN	SOMETER			
Туре	e:		Blaxial ext	ensometer		Bladal	extensometer	
Gag	e types and nur	nder:		Dimension (marks	-			
CT-CT	in grune Easter	-	-	Tomp Comp (Int):	801-	-	4	
Tran	in gauge Factor	Itv:		Other Information	ru).	-	-	
			_	TEST DATA				
Spec	cimen:	CF	1-2	Date:	2016.01	.25	Technicians:	YBA
Spec	ed (mm/min):		0,5	Lab Temperature (°C):	24,8	Rel.Hum. (%):	45,8
Test	Machine:		MTS Insight	Load Cell/Range:			10 kN/100 %	
Char	mber.		-	Test temperature (°C):	24,8	Soak time (min):	-
Tem	iperature measi	ured by:			111 116			
⊢		Deve		IENGILE TEGT REG	ULIƏ			
Stret	noth at failure:	Kesut	83	MPa	Stress at yield:		52.2	MPa
Your	ng Modulus:	5	5,5	GPa	Strain range:	200	450	με
Pols	son ratio:	0	,84		Strain range:	1000	3000	με
Stral	in at failure:	0	,35	%	Elongation at yle	eld:	0,2	%
Date	2:	2016.01.27	Technician:	YBA/BGA	Data file:		16-0074.xlsx	
Stre	ss - Strain plot							
L	60 E							
	50 40							
ross (MPa	30							
8 8	20	/			-	Stress-Stra	n	
	10				-	 Yield point 	elatocky range	
	₀ 1 <u>⁄</u> 0	0,0005	0,001 0,0	015 0,002 Strain (mm/r	0,0025 mm)	0,00	13 0,0035	0,004
⊢				COMMENTS				
-								

		Result	s Report		External code:		CF_1-4	
	1.0	Result	shepon		Internal code:		16-0076	Page 1 of 1
Tena	slie test- A	STMD638-10		Validated by:	JRE		Validation date:	2014.01.14
				SPECIMEN MATER	LAB			
Mate	erlal Type:			Carbon fiber reinfor	Ced ABS		Batch:	CF
Man	ufacturer:			3D Printed			Orientation:	1
				SPECIMEN DIMENS	IONS			
Spec	cimen:	CF	F 1-4	Date:	2016.01	1.22	Technicians:	CMA/DPI
100	used:	MICROMETRE/02	MICROMETRE/02					1
(anna	0	1 12 257	2,005					
⊢		2 13 222	2,550	- ·				1
⊢		3 13,417	3,052	4	H			1
Mea	n Width:	13,34	Mean thickness:	3,006	Area:	40,09	mm ²	
	Specimen	reception conditions are	according to the				•	
		standard:		YES	Specify:		-	
⊢			STRA	AIN GAUGE/EXTEN	OMETER			
Туре	20		Blaxial ex	tensometer		Bladal	extensometer	
Gag	e types an	d number:			-			
Resi	istence (Ω)	:	-	Dimension (mm):		-		
Stral	in gauge F	actor:	-	Temp. Comp. (104	PC):	-		
Tran	isverse Se	nsitivity:	-	Other Information:			-	
				TEST DATA				
Spec	cimen:	C	1-4	Date:	2016.01	1.25	Technicians:	YBA
spec	ea (mm/mi	n):	0,5	Lab Temperature (·C):	24,7	Rel.Hum. (%):	45,6
Char	mbor		M I S Insignt	Tost temperature /	C1 -	24.7	Sock time (min):	
Tom	nerature m	appointed by:	-	rest temperature (v j.	24,7	ouak unie (min).	-
Tem	perature in	icaburcu by.		TENSILE TEST RES	ULTS			
⊢		Result		linit	0210			
Stre	noth at fall	ure:	2.1	MPa	Stress at yield:		54.0	MPa
Your	na Modulu	5.	7,3	GPa	Strain range:	100	450	ue.
Pols	son ratio:	(1,79		Strain range:	1000	3000	LUE.
Stral	in at failure	E (1,37	%	Elongation at yie	eld:	0,2	%
Date		2016.01.27	Technician:	YBA/BGA	Data file:		16-0076.xlsx	
Stree	ss - Strain	plot						
I 1	60 -							
I 1	t							
L	ŀ							
L	50							·
L								
I 1	1							
I 1	40 F							
L	40							
()	ŀ							
ž.	Ę.							
s	30 -							
80	1							
ł.	ŀ							
	20 F							
L					_	Stress-Stre	'n	
1	1	1						
L	40 F	/			-	Modulus of	elasticity range	
L	" F .	/				• Yield point		
L	- F1	, ,						
1	- I/							
I I	0 <u>Ľ</u>							
I I	0	0,0005	0,001 0,0	015 0,002	0,0025	0,00	0,0035	0,004
1				Strain (mm/	nm)			
⊢					-			
⊢				COMMENTS				
1								

	Result	s Report		External code:		CF_1-5	
a particular de la construcción de la const	Nesuna	shepon		Internal oode:		16-0077	Page 1 of 1
Tensile test- ASTM	D638-10		Validated by:	JRE		Validation date:	2014.01.14
			SPECIMEN MATE	RIAL		-	
Material Type:			Carbon fiber reinfor	CEC ABS		Batch:	CF
Manufacturer:			3D Printed			Orientation:	1
Onestment			SPECIMEN DIMENS	2015.0	1.00	Technician	CHAIDDI
Specimen:	Ch MICROMETRE (02	· 1-5	Date:	2010.0	1.22	Lechnicians:	CMAUPI
(mm)	Width	Thickness	-				
1	13.338	2 995					
2	13,200	2,960	-	w1. +1	NH, 18		1
3	13,444	3,053	1				'
Mean Width:	13,33	Mean thickness:	3,003	Area:	40,02	mm²	
Specimen rece	ption conditions are standard:	according to the	YES	Specify:		-	
		STR	AIN GAUGE/EXTEN	SOMETER			
Type: Gage types and even	mhor	Biaxial ex	tensometer	I	Blaxial	extensometer	
Basistance (o):	niver.		Dimonsion (mm):	-			
Stella anuna Erata	-	-	Tomo Como (402	Sect-	-	4	
Transverse Sensiti	vitv:	-	Other Information:	ru).	-	-	
manoreroe denotu		-	TEST DATA			-	
Specimen:	C	1-5	Date:	2016.0	1.25	Technicians:	YBA
Speed (mm/min):		0.5	Lab Temperature (°C):	24,4	Rel.Hum. (%):	45.6
Test Machine:		MTS Insight	Load Cell/Range:	-1		10 kN/100 %	
Chamber:		-	Test temperature (°C):	24,4	Soak time (min):	-
Temperature meas	ured by:		-				
			TENSILE TEST RES	ULTS			
	Result		Unit				
Strength at failure:	4	4,9	MPa	Stress at yield:		47,1	MPa
Young Modulus:	4	9,4	GPa	Strain range:	200	450	με
Poisson ratio:		,82		Strain range:	1000	3000	με
Strain at failure.	2016 01 27	Technician:	76 VBA/BCA	Elongation at yill	ela.	15.0077 view	76
Date.	2010.01.27	reuniudi.	TUNUGA	Data life.		10-0077.464	
Stress - Strain piot							
50 E							
45				-0			
40 E							
40 E							
I ™E							
35							
~		·					
🕿 30 E							
i i i i i i i i i i i i i i i i i i i							
25							
<u> 5</u> 20 년	1						
**	1						
15 -	/				firms from	-	
I E 🥖				-	Screta-Stra		
10 F /				-	Modulus of	elasticity range	
I E/					• Yield point		
5 [/							
I 1/							
0	0,0005	0,001	0,0015	0,002	0,0025	0,003	0,0035
			Strain (mm/	mm)			_
			COMMENTS				

			Result	s Report		External code:		1_3	
	1.1		Result	shepon		Internal code:		16-0078	Page 1 of 1
Tens	ille test-	- ASTM	D638-10		Validated by:	JRE		Validation date:	2014.01.14
					SPECIMEN MATER	LAB			
Mate	erial Typ)e:			Carbon fiber reinfor	ced ABS		Batch:	CF
Manu	ufacture	ar.			3D Printed			Orientation:	1
_					SPECIMEN DIMENS	IONS		-	
Spec	imen:			3	Date:	2016.0	1.22	Technicians:	CMA/DPI
100	usea:		MICROMETRE/02	MICROMETRE/02	4				1
(mm))	4	12 295	2 769					
⊢		2	13,173	2,700					
⊢		3	13,257	2,716	4	W	<i>w</i> = <i>j</i> + <i>e</i>		1
Mear	n Width	с –	13.27	Mean thickness:	2.721	Area:	36.12	mm ²	
			the second state of the se	and the state of the state					
1	specim	en rece	poon conditions are	according to the	YES	Specify:		-	
			standard.						
				STR4	AIN GAUGE/EXTEN:	SOMETER			
Туре	E			Blaxial ext	lensometer		Blaxia	extensometer	
Gage	e types	and nu	mber:			-			
Resis	stence	(Ω):		-	Dimension (mm):		-		
Strah	n gauge	e Facto	C	-	Temp. Comp. (104	/PC):	-		
Tran	sverse	Sensitiv	/ity:	-	Other Information:			-	
					TEST DATA				
Spec	imen:		1	3	Date:	2016.0	1.25	Technicians:	YBA
Spee	ed (mm/	/min):		0,5	Lab Temperature (°C):	24,2	Rel.Hum. (%):	45,2
Test	Machin	1e:		M I S Insight	Load Cell/Range:	201-	24.2	10 KN/100 %	
Tom	nper.	0 0000	uned bur	-	Test temperature (·C).	24,2	Soak ume (min).	-
Tem	perature	e meas	ulea by.			III TS			
⊢			D		ILMOILE ILOI NEO	ULIO			
Stretz	noth at t	allure:	Result	0.0	MDa	Strocc at viold		28.0	MDa
Youn	ngun ach	dus:	1	879	GPa	Strain ranne:	200	450	mra
Polse	son ratio	0"		.79	Gra	Strain range:	1000	3000	112
Strain	n at fall	ure:	2	509	%	Elongation at vie	eld:	1.9	%
Date	0		2016.01.27	Technician:	YBA/BGA	Data file:		16-0078.xisx	
Stres	ss - Stra	ain piot							
	35								
I 1		Ł							
I 1	ł	-							
I 1	30	[
I 1	1	2							
I 1	ł	È i							
I 1	25	-							
I 1		-							
2		1							
ë,	20	Ł							
5	F	F							
8		-							
5	15	t							
ŝ	F	Ł							
I I	I	F	/						
I I	10	F				-	Stress-Stre	ân	
1	Ŀ	t i				-	Modulus of	elasticity range	
L	F	-							
1	~	F.					 Tests poer 		
1	1		-						
I 1	n t								
L	Ŭ		0.005	0.01	0.015	0	02	0.025	0.03
L		-	0,000	0,01	Stenin (mark			0,020	0,00
I I					auain (mm/i	inity in the second sec			
					COMMENTS				
I I									

		Result	s Report		External code:		1_5	
					Internal oode:		16-0080	Page 1 of 1
Tens	ile test- ASTN	D638-10		Validated by:	JRE		Validation date:	2014.01.14
			-	SPECIMEN MATE	RIAL			
Mate	rial Type:			Carbon fiber reinfor	CED ABS		Batch:	CF
Manu	ufacturer:			3D Printed			Orientation:	1
				SPECIMEN DIMENS	IONS			
Spec	imen:	1	15	Date:	2016.01	1.22	Technicians:	CMA/DPI
Tool	used:	MICROMETRE/02	MICROMETRE/02	2				1
(mm))	Width	Thickness	_	TT			
	1	13,494	2,766		-	+	•	
	2	13,255	2,706		#1. ±1	$m\cong 1, 120$	- 11 / T 12	1
	3	13,368	2,847					
Mear	n Width:	13,37	Mean thickness:	2,773	Area:	37,08	3 mm*	
5	Specimen rece	eption conditions are standard:	according to the	YES	Specify:		-	
			STR	AIN GAUGE/EXTEN	SOMETER			
Туре	6		Blaxial ex	tensometer		Blaxia	extensometer	
Gage	e types and nu	mber:			-			
Resis	stence (Ω):		-	Dimension (mm):		-		
Strah	n gauge Facto	C	-	Temp, Comp, (10	/PC):	-	7	
Trans	sverse Sensiti	vity:	-	Other Information:			-	
			•	TEST DATA				
Spec	imen:	1	15	Date:	2016.01	1.25	Technicians:	YBA
Spee	ed (mm/min):		0.5	Lab Temperature (°C):	24.3	Rel.Hum. (%):	45.7
Test	Machine:		MTS Insight	Load Cell/Range:			10 kN/100 %	
Chan	nber:		-	Test temperature (°C):	24.3	Soak time (min):	-
Tem	perature meas	ured by:		-				
_				TENSILE TEST RES	ULTS			
⊢		Result		Linit				
Stren	oth at failure:	2	87	MPa	Stress at yield:		29.0	MPa
Youn	a Modulus:	1	872	GPa	Strain range:	200	450	
Pols	son ratio:	0	.83	0.0	Strain range:	1000	3000	112
Strak	n at failure:	5	.28	*	Elongation at vie	ld.	20	%
Date		2016.01.27	Technician:	YBA/BGA	Data file:		16-0080.xlsx	
Circo	. Strain plot							
Sues	35							
	30		B					
	25							
ss (MPa	20							
Stre	15							
	10				-	Stress-Stre Modulus of	dn f elasticity range	
	5	r				• Yield point	ı	
	0 ¥ 0	0,01	0,02	0,03 Strain (mm/	 0, mm)	,04	0,05	0,06
				COMMENTS				

			Result	s Report		External code:		1_6	
			rtooun	onopoir		Internal code:		16-0081	Page 1 of 1
Tens	ille test- /	ASTME	638-10		Validated by:	JRE		Validation date:	2014.01.14
				-	SPECIMEN MATER	LAB			
Mate	erial Type	<u> </u>			Carbon fiber reinfor	Ced ABS		Batch:	CF
Manu	ufacturer.				3D Printed			Orientation:	1
					SPECIMEN DIMENS	IONS			
Spec	imen:			16	Date:	2016.01	1.22	Technicians:	CMA/DPI
Tool	used:		MICROMETRE/02	MICROMETRE/02					1
(mm))		Width	Thickness	_	T			
		1	13,633	2,897	4	-	+		
		2	13,489	2,870		w1. ±1	$\approx 20^{\circ} \times 1.20^{\circ}$	T	1
		3	13,642	2,909		-			
Mear	n Width:		13,59	Mean thickness:	2,892	Area:	39,30	mm*	
:	Specimer	n recep	tion conditions are standard:	e according to the	YES	Specify:		-	
				STRU	AIN GAUGE/EXTEN	SOMETER			
Туре	E		-	Blaxial ex	tensometer		Blaxial	extensometer	
Gage	e types a	nd nur	iber:			-			
Resi	stence (c	ı):		-	Dimension (mm):		-		
Stral	n gauge i	Factor:		-	Temp. Comp. (104	PC):	-		
Tran	sverse S	ensitivi	ty:	-	Other Information:			-	
					TEST DATA				
Spec	imen:			1_6	Date:	2016.01	1.25	Technicians:	YBA
Spee	ed (mm/n	nin):		0,5	Lab Temperature (°C):	24,5	Rel.Hum. (%):	46,2
Test	Machine	5		MTS Insight	Load Cell/Range:			10 kN/100 %	
Char	nber:				Test temperature ((<mark>0</mark>):	24,5	Soak time (min):	-
Tem	perature	measu	red by:						
					TENSILE TEST RES	ULTS			
			Result		Unit				
Stren	ngth at fa	llure:	2	23,1	MPa	Stress at yield:		29,3	MPa
Youn	ng Moduli	US:		1,8	GPa	Strain range:	200	450	με
Pols	son ratio:	:	(1,86		Strain range:	1000	3000	με
Stral	n at fallu	ne:	6	5,60	%	Elongation at yie	eld:	2,0	%
Date			2016.01.27	Technician:	YBA/BGA	Data file:		16-0081.xisx	
Stres	ss - Strair	n piot			•	•			
	³⁵ E								
	30			A			_		
	25								
MPa)	20								
Stress (15								
	10	,				-	Stress-Stra	in .	
	5	/					 Yield point 	easticky range	
	<u>ہ</u> ا		0,01	0,02	0,03	0,04	0,05	0,06	
I I					Strain (mm/i	nm)			
⊢					COMMENTS				
⊢					COMMENTS				

	Result	s Report		External code:		2_1	
		onopon		Internal oode:		16-0083	Page 1 of 1
Tensile test- ASTM	D638-10		Validated by:	JRE		Validation date:	2014.01.14
			SPECIMEN MATE	RIAL			
Material Type:			Carbon fiber reinfo	rced ABS		Batch:	CF
Manufacturer:			3D Printer	1		Orientation:	1
			SPECIMEN DIMEN	SIONS			
Specimen:	2	2 1	Date:	2016.0	1.22	Technicians:	CMA/DPI
Tool used:	MICROMETRE/02	MICROMETRE/02	2				1
(mm)	Width	Thickness	-	TT			
1	14,359	2,9/4	-		t		
	14,355	2,094	-	w1. ±1	ss ≌ , 1.2°		1
Moon Wildth:	14 35	Loon thickness:	2.02	3 Area:	41.05	mm ²	
WEAT WINDT.	14,00	Wedit unowneoo.	2,32	J rica.	41,50		
Specimen rece	eption conditions are standard:	e according to the	YES	Specify:		-	
		STR	AIN GAUGE/EXTEN	SOMETER			
Type:		Blaxial ex	tensometer	T	Bladal	extensometer	
Gage types and nu	mber:			-			
Resistence (-	Dimension (mm):		-		
Strain gauge Facto	c	-	Temp, Comp. (10)	⁴ /*C):	-	1	
Transverse Sensiti	vity:	-	Other Information:			-	
			TEST DATA				
Specimen:	2	2 1	Date:	2016.0	1.25	Technicians:	YBA
Speed (mm/min):		0,5	Lab Temperature	(°C):	24,7	Rel.Hum. (%):	45,6
Test Machine:		MTS Insight	Load Cell/Range:			10 kN/100 %	
Chamber:		-	Test temperature	(°C):	24,7	Soak time (min):	-
Temperature meas	ured by:						
			TENSILE TEST RE	SULTS			
	Result		Unit				
Strength at failure:	2	21,6	MPa	Stress at yield:		22,3	MPa
Young Modulus:	15	5,351	GPa	Strain range:	200	450	με
Poisson ratio:	0,	,735		Strain range:	1000	3000	με
Strain at failure:	0	1,31	%	Elongation at yl	eld:	0,2	%
Date:	2016.01.27	Technician:	YBA/BGA	Data file:		16-0083.xisx	
Stress - Strain plot							
25							
						_	
1 [_				
20 -							
l t			-				
🗑 15 -							
₽							
5		/					
- E							
. 10 -							
o							
I t				-	Stress-Stre		
5	/			-	Modulus of	elasticity range	
I [™] ⊦ .	/				D. Maldanta		
Ⅰ ⊦ ∕	•				 Theid point 		
↓ ↓							
	0.0005	0.001	0.0015	0.000	0.0005	0.002	0.0005
	0,0005	0,001	0,0015	0,002	0,0025	0,003	0,0035
			Strain (mm	/mm)			
			COMMENTS				
			COMMENTS				

		Result	s Report		External code:		2_2	
	4.4	Result	onopon		Internal oode:		16-0084	Page 1 of 1
Tens	slie test- AST	MD638-10		Validated by:	JRE		Validation date:	2014.01.14
				SPECIMEN MATE	RIAL			
Mate	erial Type:			Carbon fiber reinfo	rced ABS		Batch:	CF
Man	ufacturer:			3D Printed	1		Orientation:	1
				SPECIMEN DIMENS	SIONS			
Spec	lmen:		2 2	Date:	2016.01	1.22	Technicians:	CMA/DPI
Tool	used:	MICROMETRE/02	MICROMETRE/02	2				1
(mm)	Width	Thickness	_	TT			
		1 14,407	2,832	-	-	+	•	
		2 14,057	2,887		w1. ±1	$m \cong 1, 1.27$	- La , "T La"	
		3 14,299	2,889					
Mear	n Width:	14,26	Mean thickness:	2,869	Area:	40,9	1 mm*	
:	Specimen re	ception conditions are standard:	e according to the	YES	Specify:		-	
			STR	AIN GAUGE/EXTEN	SOMETER			
Туре			Blaxial ex	tensometer		Blaxia	i extensometer	
Gag	e types and r	number:			-			
Resi	stence (Ω):		-	Dimension (mm):		-		
Stral	n gauge Fac	tor:	-	Temp. Comp. (10	PC):	-		
Tran	sverse Sens	tivity:	-	Other Information:			-	
		· ·	•	TEST DATA				
Spec	lmen:		2 2	Date:	2016.01	1.25	Technicians:	YBA
Spee	ed (mm/min)		0.5	Lab Temperature	°C):	24.7	Rel.Hum. (%):	45.3
Test	Machine:		MTS Insight	Load Cell/Range:			10 kN/100 %	
Char	mber:		-	Test temperature (°C):	24,7	Soak time (min):	-
Tem	perature mea	asured by:		-				
_				TENSILE TEST RES	ULTS			
⊢		Result		Linit				
Strer	noth at failure	2. 2	4.5	MPa	Stress at yield:		24.8	MPa
Your	ng Modulus:		6.3	GPa	Strain range:	200	450	
Dole	son ratio:	(178	Gra	Strain range:	1000	3000	
Strat	n at failure:	1	1.49	%	Elongation at vie	ld.	02	%
Date		2016.01.27	Technician:	YBA/BGA	Data file:		16-0084 xisx	
Ctros	c. Strain ok	at						
ouer	an an an an							
	25		0		_			
Pa)	20	/						
tress (N	15							
s	10				-	Stress-Str	afin	
	5				-	• Yield poin	f elasticity range t	
	۰ <u>۲</u> .	0,001	0,002	0,003 Strain (mm/	 0,(mm)	004	0,005	0,006
				COMMENTS				

		Result	s Report		External code:	C	F_1-6_A-25	
		Kesut	shepon		Internal oode:		16-0118	Page 1 of 1
Tens	ille test- AS	STMD638-10		Validated by:	JRE		Validation date:	2014.01.14
				SPECIMEN MATE	RIAL		Detaba	
Mate	nal Type:			Carbon liber reinio	UEU ADS		Batch:	GF
Manu	ulacturer.			SPECIMEN DIMENS	SIGNS		Orientation:	1
Snoo	Imon:	CE 1	5 4.25	Data:	2016.0	1.92	Technicians:	CMA/DPI
Tool	used:	MICROMETRE/02	MICROMETRE/02	Date.	2010.0		recificatio.	CAPEDPT
(mm))	Width	Thickness	4				
		1 12,980	3,123		-4	+		
		2 12,961	3,101		w1. +1	w 10 , 1.20	- 1. T. 1	1
		3 12,954	3,126					-
Mear	n Width:	12,97	Mean thickness:	3,117	Area:	40,4	1 mm²	
:	Specimen r	reception conditions are standard:	according to the	YES	Specify:		-	
			STR	AIN GAUGE/EXTEN	SOMETER			
Туре		number	Blaxial ex	tensometer		Blada	i extensometer	
Gage	e types and	a number:		Discussion (see)	-		1	
rte6l	suence (Ω):	-	-	Dimension (mm):	000	-	4	
Stal	n qauqe Fa sverse Ser	actor.	-	Other Information:	70).	-		
man	010100 301	warity.	-	TEST DATA				
Sneo	men:	CE 1	-5 A-25	Date:	2016.0	1.26	Technicians:	YBA
Spee	ed (mm/mir	1):	0.5	Lab Temperature	PC):	23.1	Rel.Hum. (%):	45.7
Test	Machine:	7	MTS Insight	Load Cell/Range:			10 kN/100 %	
Char	nber:		-	Test temperature (°C):	23,1	Soak time (min):	-
Tem	perature m	easured by:		-				
				TENSILE TEST RES	ULTS			
_		Result		Unit				
Strer	ngth at failu	ire: 3	35,7	MPa	Stress at yield:	000	36,8	MPa
Dolo	iq Modulus		73	GPa	Strain range.	200	400	με
Strai	n at failure:		58	44	Flongation at vie	aid:	19	με %
Date		2016.01.27	Technician:	YBA/BGA	Data file:		16-0118.xlsx	
Strea	ss - Strain r	plot	•	•				
	40							
I I	F				-			
I 1	25							
I 1	~~E			and the second se				
I 1	Ŀ							
I 1	30 <u>-</u>							
I 1	Ŀ							
_	25							
a.								
Ē.	~ 1							
22	20							
Ĕ	F							
ŝ	15							
I I	E							
I I	10 E	1			-	Stress-Str	elm	
I I	•• E	1				Modulus o	f elasticity range	
I I	Ę	1				D. Vield colo		
I I	5 Ę ,	/				 meta part 	•	
I I	- I/							
I I	o 🗠							
I I	0	0,005	0,01	0,015	0	,02	0,025	0,03
I I				Strain (mm/	mm)			
					,			
				COMMENTS				
I I								
_								

			Result	s Report		External code:		CF_2-1	_
Tens	ile test-	ASTM	D638-10	•	Validated by:	Internal code:	æ	Validation date:	Page 1 of 1 2014.01.14
					SPECIMEN MA	TERIAL	-		
Mate	arial Typ	e:			Carbon fiber rel	nforced ABS		Batch:	CF
Manu	uracture	er:			3D Pri	nted		Orientation:	1
					SPECIMEN DIM	ENSIONS			
Spec	imen:		CF	2-1	Date:	2016.	.01.22	Technicians:	CMA/DPI
Tool	used:		MICROMETRE/02	MICROMETRE/02	2				1
(mm))		Width	Thickness	-				
⊢		1	12,754	3,298	4	_	+		
⊢			12,755	3,2/1	-	w1. +1	w≡,128	= 2 , T 2	I
Mear	n Width	r 9	12,000	Mean thickness:	3	275 Area:	41.8	7 mm ²	
	Concelera		nites essettings are	according to the			41,0		
1	specim	entece	standard:	according to the	YES	Specify:		-	
				STR	AIN GAUGE/EXT	ENSOMETER			
Туре	£			Blaxial ex	tensometer		Blaxia	i extensometer	
Gage	e types	and nu	nber:			-			
Resis	stence	(Ω):		-	Dimension (mr	n):	-		
Strait	n qauqe	e Facto		-	Temp. Comp. (10°/PC):	-		
Iran	Sverse	Sensitiv	ny.	-	Other mormat	on.		-	
C.p.o.c	ince:			2.1	IESI DA	IA 0045	04.95	Toobalolaar	VEA
Snee	amen. ad /mmi	(min):	U	0.5	Lab Temperati	2010.	23.3	Rel Hum (%):	46.1
Test	Machin	10.		MTS insight	Load Cell/Ran	10 (O).	20,0	10 kN/100 %	40,1
Chan	nber:			-	Test temperatu	re (°C):	23.3	Soak time (min):	-
Temp	perature	e meas	ured by:		-				
					TENSILE TEST	RESULTS			
			Result		Unit				
Stren	ngth at f	fallure:	2	10,0	MPa	Stress at yield	:	20,2	MPa
Youn	ng Modu	ulus:		2,1	GPa	Strain range:	200	450	με
Polse	son rati	0:		1,38		Strain range:	1000	3000	με
Date	n al tall	ure.	2016 01 27	Technician:	VBA/BCA	Data file:	yiela.	1,2 15-0120 view	76
Charles.		de elet	2010.01.27	reoninoidi.	TUNUGN	Data nie.		10-0120.868	
Sues	25 - 2014	an pioc							
I 1	- ²⁰ F								
I 1	ŀ								
I 1	ŀ								
I 1	20	-							
I 1	~						-	and the second se	
I 1	ŀ								
I 1	t								
2	15	-							
é.	·~ -								
€.	ŀ								
8	t								
Ę.	10	-		_					
00	ŀ								
I I	ŀ			_			Dans Da		
L	[201012-201		
L	5	-					Modulus o	f elasticity range	
L	ŀ						Yield point	t	
1	t								
I I	[•						
I I	0	<u> </u>							
1	0	1	0,002	0,004	0,006	0,008	0,01	0,012	0,014
I I					Strain (m	m/mm)			
⊢						-			
⊢					COMMEN	10			

		Regult	e Report		External code:		1-9_A-25	
	1.1	Result	skepon		Internal oode:		16-0130	Page 1 of 1
Tens	ille test- AST	MD638-10		Validated by:	JRE		Validation date:	2014.01.14
				SPECIMEN MATER	AL			
Mate	atal Type:			Carbon fiber reinfor	ced ABS		Batch:	CF
Manu	ufacturer:			3D Printed			Orientation:	1
	-			SPECIMEN DIMENS	IONS			
Spec	imen:	1-9	A-25	Date:	2016.0	1.22	Technicians:	CMA/DPI
100	used:	MICROME TRE/02	MICROMETRE/02	<u> </u>				1
(mm))	1 12,000	2 275					
⊢		2 12,950	3,373					1
⊢		3 13,020	3,346	-	H			1
Mear	n Width:	13,02	Mean thickness:	3,365	Area:	43,8	1 mm ²	
	Peoplemon re-	contion conditions are	according to the		•			
<u>۱</u>	specimente	standard:	e according to the	YES	Specify:		-	
		otanidara.						
			STR	AIN GAUGE/EXTEN	SOMETER			
Type		umb ar	Biaxial ex	tensometer		Blaxia	extensometer	
Gage	e types and r	iumber.		Discussion (mark)	-			
rve6l	sience (II):		-	Dimension (mm):	201-	-	-	
Strai	n gauge Fac	EOF.	-	Temp. Comp. (10	PC):	-		
ITan	everse Gens	away.	-	other mormation:				
Spor	iman:	10	4-25	ICSI DATA	2016.0	1.96	Technicians	VPA
Snee	amen. ad (mm/min):	1-3	0.5	Lab Temperature /	2010.0	23.5	Rel Hum (%):	45.5
Test	Machine:		MTS Insight	Load Cell/Range:	о р	20,0	10 kN/100 %	40,0
Char	nber:		-	Test temperature (°C):	23.5	Soak time (min):	-
Tem	perature mea	asured by:		-	-			
				TENSILE TEST RES	ULTS			
		Result		Unit				
Stren	ngth at failure	2	21,6	MPa	Stress at yield:		22,7	MPa
Your	ng Modulus:		1,6	GPa	Strain range:	200	450	με
Pols	son ratio:	(),91		Strain range:	1000	3000	με
Strai	n at failure:		0,14	%	Elongation at yl	eld:	2,8	%
Date	6	2016.01.27	Technician:	TBA/BGA	Data file:		16-0130.XISX	
Strea	ss - Strain pk	ot						
I 1	25							
I 1	[_			
I 1	ŀ							
I 1	~ t							
I 1	20							
I 1	ŀ							
I 1	ŀ							
_	45							
a d	19							
2	ŀ							
22	ŀ							
Ĕ	10							
ö	10							
I I	F	1						
I I	ŀ	1			-	Stress-Str	ain	
I I	_e t	1				Modulus o	f elasticity range	
I 1	° [/						
L	- + /					Yield pair	nt.	
L	- F/							
L	<u>م الا</u> .							
I I	<u> </u>	0.01	0.02	0.02		04	0.05	0.08
I I		0,01	0,02	Charles (month	1		0,00	0,00
L				Strain (mm/i	nm)			
_								
				COMMENTS				
F				COMMENTS				

