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ABSTRACT 

The use of process models to simulate the fate of micropollutants in wastewater treatment plants 

is constantly growing. However, due to the high workload and cost of measuring campaigns, 

many simulation studies lack sufficiently long time series representing realistic wastewater 

influent dynamics. In this paper, the feasibility of the Benchmark Simulation Model No. 2 

(BSM2) influent generator is tested to create realistic dynamic influent (micro)pollutant 

disturbance scenarios. The presented set of models is adjusted to describe the occurrence of 

three pharmaceutical compounds and one of each of its metabolites with samples taken every 2-

4 hours: the anti-inflammatory drug ibuprofen (IBU), the antibiotic sulfamethoxazole (SMX) 

and the psychoactive carbamazepine (CMZ). Information about type of excretion and total 

consumption rates forms the basis for creating the data-defined profiles used to generate the 

dynamic time series. In addition, the traditional influent characteristics such as flow rate, 

ammonium, particulate chemical oxygen demand and temperature are also modelled using the 

same framework with high frequency data. The calibration is performed semi-automatically 

with two different methods depending on data availability. The ‘traditional’ variables are 

calibrated with the Bootstrap method while the pharmaceutical loads are estimated with a least 

squares approach. The simulation results demonstrate that the BSM2 influent generator can 

describe the dynamics of both traditional variables and pharmaceuticals. Lastly, the study is 

complemented with: 1) the generation of longer time series for IBU following the same 

catchment principles; 2) the study of the impact of in-sewer SMX biotransformation when 

estimating the average daily load; and, 3) a critical discussion of the results, and the future 

opportunities of the presented approach balancing model structure/calibration procedure 

complexity versus predictive capabilities. 
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RESEARCH HIGHLIGHTS  

 The feasibility of a phenomenological influent generator model is demonstrated. 

 The influent model can describe the dynamics of traditional variables as well as 

pharmaceuticals. 

 The influent generator can effectively extrapolate time series. 

 The importance of in-sewer biotransformation is shown when estimating consumption 

loads of drugs. 
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NOMENCLATURE 

A Surface area of the variable volume tank, soil model block [m
2
] 

ASM Activated Sludge Model  

ASM1 Activated Sludge Model No. 1 

ASM2 Activated Sludge Model No. 2 

ASM2d Activated Sludge Model No. 2d 

ASM3 Activated Sludge Model No. 3 

ASM-X Activated Sludge Model for Xenobiotic trace chemical framework 

BSM2 Benchmark Simulation Model No. 2 

CMZ Carbamazepine, antiepileptic drug 

CMZ-2OH Metabolite of carbamazepine, 2-hydroxy carbamazepine 

CMZgperPEperd Total average daily load of CMZ [g CMZ/(day.1000 PE)] 

COD Chemical Oxygen Demand [g COD/m
3
] 

CODpart Particulate Chemical Oxygen Demand [g COD/m
3
] 

CODpartgperPEperd 

Total average daily load of COD particulates per day per PE  

[g CODpart/(day.PE)] 

DS1 Long term dataset  

DS2 Short term dataset 

FFfraction 

Fraction of suspended solids that can settle in the sewer, first flush effect model 

block [-] 

Grain_Temp 

Proportional gain to adjust the temperature after a rain event, temperature model 

block [-] 

HH Households model block in influent generator 

HRT Hydraulic retention time [h] 

IBU Ibuprofen, non-steroidal anti-inflammatory compound 

IBU-2OH Metabolite of ibuprofen, 2-hydroxyibuprofen 

IBUgperPEperd Total average daily load of IBU per day per 1000 PE [g IBU/(day.1000 PE)] 
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IBU-2OHgperPEperd 

Total average daily load of IBU-2OH per day per 1000 PE  

[g IBU-2OH/(day.1000 PE)] 

IndS Industry model block in influent generator 

KD Solid-water distribution coefficient [L/g SS] 

Kdown Gain for adjusting the flow rate to downstream aquifers, soil model block [m
2
/d] 

Kinf Infiltration gain, soil model block [m
2.5

/d] 

Mmax 

Maximum mass of stored sediment in the sewer system, first flush effect model 

block [kg] 

NH4
+ 

Ammonium concentration [g N/m
3
] 

NH4gperPEperd Total average daily load of ammonium per day per PE [g NH4-N/(day.PE)] 

PE Person equivalent 

Qlim Flow rate limit triggering a first flush effect, first flush effect model block [m
3
/d] 

Qpermm Flow rate per mm rain [m
3
/mm] 

QperPE Wastewater flow rate per person equivalent [m
3
/d] 

SMX Sulfamethoxazole, antibiotic drug 

SMX-N4 Metabolite of sulfamethoxazole, N4-acetyl-sulfamethoxazole 

SMXgperPEperd Total average daily load of SMX [g SMX/(day.1000 PE)]  

Subarea 

A parameter that forms a measure of the size of the catchment area. It will 

determine the number of variable volume tanks in series that will be used for 

describing the sewer system, sewer model block [-] 

T Temperature [°C] 

TBias Seasonal temperature variation, average, temperature model block [°C] 

TdAmp Daily temperature variation, amplitude, temperature model block [°C] 

WWTP Wastewater treatment plant 
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1. INTRODUCTION 1 

It has been more than 25 years since the publication of the Activated Sludge Model No. 1 2 

(ASM1) (Henze et al., 1987). The ASM1 describes organic carbon and nitrogen removal 3 

processes in activated sludge systems and has been successfully applied to a large number of 4 

wastewater treatment plants (WWTPs). The successful results obtained in the early years have 5 

resulted in the further expansion of the number of phenomena included in activated sludge 6 

models (ASMs), e.g. by including the description of bacterial storage, 2-step nitrification, 4-step 7 

denitrification and phosphorus removal. In this way, ASM1 evolved to ASM2, ASM2d and 8 

finally ASM3 as well as many other versions of ASM inspired models. As a consequence, the 9 

use of ASMs (Henze et al., 2000) is constantly growing and practitioners in both industry and 10 

academia are increasingly applying these tools when performing WWTP engineering studies. 11 

Numerous publications demonstrate the usefulness of ASMs for benchmarking (Copp, 2002; 12 

Jeppsson et al., 2007; Gernaey et al., 2014), diagnosis (Rodriguez-Roda et al., 2002; Olsson, 13 

2012), design (Flores et al., 2007; Rieger et al., 2012), teaching (Hug et al., 2009) and 14 

optimisation (Rivas et al., 2008) of WWTPs. 15 

The potential adverse effects of xenobiotics in aquatic environments (e.g. Ternes, 1998) have 16 

promoted a substantial amount of research regarding the extension of ASMs to describe 17 

micropollutants (Clouzot et al., 2013; Plósz et al., 2013b). By micropollutants we mean 18 

compounds such as pharmaceuticals, personal care products, and biocides which are found in 19 

the environment in low concentrations (μg/L or ng/L). In many cases, these pollutants can pose 20 

a significant risk to the environment and human health. On aquatic life, such adverse effects can 21 

be characterised as spread and maintenance of antibacterial resistance (Baquero et al., 2008), 22 

sex reversal and/or intersexuality (Lange et al., 2009) or reduction of the reproductive behaviour 23 

(Coe et al., 2008). 24 

Most models describing the fate of micropollutants in a WWTP include among others: 25 

volatilization (Lee et al., 1998), sorption/desorption (Joss et al., 2006; Lindblom et al., 2009), 26 

and biotransformation (Plósz et al., 2010; Suarez et al., 2010; Delgadillo-Mirquez et al., 2011). 27 
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These models are used as decision support tools to help understand the underlying mechanisms 28 

of micropollutant fate in the WWTP, and thus they provide a prediction of the efficiency of 29 

different treatment technologies (Lindblom et al., 2006; Snip et al., 2014; Vezzaro et al., 2014).  30 

In essence, the performance of WWTP modelling studies depends heavily on the availability of 31 

influent time series as these are the main disturbance of a typical WWTP (Rieger et al., 2012). 32 

These influent time series should represent the inherent natural variability of the traditional 33 

and/or micropollutant dynamics as accurately as possible (Ráduly et al., 2007). However, 34 

obtaining sufficiently long and qualitatively adequate time series for micropollutant modelling 35 

projects is costly and requires a high workload. This is because micropollutant analysis requires 36 

expensive analytical equipment, complex analytical procedures with costly consumable supplies 37 

and analysis methods requiring significant knowledge about the matrix effects in order to be 38 

successful (Richardson, 2012). Along this line of thinking, we believe that synthetic data 39 

generation is a promising tool since it can: 1) significantly reduce the cost and workload of 40 

measuring campaigns by inter- and extrapolating the obtained data; 2) fill gaps due to missing 41 

data in influent flow rate/pollution/temperature profiles; and, 3) create additional disturbance 42 

time series for scenario analysis following the same catchment principles. 43 

There are several published studies that try to describe mathematically how these compounds 44 

appear at the inlet of the WWTP as reviewed by Martin and Vanrolleghem (2014) and the more 45 

recent studies of Talebizadeh et al. (2016) and Saagi et al. (2016). For example, Ort et al. (2005) 46 

developed a stochastic model, describing short-term variations of benzotriazole concentrations 47 

(a chemical contained in dishwasher detergents). On the other hand, De Keyser et al. (2010) 48 

developed within the framework of the European Research Project Score-PP, a model that 49 

generates time series of micropollutant occurrences according to specific 50 

(phenomenological/stochastic) release patterns. Gernaey et al. (2011) presented a 51 

phenomenological influent model capable to reproduce daily, weekly, and seasonal influent 52 

variation as well as dry and wet weather episodes for the Benchmark Simulation Model No. 2 53 

(BSM2) platform. This influent model was calibrated and validated using data from two large 54 
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Scandinavian WWTPs for a period of 2 years (Flores-Alsina et al., 2014) and one large plant in 55 

Australia (Kazadi-Mbamba et al., 2016). 56 

The same framework was upgraded with toxic/inhibitory compounds (Rosen et al., 2008) and 57 

more recently with pharmaceuticals (Snip et al., 2014). However, most of the previous studies 58 

were focused on model development rather than on practical applications. In addition, as far as 59 

we know, there is no (validated) tool described in the literature that is capable of describing the 60 

dynamics of traditional and non-traditional pollutants simultaneously using the same 61 

framework. 62 

The objective of this paper is to test the feasibility of the BSM2 influent generator model, 63 

upgraded according to the principles stated in Snip et al. (2014), thereby creating realistic 64 

dynamic influent (micro)pollutant disturbance scenarios using data from an intensive measuring 65 

campaign. The occurrence of three pharmaceutical compounds (one anti-inflammatory, one 66 

antibiotic and one psychoactive drug) and one of each of its metabolites together with 67 

traditional influent characteristics (flow rate, ammonium, particulate chemical oxygen demand 68 

and temperature) will be (synthetically) modelled based on the available data. Information about 69 

excretion pathways and total consumption rates form the basis for generating the diurnal 70 

profiles of pharmaceuticals in wastewater at the discharge point of a real urban catchment. 71 

Automatic calibration is performed using: 1) a least-squares approach for the calibration of the 72 

pharmaceutical loads; and, 2) the Bootstrap method (Efron, 1979; Joshi et al., 2006) for the 73 

calibration of the traditional variables. Finally, the study includes a scenario analysis and a 74 

critical discussion of the results. 75 

76 
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2. METHODS 77 

2.1. WWTP and catchment under study 78 

The WWTP under study is located in the North-East of Spain in Puigcerdà (Fig. 1). It serves 79 

around 16,000 PE (person equivalent) from both Spain and France and has a high seasonal load 80 

variation with fluctuating average flows in the range of 4,100 to 8,300 m
3
/day depending on the 81 

season. Moreover, the organic load varies between 595 and 1,785 kg BOD/day and the nitrogen 82 

load between 123 and 349 kg N/day also depending on the season. This seasonal load variation 83 

is due to the touristic activities in the area during the winter time. There is also a significant 84 

increase in population during the weekends as many people living in larger cities have their 85 

second house located in the catchment area. The catchment is sparsely populated while covering 86 

a large area (approximately 100 km
2
) and contains urban and agricultural areas. The WWTP is 87 

located close to the largest town in the area (Puigcerdà). Therefore, the majority of the flow and 88 

pollutant loads received by the WWTP (60%) are expected to originate from nearby (distance 89 

<1.5 km).  90 

2.2. Compounds under study 91 

The occurrence of a specific type of micropollutant, namely pharmaceuticals, will be described 92 

in this study. These pharmaceuticals are one non-steroidal anti-inflammatory compound - 93 

ibuprofen (IBU), one antibiotic - sulfamethoxazole (SMX), and one mood stabilising drug - 94 

carbamazepine (CMZ). These three compounds are selected because their occurrence and 95 

removal in wastewater have been extensively studied during the past years (e.g., IBU: Buser et 96 

al., 1999; Collado et al., 2012, SMX: Göbel et al., 2005; Carballa et al., 2008, CMZ: Clara et al., 97 

2004; Leclercq et al., 2009). For each pharmaceutical, a human metabolite (the chemical 98 

compound excreted after intake of the pharmaceutical) is additionally included since these 99 

chemicals can occur in comparable or even higher concentrations than their parent chemicals 100 

(Zhang et al., 2008). For IBU, the metabolite chosen was 2-hydroxyibuprofen (IBU-2OH); for 101 

SMX, N4-acetyl-sulfamethoxazole (SMX-N4), and for CMZ, 2-hydroxyl carbamazepine (CMZ-102 
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2OH). In addition, the wastewater stream was characterised in terms of traditional pollutants, 103 

including flow rate, a soluble pollutant (NH4
+
), a particulate pollutant (CODpart), and the 104 

temperature (T) at the inlet of the WWTP. 105 

2.3. Measuring campaign  106 

A data set comprising two measuring campaigns (long: DS1 / short: DS2) is used for the 107 

calibration of the BSM2 influent generator. More information on the measuring campaign can 108 

be found in Aymerich et al. (2016). The long term (DS1) online data was collected using 109 

S::CAN sensors (scan Messtechnik GmbH, Vienna, Austria) for organic matter (spectrolyzer) 110 

and nitrogen (ammolyzer) at 2 minute intervals (from 02/10/2012 at 6:00 to 31/10/2012 at 111 

14:00). The flow rate was measured with an electromagnetic meter (ABB Kent-Taylor: 112 

MagMaster 400T Series) (data frequency: 1 min). Grab samples, taken at the influent of the 113 

WWTP, were used to compare with the online data. Rainfall data was retrieved from a weather 114 

station (Queixans), which had a rain gauge in Queixans (4.1 aerial km from WWTP). 115 

The short term data set (DS2) comprises an intensive three day measuring campaign (from 116 

Monday 08/10/2012 at 10:00 to Thursday 11/10/2012 at 8:00). The sampling interval was four 117 

hours during periods with low flow rates (between 12 and 8 in the night and midday) and two 118 

hours during periods with high flow rates resulting in 8 samples per day. Grab samples were 119 

collected after the pumping station and the grids and just before the biological treatment (there 120 

is no primary treatment). All samples were transferred into amber glass bottles and filtered with 121 

0.7/0.45/0.22 μm Nylon filters (Whatman, Maidstone, UK) and were afterwards kept at 4°C in 122 

darkness until analysis. All the analyses were carried out in triplicates.  123 

2.4. Analytical methods  124 

Analysis of pharmaceuticals was performed following the fully automated on-line methodology 125 

by García-Galán et al. (in prep.). Briefly, 1 mL of wastewater is loaded on the on-line 126 

chromatographic system (Thermo Scientific EQuanTM166, Franklin, MA, US) consisting of 2 127 

quaternary pumps and 2 LC columns, one for pre-concentration of the sample and the second 128 

one for chromatographic separation. The sample is further eluted by means of the mobile phase 129 
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into the coupled mass spectrometer (TSQ Vantage triple quadrupole; Thermo Scientific, 130 

Franklin, MA, US). Chromatographic separation was achieved using a Thermo Scientific 131 

Hypersil GoldTM (50 x 2.1 mm, 1.9 μm particle size) column. Target compounds were 132 

analysed under dual negative/positive electro-spray ionization in multiple reaction monitoring 133 

(MRM) mode, monitoring two transitions between the precursor ion and the most abundant 134 

fragment ions for each compound. Recoveries of the compounds ranged between 51% and 135 

139% (CMZ-2OH and IBU, respectively), whereas limits of detection ranged from 0.5 ng/L to 136 

150 ng/L for CBZ and IBU-2OH, respectively. 137 

2.5. Model-based influent generator 138 

The phenomenological modelling approach proposed by Gernaey et al. (2011), which generates 139 

influent pollutant disturbance scenarios, is upgraded to describe pharmaceuticals according to 140 

the principles stated by Snip et al. (2014) (Fig. 2 and Table A1). The flow rate dynamics are 141 

generated by combining the contributions of households (HH), industries (IndS), rainfall and 142 

infiltration from the soil model (FLOW RATE model block). In a similar way, HH and IndS 143 

(POLLUTANTS model block) are assumed to be the source of COD and N. Finally, daily and 144 

seasonal variations for temperature are generated (TEMPERATURE model block). 145 

Concentrations are calculated by combining the outputs from the FLOW RATE and 146 

POLLUTANTS blocks. The length of the sewer system can be incorporated in the influent 147 

dynamics: the larger the simulated sewer network, the smoother the simulated diurnal flow rate 148 

and concentration profiles, which is achieved by increasing the number of variable volume tanks 149 

in series used to model the sewer system. In addition, the dry weather model can be extended 150 

with rain and storm weather events, where the proposed approach can also mimic the ''first-151 

flush'' effect from the sewer network and the influent dilution phenomena that are typically 152 

observed at full-scale WWTPs following a rain event. These two elements comprise the 153 

TRANSPORT model block. More information on the model blocks is given in the Appendix 154 

(Table A1). 155 
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Data profiles are sampled cyclically at different time scales and the resulting signal is obtained 156 

by multiplication. The pollutant fluxes are transformed into g/PE, by multiplying the values of 157 

the input files – containing normalised information on the dynamics – with their loads (normally 158 

given in mg/(day.1000 PE)) and PE, the number of person equivalents in the catchment. Zero-159 

mean white noise can be added to provide more realism to the generated series using the 160 

variance of the noise as a tuning parameter. A schematic representation of the whole calculation 161 

procedure is presented in Fig. 2. Further information can be found in Snip et al. (2014). 162 

2.6. Calibration technique 163 

The calibration is performed using a pseudo-automatic approach with two different steps. In the 164 

first step, the catchment characteristics and some of the features in the soil model are manually 165 

adjusted based on the information available using a step-wise procedure (Flores-Alsina et al., 166 

2014). This previous study identified the most sensitive parameters of the influent generator at 167 

different time scales (hours, days, months) and different weather conditions (dry/wet). 168 

Therefore, firstly the flow rate per PE was calibrated along with the parameters related to the 169 

soil model: 1) the gain to adjust the flow rate to the downstream aquifers (Kdown); and, 2) the 170 

infiltration gain, a measure of the quality of the sewer system pipes (Kinf) under dry weather 171 

conditions. Secondly, the parameters related to wet weather conditions (Qpermm) and first flush 172 

effects were calibrated. Thirdly, the peak values of the different components were adjusted to 173 

match the correct hourly dynamics found in the data.  174 

During the second step, the model parameters such as the average daily loads are estimated with 175 

automatic calibration techniques (Table 1 and 2). The parameter estimation is carried out using 176 

a least squares approach, minimising the errors between the model prediction and the 177 

measurement data. These optimisations are performed in Matlab R2014b with the lsqnonlin 178 

function, which uses the sum of squares of relative errors as objective function. This function 179 

has the advantage that it allows a definition of lower and upper bounds of the parameters to be 180 

estimated, and therefore negative parameter values can be avoided. The automatic calibration of 181 

the flow rate, temperature, particulate COD and ammonium are also included in the Bootstrap 182 
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method (Table 1) (Efron, 1979; Joshi et al., 2006). This method uses the initial set of data to 183 

replicate additional data sets through resampling (100 additional data sets in this study). For all 184 

these additional data sets the parameters are estimated again, resulting in a range of different 185 

parameter estimates. Therefore,  a confidence interval of the estimated parameters can be 186 

obtained. To create the additional data sets, a comparably high number of data points are 187 

needed. As this high number of data points is not available for the pharmaceuticals (DS2 has 188 

only 24 data points), no additional data sets are created for pharmaceuticals and the parameter 189 

estimation is only performed once. The accuracy of the calibration was tested with different 190 

qualitative and quantitative evaluation methods which are mentioned in the Appendix.   191 
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3. RESULTS 192 

3.1. Dynamic modelling of traditional influent characteristics 193 

In this section, the BSM2 influent generator is used to describe the dataset comprised in DS1. 194 

Parameters concerning the traditional variables (QperPE, Qpermm, CODpartgperdperPE, 195 

SNHgperdperPE, TBias, TdAmp and Grain_Temp) are estimated using the Bootstrap method (Efron, 196 

1979; Joshi et al., 2006). Other parameters are adjusted using a manual procedure (see Section 197 

2.6) based on the information available. The calibration of the traditional variables is evaluated 198 

with quantitative and qualitative criteria, which are described in the Appendix. 199 

3.1.1. Influent flow rate, pollution loads and temperature 200 

In dry weather conditions 28% of the influent flow rate is assumed to originate from HH. The 201 

IndS contribution to the flow rate is assumed to be negligible. The remaining 72% of the 202 

influent flow rate (dry weather conditions) originates from groundwater infiltration, which is 203 

due to the large catchment area compared to the number of inhabitants and the poor quality of 204 

the sewer pipes. Additionally, there is an irrigation channel connected to the sewer network 205 

resulting in higher flow rate. The dynamic (dry weather) flow rate pattern is obtained by 206 

repeating the default (daily, weekly and seasonal) data profiles in a cyclic manner (Gernaey et 207 

al., 2011). The generated signal is then multiplied with two gains corresponding to the flow rate 208 

per person equivalent (QperPE = 110 m
3
/PE.day, Table 1) and the number of person 209 

equivalents in the catchment area (PE = 16,000). Finally, a continuous groundwater contribution 210 

due to infiltration processes is assumed. Thus, soil model parameter values (Kdown = 400 m
2
/d, 211 

Kinf = 4400 and A = 27,916 m
2
) are adjusted to reach the pre-established flow rate due to 212 

infiltration. Wet-weather conditions are modelled by converting rainfall intensities into flow rate 213 

values using an empirical factor (Qpermm = 824 m
3
/mm, Table 1). Finally, the sewer length is 214 

calibrated by adjusting the parameter subarea, which here corresponds to a HRT of 3 hours. A 215 

description of the rest of the FLOW RATE and TRANSPORT (sewer) model block parameters 216 

can be found in Gernaey et al. (2011). 217 
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In this study, we selected one soluble (NH4
+
) and one particulate compound (CODpart) to 218 

describe different types of traditional pollution dynamics. In dry weather conditions, the 219 

predefined data profiles are also sampled cyclically every 24 hours and multiplied by the 220 

pollution load and the number of person equivalents in the catchment (PE =16,000). 221 

Accordingly, the daily average ammonium and total CODpart loads in the HH block are 5.53 g 222 

N/(day.PE) (NH4gperPEperd) and 57.11 g CODpart/(day.PE) (CODpartgperPEperd), respectively 223 

(Table 1). The same assumptions as made in the previous paragraph apply here as well 224 

(industrial contribution is negligible). During wet-weather conditions, the parameters of the 225 

first-flush model should be adjusted (Fig. 2). Hence, the flow rate at which the particles will be 226 

flushed out of the sewer system (Qlim) is set to 10,000 m
3
/d. The maximum total mass of 227 

particles that can settle in the sewer (MMax) is 700 kg SS, and the fraction (FFfraction) of 228 

particles capable of settling in the sewer network is 0.40. The same sewer length is assumed 229 

(HRT = 3 h). A description of the rest of the POLLUTANTS and TRANSPORT (first flush) 230 

model block parameters can be found in Gernaey et al. (2011). 231 

Lastly, the wastewater temperature (T) is calibrated following the same dry/wet weather 232 

procedure. Dry weather temperature is modelled based on two sinus functions; one for the daily 233 

variation and another one for the seasonal variation. The daily variation is calibrated by 234 

adjusting the amplitude of the daily variation (TdAmp = 0.38°C, Table 1). The seasonal variation 235 

can be obtained by shifting the sinus wave into the correct season and adjusting the average 236 

temperature (TBias = 17.7°C, Table 1). In order to describe how temperature decreases due to 237 

wet weather events, rain data is added to the influent generator as an additional input. Thus, 238 

rainfall data is multiplied with a gain (Grain_Temp = 0.14, Table 1) before subtracting it from the 239 

temperature. In order to correctly simulate the slow increase in the wastewater temperature 240 

following a rain event, a first-order transfer function is added. The rest of the TEMPERATURE 241 

model block parameters can be found in Gernaey et al. (2011). It is assumed that there will be 242 

no temperature decrease due to snow melting as the water will have warmed up to the 243 

surroundings when it reaches the WWTP due to the distance from the mountains to the WWTP.  244 
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The results of the calibrated parameters using the Bootstrap method are shown in Table 1. It is 245 

important to highlight that the estimations performed with the Bootstrap method are 246 

complemented by standard deviations of the calibrated parameters. These standard deviations 247 

are within the range of 0.03% to 3.8% of the calibrated value, indicating low variability on the 248 

assumed values. The standard deviations are the highest for the parameters related to the flow 249 

rate, which is due to the fact that these can compensate for each other to some extent (Weijers 250 

and Vanrolleghem, 1997). The standard deviations can also be used as inputs to run uncertainty 251 

analysis (see for example Flores-Alsina et al. (2008) and Belia et al. (2009), but this was not 252 

pursued here.  253 

3.1.2. Simulation results 254 

Simulation results show that the four model blocks can reproduce daily and weekly dry weather 255 

variations as is also demonstrated by the evaluation criteria shown in the Appendix. Figs. 3 and 256 

4 describe the daily flow rate and pollutant (NH4
+
, CODpart) profiles which represent a general 257 

behaviour, namely one morning peak, one evening peak, and late night and midday minima. 258 

The morning and evening peaks represent the increased activity of the residents just before 259 

going to work or after returning from work. The daily minimum flow rate corresponds to the 260 

night hours with reduced water consumption. The daytime flow rate shows a small decrease 261 

corresponding to the residents' working hours. When it comes to the daily variation of the 262 

wastewater influent temperature, the model describes the dynamics reflecting the differences 263 

between night and day (Fig. 5).  264 

Figs. 3, 4 and 5 also demonstrate that the previously presented model blocks can predict 265 

reasonably well the wet-weather episodes. It is important to highlight that the flow rate model 266 

block was not able to reproduce all the peaks found in the measurements (Fig. 3, grey line). We 267 

are convinced that this is due to wet-weather episodes within the catchment that were not 268 

entirely captured by the rain gauge in Queixans (see Fig. 1, Section 2.3). We hypothesize that it 269 

is necessary to have additional data from rain gauges covering the entire geographical area in 270 

order to correctly describe the rain contribution to the influent flow rate, but such data are not 271 
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available. We assume that the rainfall might come from a part of the catchment where data was 272 

not available (or not registered). Therefore, in order to represent all rainfall events a synthetic 273 

(rainfall) dataset had to be generated by subtracting the simulated dry weather flow from the 274 

measurements. Sewer HRT had to be accounted for to correctly describe the dynamics.  275 

When it comes to the concentration dynamics of particulates, Fig. 4 shows that the influent 276 

model can describe re-suspension of particulates (see days 12, 19 and 26) following a rain event 277 

(Fig. 3). The increase of CODpart load is mainly caused by the flush out of the particulate 278 

fraction that has settled in the sewer system during the preceding period with dry weather 279 

conditions. However, there are also increases in CODpart loads when there is no increase of 280 

flow rate (see days 7, 27 and 28), which explains the low scores on the evaluation criteria 281 

obtained for this variable. This could be due to the placement of the sensors, which are located 282 

in a tank into which the influent is pumped. The pumping of the influent could have an impact 283 

on the re-suspension of the solids. Unfortunately, it was not possible to place the sensor before 284 

this pump and therefore no conclusions could be drawn about the potential influence of re-285 

suspension on the measured concentration dynamics.  286 

Moreover, the NH4
+
 load is also increased during the same episodes as the CODpart load 287 

increases. Even though NH4
+
 is a soluble pollutant, this behaviour has been detected before 288 

during and after wet weather conditions (Wilén et al., 2006) and therefore could be an 289 

explanation for the increase in load demonstrated in the data.  290 

Finally, Fig. 5 demonstrates that temperature drops due to rain events (see day 15). The 291 

additional rain events that had to be included in order to correctly describe wet-weather flow 292 

rate in Fig. 2 do not seem to have an effect on temperature dynamics (Fig. 4). This strengthens 293 

the hypothesis of a geographically separated rain episode not captured by the rain gauge situated 294 

close to the WWTP as the effect of cold rain water on the influent temperature is reduced during 295 

transport of the water through the sewer network.  296 
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3.2. Dynamic modelling of pharmaceutical compounds  297 

The second part of the results details how the BSM2 influent generator describes the occurrence 298 

of a selected set of pharmaceuticals (DS2). For the calibration of the pharmaceuticals too few 299 

data points are available (24 data points) to use the Bootstrap method. Therefore, the automatic 300 

parameter estimation is only performed once on the available data and no standard deviation of 301 

the estimate is given (see Table 2).  302 

3.2.1. Ibuprofen (IBU) and 2-hydroxyibuprofen (IBU-2OH) 303 

Measurement data reveal a high correlation of both IBU and IBU-2OH with NH4
+
 measurements 304 

in the grab samples (r
2
 of 0.69 and 0.79, respectively). These results are in agreement with 305 

Weigel et al. (2004), which state that IBU is mainly excreted in the urine. For this reason it was 306 

decided to use the same pre-defined data profile that was selected to describe NH4
+
 (morning 307 

peak, one evening peak, and late night and midday minima, Table A2). Similarly to the 308 

traditional pollutants, the generated signal (sampled cyclically) is multiplied by a gain that 309 

assumes the total IBU (IBUgperPEperd = 3.71 g/(day.1000 PE)) and IBU-2OH (IBU-2OHgperPEperd = 310 

2.22 g/(day.1000 PE)) loads within the catchment (PE = 16,000). The average predicted loads 311 

of IBU and IBU-2OH are 59 and 35 g/day, respectively, which corresponds to concentrations at 312 

the inlet of the WWTP of 9.1 and 5.4 μg/L, respectively. The assumed hydraulic retention time 313 

was 3 hours (the same as in Section 3.1).  314 

3.2.2. Sulfamethoxazole (SMX) and N4-acetyl-sulfamethoxazole (SMX-N4) 315 

A correlation was found between SMX and its metabolite SMX-N4 with NH4
+
 (r

2
 of 0.63 and 316 

0.58, respectively), which indicates again that these compounds are mainly excreted via urine. 317 

This correlation corresponds well with the theoretically expected distribution pattern, assuming 318 

a half-life of 10 h in the human body and a typically prescribed oral administration of twice a 319 

day (morning/evening). A similar observation was made by Göbel et al. (2005) and Plósz et al. 320 

(2010). Therefore, the ammonium data profile is also used to describe SMX and SMX-N4 321 

influent dynamics, even though the correlation is lower than that of IBU and IBU-2OH (Table 322 
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A2). The generation of the time series follows the same mechanisms as described in Section 323 

3.2.1. The estimated total pollution load for SMX (SMXgperPEperd) and SMX-N4 (SMX-N4gperPEperd) 324 

is 0.123 and 0.08 g/(day.1000 PE), respectively (Table 2). As a result, the quantity of 325 

compound arriving to the plant is 0.991 and 0.627 g/day (in terms of load) or 304 and 192 ng/L 326 

(in in terms of concentrations) for SMX and SMX-N4, respectively. It is important to highlight 327 

here that to describe the influent dynamics and the corresponding sharp pulses, the in-sewer 328 

HRT is reduced to an average of 1 hour by modifying the parameter subarea (see Section 3.2.4 329 

for further discussion details).  330 

3.2.3. Carbamazepine (CMZ) and 2-hydroxy carbamazepine (CMZ-2OH) 331 

In this particular case, the occurrence of CMZ is highly correlated with the occurrence of 332 

CODpart in the grab samples (r
2
=0.82). On the other hand, the occurrence of CMZ-2OH is 333 

correlated with NH4
+
 (r

2
=0.63), similar to the previous compounds. This is attributed to the fact 334 

that CMZ is excreted 28% in the faeces (Zhang et al., 2008), while CMZ-2OH is only present in 335 

urine. This is expected, as one way human metabolism would reject drugs is by making them 336 

more water soluble through modifying the molecular structure (addition of e.g., glucuronide, 337 

OH moieties). Consequently, a particulate data profile was used to describe the dynamics of 338 

CMZ, while the NH4
+
 data profile was selected for CMZ-2OH (Table A2). The main difference 339 

between the NH4
+
 and CODpart data pollution profiles is that particulates load dynamics lag 340 

slightly behind the soluble pollutant fluxes. This is mainly to introduce the delay in time in the 341 

influent model (see Fig. 2) (further information can be found in Gernaey et al. (2011)). The 342 

loads of CMZgperPEperd and CMZ-2OHgperPEperd loads are 0.0886 and 0.1538 g/(day.1000 PE), 343 

respectively. The total quantity of CMZ and CZM-2OH arriving at the WWTP is 1.43 and 2.41 344 

g/d, which in concentration terms equals 219 and 370 ng/L, respectively. The estimated HRT 345 

was 3 h (the same as used in Section 3.1). 346 
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3.2.4. Simulation results 347 

Fig. 6 shows the influent data and the model simulation results for IBU (Fig. 6a) and IBU-2OH 348 

(Fig. 6b). These show that the set of models presented herein can describe the general (daily) 349 

variation of both compounds (parent/metabolite). This is also demonstrated by the high scores 350 

on the evaluation criteria obtained for IBU and IBU-2OH. For the two cases, a substantial 351 

increase in the pollutant load can be observed during the morning/evening combined with night 352 

minima. Even though IBU has an irregular administration pattern, a dynamic correlation with 353 

NH4
+
 is found (Figs. 4 and 6a, b) which depicts the impact of human urine. The ratio between 354 

the parent compound (IBU) and the metabolite (IBU-2OH) at the inlet of the WWTP was lower 355 

(1:0.6) than a typical human excretion ratio (1:1.7) (Weigel et al., 2004). The ratio between 356 

these compounds varies from study to study (Ferrando-Climent et al., 2012; Verlicchi et al., 357 

2012). It is well known that different IBU administrations (i.e. oral and topical) might introduce 358 

active, unmetabolised compounds to the sewer (Daughton and Ruhoy, 2009). The lower IBU 359 

ratio could also indicate a waste of ibuprofen pills (these could have been flushed). Another 360 

influencing factor in the IBU-OH/IBU-2OH ratio could be biotransformation within the sewer. 361 

However, there are experimental evidences that state the contrary (Jelic et al., 2015). In 362 

addition, it cannot be excluded that there is a bias in the data (Johnson et al., 2008). It is 363 

however important to note that the concentrations reported in this study are within the ranges 364 

summarised in the review by Verlicchi et al. (2012).  365 

The comparison of the predicted behaviour with the experimental data of SMX and SMX-N4 is 366 

shown in Figs. 6c, d. Again, the modified BSM2 influent model was capable of reproducing the 367 

behaviour of both compounds using the calibrated NH4
+
 profiles. The ratio between the parent 368 

compound (SMX) and its metabolite (SMX-N4) is 1:0.65 although the excretion ratio is 1:3 369 

(Vree et al., 1995). This indicates a possible in-sewer re-transformation of SMX-N4 to SMX as 370 

reported by numerous studies (Göbel et al., 2005; Plósz et al., 2010; Jelic et al., 2015) (this 371 

aspect will be further analysed in Section 4.2). It is important to highlight that the parameter 372 

subarea, which characterizes the length of the sewer and thus influences the HRT, had to be 373 

modified. We hypothesise two possible explanations for this situation. Firstly, one must notice 374 
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that SMX is several orders of magnitude lower in load than IBU and consequently more 375 

sensitive to errors related to the sampling method (Ort and Gujer, 2006). This could lead to 376 

missing toilet flushes that contain SMX when sampling, which would also explain the different 377 

times of the occurrence of peaks during the day. Secondly, due to the sparsely distributed 378 

catchment (Section 2.1), we assume that most of the detected compound is consumed and 379 

excreted in an urban area close to the sampling point. Hence, the shorter HRT prevents 380 

complete mixing of SMX and therefore the concentrations remain above detection limits. 381 

Indeed, the sources of NH4
+
 and IBU are higher and seem to point more plausible towards a 382 

wide geographical distribution. Again, when calculating the concentrations of SMX and SMX-383 

N4 at the inlet of the WWTP, they are within the ranges summarised by Verlicchi et al. (2012). 384 

Figs. 6e, f show a good prediction of the pollutant occurrence achieved by the modified BSM2 385 

influent generator. Simulation and experimental results demonstrate the time difference in the 386 

different CMZ and CMZ-2OH peaks and the need to use different input data profiles to correctly 387 

describe their dynamics. The close link between CMZ and CODpart dynamics could be 388 

associated to desorption during filtering. The ratio between parent compound (CMZ) and 389 

metabolite (CMZ-2OH) in the wastewater is 1:2.9, which is similar to the one estimated by 390 

Plósz et al. (2012) in wastewater. However, these ratios differ from the theoretical excretion rate 391 

of 1:4 (Zhang et al., 2008). As CMZ is reported to be persistent and even suggested as an 392 

anthropogenic marker (Clara et al., 2004), biotransformation in the sewer seems unlikely to 393 

occur. However, the retransformation of metabolites of CMZ back into its parent compound has 394 

been reported (Vieno et al., 2007). Nevertheless, the possibility of desorption of excreted CMZ 395 

or the retransformation of metabolites should be further investigated. The ranges reported by 396 

Verlicchi et al. (2012) agree with the obtained concentrations in this study.  397 
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4. SCENARIO ANALYSIS 398 

The scenario analysis presented in this section of the paper demonstrates some of the benefits of 399 

using the modified BSM2 influent generator when performing WWTP (micro)pollutant 400 

modelling studies. Therefore, for exemplary purposes, we make use of the calibrated model to 401 

study how the results are affected by changes in some settings in the two different scenarios 402 

investigated here. In scenario 1 we show how the workload related to the measuring campaign 403 

can be reduced by synthetically generating additional high frequency data. In scenario 2 we 404 

demonstrate the effect of including biotransformation when estimating SMX and its metabolite 405 

loadings at the influent of a WWTP.  406 

4.1 Generation long-term (micropollutant) time series 407 

Data frequency is critical in any dynamic modelling exercise (Rieger et al., 2012). This first 408 

scenario will demonstrate how the modified BSM2 influent generator can increase the length of 409 

the IBU time series on the basis of the available data. These extrapolated time series could 410 

replace expensive measuring campaigns based on: 1) the model predictions; and, 2) well-411 

educated guesses obtained during the study. The extrapolation is achieved by combining 412 

calibrated outputs from the FLOW RATE model block (Section 3.1.1) and IBU (3.2.1). The 413 

generation of these extended time series for IBU (normalised) profiles is based on assuming: 1) 414 

a weekly household flow pattern including the weekend effect; and, 2) a yearly pattern 415 

including the holiday effect. The weekly pattern supposes an additional 10-25% load on Friday, 416 

Saturday and Sunday, because the area is a touristic area. Finally, the holiday period (seasonal 417 

variation) leads to a higher consumption during winter time due to an increase in the number of 418 

tourists (25%) in that period of the year. In addition, we also assume that more people get sick 419 

during winter and this also increases the consumption of IBU. Moreover, also the influent flow 420 

rate time series have to be extended to calculate IBU concentrations (FLOW RATE model 421 

block). The latter involves the generation of a seasonal infiltration profile and yearly rainfall 422 

data based on four seasons (winter, spring, summer, autumn). Further information about the 423 

model blocks and how to create these profiles can be found in Gernaey et al. (2011). Fig. 7 424 
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depicts the extended dynamic IBU profile generated with the influent model. The assumed 425 

(increased) weekly variation and the effect on the total IBU concentration profile are shown in 426 

Fig. 7a. There is also a higher concentration visible during the winter (beginning and end of the 427 

time series). During the generation of a yearly profile, the rainfall has an effect (dilution) on the 428 

IBU concentration especially during spring, when more rain is expected in the catchment 429 

compared to other seasons (Fig. 7b).  430 

431 
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4.2. Reactive sewer modelling 432 

Previous simulation results showed that the size of the sewer system can be incorporated in the 433 

influent dynamics by increasing or decreasing the parameter subarea and consequently the HRT 434 

(Gernaey et al., 2011). The basic assumption behind this is that the larger the sewer system, the 435 

smoother the simulated diurnal flow rate and concentration variations should be. In addition, 436 

different reports have demonstrated the importance of considering biotransformation processes 437 

within the sewer systems (Hvitved-Jacobsen et al., 1998; Ashley et al., 2005). This has been 438 

shown for traditional pollutants (Sharma et al., 2008) but also for micropollutants (Jelic et al., 439 

2015). The effect of such in-sewer reactions should especially be taken into account in the field 440 

of sewage epidemiology where estimations of illicit drug consumptions are made (Zuccato et 441 

al., 2005; van Nuijs et al., 2012; Plósz et al., 2013a). To demonstrate the impact of sorption, 442 

desorption, biotransformation and biodegradation processes on the estimated average daily load, 443 

the sewer model is upgraded with the Activated Sludge Model for Xenobiotic trace chemical 444 

framework (ASM-X) (Plósz et al., 2010; 2012). Further details about the ASM-X 445 

implementation in the sewer system are described in Snip et al. (2014). The estimation of the 446 

loads is performed with the least squares approach mentioned in Section 2.6. The estimated 447 

loads without assuming any reactions are taken from the results in Section 3.2.2.  448 

Table 3 summarizes the estimated loads for SMX and SMX-N4 when reactions in the sewer are 449 

assumed. The estimated consumptions are calculated assuming an excretion ratio of 14% of 450 

SMX (Vree et al., 1995). Simulation results show that there are substantial differences in both 451 

SMX and SMX-N4 (calculated) loads. Specifically, a lower load of SMX and a higher load of 452 

SMX-N4 should be assumed at the beginning of the TRANSPORT model block in order to take 453 

into account re-transformation of SMX-N4 (metabolite) to SMX (parent compound). The ratio of 454 

SMX:SMX-N4 obtained with the in-sewer reactions activated (1:1.17) is closer to the excretion 455 

ratio of 1:3 (Vree et al., 1995) than the ratio without reactions (1:0.69). This indicates that it is 456 

likely that SMX-N4 is retransformed into SMX in this study. The re-transformation of this 457 

metabolite to sulfamethoxazole was observed during wastewater treatment (Göbel et al., 2005) 458 
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and sewer transportation (Jelic et al., 2015). Even though we made some assumptions during 459 

this exercise (see Section 5.6), our aim has been to make the reader aware that accounting for 460 

reactions within the sewer system can have an important effect on the estimation of 461 

consumption rates (van Nuijs et al., 2012). The common approach used in wastewater 462 

engineering is to back-calculate the daily consumption of a micropollutant normalised per 1000 463 

inhabitants in a given catchment from the measurements taken at the inlet of the WWTP. 464 

Depending on the analysed data, several corrections can be included to consider weekly or 465 

seasonal variations. The set of models presented here can be helpful in improving those 466 

estimates by accounting for some of the drainage phenomena occurring at the catchment level 467 

and the activation of reactions. 468 

469 



 

29 

 

5. DISCUSSION 470 

This study has demonstrated that generation of synthetic influent data with the modified BSM2 471 

influent generator is a promising tool to improve model-based (micro)pollutant simulation 472 

studies in WWTPs since they can: 1) significantly reduce the cost and workload of measuring 473 

campaigns; 2) fill gaps due to missing data in influent flow rate/pollution/temperature profiles; 474 

and, 3) create additional disturbance scenarios following the same catchment principles as the 475 

calibrated phenomenological influent model. Even though the set of advantages derived from 476 

using these tools is extensive, the use of these tools also opens the door to several discussion 477 

points, which are analysed below. 478 

5.1. Sampling method 479 

In this study, grab samples were taken at different time intervals to analyse the diurnal variation 480 

of the pharmaceuticals. There has been discussion on the best way of sampling for 481 

micropollutants. Ort et al. (2010) developed guidelines on the appropriate way of sampling. 482 

Depending on the objective of the study, different sampling frequencies can be used and even 483 

though grab samples can be accurate in some cases, composite samples should be preferred. 484 

Grab samples can miss increases or decreases in concentrations, which composite samples 485 

would capture. However, one should be aware of the fact that degradation of micropollutants 486 

can also occur in composite samples (Baker and Kasprzyk-Hordern, 2011). In this study, it was 487 

decided to use grab samples, partly, to avoid degradation, and partly, due to its simplicity 488 

compared to the use of flow-proportional sampling techniques in sewer systems.  489 

5.2. Description of compounds with irregular pattern 490 

It is important to highlight that the load dynamics of almost all pharmaceuticals presented in this 491 

case study display a high correlation with the NH4
+
 dynamics, which clearly shows the impact 492 

of human urine. However, there are other types of pharmaceuticals with different medical uses, 493 

consumption rates, and excretion pathways and different catchment characteristics (low HRT) 494 

that would be difficult to characterize with the presented set of (phenomenological) models. 495 
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Likewise, micropollutants other than pharmaceuticals, could have a more random occurrence at 496 

the inlet of a WWTP and could therefore also not be described by the same phenomenological 497 

approach.  498 

In order to cope with this type of compounds with random occurrence, we implemented a 499 

prototype module in the BSM2 influent generator based on Markov Chains (Snip et al., 2014). 500 

In the simplest form, the occurrence of a compound X is modelled by two states. The two states 501 

represent the presence or absence of the micropollutant and the transition probability matrix 502 

describes the probability of switching between these states. In the transition matrix information 503 

can be introduced about the frequency, intensity and duration of the events by defining: i) the 504 

set of probabilities; and, ii) the number of states. The profile obtained by the Markov Chain 505 

approach can also be combined with a more deterministic weekly and seasonal variation by 506 

multiplication. The resulting output is the pollutant flux. Further research in the practical use of 507 

the Markov chain based approach is on-going, but not presented in this study since the available 508 

data did not contain a pharmaceutical with random occurrence. A correlation with either NH4
+
 509 

or CODpart was found for the pharmaceuticals considered in this study. In order to calibrate a 510 

Markov Chain, enough data has to be available to distinguish between the different states and to 511 

calculate the transition probabilities between these states (Madsen et al., 1985; Saagi et al., 512 

2016).  513 

5.3. Calibration procedure 514 

The Bootstrap method is used for the automatic calibration of the traditional variables and is 515 

based on the generation of additional sets of parameters. As a result of these additional sets, no 516 

prior information on the parameter is needed and the result is an estimate of the parameter with 517 

confidence intervals (Efron, 1979; Joshi et al., 2006). A drawback of the Bootstrap method is 518 

that it needs many measured data points, which were not available for the pharmaceuticals. 519 

Also, the method is computationally heavy as the optimization is repeated for the number of 520 

additional parameter sets that are estimated (Bootstrap samples). In order to decrease the 521 

computational effort, parameters that could be estimated manually were excluded from the 522 
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procedure. As has been shown by Flores-Alsina et al. (2014) the influent generator uses many 523 

non-identifiable parameters, which would increase the computational burden of an automatic 524 

calibration. Another possibility for the automatic calibration could be the Bayesian technique. 525 

Bayesian approaches are better choices for model predictions when there are poorly identifiable 526 

model parameters (Omlin and Reichert, 1999). However, the justification of the available 527 

knowledge that would be required to obtain the a priori distribution of the model parameters 528 

when using a Bayesian approach can be considered an entire study on its own (Lindblom et al., 529 

2011; Rieckermann et al., 2011). In addition, the computational burden required in order to 530 

obtain “reasonable” results exponentially increases the required calibration time and effort. 531 

The objective function used in the optimization is focused on the minimization of the error 532 

between the data and the simulation results. However, this optimization might overlook the 533 

magnitude or locations of the peaks. This was revealed when trying to use the automatic method 534 

for the CODpart calibration as the increases in CODpart after a rain event were not captured. In 535 

order to overcome this drawback, the objective function could be changed to focus on the 536 

timing or magnitude of the peaks.  537 

5.4. Structural model deficiencies 538 

The simulation results of the different variables (traditional and micropollutants) obtained by 539 

using the influent generator showed some deviations from the data, which are also demonstrated 540 

by the values of the evaluation criteria. An important factor which could explain some of these 541 

deviations is structural model uncertainty, or in other words, that the current model is not 542 

describing all of the fundamental phenomena. For example, there are existing models that are 543 

more accurate in accounting for pollution run-off (Bertrand-Krajewski et al., 1993; Ashley et 544 

al., 2002), combined sewer overflows (Ashley et al., 2004), storm tanks (Schütze et al., 2002; 545 

Langeveld et al., 2014) and back-flow effects (Borsányi et al., 2008) in the sewer system. 546 

Depending on the micropollutants of concern, e.g., pesticides, some of these phenomena could 547 

have a significant effect and should thus be considered as well when creating a model aiming at 548 

generating realistic influent concentration dynamics of such compounds (Loos et al., 2013).  549 
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Another simplification made in this work is in scenario 2 (Section 4.2). For this reason, the 550 

analysis of those results must be done with care. For example, the sewer system model is a 551 

rather simplified representation, and some of the processes occurring (e.g. biofilm formation) 552 

are not accounted for. To consider the effect of the biofilm on pharmaceuticals without having a 553 

proper biofilm model, we increased the fraction of (heterotrophic) biomass (XOHO) in the total 554 

COD. However, mass transfer limitations are not taken into account either. Additionally, the 555 

parameters estimated for an activated sludge unit are used for reactions in the sewer. For this 556 

reason, there might be errors in the estimation of the conversion rates taking place during the 557 

transport. Nevertheless, the increased calibration effort to adjust the additional parameter(s) 558 

would come with the drawback of making this tool less attractive for process engineers and 559 

water/wastewater designers (Flores-Alsina et al., 2014).  560 

5.5. Development of control strategies in WWTP 561 

The generation of multiple influent profiles can be used to develop (model-based) control 562 

strategies in the WWTPs. It is important to highlight that WWTPs are still one of the major 563 

disposal paths for micropollutants and they have not been designed to deal with those (Ternes et 564 

al., 2004). Nevertheless, there are different investigations that demonstrate that a change in 565 

operational conditions such as sludge retention time (Clara et al., 2005) can effectively improve 566 

the elimination of trace chemicals from the liquid phase by sorption, transformation or 567 

biodegradation. Co-metabolic/inhibitory behaviour with other substances present in the influent 568 

might have an overall effect on their fate within the WWTP. The results of the investigations 569 

carried out by Snip et al. (2014) demonstrate that different operating conditions can have 570 

opposite effects on the studied compounds, especially when they present co-metabolic or 571 

inhibitory behaviour with other substances present in the influent wastewater. The same has 572 

been shown for compounds with higher biodegradability at high sludge retention times 573 

compared to compounds with high sorption capacity. As the sludge turnover is lower, less 574 

compounds can sorb onto the sludge (Petrie et al., 2014). 575 
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5.6. Use in sewer epidemiology  576 

The set of models presented here may be potentially used in sewer epidemiology. In the same 577 

way as demonstrated here for the model-based description of the influent dynamics of one anti-578 

inflammatory compound, one antibiotic and one psychoactive drug, the modified version of the 579 

BSM2 influent generator could be used to model illicit drugs. In addition, the proposed 580 

approach could help to back-calculate consumption rates taking into account a list of possible 581 

uncertainties (sampling, analytical method, stability of biomarkers, estimation of the number of 582 

PE (Castiglioni et al., 2013)). As demonstrated in Section 4.2, also reactions in the sewer can be 583 

taken into account. As the ratio between the parent compound and the metabolite was closer to 584 

the theoretical excretion ratio when reactions were activated, it is probable quite likely that 585 

(some of) these reactions are indeed occurring. Considering the back-calculation of the 586 

consumption of illicit drugs and specifically cocaine as a well-known example which has shown 587 

to be unstable in wastewater, these in-sewer transformations should be taken into account (van 588 

Nuijs et al., 2011).  589 

590 
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6. CONCLUSIONS 591 

The key points of the presented study can be summarised as follows: 592 

 The influent generator was capable of describing the time series for flow rate and NH4
+
 593 

as well as IBU and CMZ (and metabolites). Nevertheless, it could not capture all the 594 

dynamics events for CODpart, temperature, SMX and SMX-N4. Possible causes might 595 

be data availability/quality issues as well as deficiencies in model structure.  596 

 The potential use of the tool when: 1) interpolating incomplete data series; and, 2) 597 

extrapolating additional dynamics following the same catchment principles, were tested 598 

using the ibuprofen case as an example.  599 

 The effects of in-sewer biotransformations and their potential impact when estimating 600 

consumption rates were pointed out using the sulfamethoxazole case. The ratios 601 

between the parent compound and the metabolite were closer to the theoretical 602 

excretion rates when biochemical reactions were activated within the sewer network 603 

 The presented set of models has application for engineers, managers and regulators and 604 

can be used as a decision support tool in integrated (urban) water systems.  605 
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Table 1. The inputs for the automatic calibration are given as an initial parameter estimate with lower and 

upper parameter value bounds, as well as the outputs of the Bootstrap method, i.e. the calibrated parameter 

and its standard deviation.  

Parameter 

First 

estimate 

Lower 

bound 

Upper 

bound 

Calibrated 

parameter 

Standard 

deviation 

Flow rate 

QperPE [m3
/d.1000 PE] 150 50 500 101.9085 3.8876 

Qpermm [m3
/mm] 1250 500 3000 819.1962 31.0751 

Ammonium 

SNHgperdperPE  

[g N/d/PE] 

6 1 25 5.5295 0.0198 

COD particulates 

CODpartgperdperPE 

[g COD/d/PE] 

80 0 200 57.1122 0.4720 

Temperature 

TBias [◦C] 18 10 30 17.6735 0.0049 

TdAmp [◦C] 0.4 0 1 0.3778 0.0071 

Grain_Temp [◦C] 0.4 0 1 0.1409 0.0040 
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Table 2. The inputs for the automatic calibration are given as an initial estimate with lower and upper 

parameter bounds, as well as the resulting calibrated parameter value.  

Parameter First estimate Lower bound Upper bound Calibrated parameter 

Pharmaceuticals load [g/d.1000PE] 

IBUgperdperPE 1 0 5 3.71 

IBU-2OHgperdperPE 1 0 5 2.22 

SMXgperdperPE 0.01 0 1 0.1227 

SMX-4NgperdperPE 0.01 0 1 0.08 

CMZgperdperPE 0.01 0 1 0.0886 

CMZ-2OHgperdperPE 0.01 0 1 0.1538 

 

Table 3. Estimation results of SMX and SMX-N4 loads with and without including reactions in the sewer 

system. 

 

Estimated load 

without 

reactions 

(g/d.1000PE) 

Estimated loads with 

reactions 

(g/d.1000PE) 

Difference in 

estimation (%) 

Estimated 

consumption no 

reactions (g/d) 

Estimated 

consumption with 

reactions (g/d) 

SMX 0.1227 0.1091 -11 14.02 12.47 

SMX-N4 0.08 0.1281 +60   
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Figure 1. The catchment under study with the location of the WWTP and the different towns. 

 

 

Figure 2. Model blocks used to create the different pharmaceutical loading profiles. 
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Figure 3. Calibration (grey line) of the influent flow rate data (grey dots, one hour interval) at the inlet of the WWTP. Synthetic rainfall data created to 

fill the missing rain events (black line) are shown as well. 
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Figure 4. Calibration (black line) of the pollutant loads (top: NH4
+
, bottom: CODpart) data (grey dots, one hour interval) at the inlet of the WWTP. 

 



 

52 

 

 

Figure 5. Simulation (black line) of the wastewater temperature data (grey dots) at the inlet of the WWTP. 
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a b 

  

c d 

  

e f 

Figure 6. Simulations (black line) of the influent loads of IBU (a), SMX (c), CMZ (e) and the 

metabolites IBU-2OH (b), SMX-N4 (d), CMZ-2OH (f) are compared to the measurements. 

Measurements are shown together with their standard deviations resulting from the chemical 

analysis (grey dots with error bars). 
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Figure 7. Simulations of influent IBU dynamics extended to a week (left) and a year (right, 

starting at 1
st
 of January) with a smoothed yearly profile of the IBU (grey). 

 

 

 

 




