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Abstract: Forward osmosis (FO) is a promising membrane technology to combine seawater
desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process,
high quality water recovered from the wastewater stream is used to dilute seawater before RO
treatment. As such, lower desalination energy needs and/or water augmentation can be obtained
while delivering safe water for direct potable reuse thanks to the double dense membrane barrier
protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or
to implementation of stand-alone water reuse schemes. However, apart from the societal (public
perception of water reuse for potable application) and water management challenges (proximity of
wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as
low FO permeation flux to become economically attractive. Recent developments (i.e., improved
FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in
water flux. However, flux improvement is associated with drawbacks, such as increased fouling
behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation
in FO membrane mechanical resistance, which need to be better considered. To support successful
implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling
to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and
cleaning strategies on a module scale. In addition, refined economics assessment is expected to
integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as
cost savings from any treatment step avoided in the water recycling.

Keywords: potable water reuse; seawater desalination; pressure assisted osmosis; module; fouling;
trace organic contaminants

1. Introduction

1.1. Need for Alternative Water Resources and Management

With the world population ever increasing, water scarcity and resource depletion have become
pressing problems. In 2015, 660 million people in the world were lacking access to clean and
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safe drinking water [1]. With fresh water resources becoming increasingly limited, depleted or
contaminated, diversification of water sources is seen as a key evolution in water management,
especially in regions facing water scarcity or drought [2]. Current water management strategies
are increasingly focusing on the importance of water reuse and seawater desalination as alternative
water sources to solve issues of water shortage. In 2018, desalinated water production (from brackish
and seawater) is forecasted to exceed 36 billion m3 worldwide [3,4] whereby seawater desalination
represents more than 60% of the installed capacity. Water reuse is also increasingly considered. As most
of the wastewater withdrawn for human activity is currently still being returned to the environment
rather than being treated for reuse, reuse of water holds a great potential as alternative water source.

Seawater desalination and water reuse schemes have already been implemented worldwide,
but their broader development remains limited due to both public perception and overall treatment
costs/energy usage. In fact, it has been shown that public acceptance of alternative water scenarios is
mainly driven by the lack of conventional water sources, i.e., only if there is real water shortage,
acceptance is increased [5]. It is clear that better education of the public on alternative water
sources, and increased awareness of water scarcity are of utmost importance [6,7]. However, broader
implementation of alternative water schemes also requires technical progress to ensure safe drinking
water (high and constant level of pollutant rejection) at lower treatment costs [8].

1.2. State of the Art of Desalination and Water Reuse Schemes

In terms of seawater desalination, reverse osmosis (RO) is the fastest growing technique, and
it has taken the leading position in the market, as a result of its lower water production costs
compared to thermal desalination processes such as multi-stage flash (MSF) and multi effect distillation
(MED) [9]. The market growth of RO seawater desalination (SWRO) has been mainly driven by
important progress in reduction of energy demand, from 10 kWh¨m´3 in 1980 to less than 4 kWh¨m´3

nowadays. Modern large-scale RO desalination plants go down to 2.2 kWh¨m´3 specific energetic
consumption, and some pilot plants are even operating at 1.8 kWh¨m´3 [4,10]. Further improvements
are theoretically still possible by optimising RO operation (i.e., process control, RO configurations,
recovery and fouling mitigation [11–13]) down to the thermodynamical limit of 1.06 kWh¨m´3

(for 50% feed water recovery), but it is clear that RO is really approaching the limit [4]. However,
energy costs related to the pre- and post-treatment processes are also an important aspect of the
overall desalination expenses [3,11]. For example, energy consumption of some pre-treatment options
is higher than 1 kWh¨m´3. This of course drives the search for either higher water recovery in the RO,
or lower energy demand of the whole treatment scheme, or a combination of both. The current cost
of seawater desalination is evaluated in average around 0.76 US $¨m´3, but typically falls within
a wide range of 0.5–2 US $¨m´3—depending mainly on local energy cost [4]. As such desalination
remains quite costly, limiting its broader usage. Operational costs (OPEX—include energy and all
other costs associated to maintenance, labour and the use of chemicals) account for two third of the
total desalination costs for full-scale plants, while the last third of the costs is related to capital cost
(CAPEX). In the OPEX, energy accounts for about half of the cost.

As an alternative to RO seawater desalination, water reuse through advanced wastewater
treatment plants can also technically provide water of drinking water quality, but the main challenge in
(potable) water reuse so far has been to set best practices, policies and high control standards to increase
public acceptance [14,15]. Moreover, the removal of (organic) micropollutants (also called trace organic
contaminants, TrOCs) that are not fully removed by conventional (biological) wastewater treatment
plants [16,17] requires specific attention. As such, planned indirect potable reuse (IPR), which consists
of blending an extensively treated wastewater with another source of fresh water, for example through
recharging the treated wastewater into a subsurface ground water or into an above-ground surface
water reservoir before drinking water treatment, is currently the most used in water reuse schemes. In
this case, the reservoir acts as environmental buffer and the drinking water purification step provides
an additional barrier to potential pollution. Planned IPR schemes are already in use in few places of
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the world [18] such as Singapore, Belgium, California and Australia. However, implementation of
these schemes can require extensive pumping costs related to transport of the treated effluent back
to upstream reservoirs, which is affecting their economic viability [19]. Alternatively, direct potable
reuse (DPR) implies the injection of extensively treated wastewater within the local drinking water
supply. Such scheme requires even more stricter control than IPR of wastewater treatment but may
avoid extensive piping and pumping costs [19].

For both IPR and DPR, to assure drinking water quality and to avoid health risk of such scheme
especially with regards to organic contaminants, pathogens and TrOCs, the multiple barrier approach
has been developed [20,21]. Specific treatment towards TrOCs removal or degradation were assessed
and implemented: dense membrane technologies such as nanofiltration (NF) or RO [22,23], advanced
oxidation or adsorption on active carbon proved to be efficient treatments [22,24,25]. Water reuse
treatment consists of pursuing the purification of a secondary treated wastewater through an advanced
wastewater treatment plant. Typically, such plant consists in passing through two sets of membrane
processes (for example ultrafiltration (UF) and RO) and a disinfection step (ultraviolet, ozonation)
as described in [18,26] and Figure 1. As a result of such an extensive treatment train, direct potable
water reuse remains as costly as desalination, with main case studies and practical examples providing
numbers in the range of 0.69–1.23 $¨m´3 of water produced [18].
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Figure 1. Examples of typical potable water reuse and desalination treatment trains, based on case
studies in [18,26].

In practice, desalinated seawater remains the main alternative source for drinking water, while
water reuse is mainly dedicated to irrigation or industrial purposes and as such, both streams are very
distinct. Seawater desalination is therefore the first option for safe drinking water production but its
energy consumption remains the main obstacle. Ultimately, both seawater desalination and water reuse
schemes require further improvement and more attractive economics to allow for broader development.

1.3. Opportunities and Challenges of Combining Desalination and Water Reuse Schemes

Forty percent of the world’s population lives in urban coastal areas, which are typically faced with
the joint presence of multiple water sources of different qualities and salinity levels (e.g., river water,
wastewater, seawater . . . ). In several densely populated (dry) coastal regions, water is not reused, but
drinking water is produced from seawater desalination. In these cases, typically wastewater treatment
plant effluents and seawater intake points are in a relatively close geographic area (as illustrated in
Figure 2). In other examples, water reuse and seawater desalination are both implemented, such as
in California or several regions in Australia. In Singapore, since the implementation of the NEWater
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program, both water reuse and desalination participate to the overall potable water supply but
through distinct water purification scheme [27]. So far, water reuse and desalination have always been
considered as separate and independent streams to solving water shortage.

Implementation of a single scheme combining both concepts requires some prerequisites such as
proximity of both streams, and ideally the location of water reuse and desalination facilities in one
place, which require long term planning in water management, along with technical and economic
justification. However, combining a desalination facility with another plant, also called co-sitting
scheme, have already been proposed by implementing desalination close to a power plant to lower
water intake costs, optimise energy efficiency and eventually combine water streams [28]. This concept
has been extended to hybrid systems, such as combined RO-multi-stage flash (MSF) distillation
systems [29], or membrane distillation (MD) [30]. As already demonstrated in other co-sitting plants,
integrating wastewater treatment and desalination in one plant can also result in potential economic
benefits [28]. As such, combining water reuse and desalination schemes with the FO-RO hybrid process
(Figure 1) could present major advantages in water management, as combining these schemes could
synergistically lower water intake costs and could optimise energy efficiency of water treatment. The
technical and economic feasibility to combine water reuse and desalination by this FO-RO hybrid will
be discussed in detail hereafter.
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Figure 2. Potential combination of wastewater reuse and seawater desalination to support potable
water needs.

2. Combining Desalination and Water Reuse through FO-RO Hybrids

2.1. The Emergence of FO

In the last 10 years, a growing interest has been observed in osmotically driven processes, also
called engineered osmosis. The work of Loeb in the 1970s remained relatively unexplored until new
semi-permeable membranes, tailored-made for osmosis applications were developed in the early
2000’s, and commercialised by Hydration Technologies Innovations (HTI) [31–33]. The two main
osmotically-driven processes that were considered until recently are defined as forward osmosis
(FO) and pressure retarded osmosis (PRO). In such systems, the solute concentration gradient (also
called osmotic pressure differential, ∆π) acts as the driving force between two liquids separated by a
selectively permeable membrane. As a result, permeation of water occurs through the membrane from
the lowest to the highest solute concentration solutions (i.e., feed and draw solutions respectively),
while most of the solute molecules or ions are rejected [34]. As such, FO initially appeared very
promising for extraction and purification of water at a low energy cost for a variety of applications,
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such as food concentration, wastewater concentration, water reuse and seawater desalination [34].
This sparked intense research, as demonstrated by the exponential increase of publications in recent
years [35]. Several reviews have been published since 2005 discussing the interests, principles as
well as the limitations and challenges for future development of the FO process. Those review
more specifically discussed mass transfer limitations [34,36,37], membrane developments [36,38],
fouling [39], rejection of trace organic contaminants [40], optimised draw solutions [38,41,42], energy
aspects [43,44], potential applications [34,38] including wastewater treatment [35], desalination [44]
and hybridisation of FO with other processes [45]. However, so far, none of this review has been
dedicated to the potential application of forward osmosis in the context of combining desalination and
water reuse.

Although FO on its own can be considered as a low energy process, the applications for which it
can be used as a stand-alone process are limited. In fact, pure water extracted from the feed solution
is only transferred to a (draw) solution with a higher osmotic potential, and as such, is rarely usable
as is. A second process in which water is extracted from this solution is thus required, and this is
generally the energy intensive step. FO has been initially considered using artificial draw solutions
with very high osmotic pressure [34], but the need to regenerate the artificial draw solution negatively
may affect the financial viability of many applications (energy costs of draw reconcentration systems
such as RO or membrane distillation [44,46,47] and costs of draw replenishment due to draw solution
leakages [42]). In addition, due to the closed-loop configuration and imperfect rejection of membranes,
contaminants accumulation may occur [48]. Alternatively, new applications have been developed
more recently to avoid the draw re-concentration step by combining existing streams and hybridising
FO with other processes in once-through systems, not in closed loop [45].

2.2. The FO-RO Hybrid Process

The interest in combining wastewater and seawater streams was only recently sparked by the new
developments in FO. Combining water reuse and SWRO has been referred to as the FO-RO hybrid
(Figure 3 and [49,50]) or osmotic dilution [51]. The FO-RO hybrid discussed in this study has to be
distinguished from other closed-loop FO concepts used for desalination, as the FO-RO hybrid is a
once-through system that does not require recovery of a highly concentrated draw solution [52–54].
In the FO-RO hybrid, water is transferred from an impaired water source (a low salinity feed solution,
e.g., secondary effluent) to seawater (used as draw solution) by the osmotic gradient in the FO step.
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In the first study focusing on this FO-RO hybrid (and the use of secondary or tertiary treated
effluent for seawater dilution), the authors demonstrated that the concept could lead to four major
benefits over stand-alone seawater RO desalination [55]:
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‚ lower energy use (due to lower operating pressure) for SWRO desalination thanks to the
osmotic dilution,

‚ beneficial reuse of wastewater, i.e., water recycling,
‚ Multi-barrier protection (two successive dense membrane processes, i.e., FO and RO) to increase

consumer confidence in water recycling,
‚ Reduction in RO membrane fouling due to dilution of the pollutant load and lower

operating pressure.

2.3. Other FO-RO Hybrid Configurations

Bamaga et al. proposed to combine the FO-RO hybrid described in Figure 3 with a second FO
stage implemented as an RO post-treatment [49]. In this configuration, the additional FO stage is
used to dilute the RO brine with the concentrated impaired water from the first FO step to (1) further
concentrate the wastewater stream and so facilitate its post-treatment (for example via digestion) and
(2) dilute the RO brine before disposal to limit its environmental impact. Although the additional FO
presents some potential environmental benefits, the economic and technical feasibility is questionable
due to the low permeation fluxes observed, especially in the second FO. Ultimately, recommendations
to focus on the first FO stage and optimisation of module design were given [49].

FO has been demonstrated to be a robust and simple process allowing to treat difficult streams
such as anaerobic digester centrate or sludge [56,57], and as such could also be well adapted to treat
difficult wastewaters, mainly due to its low fouling propensity. Thus, instead of using secondary
treated wastewater (Figure 3), new concepts have emerged to consider the implementation of FO
upstream in the wastewater treatment scheme, i.e., on primary treated wastewater or even the direct
implementation on raw sewage. It is expected that thanks to the avoidance of some purification steps,
significant cost reduction could be obtained.

One example is the concept of osmotic membrane bioreactor (OMBR) [58] where FO is
implemented within the secondary (biological) treatment. The OMBR has been developed by analogy
with membrane bioreactors (MBRs), where biological degradation and clarification were operated in
a single step. However, instead of using a porous ultrafiltration or microfiltration membrane as for
MBR, a dense FO membrane is submerged in the bioreactor of the OMBR. As such, higher rejections of
contaminants were observed than for MBRs, yet at lower fouling propensity [59] and thus OMBRs
can produce the high water quality which is crucial in the context of potable water reuse. One major
limitation in OMBR operation remains the salt accumulation in the OMBR tank, resulting from the
high rejection of dissolved solids by the FO membrane and the reverse solute diffusion occurring in
the FO process [60]. This salinity build up can only be mitigated by the development of more selective
membranes, or by decreasing the sludge retention time. Another proposed solution was the addition
of ultrafiltration or microfiltration system to OMBR to create salt bleeding, but this process is more
complex to operate since two sets of well-balanced membrane systems are needed [61,62].

As the first experiences with the OMBR operating in a secondary biological treatment are positive,
with little fouling observed, it is of course interesting to envision FO treatment further upstream, for
example on the raw wastewater (or sewage) after primary treatment, as stated above (and shown
in Figure 4). The interest of the water treatment community in the scheme in Figure 4 is high, as
FO offers a double advantage here: not only can high quality water be recovered, in addition the
concentrated sewage stream can be more easily converted to energy via digestion (due to the higher
COD concentration) [63]. Initial experiments using FO on primary treated (screened) wastewater
demonstrated that the accumulated fouling layer was loose and easily reversible [63], and thus fouling
can indeed be controlled. Further validations are of course required, especially with regards to clogging
issues in the feed channels, and also in terms of long term behavior—but implementing FO directly
after primary treatment in the future could allow for significant savings in wastewater (and moreover
water reuse) treatment costs.
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treatment (OMBR).

The use of FO, after primary treatment, for sewer mining was also envisioned [35]. Sewer mining
consists of a decentralised water recycling system where water recovery from sewers is envisioned
for local reuse [64]. For sewer mining to be fully decentralised, FO should be combined with on-site
reconcentration of draw solutions such as RO, electrodialysis or membrane distillation [65]. The latter
renders the system more complex to operate and less economically favourable. Combining sewer
mining with seawater desalination (i.e., using seawater as a draw) in decentralised regions avoids
the need for a reconcentration step, but does require the transport of seawater to the decentralised
sewer—again lowering economics. Still, similar system (using FO with seawater used as draw) has
been proposed to treat urban water run-off in a coastal region, whereby FO was implemented with
a seawater draw solution in decentralised concentration ponds [66]; then the diluted seawater was
desalinated in the nearby SWRO plant.

2.4. FO Integration in Existing RO Desalination Schemes

Based on the process described in Figure 3, FO can be considered as an additional treatment in an
already existing seawater RO desalination scheme, resulting in salinity decrease of the seawater fed to
the RO. Consequently, the lower RO feed salinity can be used (1) to produce water at lower energy
cost, (2) to augment the overall water production or (3) a combination of thereof. In term of process
configurations, the above options were translated in three different scenarios and compared to the
baseline of stand-alone SWRO in [67] and Figure 5. When energy reduction is the primary objective,
scenario 1 is preferred (with an as high as possible dilution of the seawater by wastewater) due to the
significant decrease of RO operating pressure [67].

However, water reuse is exactly of high interest in those cases where water scarcity is present, to
allow for water augmentation. As such, FO-RO hybrids could also be of interest when a community
who already relies on seawater desalination is in need for augmenting its water supply. In that regards,
scenarios 2 or 3 from Figure 5 may be preferred. FO-RO hybrid economic interest for 50% water
augmentation was considered in [68] as a possible alternative to additional seawater desalination or
direct potable water reuse.

As a result, the rationale for investing in FO-RO hybrid could be multiple and the economics
highly variable depending on the objectives, the local context and the availability of existing water
streams. Still, it is clear that a better assessment of current and future FO economics is of primary
interest to support future investments in the technology.
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2.5. FO Economics: Need for Higher Permeation Flux

Initial attempts demonstrated that FO-RO hybrids in literature can have positive economics
compared to stand-alone SWRO, due to energy savings (osmotic dilution) and maintenance savings
resulting from lower fouling tendency estimated from laboratory or pilot scale testing [42,55,69].
However, those initial studies did not account for some drawbacks and challenges of the hybrid that
need to be considered as well [67] in order to have a fair assessment of FO-RO hybrids compared
to SWRO:

‚ Implementation of FO will require investment costs
‚ Energy consumption in RO is getting close to the thermodynamic limit and additional energy

savings may become marginal [70].
‚ The FO-RO hybrid also has to demonstrate advantages in comparison with two independent and

established water treatment streams (i.e., water reuse and/or desalination) or simple mixing of
these streams before treatment [71].

Several attempts were made to make a clear economic assessment of FO-RO hybrid systems.
Cath et al. completed a first economic evaluation of their proposed hybrid FO-RO system by comparing
the implementation of an FO unit to an expansion of SWRO capacity, to increase seawater desalination
plant capacity. Their estimations showed 0.43US $¨m´3 cost savings of the FO-RO hybrid compared to
stand-alone RO. However, this estimation was based on the assumption of a high energy cost, and
investment costs of FO only related to membrane costs [50]. Another study revealed that FO can be
a viable technology thanks to significant energy decrease from 2.5 to 4 kWh¨m´3 for RO seawater
desalination down to 1.5 kWh¨m´3 when using FO-RO hybrid [72]. However, this requires a dilution
of seawater by a factor of 2.5, the process relies then mostly on water reuse.

It is clear that the key to improving FO process economics is in the increase of FO fluxes [38,42,67].
A recent and complete study established that FO-RO hybrid systems (operated in once-through, not
in closed loop), will only become economically sustainable if lower membrane costs (30 US $¨m´2)
and/or higher fluxes (ě15 L¨m´2¨h´1) than for existing commercial membranes can be obtained [51].
Another recent study confirmed that the current state of development of commercial FO membrane
modules is insufficient for sustainable FO-RO hybrid economics due to the high capital investment
cost (CAPEX—which is related to low permeation flux, low packing density, and high membrane
costs) [67]. A threshold flux value of 30 L¨m´2¨h´1 was proposed as minimum average permeation
flux to guarantee FO economic sustainability.
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A very recent study, using levelised cost indicator, demonstrated that FO-RO hybrid could be
a favourable alternative for 50% water augmentation in comparison with extension of SWRO or
implementation of DPR [68]. This study also showed that the economic viability of the FO-RO hybrid
was highly dependent from the extent of wastewater treatment required and the permeation flux
in FO.

Despite a significant body of research on the development of tailor-made membranes, until
very recently, only few commercial membranes were available. A new generation of membranes
and modules is now emerging on the market, but their economics and performance still need
careful assessment (See Section 3). As an alternative to FO, the concept of pressure assisted osmosis
(PAO) has arisen recently, and appears promising to overcome the current flux limitations of FO.
Opportunities and challenges of novel membranes, novel modules and the use of PAO operation,
to improve permeation flux in osmotic processes, are critically and systematically discussed in the
following sections.

3. Recent Development to Improve Flux in FO

3.1. Membrane Development

Permeation flux in FO is largely dependent on membrane characteristics. FO membranes are
usually asymmetric polymeric membranes. The parameters used to characterize these membranes
are typically the pure water and salt permeability of the rejection layer (factors A and B, respectively),
and the structural parameter of the support layer (S). The ideal FO membrane features a high A value
(high water flux), low B (low salt passage), low S (to limit internal concentration polarisation, ICP)
and sufficient mechanical strength to support industrial operation at moderate pressure [34]. Since the
introduction in the 1990s of the first FO commercial membrane by HTI, a tremendous amount of work
has been performed to optimise FO membrane [38]. Two main strategies have been followed in this
respect: (1) developing dedicated membranes for FO or (2) adapting existing NF/RO membranes.

The first strategy was by far the most studied and recent reviews reported on numerous
membrane developments that have been published since 2005 on both hollow fibre and flat sheet
configurations [36,38,43]. Among them, new approaches have been used to develop thin-film
composite (TFC) membranes which consist of a selective polyamide layer formed by interfacial
polymerisation on top of a polysulfone porous substrate [73], similar to NF/RO membranes. The
TFC membranes offer more flexibility than cellulose triacetate (CTA) membranes in choosing active
and support layer, and as such TFC membranes with higher permeability and reduced ICP were
synthesized, allowing for higher water fluxes [74]. The concept of TFC membranes has been extended
to the synthesis of double-skinned layer FO membranes [73], leading to lower ICP and fouling.
Another approach for TFC membrane improvement was the development of hydrophilic support
layers leading to lower ICP and subsequent higher water flux, but with the drawback lower salt
rejection [73]. The use of nanofibres as membrane support layer to limit ICP is also a new way to
improve TFC membranes [75]. Recent work also mentioned the layer-by-layer approach (LbL) that
allows formulating tailor-made membranes [76–79]. In addition, several publications referred to next
generations of biomimetic FO membranes using Aquaporin Z [80,81], carbon nanotubes (CNT) [82,83]
or graphene [84].

The second strategy to novel FO membranes consists in adapting existing RO membranes. Such
membranes exhibit high permeabilities and high salt rejection, but have the drawback of a thick, porous
hydrophobic support layer [85] which is inadequate for FO due to the severe ICP occurring [86,87].
Thus, membrane support layers were modified by removing the backing support layer [87], or by
improving wettability using polydopamine coating [88]. Water flux was increased by up to 10 times in
comparison with the parent RO membranes at high osmotic driving forces. The use of conventional NF
membranes in FO applications was also proposed in 2007 [89]. Then, a number of studies [78,79,89–93]
considered the development of FO membranes with more porous active layers, similar to those found
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in NF membranes, to increase water permeability. However, the water flux obtained from the modified
NF-FO membrane was not deemed high enough, also mainly due to ICP. Additionally, the reversible
salt diffusion (RSD) values reported for NF-like FO membranes are generally high or require the use of
divalent salts as draw solutions [78,79,92,93].

Overall, findings from academic research have been translated into the development and (pre-)
commercialisation of several FO membranes—described hereafter in Table 1. It has to be noticed
that HTI, which has been the main leader in FO membrane development and main provider to
academic research, is no longer capable to supply membranes [94]. Other membrane suppliers
nowadays offer membrane samples but information in the literature remains limited due to their more
recent development.

Based on information available (Table 1), it can be noticed that most of the development has
focussed on TFC flat sheet membranes; Hollow fiber (HF) membranes are still in the development
phase, and have not been commercialised to a high extent yet. Novel flat sheet membranes which
have incorporated the TFC approach, and several new biomimetic membranes (CNT and aquaporin)
are now commercially available [95]. As a result, several companies (Porifera, Woongjin Chemicals,
CSM-Toray, Oasys Water) claim water permeation fluxes of around 30 L¨m´2¨h´1 when using 1 M
(NaCl, KCl) draw solutions, with reverse salt diffusion being below 1 g¨L´1. Such performances
represent a significant improvement in comparison with the HTI CTA membrane, which still acts as a
reference. It is clear that these novel membranes will surely help to further develop FO applications.

Table 1. Development and performance of commercial FO membranes (performance as seen in the
literature with deionised water (DI) as feed and active layer facing feed solution (AL-FS) used as
membrane orientation (data compiled in July 2015)).

Company Type Commercial
Name Status

FO Performance

Ref.
Draw

Jw Js/Jw
L¨ m´2¨ h´1 g¨ L´1

HTI flat-sheet CTA-NW commercial 2M NaCl 8.5 0.1 [96]
HTI flat-sheet CTA-ES commercial 1M NaCl 10.1 0.5 [97]
HTI flat-sheet TFC commercial 1M NaCl 10 0.8 [97]

Oasys flat-sheet TFC pre-commercial 1M NaCl 30 0.7 [97]
Woongjin Chemicals flat-sheet TFC-1 development 1M KCl 16 1.3 [98]
Woongjin Chemicals flat-sheet TFC-2 development 1M KCl 27.9 0.4 [99]

Aquaporin flat-sheet AqP pre-commercial 1M NaCl 9.5 [100]
CSM-Toray flat-sheet FO membrane commercial 1M NaCl 35.0 <0.5 [101]

Porifera flat-sheet PFO elements commercial 1M NaCl 33.0 0.2–0.6 [102]
Samsung hollow fiber HFFO lumens development 1M KCl 9.3 0.6 [103]
Toyobo hollow fiber – commercial – – – [95]

3.2. Module Development

Among the challenges to overcome in FO, module design is certainly of a high importance.
An ideal FO module is expected to demonstrate an appropriate trade-off between (1) a maximised
surface area (i.e., high packing density) and (2) a minimised pressure drop, while (3) allowing for
limited ECP and particle deposition [35,63]. In the early stage of FO and PRO research, FO modules
were mainly adapted from RO configurations, but these spiral-wound modules proved to have limited
efficiency as a result of imperfect hydraulics on the permeate (draw solution) side [34,104,105]. Indeed,
FO modules differ from classical RO ones as fluids (feed and draw solutions) have to circulate on both
sides of the membrane. As such, FO modules require four ports (feed and draw inlets and outlets)
and optimised hydraulics on the feed and the draw side. Some examples of flat sheet FO module
arrangement are described in Figure 6.
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The advantages and disadvantages of three modules available for FO, i.e., plate and frame,
hollow fibre and spiral-wound module configurations, have already been extensively described
elsewhere [35,63]. In practice, the following configurations have been commercially developed by FO
membrane suppliers:

‚ Plate and frame modules are developed by Porifera under the commercial name of PFO elements.
Porifera PFO elements are claimed to offer relative high packing density (similar to RO modules),
low pressure drop and filtration surface from 1 up to 7 m2 per module [102]. Up onto now,
however, the performance of these modules has not been systematically reported in literature.

‚ Hollow fiber modules were developed by Toyobo, as adapted from their 8 inch SWRO modules.
These modules featuring high packing density have been tested for PRO [104], and the authors
provided proof for resistance to operation at high hydraulic pressure (25 bar). However, the
authors did mention the need for optimised design through adapted flow patterns for both feed
and draw sides.

‚ Spiral wound modules were developed by HTI using the CTA FO membrane. The modules were
developed in a range of module sizes, varying from 2.5 to 8 inches, and for a variety of feed
spacers (fine (FS), medium (MS) and corrugated (CS) spacer) to allow for operation with different
types of feed waters. Most FO studies on pilot scale were performed using the HTI CTA modules
(see Table 2).

Other companies such as Oasys Water and Modern Water also provide full scale solutions and thus
large FO modules (Toray Inc. is also supplying 8 inches SW modules) but their module configurations
are not explicitly described in open literature yet [106].

Table 2. Reported module configurations and operating parameters for HTI modules (CFV:
cross-flow velocity).

Module Feed
Spacer

Draw
Spacer

Filtration
Surface (m2)

CFV Feed
(cm¨ s´1)

P Feed
(bar)

CFV Draw
(cm¨ s´1)

P Draw
(bar) Ref.

Prototype RO feed
spacer

RO feed
spacer 0.94 0.1 n.r. a 0.1 2 [107]

4040 2.5mm RO
feed spacer n.r.a 1.58 5 n.r. a 1.5 n.r. a [108]

4040-MS 1.14mm RO
feed spacer

Permeate
carrier 3.2 16 1.22 4.3 1 [109]

8040-MS 1.14mm RO
feed spacer

Permeate
carrier 11.2 62 n.r. a 0.4 2 [110]

8040-CS 2.5mm RO
feed spacer

Permeate
carrier 9 30 <1 0.4 <0.7 [110]

4040-MS 1.14mm RO
feed spacer n.r. a 3.3 15 0.7–1.1 10.0 0.5 [111]

a: Not reported.
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One of the main gaps in knowledge of FO modules is the impact of hydraulic pressure on
the performance. The main reason why this has not been systematically investigated is that FO is
considered as an osmotic driven process. However, one cannot ignore pressure drop along modules
inherent to any membrane processes practical implementation. In fact, mass transfers are usually
optimised by the implementation of spacers that create turbulences and consequently limit particle
deposition and concentration polarisation, but at the cost of additional pressure drop [112,113]. Only
one study from Kim et al. in 2011 ([109], Table 2) mentioned the impact of feed and draw CFV on
pressure drop and pressure build up in spiral wound FO modules. A minimum amount of hydraulic
pressure (0.12 and 0.28 bar on feed and draw sides respectively) needed to be applied to allow water
to flow through the module even at the lowest flowrates. It was clearly demonstrated that CFV and
channel pressure drop were closely connected in both channels (feed and draw), and were highly
dependent on the spacer type used. Additionally, it was observed that applying pressure on the
feed side lead to a narrowing of the draw channel and consequently, to a pressurisation of the draw
side. Similar observations were also described in PRO configuration where pressurisation of the draw
channel led to narrowing of the feed channel when diamond shape spacer was used to support the
membrane [114]. In fact, as for other membrane processes, spacer design is of crucial importance.
Among the modules proposed by HTI in former studies, even if not always specified, at least two
types of draw spacers have been tested, i.e., permeate carrier [109,110] and RO feed spacer [107]. It is
also generally observed that modules are operated at very low CFV on the draw side (Table 2), maybe
thanks to the low fouling behaviour draw solution but also possibly limited by the important pressure
drop occurring when permeate carrier are used [110].

Not many studies have tried to use computational fluid dynamics (CFD) for FO module design
yet. In addition, among the few studies reporting CFD approaches in FO, none of them considered the
impact of pressure in the different spacer-filled channels. Most of the approaches were dedicated to
the demonstration of models capable of simulating FO systems [115,116] or to demonstrate current
mass transfer limitations, the need for improvement of membrane separation properties and the study
of spacer designs to limit ECP [117,118].

More work is thus required to better understand how CFV, spacer type and module configuration
are connected to pressure drop and hydraulic pressure in the spacer-filled channels, to determine the
optimum configuration for FO up-scaling. CFD modelling could help in further understanding mass
transfer limitations in FO modules and to propose optimised designs.

3.3. The Concept of Pressure Assisted Osmosis (PAO)

The concept of pressure assisted osmosis (PAO) [119], relies on the application of moderate
pressure on the feed side of a FO system to enhance water permeation through the membrane (Figure 7).
As such, by a synergistic effect of hydraulic and osmotic pressure, PAO can improve FO fluxes and
thus FO process economics due to lower membrane surface requirements.

The impact of hydraulic pressure on the feed of FO systems was only studied recently.
The first study mentioning hydraulic pressure on the feed side was presented as a conference paper
in 2011 and already discussed the interest of pulsations and moderate hydraulic pressure to improve
permeation flux [120]. The same year, another study also showed that hydraulic pressure, even if very
moderate, is needed in FO systems to allow water cross-flow within the feed and draw channels of an
FO module [109]. The effect of transmembrane pressure in FO was further evaluated, assuming that FO
industrial applications require pressurisation for water circulation within spiral wound modules [97].
However, given the low applied pressure (up to 3.4 bar) in comparison with the osmotic pressure
driving force (45 bar),no clear impact on flux was observed for the three membranes tested.

The implementation of hydraulic pressure in FO as a concept only appeared in 2012 and was
initially named ‘’pressure assisted forward osmosis” [121], also later on called ‘’assisted forward
osmosis” [122] and ‘’pressure assisted osmosis” (PAO) [123,124]. Initial research using HTI CTA
membranes confirmed flux improvement as a result of PAO operation when compared to FO [121,122].
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On the one hand, it was observed by some that the water flux increment remained lower than
expected by the additional driving force, attesting for enhanced ICP partly mitigating the beneficial
use of hydraulic pressure, and thus indicating that PAO might not be beneficial [125]. On the other
hand, evidence of membrane deformation occurring due to pressurisation of the membrane over
draw channel spacers was also observed. The membrane stretching over spacers strands led to
increased membrane permeability and consequently significant improvement of the water flux was
observed [122]. Comparative investigations of PAO in continuous and discontinuous mode also
confirmed that water flux increases with hydraulic pressure [123]. Interestingly, and as a result of more
intense ICP in PAO operation, RSD decreased, tackling a second limitation of current FO operation,
and thus rekindling the interest in PAO [124].
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More recent work compared the performance of CTA membranes in PAO mode to that of
commercial TFC membranes. In addition to allow for higher flux in FO process, the TFC membranes
were also more responsive to hydraulic pressure applied in the PAO process, and thus showed clear
flux enhancement (up to 25 L¨m´2¨h´1) at moderate hydraulic pressure [126]. In addition to providing
extra driving force for permeation flux, hydraulic pressure was also observed to limit RSD and increase
the water permeability due to membrane deformation when TFC membranes were used. Therefore,
PAO constitutes a promising alternative to tackle the permeability-selectivity trade-off of FO.

4. Challenges Associated with FO Flux Improvement

4.1. Fouling and Cleaning

The behaviour of individual or combined model foulants (humic acids, alginate, proteins,
silicates, calcium) under different operating FO conditions has been extensively described in the
literature [60,69,127–138] and summarised in a recent extended review [39]. In these studies,
it is generally observed that fouling in FO remains moderate and easily reversible. The only
recommendation, to avoid irreversible fouling in the support layer when wastewater is used as
feed [139] was to operate the FO membranes with the membrane active layer facing the feed solution
(AL-FS) [135,140]. Up to now, most FO fouling studies were performed in FO operation without applied
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hydraulic pressure on the feed or draw, and mostly using the benchmark CTA HTI FO membrane,
which demonstrates a relatively low permeation flux [60,69,128–135]. It is clear that increased fluxes
(either due to PAO operation or by using high permeability membranes) will impact the fouling
behaviour. In addition, in PAO operation there is an applied pressure (in contrast to FO), and a clear
research question remains on the respective impact of flux and pressure on the fouling behaviour.

The impact of operating flux on fouling behaviour has been well studied for pressure driven
membrane processes [141]. The concept of critical flux [142] has been widely used when describing the
impact of flux on fouling for membrane bioreactors [143,144], and also for other hydraulic pressure
driven membrane processes such as RO [145,146]. It has been demonstrated that high water permeation
(above the critical flux) led to enhanced fouling; thus, operating below the defined critical flux
is preferred for sustainable long-term filtration. The evidence of critical flux was first revealed
for FO in first studies using HTI CTA membranes, with the support layer facing the foulant-feed
solution and under elevated osmotic driving force [140,147]. Further evidence of critical flux was
demonstrated in FO studies, when using the conditions that can be expected in the FO-RO hybrid
system, namely operation in AL-FS mode at moderate osmotic pressure differences [135,148]. Those
studies demonstrated that the low fouling behaviour often mentioned for FO is mainly due to the
operation at low permeation fluxes. At higher initial fluxes, the fouling cake was more compacted on
the membrane surface and consequently significant flux decline was observed over time.

Only recently, more studies have been published that consider the impact of moderate hydraulic
pressure on fouling behaviour. Typically, higher fouling propensity and lower reversibility of combined
organic–colloidal fouling (alginate and silica) was reported when hydraulic pressure was applied
at relatively high hydraulic pressures (7–19 bar) [149]. Two recent studies [150,151] confirmed the
hypothesis raised that PAO fouling was a consequence of both hydraulic and osmotic driving forces
(i.e., combination of fouling cake compaction and RSD by analogy with RO and FO fouling mechanisms
respectively [152]). Typically, in PAO operation, even at similar flux compared to FO operation, a
thinner but more compact fouling layer than in FO is observed, leading to more flux decrease [150].
The flux decrease is higher than in FO, but still more reversible than in RO [151].

Tackling fouling is a key aspect in membrane processes and is usually achieved via a combination
of fouling mitigation (i.e., membrane and module development and/or optimisation of hydrodynamic
conditions) and adapted cleaning strategies [153]. FO studies dedicated to fouling mitigation via
membrane surface modification and cleaning are discussed successively here.

TFC membranes developed for FO have proven to initially enhance water permeation, although
their much rougher surface generally results in more fouling [154,155] as already demonstrated for
NF/RO TFC membranes [156,157]. Some membrane developments have recently been dedicated
to fouling mitigation such as double skinned membranes [77,158], membrane surface modification
approaches using amine enriched, polyethylene-glycol enriched [77,158,159] and silver-titanium
nanoparticles [160]. Some promising results have been observed, but studies remain scarce and limited
to lab-scale and home-made membranes. However, it has been observed elsewhere that membrane
surface properties had ultimately a low impact on fouling behaviour since it was limited to the early
stage of the foulant deposition [148].

Since in FO operation at low fluxes, relatively little fouling has been observed so far, cleaning
strategies in FO have mostly been limited to applying simple physical methods to improve turbulence
(i.e., high CFV, use of spacers or pulsed flow [128]). Chemical cleaning and air scouring also provided
positive results, but were mostly not necessary as physical cleaning proved to be sufficient [72,161].
Similarly to hydraulic backwashing used for porous membranes, osmotic backwashing has been
tested for osmotic processes. For FO, the exact impact of osmotic backwashing on fouling
control is unclear: some studies mention a significant recovery of initial flux after cleaning of the
fouled membrane [56,162,163], while other work only observed a very low impact on the fouling
removal [161,164]. Following on a former study on RO [165], a recent publication therefore proposed
an optimised sequence for FO/PAO cleaning, which consists of osmotic backwashing to detach the
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foulant cake from the membrane surface and high CFV operation to flush the feed channel with fresh
water to remove the foulants that were dislodged from the surface. This method proved to be efficient,
even at high FO permeation flux and in PAO operation [148,150]. A more detailed insight in fouling
and cleaning mechanisms is starting to emerge (Figure 8), which shows that even high flux membranes
operated in PAO mode can be cleaned without the need for chemicals.Membranes 2016, 6, 37 15 of 24 
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4.2. Rejection of Trace Organic Contaminants

To ensure water safety in FO-RO hybrids, TrOCs is of course of concern. TrOCs include
endocrine-disrupting chemicals, pharmaceutically active compounds, pesticides, and disinfection
by-products. They are present in impaired water in ng/L to µg/L levels [166,167], and could represent
a human and environmental threat, even at low concentrations [48]. Recently, extended research was
performed to evaluate FO as a barrier against TrOC, especially in association with RO [108]. A recent
review summarised recent studies dedicated to the fate of TrOC in the FO process [40]. Among the
studies cited, it was observed that the FO process may provide a robust barrier for most TrOCs, but
for some TrOCs, only limited rejection was found. In addition, most of the FO studies on TrOC were
carried out using the commercial HTI CTA membrane, which demonstrates relative low permeation
fluxes (which could impact the low TrOC rejection).

Of the novel membranes, biomimetic membranes incorporating Aquaporins have demonstrated
higher rejections of small neutral organic pollutants at similar permeation flux compared to the
HTI CTA [100]. The commercial TFC membrane developed by Oasys Water has also been recently
evaluated with regards to TrOC rejection [168] and demonstrated higher rejections of neutral TrOC
compared to the HTI CTA, which was attributed to a higher active layer structural factor and a more
negative charge. Another recent study compared several membranes and confirmed higher rejections
of TFC membranes compared to the HTI membrane (Figure 9), especially for the smaller neutral
TrOCs (>80% rejection for all TrOCs studied for HTI TFC, >90% for Porifera, >98% for Aquaporin).
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The increased rejections compared to the HTI CTA were mainly due to increased steric hindrance
(and thus a smaller active layer pore size). However, it was clearly shown that rejection of TrOCs
dropped sharply when the membranes were operated in PAO, most likely as a result of a combination
of membrane deformation under pressure, more ECP and less RSD. As such, in PAO-RO hybrids,
attention has to be paid to FO membrane mechanical resistance when it comes to TrOC rejection (while
deformation is interesting in terms of flux in PAO).
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5. Concluding Remarks

FO-RO hybrid processes offer a promising solution not only to lower desalination energy needs,
but also to increase water reuse efficiency by combining seawater desalination and water reuse.
Interestingly, due to the lower fouling propensity compared to pressure driven membrane system,
FO has the potential to treat feed water of various qualities (potentially even including raw sewage),
allowing to lower wastewater treatment costs. FO-RO schemes do require further validation but
also radical shift in current consideration of water supply. Societal (public perception of water reuse)
and water management (proximity of wastewater and desalination plants) challenges clearly need to
be overcome.

This review clearly emphasized the need for flux increase to allow for more favourable FO
economics and discussed the required technical development (i.e., novel membranes, PAO mode).
However, flux improvement is of course also associated with drawbacks, such as increased fouling,
lower rejection of TrOCs in PAO operation, and the limits of membrane mechanical resistance.

At this stage, it is, therefore, questionable if the FO/PAO-RO hybrid process will allow
sustainable and long-term operation at high flux. Additional studies are required to support successful
implementation of FO-RO hybrids in the industry:

‚ Up-scaling: most of the studies in literature have been conducted using small flat-sheet coupons.
More pilot scale and full scale tests are needed to assess up-scaling challenges in term of mass
transfer limitations on module scale, the effects of spacer design on pressure drop, effects of
fouling and the feasibility of cleaning strategies.
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‚ Improved economic assessment: The economic models used for FO should be updated by
incorporation of fouling models that are better able to simulate practical implementation of
FO/PAO-RO hybrids. In addition, a better integration of cost savings from the water recycling
scheme may be considered as any treatment step avoided in the water recycling scheme as a result
of combination with desalination will help to support FO/PAO-RO hybrids economic credentials.
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