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Abstract

Nowadays, medical imaging is one of the most important tools for doctors when studying

the human body. Given the wide variety of images, the information provided, and the

huge amount of research and clinical practice performed around the world, we could say

that medical imaging has become a new science. The imaging techniques used depend

mainly on the part of the body and the disease studied, in order to better appreciate the

characteristics of the tissue. In the case of the brain, one of the techniques most widely used

is the conventional and diffusion magnetic resonance imaging (MRI), although Computed

Tomography (CT) is also used. The focus of this thesis, is to study these MRI by means

of computer vision, analysing and developing automated methods to assist doctors in the

detection and monitoring of neurological diseases affecting the central nervous system, of

which the brain is the main part. Multiple Sclerosis (MS) is a clear example of these

diseases, characterised by the presence of white matter lesions (WML), which can be

detected in this image modality. Lupus is also an example, in which the white matter is

affected by these plaques, but usually presenting a smaller lesion burden.

Currently, doctors perform manual analyses of MRI scans, which are volumes in 3D

implying a great deal of computation time. By manual analysis we mean carrying out

the detection and segmentation of WML. The quantification of these WML is crucial for

the diagnosis of MS and is also an important predictor in Lupus. This task is performed

repeatedly by different radiologists who provide a subjective description, always within

some limits and following specific criteria. This fact introduces a high variability that

negatively affects the results, especially in longitudinal studies, where even a single radi-

ologist can have different opinions in different time points. This subjectivity difficulties to

develop automatic algorithms as the definition of what is correct is inherently unclear.

First of all, in this thesis, we have focused on the image pre-processing in order to
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enhance the image information. The main aspects of this enhancement rely on removing

any image noise and correcting any intensity bias induced by the scanner. Also, as isolating

the brain region from the whole image is a key step in the pre-processing, this technique

is known as ”skull-stripping”. On this last point, we have contributed a new technique

based on a multispectral, adaptive, region growing algorithm, which enhances the current

state-of-the-art on the brain segmentation process.

We include, as a pre-processing step, the image registration process, which is a key

step in order to using complementary information from different modalities as well as

comparing different subjects. In this thesis we also propose a novel pipeline to carry out

the registration process by using information from multiple modalities to improve the

results of this registration process.

Furthermore, we have also studied the current techniques for the detection and segment-

ation of WML, proposing a new method based on a previous proposal. This approach uses

two image modalities, one to obtain tissue information that will be used to detect the le-

sions in the other. Finally, we have achieved an automated and user-friendly tool with

comparable, or even better, results in some cases than the state-of-the-art.

As a result of this thesis, we present on the one hand a new approach for brain seg-

mentation from an MRI and another approach for registering various MRI modalities in

the same space. On the other hand, we present a tool able to automatically detect and

segment WML. This tool is publicly available and designed to operate under the SPM

platform commonly used in hospitals due to its easy user interaction. This tool has been

developed on the basis of a thorough analysis of the state-of-the-art of the different tech-

niques involved.

xiv



Resum

La imatge mèdica és avui dia una de les eines principals dels metges per estudiar el cos

humà. Donada la gran diversitat d’imatges, la informació que ens proporcionen, i la

quantitat d’estudis i pràctiques cĺıniques que es duen a terme arreu del món, podŕıem dir

que la imatge mèdica s’ha convertit en una nova ciència. Les tècniques d’imatge utilitzades

depenen majoritàriament de l’òrgan i la malaltia estudiada, per tal que les caracteŕıstiques

del teixit s’apreciin millor. En el cas del cervell, la imatge per excel.lència és la imatge

de ressonància magnètica (MRI) convencional i de difusió, tot i que la Tomografia Axial

Computeritzada (TAC) és extensament utilitzada. En aquesta tesi ens centrem en estudiar

MRI mitjançant la visió per computador, analitzant i desenvolupant mètodes automàtics

per tal d’ajudar als metges en la detecció i el seguiment de malalties neurològiques que

afecten al sistema central nerviós, on el cervell n’és la part principal. Un exemple clar

d’aquest tipus de malaltia és l’Esclerosi Múltiple (EM), caracteritzada per la presència de

lesions a la matèria blanca, les quals poden ser detectades en aquesta modalitat d’imatge.

Lupus és també un exemple on la matèria blanca es veu afectada per aquest tipus de

lesions, tot i que solen tenir una mida més reduida.

Actualment els metges analitzen manualment les ressonàncies magnètiques, que són

volums en 3D, i per tant analitzar totes les imatges d’un pacient comporta un temps de

valoració radiològica molt elevat. Quan parlem d’anàlisi manual, ens referim sobretot a la

detecció i segmentació de les lesions de matèria blanca esmentades. La seva quantificació

és un fet crucial en el diagnosi de l’EM i un factor de predicció important en el Lupus.

Aquesta tasca l’efectuen diferents radiòlegs una i altra vegada, i el resultat de cadascú

acaba sent una descripció subjectiva del pacient, sempre dins uns ĺımits i seguint uns

criteris establerts. Aquest fet implica una variabilitat, a vegades bastant elevada, que

afecta negativament als resultats, sobretot en estudis longitudinals, on fins i tot un mateix
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radiòleg pot tenir diferents opinions en diferents espais de temps.

En aquesta tesi ens centrem, per una part, en el pre-processat de la imatge per tal

d’eliminar el soroll i corregir les inhomogenëıtats en les intensitats, ambdòs errors in-

trodüıts per l’escàner. A més, l’obtenció de la regió del cervell de dins de tota la imatge,

és una etapa important en el pre-procés, i aquesta tècnica és coneguda com a “skull-

stripping”. En aquest punt hi hem contribuit amb una nova tècnica basada en un algor-

itme de “region growing” adaptatiu i de multiespectre, el qual millora la segmentació del

cervell dels treballs actuals de l’estat de l’art.

Incloem com a pre-processat el registre d’imatges, fet primordial per tal de poder util-

itzar la informació complementària en les diferents modalitats aix́ı com comparar diferents

casos. En aquesta tesi proposem una “pipeline” per tal de dur a terme el registre mit-

jançant la informació de múltiples modalitats per tal de millorar els resultats d’aquest

procés.

Per altra banda, hem estudiat també les tècniques actuals de detecció i segmentació

de lesions en la matèria blanca, proposant un mètode nou basat en anteriors propostes.

Aquest mètode utilitza dues modalitats d’imatge, una de les quals s’utilitza per obtenir

informació dels teixits la qual serà utilitzada per detectar les lesions en l’altre. Finalment,

hem aconseguit una eina amb uns resultats comparables, o fins i tot millor en alguns casos,

que l’estat de l’art, i que és totalment automàtica i fàcilment utilitzable.

Com a resultat d’aquesta tesi, presentem una nova proposta per tal de segmentar el

cervell a partir una MRI i una altra per tal de registrar diferents modalitats de MRI en

un mateix espai. Per altra banda, presentem una eina automàtica capaç de detectar i

segmentar lesions en la matèria blanca de pacients d’EM i Lupus. Aquesta eina és pública

i dissenyada per tal de funcionar sota la plataforma SPM, la qual utilitzen habitualment en

els hospitals gràcies a la seva fàcil interacció amb l’usuari. Aquesta eina s’ha dut a terme

a partir d’un anàlisi exhaustiu de l’estat de l’art de les diferents tècniques involucrades.
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Resumen

La imagen médica es hoy en d́ıa uan de las herramientas principales de los médicos para

estudiar el cuerpo humano. Dada la gran diversidad de imágenes, la información que nos

proporcionan, y la cantidad de estudios y prácticas cĺınicas que se llevan a cabo en todo el

mundo, podŕıamos decir que la imagen médica se ha convertido en una nueva ciencia. Las

técnicas de imagen utilizadas dependen mayoritariamente del órgano y de la enfermedad

estudiada, para que las caracteŕısticas del tejido se aprecien mejor. En el caso del cerebro,

la imagen por excelencia es la imagen de resonancia magnética (RM) convencional y de

difusión, aunque la Tomografia Axial Computarizada (TAC) es también un recurso ex-

tensamente utilizado. En esta tesis nos centramos en estudiar imágenes de RM mediante

la visión por computador, analizando y desarrollando métodos automáticos para ayudar

a los médicos en la detección y el seguimiento de enfermedades neurológicas que afectan

al sistema central nervioso, donde el cerebro es la parte principal. Un ejemplo claro de

este tipo de enfermedad es la Esclerosis Múltiple (EM), caracterizada por la presencia

de lesiones en la materia blanca, las cuales pueden ser detectadas en esta modalidad de

imagen. El Lupus es también un ejemplo donde la materia blanca se ve afectada por este

tipo de lesiones, aunque suelen tener un tamaño más reducido.

Actualmente los médicos analizan manualmente las resonancias magnéticas, que son

volúmenes en 3D, y por tanto analizar todas las imágenes de un paciente conlleva un

tiempo de valoración radiológica muy elevado. Cuando hablamos de análisis manual,

nos referimos sobre todo a la detección y segmentación de las lesiones de materia blanca

mencionadas. Su cuantificación es un hecho crucial en el diagnóstico de la EM y un factor

de predicción importante en Lupus. Esta tarea la efectúan diferentes radiólogos una y

otra vez, y el resultado de cada uno termina siendo una descripción subjetiva, siempre

dentro de unos ĺımites y siguiendo unos criterios establecidos. Este hecho implica una
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variabilidad, a veces bastante elevada, que afecta negativamente a los resultados, sobre

todo en estudios longitudinales, donde incluso un mismo radiólogo puede tener diferentes

opiniones en diferentes espacios de tiempo.

En esta tesis nos hemos centrado, por una parte, en el pre-proceso de la imagen para

eliminar el ruido y corregir las inhomogeneidades en las intensidades, ambos introducidos

por el escáner. Además, obtener la región del cerebro de entre toda la imagen, es una etapa

importante en el pre-proceso, técnica conocida como “skull-stripping”. En este punto

hemos contribuido con una nueva técnica basada en un algoritmo de “region growing”

adaptativo y de multiespectro, el cual mejora la segmentación del cerebro de los trabajos

actuales del estado del arte.

Incluimos como pre-proceso el registro de imágenes, hecho primordial para poder utilizar

la información complementaria en las diferentes modalidades aśı como comparar diferentes

casos. Por lo tanto, en esta tesis proponemos una “pipeline” para llevar a cabo el registro

mediante la información de múltiples modalidades para mejorar los resultados de este

proceso.

Por otra parte hemos estudiado también las técnicas actuales de detección y segmentación

de lesiones en la materia blanca, proponiendo un método nuevo basado en anteriores prop-

uestas. Este método incorpora dos modalidades de imagen, una de las cuales se utiliza

para obtener información de los tejidos la cual es utilizada, a su vez, para la detección

de las lesiones en la otra. Hemos conseguido una herramienta con unos resultados com-

parables, o incluso mejores en algunos casos, que el estado del arte, y que es totalmente

automática y fácilmente utilizable.

Como resultado de esta tesis, presentamos por una parte una nueva propuesta para

segmentar el cerebro a partir de una MRI y una para registrar diferentes modalidades

de MRI en un mismo espacio. Por otra parte presentamos una herramienta automática

capaz de detectar y segmentar lesiones en la materia blanca de pacientes de EM y Lupus.

Esta herramienta es pública y diseñada para funcionar bajo la plataforma SPM, la cual se

utiliza habitualmente en los hospitales gracias a su fácil interacción con el usuario. Esta

herramienta se ha realizado a partir de un análisis exhaustivo del estado del arte de las

diferentes técnicas involucradas.

xviii



Chapter 1

Introduction

This chapter outlines the motivation for the work developed in this thesis. It also presents

an overview of the covered topics on which this thesis is based. Afterwards, it describes our

team’s previous work within this scope and the proposed objectives. After this chapter,

the reader will have general overview of the thesis content, while in the next Chapter 2

a more detailed description of the techniques is given covering the contents of the four

papers presented in the thesis. The first two contributions (see Chapter 3 and 4) are

related with the pre-processing section 2.2 and the two last papers (see Chapter 5 and 6)

belong to the processing section 2.3.

1.1 Motivation

Technology is evolving in such a way that humans are not able to exploit its entire poten-

tial, not even to the point of using these innovations in daily practice. This is unstoppable

nowadays in all fields of science, such as the environment, biology, services, medicine, etc.

The key question is how to exploit all these resources, how to combine all those technolo-

gical innovations in order to obtain as many benefits as possible. This is why research is a

key step in squeezing out everything that this technological evolution has to offer human

beings, so there is still a lot of work to do.

Several factors have contributed to the development of medicine, from mere drugs to

complex surgical equipment and medical imaging. Unfortunately, diseases have been al-

ways a part of being a human being, a fact that renders us vulnerable and dependent on

this science. The more advances made in medicine the better quality of life and longer

life expectancy we humans can enjoy, even though a myriad of factors influence this issue.

Given this situation, the research in this field affects the entire globe, and, thanks to the

1
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investment of private companies (mostly pharmaceutics) as well as governments, we can

carry out projects focused on medicine improvements.

Regarding medical research, medical imaging has become a crucial tool used to study

the interior of the body for a variety purposes, such as medical intervention, disease

diagnosis, disease evolution control, etc. The most common imaging technologies are

the following: radiography, magnetic resonance imaging (MRI), ultrasound, endoscopy,

elastography, tactile imaging, thermography, medical photography and nuclear medicine

functional imaging techniques like positron emission tomography.

In this thesis, we will focus on MRI of the brain, since several diseases like Multiple

Sclerosis (MS), Alzheimer, Lupus, Dementia, and Strokes affect the brain in different

ways, presenting white matter lesions (WML), atrophy, and matter loss. Brain MRI scans

consist of a 3D volume of the patients which doctors and radiologists have to process slice

by slice in order to detect abnormalities in the brain. This becomes a tedious and very time

consuming task that may lead to inaccuracies due to human error. On the other hand, from

the computer science point of view, one can see those tasks as a set of sequential processes

that produce different outputs, making decisions based on the application of certain rules

over certain inputs. Therefore, by means of computer vision, the image processing can be

performed automatically sometimes achieving better accuracy and reproducibility.

Considering different diseases and their abnormalities affecting the brain, in this thesis

we will focus on MS, which affects the central nervous system (CNS) presenting damage

to the white matter of the brain, sometimes related to physical, mental and psychiatric

problems.

1.2 Thesis context

1.2.1 Multiple Sclerosis

Multiple Sclerosis is an unpredictable chronic neurological condition affecting the CNS

and causing the most disability in young adults. Most people are diagnosed between

the ages of 20-40, but it can affect younger and older people. Recent epidemiological

studies show that 2.3 million people have been diagnosed with MS worldwide, of which

almost three times more women than men are affected. The causes are still unknown,

but interaction with multiple genetic and as-yet-unidentified environmental factor(s) are

potential candidates [1]. Moreover, geographic studies show the prevalence of MS around
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Figure 1.1: MS prevalence around the world http://www.oysterhc.co.uk/

uncategorised/ms-horrible/ accessed 13.05.2016.

the world (see Figure 1.1), affirming that migration from high to lower-prevalence in

areas before the age of 15, reduces the likelihood of developing MS. Looking at the map in

Figure 1.1, we can see that Europe, the United States, Canada, New Zealand, and sections

of Australia have more MS sufferers than Asia and the tropics.

MS is characterised by demyelination, i.e. damage of the myelin, a fatty protein that

insulates the axons of nerve cells (that part of the cell that transmits messages to other

nerves cells). Therefore, demyelination in the brain and spinal cord leads to a disruption

of the communication within the brain and between the brain and the body. When this

interruption appears in the early stages of the disease, the CNS can repair some areas

by demyelination, resolution of inflammation, and compensatory mechanisms, but that

ability decreases as the disease progresses and recurrent attacks appear. As the disease

prompts the immune system to attack the myelin, lesions develop on the brain and can

only be seen in MRI scans.

Typically, the progression of MS consists of a relapsing and remitting course. This type

of condition is known as relapsing-remitting MS (RRMS). Sufferers are relatively symptom-

free for periods of time that are interrupted by attacks that can put them in hospital for

http://www.oysterhc.co.uk/uncategorised/ms-horrible/
http://www.oysterhc.co.uk/uncategorised/ms-horrible/
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weeks, or even months, at a time. These attacks worsen the symptoms (see Figure 1.2)

and are followed by full, partial, or no recovery of some function or another. The interval

between relapses varies, there can be many years between the first manifestation and the

first relapse. On average, 65% of people with RRMS develop secondary-progressive MS

(SPMS), this progressive part may begin shortly after the onset or may occur even decades

later. The last two types of this condition are less common and usually affect people who

develop MS after age 40. Primary-progressive MS (PPMS) affects just 10% of all people

with MS, and is characterised by a gradual progression of disability without any recovery

periods. Finally, the least common form (5%) is the progressive-relapsing MS (PRMS)

where the disability progression is steady, but punctual attacks may appear.

1.2.2 Lupus Erithematosus

Lupus Erithematosus is a chronic disease affecting the human immune system by at-

tacking normal healthy tissues of different parts of the body such as joints, skin, kid-

neys, heart, lungs, and brain [2, 3]. Lupus erithomatosus affects around 5 million people

around the world, while the most common and severe form of this condition (70%) is

the Systemic Lupus Erithematosus (SLE), also known as Disseminated Lupus Erithem-

atosus [2–4]. Other types of Lupus, not treated in this thesis, are discoid, drug-induced,

and neonatal. As in MS, the underlying causes are still unknown but genes and certain

drugs might be the main factors. Gender and age, are also similar attributes with MS

since women are more likely to develop Lupus than men, and it also appears early in

age, between 15 and 45 years, although it can occur at any time. Geographic and racial

distribution of MS may differ from MS, since it is 2 to 4 times more frequent in non-white

populations around the world, where Asians and African Americans are the most affected

in the world [2–4].

Independently of the type of lupus, joint pain and swelling is present in almost every

patient, among other common symptoms such as fatigue, fever, chest pain, hair loss, skin

rush, etc. Besides, depending on the parts of the body (organs) affected, the symptoms

may vary causing breathing problems, abnormal heart rhythms, nauseas, etc. When the

brain is affected, headaches, numbness, tingling, seizures, vision problems, and personal-

ity changes can be present. Patients with problems on the nervous system can develop

neuropsychiatric SLE, which is the main cause of morbidity and mortality [5–8].
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Figure 1.2: Main symptoms of MS http://neurosciencenews.com/

neurology-ms-gray-matter-393/ accessed 11.10.2015.

1.2.3 Magnetic resonance imaging

MRI is a technique that produces high quality images of organs and structures inside the

body. It is based on the principles of nuclear magnetic resonance imaging, although the

name was changed in the late 1970’s due to the negative connotations associated with

the word nuclear. This technique has undergone many technological advances since its

beginning [9, 10] acquiring a wide range of modalities with high resolution. Nowadays,

this is one of the best imaging techniques available to clinicians in order to understand

http://neurosciencenews.com/neurology-ms-gray-matter-393/
http://neurosciencenews.com/neurology-ms-gray-matter-393/
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the brain.

Brain MRI consists of a 3D model of the brain, which can be acquired in three different

orientations: axial, coronal, and sagital (see Figure 1.3). The resolution is given by a 3×3

matrix, each axis being one of its orientation. Axis z denotes the number of slices, which

are 2D images of x× y. Even though the final image resolution is given in voxels, this is

only how we represent the volume of the real world first described in mm in the acquisition

from the scanner and finally in the reconstruction for the users. For example, an image

obtained at 0.5×0.5×0.5mm, can be then reconstructed to 1×1×1mm meaning that each

voxel in the image represents 1mm3 of the real brain and there is 1mm between each slice.

Instead, the image can be acquired at 1 × 1 × 3mm without applying any interpolation

at reconstruction time, thus the gap between slices will be 3mm, so the resolution would

be lower, 3mm3 per voxel. Another fact that plays an important role in image acquisition

is the magnitude of the magnetic field used by the scanner, which is measured in Tesla

at a common values of 1.5T or 3T (see Section 2.1 for more details). A whole brain is

illustrated in Figure 1.3, which has been acquired at 1.5T magnitude scanner in the axial

orientation with a resolution of 1× 1× 3mm, i.e. 256× 256 by 44 slices.

1.2.4 Image processing

MRI is a highly sensitive technique for the analysis of the human body. In this thesis we

focused on the brain, specifically on brains damaged by MS. MRI is nowadays the only,

and essential, tool for detecting MS plaques in the CNS, but it can also provide other

biomarkers able to detect abnormalities inside the brain in the early stages as well as

future impairments. This imaging technique helps to build a better control of the disease’s

evolution and in the effectiveness of the treatments. It also allows a better comprehension

of the disease’s natural history [11–14].

Following the new revisions of the McDonald’s criteria [15–17], diagnostics for MS in-

clude the dissemination of CNS lesions in space (DIS) and time (DIT), which can be

established with a single scan. The European MAGNIMS (Magnetic Resonance Imaging

in MS) multicentre collaborative research network has demonstrated that a clinical isol-

ated syndrome (CIS) can be diagnosed as MS if it presents at least one T2 lesion in at

least 2 of 4 locations considered characteristic for MS (juxtacortical, periventricular, infrat-

entorial, and spinal cord). These criteria have been exhaustively analysed in [18], where

the same members of MAGNIMS have provided extensive recommendations for the use of

MRI in the diagnosis of suspected MS patients. Performing this task manually is tedious
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Figure 1.3: Brain MRI representation. The first row illustrates the 3D volume and its
3 different orientations (axial, coronal, and sagital respectively from left to right). Since
this volume has been acquired with a scanner of 1.5T in the axial orientation, this figure
illustrates the 44 slices in its primary orientation.

and prone to inaccuracies due to possible inter- and intra-observer variability, therefore,

computer-aided diagnosis (CAD) tools play an important role in assisting doctors in the

interpretation of MRI.
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Figure 1.4: Different MR images of the brain: a) T1w image, b) T2w image, c) PDw
image, d) FLAIR image, and e) Tissue mask image (white = white matter, light gray =
gray matter, and dark gray = cerebrospinal fluid).

Building a CAD tool involves several processes in order to prepare the images for a

specific purpose, in our case brain WML segmentation. First of all, one has to deal with

the noise and undesired artefacts in the raw images [19]. Some of them (motion artefacts

due to inadvertent head movement, peak artefacts due to a high signal value, blood and

cerebrospinal fluid flow artefacts, etc.) may be recovered during the scanning procedure,

but others, such as inhomogeneities in the magnetic field as well as patient properties,

lead to inhomogeneities across the image, known as bias field error, and must be corrected

by post-scanning processes.

Depending on the final application, other issues may affect the image processing. For

example, non-brain tissues (skull, fat, eyes, etc.) affect image intensity distributions.

Brain extraction tools are developed to obtain an image of the brain from the whole

MRI. Other common processes are the comparison of different time-points to control

the disease’s evolution, or even between different subjects. In order to perform these

comparisons of specific regions automatically, images have to be aligned in the same space,

thus registration processes for both intra- and inter- subjects are needed. When an intra-

subject registration of the same time-point is performed, the process is known as co-

registration.

Given that we are looking for WML, the segmentation of the three main brain tis-

sues (white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)), is also a

common process (see Figure 1.4e), as well as lesion segmentation. The tissues present

different contrasts depending on the scanner’s parameters as shown in Figure 1.4 and

described in Table 1.1.

High signal intensities detected in T2 weighted (T2w), Proton Density weighted (PD)
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Table 1.1: Tissue intensity distributions by image contrast.

T1weighted T2 weighted PD weighted FLAIR
WM bright dark dark intermediate
GM intermediate intermediate intermediate bright
CSF dark bright intermediate dark

and Fluid Attenuated Inversion Recovery (FLAIR) images indicates edema, inflammation,

demyelination, reactive gliosis and/or axonal loss, reflecting their increased tissue water

content. They can be either acute or chronic MS lesions known as hyperintense lesions.

Approximately 10% to 20% of these lesions present a low signal intensity (compared to

WM) in T1w image, and they differ from the well-known black holes. Enhancing lesions

can be detected in gadolinium-enhanced T1w images by applying a contrasting agent

(gadolinium) before the image acquisition.

1.3 Research background

The Computer Vision and Robotics group (VICOROB) of the University of Girona has

been working on medical image analysis since 1996, mainly in segmentation and registra-

tion of mammography images. Thanks to their prior knowledge acquired through several

medical projects, the group started to focus their research on brain MRI analysis six years

ago. This new line of research started with the segmentation of MS lesions and has ex-

panded to other fields such as temporal analysis, registration (temporal and inter-subject)

and atrophy analysis.

All these studies have been carried out through several research projects:

1. [2009 − 2012] PI09/91918 “SALEM: Segmentación Automática de Lesiones de Es-

clerosis Múltiple en imágenes de resonancia magnética” awarded by the Instituto

Carlos III.

2. [2010 − 2012] VALTEC09-1-0025 “Salem: toolkit para la segmentación automática

de lesiones de Esclerosis Múltiple en resonancia magnética” awarded in 2009 by the

Generalitat de Catalunya within the ”Projectes de valorització VALTEC”.

3. [2015−2017] TIN2014-55710-R: “Herramientas de neuroimagen para mejorar el dia-

gnosis y el seguimiento cĺınico de los pacientes con Esclerosis Múltiple” awarded in

2014 by the Spanish call Retos de investigación 2014.
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4. [2015− 2019] BiomarkEM.cat: To develop, validate and transfer to clinical practice

robust and totally automated tools for measuring new lesions and changes in the

brain’s volume in MS patients. Awarded in 2015 by the Fundació Marató de TV3.

The goal of all these projects is either to create or to use novel datasets with imaging

data from three different hospitals using three different scanning machines from different

manufacturers and to study and develop techniques to segment MS lesions as well as to

perform atrophy measurements that can be transferred to experts for clinical use. Within

these projects, in which this PhD was the continuation of two previous PhD theses if

the group, there has been a strong relationship with medical expert teams in the field of

multiple sclerosis. Specifically:

• From the Hospital Vall d’Hebron: Dr. Rovira, who is the director of the “Unitat

de Ressonància Magnètica-Centre Vall d’Hebron” (URMVH) and has participated

in several research projects funded by public and private institutions in the last few

years, as well as Dr. Pareto and technicians Huerga and Corral. This group is part

of the MAGNIMS network, a European network of centres that share an interest in

the MS study through MRI.

• From the Cĺınica Girona / Hospital Santa Caterina: Dr. Vilanova and Dr. Barceló

are the codirectors of the “Unitat de Ressonància Magnètica” at the Cĺınica Girona

and are members of several national and international radiology societies.

• From the Hospital Josep Trueta: Dr. Ramió-Torrentà, who is the current coordinator

of the ”Unitat de Neuroimmunologia i Esclerosi Múltiple”, as well as Drs. Robles

and Beltrán, who work for the radiology unit.

Since the beginning of the brain research activity in our team, several outputs have

been obtained (see the graphic of Figure 1.5). We started in 2009 with a master thesis

and bachelor projects, and so far two PhD theses have been produced, and, a part from

this one, two more are currently running.

1.4 Objectives

This PhD thesis has been developed as a part of the projects mentioned above, and the

main goal is
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Figure 1.5: Projects on brain image analysis produced since 2009 by the VICOROB group.

to develop automated image processing tools to help in the image

analysis of brain MRI and in particular to detect and segment WML.

This objective refers to the segmentation process of images of patients at a specific stage

but we do not consider follow-up scans. With the segmentation of those transversal studies

we aim to quantify the number of lesions as well as the lesion’s volume.

As mentioned in the image processing section, to segment WML of MS patients, several

pre-processes are required beforehand, which we have dealt with through several stages of

this thesis. We therefore started tackling the weaknesses found in the pre-processing steps,

defining our goal as being to compare and improve the brain extraction tools in

the literature. This aim involved an exhaustive analysis of the current state of the art

to better understand their advantages and drawbacks.

Secondly, we have analysed the effect of the pre-processing steps. The objective of this

second sub-goal was to set up a pre-processing pipeline, i.e. considering different tools

for brain extraction, image denoising, and intensity correction, for datasets of 1.5T and

3T. All these steps play an important role in all the image processing approaches focused

on quantifying the lesion load, the atrophy measurements and monitoring the disease’s

evolution, among others. Therefore, having such a study in order to fix a standard pipeline

that produces reproducible good results has been a big contribution to this community.

The combination of different image modalities allows us to gather complementary in-

formation from a single voxel, a fact that can help to set a probability as belonging to a

certain tissue or structure of the brain, and also to observe different behaviours depending

on the image contrast. However, in order to benefit from this extra information, all the

image acquisitions from the same subject must be aligned first. This process is known as

the image registration process [20,21]. The question that arises when combining different
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image modalities is whether, when comparing different subjects, the fact of having several

images with different information on the same subject helps to drive the registration pro-

cess. Therefore, another goal of this thesis is to set up a multi-channel registration

pipeline.

The sub-goals mentioned above are part of the main contribution of developing a

new, automated WML segmentation tool. This tool will be tested on more than

100 patients from different sources. We will run all the experiments with a multi-centre

database comprising 1.5T and 3T images of MS patients, but we will also use public

databases to test our tool in order to compare it with the state of the art. Eventually, this

tool will be adapted to segment WML of other diseases as well as MS.

Finally, once we have developed all our methods and configured all the pipelines needed

for WML segmentation, we will integrate this tool into the well known SPM 1 platform.

Since WML quantification (either by number or, maybe better, by volumetric measure-

ments) is a key step in diagnosing and monitoring this disease’s progression as well as its

response to therapy, this tool is an interesting contribution for clinicians, and one will be

able to incorporate in the hospitals we are collaborating with.

1.5 Document structure

This thesis is structured as follows:

• Chapter 1. Introduction. Motivation, topics, objectives and backgrounds have

been described in this chapter.

• Chapter 2. Thesis background. This chapter presents a detailed analysis of the

image processing methods used in this thesis. The chapter is divided in three main

sections consisting on the MRI details, the pre-processing techniques and the main

processing methods.

• Chapter 3. MARGA: Multispectral Adaptive Region Growing Algorithm

for brain extraction on axial MRI. We present a new approach for the brain

extraction process and its comparison with three of the best tools for this purpose

in the literature.

• Chapter 4. Exhaustive multi-channel registration evaluation of conven-

tional and diffusion MRI on MS patients. We propose a multi-channel re-

1http://www.fil.ion.ucl.ac.uk/spm/software/

http://www.fil.ion.ucl.ac.uk/spm/software/
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gistration pipeline of diffusion (FA) and conventional (T1w) MRI by using public

softwares.

• Chapter 5. A toolbox for multiple sclerosis lesion segmentation. We

present a new pipeline for WML segmentation in MS patients integrated in a stand-

ard platform.

• Chapter 6. Automated detection of Lupus white matter lesions in MRI

images. We adapt the WML segmentation to the Lupus disease by changing the

strategy and integrating all the steps in the same tool. We provide a straightforward

toolbox that is easy to use.

• Chapter 7. Results and Discussion. We summarise the outcomes in this thesis

and discuss all the results obtained.

• Chapter 8. Conclusions and Future work. The contributions are outlined in

this chapter and we also discuss the future lines.





Chapter 2

Thesis background

In this chapter, we first introduce some details on the MRI acquisitions and image mod-

alities generated. Afterwards, we describe all the basic processes involved in the image

processing pipeline when detecting and delineating WML. We can divide these processes

in pre-processing, i.e. preparing the images to apply the processes of the final application,

referred as post-processing methods.

2.1 MRI details

In the first chapter we described the principles of the MRI, we gave to the reader some

insights about resolution, acquisition, reconstruction, and visualisation. In what follows,

we will go deeper into the acquisition process, the main source of this technique. The

acquisition of a single image is performed by the MRI scanner, which consists of the

following components:

• Spins: Nuclear magnetisation detected by the MR. This is the particle spin move-

ment, e.g. in the case of a spinning charged particle, a magnetic field is created.

• B0: A strong external magnetic field and static generated by an MRI scanner, which

is typically measured in Tesla units, a unit equal to 10000 Gauss. As an example of

scale, a 3 Tesla (or 3T) MRI scanner generates a B0 field 60000 times stronger than

the natural magnetic field of roughly 0.5 Gauss on the Earth’s surface.

• Radio frequency (RF) wave: This is the electromagnetic pulse needed to get

the signal. It is also generated by the scanner and is applied for only a brief period

(oscillates at radio frequencies).

15
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• Magnetic field gradients: To figure out the spatial information of the signal

received and place it in the space by means of additional magnetic fields.

Magnetic resonance images primarily reflect water and fat concentration; specifically,

they reflect the signal from hydrogen nuclei because of their abundance in the body. The

hydrogen nuclei are made up of protons and neutrons, both of which spin around their

own axis. When no external magnetic field is applied, their axes are randomly aligned

until the B0 magnetisation acts. At this point, the magnetic axes of the nuclei align

with the magnetic axis of B0. The cumulative magnetic moments created by this process

generate the net magnetisation vector [22]. In order to obtain the MR signal, a radio

frequency pulse is applied producing a flip by a certain angle to the net magnetisation

vector. From this flip, longitudinal and transverse magnetisation vector components are

obtained. When the RF energy is turned off, the net magnetisation vector goes back to its

origin realigning the B0 axis. During this process, the longitudinal magnetisation increases

or recovers (T1 recovery) and the transverse magnetisation decreases or decays (T2 and

T2∗ decays). Depending on the tissues, values for T1, T2 and T2∗ vary, thus, when the

receiver coil catches the MR signal and the computer reconstructs the final image, the

voxel intensity will be different between tissues.

The pulse sequence parameters are key to the creation of image contrast. Repetition

time (TR) and echo time (TE) are the two key parameters that set the timing of the RF

and gradient pulses, both measured in milliseconds:

• TR: is the time between the application of the RF excitation pulse and the start of

the next RF pulse.

• TE: is the time between the application of the RF pulse and the peak of the echo

detected.

In MRI, two different MR pulse sequences can be found: this spin echo (SE) where

two RF pulses are used, and the gradient echo (GE), generated by a single RF pulse

in conjunction with a gradient reversal [23]. GE sequences can record the echo much

more quickly, a fact that allows us to reduce the TE. Moreover, when using low-flip-angle

excitations (less than 90o) the TR can also be shorter. Hence, this kind of sequence is

useful when fast scans are needed, although it does not correct for local magnetic field

inhomogeneities. The rest of the MR sequences are mere variations of these two obtained

by different parametrisation.
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2.1.1 Conventional MRI

The most common sequences in regular MRI used in MS diagnosis are:

• T1 weighted: related to TR (TR < 1000ms, TE < 30ms). Shorter TRs allow us

to distinguish between fat and water.

• T2 weighted: related to TE (TR > 2000ms, TE > 80ms). Longer TEs allow us to

detect differences between fat and water.

• PD weighted: echo time similar to T1w (TR > 2000ms, TE < 30ms). This is the

result of a dual echo sequence on the T2w.

• FLAIR: stands for fluid attenuated inversion recovery. This is a T2w with the CSF

signal suppressed, an inversion recovery pulse is used to null the signal from the

CSF.

PDw is the concentration of protons in tissue in the form of water and macromolecules

(proteins, fat, etc.). Regarding T1w and T2w differences, they remain in the relaxation

time after the protons revert back to aligning the external magnetic field. In Figure 1.4,

one can see what the different image contrasts look like.

2.1.2 Diffusion MRI

The brain contains more than 100 billion neurons that communicate with each other via

axons for the formation of complex neural networks [24]. Our understanding of the brain’s

structural connectivity is surprisingly limited, due in part to the lack of non-invasive ima-

ging techniques to study axonal anatomy. Diffusion Tensor Imaging (DTI) is an MRI

technique introduced in the mid 1990s [25] that provides information about the connec-

tions in the brain’s regions. The main clinical domain of application has been neurological

disorders, especially WM disorders. DTI can reveal abnormalities in white matter fibre

structure and provide models of the brain’s connectivity. This imaging technique can delin-

eate the axonal organisation of the brain, which we could not appreciate with conventional

MRI.

Basically, diffusion represents the thermal (or Brownian) motion of water molecules,

and also their flow according to Fick’s first law [26]. We can better understand diffusion

with a simple analogy, i.e. the shape of ink dropped on a piece of paper. When the shape

stays circular, diffusion is isotropic, when this shape is elongated along one of the axis, the
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diffusion is anisotropic, suggesting a higher density of fibres oriented in this direction [24].

Similar to conventional MRI, the information obtained by this technique is based on signal

intensity, S, following Equation 2.1:

S = PD(1− e−TR/T1)e−TE/T2e−bD (2.1)

where S is based on the PD, T1 and T2 relaxation times and the timing of excitation TR

and TE. Respectively, b and D are the diffusion-weighting factor and the diffusion term.

To obtain the diffusion coefficient, one needs to obtain two images changing the b value

while the other parameters remain the same. From this equation, we can see how we can

expect more signal loss when D is higher. The amount of signal loss also depends on the

gradient application, the b values. Computing D at each pixel, we can build a map of the

diffusion coefficient, commonly known as an apparent diffusion coefficient (ADC). Since the

diffusion can be measured only along the applied gradient axis, and the orientation fibres

in pixels is determined by the largest ADC, to accurately find it, one would need to apply

these gradients along thousands of axes, which becomes unfeasible. This issue is simplified

in Basser et al. [25], describing the model of diffusion tensor imaging thought as a 3D

ellipsoid. The axes of this ellipsoid are called eigenvectors and the measures of their lengths

eigenvalues, which define the so-called eigensystem, a 3 by 3 symmetric matrix obtained

at each pixel. The three eigenvalues (diagonal of the matrix) represent the diffusivity of

the principal axes of the tensor, while their orientation is given by the three eigenvectors.

The principal eigenvector is associated with the largest eigenvalue and it turns out to be

parallel to the orientation of the diffusion tensor. From the DTI, several indexes can be

extracted, among which fractional anisotropy (FA) is the most widely used [27]. This

image can be seen in Figure 2.1b, a greyscale image normalised between 0 (isotropic) and

1 (anisotropic). A color-coded orientation map (red, blue and green assigned to X, Y and

Z axes respectively) can also be extracted from the DTI (see Figure 2.1c), which indicates

local fibre orientation determined by the longest axis (principal eigenvector). Given this

information, a 3D streamline can be reconstructed by following this orientation (highest

anisotropy). This process is known as tractography [28, 29], and requires a seed or a set

of seeds to start the propagation based on the main orientations (see Figure 2.1d).
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Figure 2.1: Different diffusion MR images of the brain: (a) diffusion weighted, (b) FA,
(c) color-coded map, and (d) tractography.

2.2 Pre-processing

2.2.1 Brain extraction

The main purpose of this thesis is to obtain an automatic tool able to segment WML

in order to help doctors’ diagnosis in their daily clinical practice. We base this task on

analyses of brain MRI that we obtained directly from the scanner by automatic procedures.

Even though we refer to these images as brain MRI, they actually contain the whole head,

and sometimes the neck. When these images are manually processed, falling apart the

brain from the rest of the head is not a difficult task, specially when this is performed

by an expert (a radiologist or a neurologist). Instead, automatising the image analysis

processes requires focusing on the region of interest (ROI), in this case the brain itself,

i.e. WM, GM, and CSF tissues, avoiding structures such as the skull, eyes, and dura (see

Figure 2.2). The presence of non-brain regions affects the image histogram distribution

and alters the segmentation performance of both tissues and lesions.

The process of obtaining the brain mask is known as either brain extraction or skull

stripping. Several methods have been published [30–36], of which the most commonly used

are the Brain Extraction Tool (BET) [32,37] and the Brain Surface Extractor (BSE) [38].

Good results from these methods have been published in articles in which they have been

compared [39,40], although, as we will see in the approach presented in the next chapter,

the Multispectral Adaptive Region Growing Algorithm for brain extraction in axial MRI

(MARGA) [40], some of the limitations of these current techniques can be improved for

specific data.
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Figure 2.2: Head MRI representation. The three orientations are ilustrated: (a) axial, (b)
sagital, and (c) coronal. The brain mask is overlaid in (d)(e)(f) and its 3D representation
in (g).

2.2.2 Intensity corrections

Intensity inhomogeneities are inherent to MRI for numerous reasons: variable imaging

parameters, overlapping intensities, noise, motion, echoes, blurred edges, normal anatom-

ical variations and susceptibility artifacts [41] (see Figure 2.3). These issues can adversely

affect quantitative image analysis when developing CAD tools.

As stated in [42], these problems are modelled as follows:

I(x) = β(x) + ε (2.2)

where I(x) defines the real intensity measured for each voxel x, β denotes the multiplicative

smooth bias field and ε is the additive noise. Therefore, this effect is attenuated by reducing

the image noise followed by a bias field correction. Several works have been proposed to

deal with these two issues, [43, 44]. Note that image intensity correction processes will

be performed over the ROIs we focus on, i.e. over the brain mask obtained in the skull

stripping process.
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Figure 2.3: MRI intensity corrections. First row represents a BrainWeb T1w simulated
image: (a) original image, (b) 9% of noise image, (c) 40% of bias field image, and (d)
image with both effects applied. The second row represents the opposite process of a real
3T T1w image: (e) original image, (f) image denoised, (g) image with bias field corrected,
(h) image with both effects corrected.

Noise reduction

Noise is a random additive distortion added to any image acquisition system [45], and is

not present in the real object or subject but that can be caused by different aspects such

as poor illumination, transmission errors or image sensors. These errors can derive from

different models. The noise signal introduced into the MRI can be seen in Figure 2.3(b)

as a kind of grainy film model with BrainWeb simulated images. This same effect is

seen in Figure 2.3(d), although bias and intensity bias have also been applied. We focus

firstly on the signal noise, since it is independent of the original intensity. To reduce this

noise, or even to eliminate it, we use an anisotropic diffusion filter, which implements an

N-dimensional version of the classic Perona and Malik filter [46] (see Figure 2.3(f)).
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Bias field correction

This common artefact found in MRI, also known as intensity inhomogeneities or intensity

non-uniformity, refers to the intensity variability of the tissue. This effect is shown in

Figure 2.3(c)(d) where the bottom part is darker than the top, and the opposite is shown

in Figure 2.3(e)(f). The bias can be induced by either the scanner parameters or the

patient’s movements inside the scanner. Although several methods have been proposed,

the most commonly used are those from Statistical Parametric Mapping (SPM) [47], and

the well known non-parametric, non-uniform intensity normalisation (N3) method [48], all

of which have been optimised for new MRI techniques [49,50] over the years. The results

for these methods can be seen in Figure 2.3(g)(h), where uniform intensities are present

throughout the various tissues.

2.2.3 Registration

The registration process consists of aligning two objects that are in different spaces. Re-

garding automatic medical image analysis, the registration process is a fundamental step

for both inter- and intra- subject analysis. On the one hand, in order to quantify the

evolution of a disease, the patient must be subject to follow-up scans at regular intervals,

and the position of the head inside the scanner can be different every time so the different

scans must be aligned in order to be comparable. On the other hand, when the brain of

a new patient with some unknown symptoms is compared with a healthy subject, i.e. a

healthy brain without anatomical malformations, they also have to be aligned. We under-

stand that two brains are perfectly aligned when the index of a given voxel of two different

brains corresponds to the same part of the brain, independently of the possible damage.

Registration applications in medical image analysis are numerous [51–55], and there are

also myriad brain studies where registration is a key step (even though this is sometimes

transparent to the user), for instance group-wise atlas generation [56], atlas-based seg-

mentation [57–59] and lesion segmentation [42, 60–63], etc. Nevertheless, the final aim of

registration deals with different lines [64, 65], this is a key step in many image processing

methods. For instance, a basic distinction can be made between inter- and intra- subject

registration, where the former is used to align different sequences from the same subject

(multi-modal also known as co-registration process) [40,63,66,67] while in the later, both

the source and target images usually belong to the same sequence from different subjects

(mono-modal). Sometimes prior information from the atlas is used to drive segmentation

methods, known as atlas based segmentation approaches [67]. This strategy requires a
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previous registration either in the atlas space or the subject space. Another purpose also

addressed in this thesis is the brain atrophy simulation when registering healthy subjects

to patients with enlarged ventricles for example [63,68].

Technically, registration methods follow the same strategy, see the typical scheme shown

in Figure 2.4. Basically, they aim at deforming a source image to match a target image as

much as possible by an optimisation process of some energy function and a transformation

model. The registration process consists of the following 4 modules:

1. Metrics: Similarity measures. A way to measure the correspondences between the

source and the target image. This can be either feature based or intensity based.

These similarity measures can also be used for the evaluation of the registration

performance. The most commonly used metrics in medical image registration are:

sum of squares distances(SSD), mutual information (MI) [69,70], normalised mutual

information (NMI) [71], and cross correlation [72].

2. Transformation models. There is no single definition of an optimal method, but as

many definitions as there are practical applications. Techniques are numerous and

inspired by a wide range of theories or strategies: the statistics and information

theory, the theory of continuum mechanics or viscoelastic fluids, the theory of ther-

modynamics, optical flow, splines, wavelets, block matching, etc [64,73–77]. Several

surveys and reviews [70, 78–82] have compared the various registration techniques,

but they are mainly based on two steps:

• Rigid and affine registration: the 6 degree-of-freedom (DOF) rigid registration

algorithm is focused on position alignment (translations and rotations). Also,

a 12 DOF affine registration method includes shape recovering (scaling and

shearing). The greatest differences (position, orientation and size) between the

target and source are reduced by this process.

• Non-rigid registration: allows the deformation of each pixel locally depend-

ing on their local similarity and position. Sometimes these algorithms need a

regularisation term in order to control the deformations since they can adopt

undesirable effects. Deformation models differentiate between these methods,

elastic or hyperelastic models [83], viscous fluid [84, 85] and Demons (optical

flow) [73, 74], more suitable for large deformations, and free form deformation

(B-splines) methods [75], a smooth and continuous deformation controlled by

a mesh of control points.
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Figure 2.4: Global scheme of the registration process (SSD = Sum of Squares Distances,
MI = Mutual Information, NMI = Normalised Mutual Information). This is an iterative
process that aims at aligning the two input images by warping the source image step by
step until it reaches a desired similarity with to the target image.

3. Interpolator. To resample the transformed source image into the physical space of

the target image building a continuous image from its discrete samples. While the

simplest interpolation technique, nearest-neighbour, has a low computational time,

its accuracy, i.e. the precision of the resampling, can be greatly improved by more

complex techniques such as the trilinear, quadratic, spline, B-spline or the cubic

B-spline.

4. Optimisation. Image registration can be seen as an optimisation process of an object-

ive function that tries to minimise a cost function by searching for the appropriate

parameters in the transformation model. The cost function is composed of the sim-

ilarity metric between the transformed source image and the target image and may

also contain a regularisation term in order to preserve the topology. The optimisation

process can be carried out in a multiresolution or multiscale framework, which have

been shown to be robust and fast [86–89]. These techniques are used to speed up

the optimisation process, where the original high-resolution images are subsampled

into images at lower resolution, which require less computation.

The article presented in Chapter 4 focuses on MRI registration of MS patients. The

aim of this work is to provide a pipeline able to register both anatomical and diffusion

MRI to a standard space with the presence of MS lesions and atrophy.
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2.3 Processing

2.3.1 Brain tissue segmentation

The automatic classification of brain tissues, consisting of the three main tissue types

(WM, GM and CSF), is also important for neuroscientific studies, such as cortical surface

extraction [90,91], atrophy and volume measurements [92–94], brain extraction [40,95,96],

MS lesion segmentation [42,63,97], etc.

As explained in the MRI section, tissues have different contrasts depending on their ac-

quisition, a fact that helps the image segmentation. Due to the significance of this process,

a wide range of approaches based on different techniques have been proposed, all of which

perform mostly with T1w data. The well-known Markov random field is the basis of the

FAST [98], which is part of the FMRI Software Library, and SVPASEG [99]. SPM5/8/12

are three of the available versions of the SPM toolbox. This toolbox includes several image

processing methods, one of which is the tissue segmentation based on a Gaussian Mixture

Model, atlas registration and a bias field correction performed iteratively [100]. Other are

FANTASM [101] based on Fuzzy Clustering techniques, and KNN [102], which implements

the common k-Nearest Neighbour. In Figure 2.5, the brain tissue distributions from the

atlas used in the SPM12 toolbox, and one example of a T1w 3T subject segmented with

SPM12 are shown. The brain tissue segmentation is also an important step when detect-

ing neurological lesions, usually present in WM but also seen in GM. Therefore, the tissue

information is commonly used for lesion detection, although, at the same time, the lesions

may affect the tissue segmentation accuracy [103,104].

2.3.2 WML segmentation

Nowadays MS diagnosis focus especially on detecting WML [15–17] in the brain tissue.

These plaques of demyelination are typically observed in MRI with different contrasts

depending on the image sequence. They are commonly seen as hyperintense lesions in

T2w, PD and FLAIR and usually appear as dark areas in T1w images (see Figure 2.6).

An MRI is a 3D volume composed of a large number of slices containing information

on the whole brain, thus analysing these images manually is a monotonous and burden-

some task that may affect the accuracy of the experts and lead to inter- and intra-rater

variabilities. However, its fully automated process is challenging [105, 106] due to image

variabilities caused by factors such as different scanners or protocols. This is a very im-



26 CHAPTER 2. THESIS BACKGROUND

Figure 2.5: Brain tissue segmentations: (a) Average atlas and its prior tissue maps ((b)
WM, (c) GM and (d) CSF) used in SPM12 for tissue segmentation. The second row
represents (e) the original T1w 3T MRI data and the tissue mask results in red: (f) WM,
(g) GM and (h) CSF.

portant problem in the MS community and, therefore, many attempts have been proposed

to try to solve it [42,60,61,63,97,107,108]. Although none of these processes have been es-

tablished as the standard tool, they have provided this community with publicly available

software capable of reaching good results with low user interaction.

As this is a wide field of research, one can find numerous projects in the literature,

which can be classified by different strategies and techniques [105,106]. In general terms,

we can distinguish two main strategies:

1. Supervised methods. These approaches base their segmentation on using a pri-

ori information usually obtained by manual annotations. They are also known as

training-specific approaches, and a prior knowledge is obtained from several features

in the input images. Usually, these features are manually extracted in order to

construct the classifier [61, 108–113], a process that may require an extremely high

computational cost depending on the feature space.

2. Unsupervised methods. The information needed for these approaches is the input
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Figure 2.6: 3T MRI of a MS patient: (a) T1w, (b) T2w, (c) PD, and (e) FLAIR. The
second row shows the same images as above with the lesion mask overlaid in red.

image itself [114–118], a fact that increases its convenience in applying it in daily

clinical practice. There are strategies based on tissue properties where a previous

tissue segmentation is used as we show in Chapter 5 and 6, and a very large literature

is found using this same strategy [42,63,67,97,107,119–126]. The tissue segmentation

step uses a priori built atlas, thus they are considered supervised methods also known

as atlas-based tissue segmentation.

MRI is also the gold standard for studying the brain in SLE [127–131], where the most

common neuroimage findings are vascular diseases and inflammatory-like lesions. Similar

to the MS lesions, these vessel lesions appear hyperintese on FLAIR, T2w and PDw images

while on T1w images are hypointense [130]. This fact suggests that similar approaches

used on MS lesion segmentation could be used for lupus WML segmentation.





Chapter 3

MARGA: Multispectral Adaptive

Region Growing Algorithm for

brain extraction on axial MRI

In this chapter, we propose a new approach for brain extraction on MRI based on the

complementary information of T1w and T2w images. This method has been evaluated in

both simulated and real data, and compared with three of the well-known state-of-the-art

approaches.

The proposed method has been published in the following paper:
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Brain extraction, also known as skull stripping, is one of the most important preprocessing

steps  for many automatic brain image analysis. In this paper we present a new approach

called  Multispectral Adaptive Region Growing Algorithm (MARGA) to perform the skull

stripping  process. MARGA is based on a region growing (RG) algorithm which uses the com-

plementary  information provided by conventional magnetic resonance images (MRI) such

as  T1-weighted and T2-weighted to perform the brain segmentation. MARGA can be seen

as  an extension of the skull stripping method proposed by Park and Lee (2009) [1], enabling

their  use in both axial views and low quality images. Following the same idea, we  first

obtain  seed regions that are then spread using a 2D RG algorithm which behaves differently

in  specific zones of the brain. This adaptation allows to deal with the fact that middle MRI

slices  have better image contrast between the brain and non-brain regions than superior and

inferior brain slices where the contrast is smaller. MARGA is validated using three different

databases:  10 simulated brains from the BrainWeb database; 2 data sets from the National

Alliance  for Medical Image Computing (NAMIC) database, the first one consisting in 10 nor-

mal  brains and 10 brains of schizophrenic patients acquired with a 3 T GE scanner, and the

second  one consisting in 5 brains from lupus patients acquired with a 3 T Siemens scanner;

and  10 brains of multiple sclerosis patients acquired with a 1.5 T scanner. We have qual-

itatively  and quantitatively compared MARGA with the well-known Brain Extraction Tool

(BET),  Brain Surface Extractor (BSE) and Statistical Parametric Mapping (SPM) approaches.

The  obtained results demonstrate the validity of MARGA, outperforming the results of those

standard  techniques.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

Magnetic resonance image  (MRI) analysis is nowadays
involved in a wide range of clinical applications in order to

∗ Corresponding author at: P-IV, Campus Montilivi, University of Girona, 17071 Girona, Spain. Tel.: +34 972 419812; fax: +34 972 418259.
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llado@eia.udg.edu (X. Lladó).

enhance the medical diagnosis in terms of reducing process-
ing  time and improving accuracy on the final decision. When
brain  diseases are studied, the only part the experts are inter-
ested  in is the brain itself, i.e. white matter (WM),  gray matter
(GM)  and cerebrospinal fluid (CSF) tissues. However, other

0169-2607/$ – see front matter © 2013 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cmpb.2013.11.015
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tissues and structures of the head (i.e. skull, eyes, and dura)
appear  also in the MR  images. The main goal of the skull strip-
ping  process is to separate the brain from those parts that are
not  brain tissues. This process is a key step in many  high level
automatic  processes such as tissue segmentation and atro-
phy  quantification [2,3], brain registration [4–7], brain analysis
for  different diseases [8–12] or cognitive aging [13], among
others.  In general, techniques that compute measurements
on brain volume or cortical thickness require a very accurate
brain  extraction.

Automating the brain segmentation in neuroimaging is a
crucial  step in many  studies and it allows to eliminate human
variance  corresponding to the doctors subjective criteria and
to  liberate them of this time-consuming procedure, being this
point a key factor to allow the analysis of larger clinical stud-
ies.  Over the last years, several skull stripping approaches have
been  presented, reaffirming the crucial importance of this
step.  The commonest fully automated methods are the Brain
Extraction  Tool (BET) [14] and the Brain Surface Extractor (BSE)
[15],  although recently, novel approaches have been proposed
[1,16,17].  These approaches can be classified according to their
strategy. For example, BSE is a pure edge based approach. Ini-
tially, the scans are smoothed by an anisotropic diffusion filter
and  the edges are identified by using the Marr–Hildreth edge
detector  [18]. Afterwards, a component is selected as brain
based  on the size, location and intensity within the frame
using  a sequence of morphological and connected compo-
nent  operations. Finally, a morphological dilation operation is
applied to fill the small holes. Recently, Kale et al. [19] adapted
this  strategy segmenting human facial tissue. Another well-
known  strategy consists in initially thresholding the volume
using  histogram information and subsequently refines this
rough  segmentation using different techniques. For instance,
the  recent approaches of Balan et al. [17] and Somasundaram
and Kalaiselvi [16] used morphological operations (erosion,
largest  connected component, dilation, closing and fill in the
holes)  to that aim. In contrast, the BET algorithm uses the ini-
tial  segmentation as a starting point of a deformable model
that  is expanded towards the brain edge. On the other hand,
Park  and Lee [1] used this initial information to locate two
different  region seeds (corresponding to brain and non-brain
regions)  which, afterwards, are expanded by a region growing
algorithm  based on general brain anatomy information. The
region  growing method is a well known segmentation algo-
rithm  widely used in other applications medical applications
[20,21].

Nevertheless, none of these algorithms has emerged as a
perfect  tool since all of them present limitations and issues to
be solved. For instance, BET tends to oversegment the brain
tissues,  adding regions outside the brain into the segmen-
tation  result. This issue is even bigger in the BSE algorithm
[22–25]. Moreover, it is also well-known that BET and BSE pre-
sented  bad results in data sets with poor spatial resolution
and  noisy images [22–24]. To improve their performance, both
algorithms  require a conscious configuration of the parame-
ters  according to each database. Besides, as stated by Park and
Lee  [1], the methods that use mathematical morphology are
sometimes  sensitive to small data variation and it is difficult
to  find the optimum morphology size for separating brain tis-
sues  from non-brain tissues. On the other hand, approaches

like the one of Park and Lee [1] require the images being cap-
tured  in coronal view, being this fact a hard constraint in many
applications  where the clinical routine requires the images to
be acquired in axial view.

Skull  stripping algorithms are implemented for conven-
tional MRI  since anatomical images provide an excellent
contrast for the different brain tissues, being the T1-weighted
(T1w)  image  the most used MRI scan. For instance, BET and
BSE  were originally developed using this scan, although they
have  also been tested with T2-weighted (T2w) images [22].
Recently, other works have been presented to work over T2w
images  [16]. However, to our knowledge, none of these algo-
rithms  combines different scans. As shown in Fig. 1, T1w and
T2w  images provide different and complementary informa-
tion  that can help to better extract the brain from the rest of
the  head.

Given this scenario, in this paper we propose, analyze and
discuss,  the Multispectral Adaptive Region Growing Algorithm
(MARGA1), an extension of the region growing approach of
Park  and Lee [1] that enables its use to axial views and provides
more  reliable results for different patient populations and dif-
ferent MRI scanners (1.5 T and 3 T). The developed method is
able  to adapt itself to deal with changes of scanner machines,
acquisition parameters, etc., with the aim of reducing the
expert  interactivity. In particular, we divide the MRI  scan into
three  different spatial zones (middle, inferior and superior)
where  the segmentation strategy is slightly different to bet-
ter  adjust to the tissue intensity distributions. Furthermore,
we  introduce the use of T1w and T2w images within the seg-
mentation  framework with the idea that different intensity
contrasts help on enhancing the resulting brain masks.

Besides, we demonstrate the validity of the new approach
comparing the obtained results with the ones from the orig-
inal  work of Park and Lee [1] from both coronal and axial
oriented scans. Moreover, we also present a qualitative and
quantitative  evaluation of the MARGA approach with BET
[14],  BSE [15] and the Statistical Parametric Mapping (SPM)
[2],  using three different data sets: (1) 10 simulated brains
from  the BrainWeb database, (2) 25 brains (10 normal brains,
10  brains of schizophrenic patients and 5 brains from lupus
patients)  acquired with two different 3 T scanners from the
National  Alliance for Medical Image  Computing (NAMIC) pub-
lic  database, and (3) 10 brains of multiple sclerosis patients
acquired with a 1.5 T scanner. The use of data sets contain-
ing  different pathologies allows us to test the algorithm in
more  challenging conditions. The obtained results show that
MARGA  outperforms the other analyzed techniques in both
1.5  T and 3 T scanners. The first two rows of Fig. 1 show an
example  of a brain acquired using the 1.5 T scanner, while the
last  two show a brain acquired using a 3 T scanner, where the
resolution  of the images is higher.

2.  Methods

The skull stripping proposal presented in this paper is inspired
on  the recent work of Park and Lee [1] in which satisfactory

1 Sourcecode availabe at http://atc.udg.edu/salem/margaToolbox.
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Fig. 1 – Brain MRI  examples from a 1.5 T GE scanner (first and second row) and a 3 T scanner (third and fourth row) of T1w
images (first and third rows) and T2w images (second and fourth rows). From left to right: axial, coronal and sagittal
orientation.

segmentation results were reported when using coronal
orientation images from different databases. However, we
have  noticed that their approach presents some inherent
problems when either using brain volumes with lower quality

acquisition  (1.5 T scans) or when using axial oriented images.
This  last issue may be partially solved by reorienting images
to  coronal view, but this transformation decreases the image
resolution  in its new orientation (even more  in 1.5 T) and
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therefore aggravates the first problem, producing results such
as the ones illustrated in Fig. 2, where non-brain regions are
included  in the final mask.

Our  contributions in this work allow to overcome these lim-
itations,  extending their approach in order to apply it directly
to  axial images. This new process through the brain slices
implies  restructuring the original strategy dividing the brain

into three different zones (superior, inferior, and central zone)
to  adapt the parameters of the algorithm to changes in inten-
sity  distributions. Besides, we  combine the use of T1w and T2w
images, which contain complementary information, to help
providing  more  accurate boundaries specially in CSF regions.
Notice  that these regions have low intensity in T1w images
while  they have a higher intensity in T2w images.

2.1.  Implementation  of  the  original  approach

The general scheme of the Park and Lee [1] strategy is shown
in  Fig. 3, where all the white and green boxes are the original
steps  followed in their approach, although the green ones have
been re-implemented here using a slightly different strategy.
Roughly,  the skull stripping process is divided into three main
steps:  preprocessing, backward segmentation (2D slice by slice
segmentation towards the inferior part of the volume) and for-
ward segmentation (2D slice by slice segmentation towards
the  superior part of the volume). In the preprocessing step the
main  goal is to determine a region of interest from which the
segmentation will be initialized. From the starting slice (which
corresponds  to the central slice of the brain), an initial mask
is  computed and a region growing process is applied towards
the  first and the final slice of the brain volume. Algorithm 1
presents  the main structure of our implementation, which is
done using the ITK software library.2

In what follows we describe in more  detail each step of the
algorithm,  showing also the proposed implementation using
the  ITK library. Within the algorithms of the paper we refer
to  a 3D volume of an image  S as S(x, y, z), while S(x, y) refers
to  a 2D image.  When using Sk(x, y) we refer to the kth slice of

2 http://www.itk.org/.

the 3D volume S(x, y, z), while Si,j denotes the (i, j)th voxel of
the  2D image  S(x, y). Moreover, two other structures are used: a
vector of voxels that will be called nb(x) and a vector of regions
that  will be called CC(q), being CCq the (q)th region of the vec-
tor.  Subindexes used in the names are added to clarify the
meaning  of the variables.

Algorithm  1. Skull stripping procedure.

2.1.1.  Estimation  of  the  region  of  interest
The first step is to find the space enclosed by the skull, hence
removing  the background voxels. This step is based on the
analysis  of intensity histogram of the full volume, and the aim
is  to remove the long low tails at each end. Generally, the low
values  belong to the background and the brighter voxels to the
spike  due to image  reconstruction or to arteries [14].

Park  and Lee [1] followed the thresholding strategy pro-
posed  by Smith [14] by using the cumulative intensity
histogram. The cumulative histogram is obtained by adding
to  each histogram bin the cumulative number of observations
of  the previous bins up to the specified bin. Two thresholds
were defined for removing the tails, a lower threshold set to
2%  (T2%) and an upper one set to 98% (T98%). Therefore, pixels
with  very low and very high intensities that widely differ from
the  real image  are removed.

A third threshold was defined in order to separate the back-
ground  from the head itself. According to Smith [14], this
threshold is defined at the 10% of the intensity between the
previous  two. Therefore, the region of interest (ROI) could be
defined as the region accomplishing:

roiImg(x,  y, z) =
{

1, if img(x, y, z) > 0.1 ∗ (T98% − T2%) + T2%

0, otherwise
(1)

Finally, after removing all the undesirable voxels, some holes
may  appear inside the roiImg(x, y, z) that have to be filled in,
as  shown in Fig. 4.

2.1.2.  Getting  the  initial  mask  for  the  initial  slice
An initial mask (M(x, y)) containing only brain tissue is
obtained  using the central slice, where the process of isolating
the  brain from the non-brain regions is relatively easy since
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Fig. 2 – Example of bad brain segmentations with the original approach of Park and Lee [1] when using a 1.5 T reoriented
coronal scan. From left to right: original image; mask overlapped over the original image; brain extracted result.

most of the brain regions are well separated from non-brain
regions by CSF, which has a lower intensity value than the
nearby  brain regions and other structures.

Therefore, this rough binary mask is obtained from the
initial  slice by applying thresholding, followed by sequential
binary  morphological procedures, which included the follow-
ing  steps:

•  Thresholding. In order to perform the thresholding step,
rather  than using the range-constrained least valley detec-
tion  method [26] to remove the CSF we based this step on
the  Otsu thresholding method [27] already implemented on
ITK.3

• Erosion. After the thresholding step, the brain and non-brain
regions  may still be connected due to factors like noise,

lack of CSF or anatomical continuity between both regions.
Aiming  to completely separate both regions a morphologi-

3 http://www.itk.org/Doxygen/html/classitk 1
1OtsuThresholdImageFilter.html.

cal erosion is performed. We used the ITK implementation4

with an spherical kernel of 5 voxels [28,29].
• Largest connected component. Since in the middle slices the

brain  is larger than the non-brain regions, the largest con-
nected  component corresponds to the brain tissues. We
have  also performed this step using an available ITK filter.5

• Dilation. In order to restore the initial size before the ero-
sion,  a dilation operation [28,29] have to be applied with the
same  structural element used in the erosion step. In our
implementation we  use the ITK implementation.6

In summary, the steps required to obtain the initial mask
are  shown in Algorithm 2.

Algorithm 2. Getting the initial mask for the initial slice.

4 http://www.itk.org/Doxygen/html/classitk 1
1BinaryErodeImageFilter.html.
5 http://www.itk.org/Doxygen/html/classitk 1

1ConnectedComponentImageFilter.html.
6 http://www.itk.org/Doxygen/html/classitk 1

1BinaryDilateImageFilter.html.
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2.1.3.  Lower  and  upper  thresholds
The obtained mask provides a rough segmentation of the
brain  in the central slice. To obtain a more  detailed segmen-
tation  Park and Lee proposed the use of a region growing
algorithm, which is delimited in each slice (k) by a lower (Tlower)

and an upper threshold (Tupper). These thresholds were empir-
ically  fixed to Tlower = 35% and Tupper = 80% of the cumulative
histogram for the kth slice. However, Tlower is subsequently
adjusted computing the difference between the mean inten-
sities  of the kth slice and the total volume, allowing to adapt
itself  to the intensities of the different volume slices. Fig. 5
shows  graphically the cumulative histogram and the corre-
sponding  thresholds for a typical middle slice.

2.1.4.  Determination  of  seed  regions
The region growing starts with two seed regions, correspond-
ing  each one to brain and non-brain tissues. Both seed regions
(rgk

seeds(x, y)) are determined after an initial thresholding by
the  Tupper over the current slice of the ROI (roiImgk(x, y)).

rgseeds(x, y) =
{

1, if Tupper ≤ roiImgk(x, y)

0,  otherwise
(2)

Subsequently, a set of rules allows to discriminate among
three  different regions from all the connected components

(CC)  of rgseeds(x, y): (1) brain (RB), (2) non-brain (RN) and (3)
undetermined (RU). The components that belong to this last
region  are determined in subsequent steps. Algorithm 3
describes  these rules in more  detail.

Algorithm 3. Classifying the seed regions (brain/non-brain/undetermined).

In these rules, M(x, y) corresponds to the mask obtained at
the  end of the RG process of the previous slice, except for the
initial  slice where M(x, y) is computed as explained above. The
idea  is that brain regions are those which intersect with that
mask,  while non-brain regions are those which do not inter-
sect.  Given that many  components could appear with a very
few  number of voxels, those regions with less than � voxels
(fixed  to 5 voxels) are assigned as undetermined.

2.1.5.  Region  growing  process
The approach of Park and Lee follows a 2D RG procedure
based on a slice by slice analysis. Hence, the RG is an iterative
process  over each kth slice consisting in the steps shown in
Algorithm  4.

Algorithm 4. Region growing procedure.

In each slice the process starts with the determination of
seed  regions described above. These seed regions grow up by
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decreasing the upper threshold, hence allowing to take more
voxels  into account. These new voxels are reconsidered and
assigned  to a region (brain, non-brain, undetermined) by the
assignment  rules indicated in Algorithm 5.

Algorithm 5. Voxel assignment rules.

With these rules we  obtain a classification of the new voxels
depending on their neighborhood with connectivity 4 ( ).
If  a particular voxel is in contact only with brain regions then
is  classified as brain, otherwise if the voxel is in contact with
brain  and non-brain regions is classified as non-brain.

Afterwards, once the new voxels are assigned, some
components might be still unassigned and might also be
connected  to some of the brain or non-brain zones. Thus,
Algorithm 6 contains the new set of component assignment
rules  defined following the same strategy than before:

Algorithm 6. Component assignment rules.

2.1.6.  Fill  in  the  holes
Depending on the images and their intensity distribution, the
CSF  and also the GM can have low level intensities. Park and
Lee  found out that due to this fact some holes could appear
inside  the brain zones. However, they presented these mor-
phological  operations as an optional process depending on

the application. In contrast, in our approach, the filling in the
holes  becomes a mandatory step, mainly due to the change in
the slice acquisition. In the axial view, internal CSF structures
(the  ones responsible of the holes) are larger than the ones
obtained  when using the coronal view, as can be clearly seen
in  Fig. 1.

In  the original approach, this step was implemented by
using  morphological operations. A dilation allowed to fill
in  the holes, while a subsequent erode was necessary to
reduce  the size increased when applying the dilate operation.
However, in axial orientation some holes still remain in the
mask.  Therefore, to solve this problem we  modify this step by
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looking for the connected components that were not included
in  the mask. Formally:

rgfh(x, y) =
{

1, if M(x, y) /∈ LCC(!M(x, y));

0,  otherwise.
(3)

In that situation, the largest connected component will cor-
respond  to the background, while the remaining ones will be
filled in. Fig. 6 illustrates this improvement. Fig. 6(a) shows
the  mask without dilation neither erosion, Fig. 6(b) shows the
mask  obtained applying the dilate and erode morphological
operations, where there are still some holes inside the mask,
and,  finally, Fig. 6(c) shows the obtained mask when using the
proposed  filling holes algorithm. The implementation of this
step is shown in Algorithm 7.

Algorithm 7. Hole filling (2D).

2.1.7.  Removing  the  brain  stem
To complete the full description of the pipeline proposed by
Park  and Lee, another optional process has to be introduced
to  remove the brain stem. This process consists in finding
the  slice where the brain stem starts, which is found looking
for  the maximum area differences between slices. Therefore,
the  masks of current and subsequent slices are removed, as
illustrated  in Algorithm 8.

Algorithm 8. Removing the brain stem.

2.2.  MARGA  approach

As explained in the introduction, the above implemented
method fails in some cases due to the low resolution of images
and  the different slice orientation acquisition (see Fig. 2).
Therefore,  we  propose to modify the original algorithm intro-
ducing  some key steps, which are shown in blue in Fig. 3. In
general,  the segmentation process maintains the same strat-
egy  proposed by Park and Lee [1]. However, the inclusion of
multispectral  information as well as the division of the brain
in  three different regions allows to overcome those issues.

In what follows we describe in more  detail the modifications
introduced in order to obtain the full brain volume mask.

2.2.1.  Dividing  the  brain  in  three  parts
The segmentation process starts with the ROI determination
and  getting the seed regions from the initial slice (middle
slice). From that slice, the procedure progresses towards the
inferior  and superior brain extremes. However, we  divided the
brain  into three different parts, as it is graphically shown in
Fig.  7, and a different strategy for segmentation is followed in
each zone. In central slices, the different brain structures are
well  delimited, and therefore, the 2D segmentation algorithm
explained in Section 2.1 is directly applied. In contrast, in the
superior  and inferior parts, the distinction between the dif-
ferent  structures is much less evident, and the segmentation
becomes increasingly challenging. In those parts, we  propose
to  adaptively decrease the limits of interaction of the RG

in order to prevent that surrounding non-brain regions are
added  into the brain mask.

Therefore,  in the superior (MaxSliceThr) and inferior
(MinSliceThr) parts of the brain, the lower threshold increases
gradually when progressing throughout the volume slices,
always  maintaining the relation 0 ≤ Tlower ≤ Tupper ≤ 1. Hence,
a  lower range of intensities is allowed during segmenta-
tion. Besides, we ensure that only one connected component
appears in the mask, removing small components that may
appear  in the slice. In general, the brain tends to be connected

in only one volume, and thus, the obtained mask should be
uniform  and the largest segmented area. Finally, the segmen-
tation  process can be stopped in both superior (MaxSlice) and
inferior  (MinSlice) parts where there is no more  brain area and
it  is not necessary to process or because the Tlower has reached
the  Tupper.

2.2.2.  Use  of  complementary  information  (T1w  and  T2w)
As mentioned before, we also propose the use of multispectral
information in order to perform the skull stripping. Specif-
ically,  we use both T1w and T2w images to perform the
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Fig. 3 – Overall scheme of the skull stripping procedure.
Boxes in white correspond to the original steps presented
in  the work of Park and Lee [1]. Colored boxes indicate our
adaptations  and contributions introduced in the original
approach (in green: adaptations; in blue: new steps). (For
interpretation of the references to color in this figure legend,
the  reader is referred to the web version of the article.)

segmentation. As shown in Fig. 1, in T1w images the higher
intensities always belong to the WM tissue whereas on T2w
they  belong to the GM and CSF. Therefore, we  propose to use
both  scans in order to segment the WM,  GM and CSF tissues
from  the rest of the skull.

Specifically,  our approach consists in segmenting T1w and
T2w  images using the presented pipeline and combines the
obtained  binary masks using the morphological union oper-
ation.  However, in order to not oversegment the brain, the
thresholds  applied on the images have to be more  restrictive.
Due  to this fact, the final mask in a single sequence may miss
part  of the tissues. For instance, on T1w images the cortex (GM)
is  the most difficult part to segment since its intensity contrast
may  be similar to parts of the head that do not belong to the
brain.  Contrary, the segmentation on T2w is focused on the
GM  which is brighter than the WM.  Since both segmentations
are  focused on different tissues of the brain, the final union
allows  to obtain a more  accurate brain segmentation.

Fig. 8 shows an example of the benefits of using multispec-
tral  information. When using each sequence independently
the  brain is undersegmented. However, the combination of
both  results, which may be significantly different, allows to
correctly  segment the brain. Specifically, the algorithm tends
to  undersegment the T1w images in the frontal part, where the
brain  tissues have similar intensities than other structures,
like  the ocular bones. In contrast, in the T2w images, this part
is  clearly distinguishable. However, in this latter sequence,
the  white matter appears darker, and due to the thresholding
step,  in some slices it may be assigned to background, hence
producing  also an undersegmentation of the mask. There-
fore,  the combination of both sequences allows to obtain a
more  accurate segmentation since the physically underseg-
mentation causes are different and complementary in each
sequence.  Note that both causes may be associated with both
the  low quality of 1.5 T scans and its original axial orientation
acquisition.

2.2.3.  3D  hole  filling  step
As already mentioned in Section 2.1.6, in the original approach
the  hole filling step was an optional postprocessing step. How-
ever,  due to the axial slice orientation acquisition, this step has
become now a mandatory step when segmenting both T1w
and  T2w volumes.

Besides, a similar final step is necessary to avoid holes at
the  end of the union step. In some cases, small holes may
appear  in the middle of the mask and also in the boundaries
that  need to be filled in. We  extended Algorithm 7 to perform
a  3D volume filling holes.

3.  Experimental  results

In this section we firstly present the three databases used to
obtain  the results. Afterwards we quantitatively and qualita-
tively  test the performance of the RG and MARGA approaches.
Besides, we compare the results with the most used state-of-
the-art  skull stripping algorithms (BET, BSE and SPM).

The  Dice Similarity Coefficient was used to quantitatively
compare the obtained results with ground-truth masks. This
measure  indicates the amount of area overlap between the
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Fig. 4 – Example of ROI estimation. From left to right: original image, threshold mask image, threshold mask image with the
holes filled.

Fig. 5 – Cumulative histogram labeled with the lower intensity threshold at 35% and the upper intensity threshold at 80%.

Fig. 6 – The three steps of the mask generation: (a) mask without any morphological operation, (b) mask after dilation and
erosion, and (c) mask with all the operations applied.
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Fig. 7 – Visual example of the volume divisions proposed in
our  approach.

automatically detected (A) and the manually delineated (B)
brain  volumes. This measure is computed as:

DSC = 2 · |A ∩ B|
|A| + |B| = 2 × TP

2 × TP + FP + FN
(4)

where TP are the correct detections, FP are incorrect detec-
tions,  and FN are missing detections, all measured in voxel
terms.

3.1.  Data  sets

We  test our algorithm using three databases of very different
nature:  the BrainWeb synthetic data, and two data sets of real
cases,  the first one being acquired with 3 T MRI  scanners, and
the  second one using a 1.5 T scanner.

1 BrainWeb – simulated MRI  volumes for normal brain. 10
simulated  brain cases were obtained from this synthetic
database with slice thickness fixed to 1 mm for both T1w
and  T2w images. Five degrees of noise (calculated rela-
tive  to the brightest tissue) were chosen for 0% and 40%
of  intensity non-uniformity. The discrete anatomical model
applied  to generate the simulated brain MRI  data was used
as  ground truth data. Both the discrete model and the 10
simulated  brains were transformed to coronal orientation
before starting the experiments in order to accomplish the
requirements of Park and Lee [1].

2 NAMIC database
•  3 T GE scanner. 20 cases publicly available from the

MIDAS/National Alliance for Medical Image  Comput-
ing (NAMIC).7 From this set, 10 were normal controls
while the other 10 were schizophrenic patients. The
MRI  acquisition protocol included two MRI pulse
sequences. The first one consisted in contiguous spoiled
gradient-recalled acquisition (fastSPGR) with the follow-
ing  parameters; TR 7.4 ms,  TE 3 ms,  TI 600 ms,  10◦ flip
angle, 25.6 cm2 field of view, matrix 256 × 256, voxel
dimensions 1 mm × 1 mm × 1 mm.  The second acquisi-
tion produced a series of contiguous T2w images (TR
2500  ms,  TE 80 ms,  25.6 cm2 field of view, 1 mm slice thick-
ness),  voxel dimensions 1 mm × 1 mm × 1 mm.  All the
series contains 128 axial slices. Along with the images,

7 http://insight-journal.org/midas/collection/view/190.

the database provided a brain mask for each scan, which
in  our experiments are considered as the gold standard.

•  3 T Siemens scanner. 5 patients with lupus WM lesions are
also  publicly available in NAMIC.8 This set also provides
a  brain mask for each scan (gold standard in our exper-
iments) and T1w and T2w MRI. All the images within
each scan are co-registered and its acquisition contains
256  axial slices of 25.6 cm2 field of view, matrix 256 × 256,
voxel  dimensions 1 mm × 1 mm × 1 mm.  The differences
with the previous NAMIC data set are the number of slices
and  the intensity rank, which is lower in the second one.

3  SALEM database – 1.5 T GE scanner. This (non-public)
database comprised data from 10 patients with clinically
confirmed multiple sclerosis. Each patient underwent MR
imaging  by using the same protocol (T1w, T2w, PDw and
FLAIR  images), although only T1w and T2w were used here.
The  scanner used was a 1.5 T GE Signa HDxt with 3D fast
spoiled  gradient T1w (TR 30 ms,  TE 9 ms), fast spin echo T2w
(TR  5000–5600 ms,  TE 74–77 ms). All images were acquired
in  axial-view with slice thickness of 3 mm.  No ground truth
was  available for this database.

3.2.  Testing  the  RG  approach

In order to validate our implementation of the original
approach of Park and Lee [1], we  tested it with both the syn-
thetic  MRI volumes from the BrainWeb repository in coronal
orientation and the SALEM database with both axial and coro-
nal  orientations. The use of the BrainWeb database allows us
to check our implementation of RG, since in the original work
the  authors used this database to analyze the performance of
the  approach. The use of the SALEM database allows to show
the  limitations of the approach in a real scenario.

RG was tested using the BrainWeb (with the same parame-
ters),  and compared with the BET [14] algorithm. According to
Park and Lee [1], the best parameters configuration for this
database  was Tlower = 0.35 and Tupper = 0.80, and thus, these
were the values used in this test. The obtained results illus-
trate  similar outputs to the ones reported in the original
method. This was numerically confirmed obtaining similar
DSC  results to the ones reported in Park and Lee [1]. The perfor-
mance  of our implementation is qualitatively shown in Fig. 9.
Some  misalignments with the ground truth can be seen in par-
ticular zones, where the standard techniques tend to enlarge
the  mask specially on the neck and spinal cord.

On the other hand, the SALEM data set contained MRI
of  lower resolution and with axial orientation. The obtained
results  presented many  misclassifications, as is graphically
shown in second row of Fig. 10. The results on the axial
slices  mainly miss cortex tissue, while the sagittal and coronal
orientation, in addition to these parts, also present overseg-
mentation on the top and the bottom of the slices. Moreover,
when  reorienting this database to coronal view, we  obtained
the  results shown in Fig. 2, where many  misclassified tis-
sues  appeared. These poor results motivated the proposal of
MARGA,  obtaining the results shown in the last row of Fig. 10.

8 http://insight-journal.org/midas/collection/view/191.
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Fig. 8 – First row and second row correspond to T1w and T2w images, respectively. Form left to right: original image,
obtained mask, region of the mask, and the final mask obtained by the union of T1w and T2w masks when applied onto
the original image.

3.3.  Testing  MARGA  with  real  data

We  tested the performance of our modified approach with the
two  databases of real data, where the original RG approach
failed  in most of the cases. In order to quantitatively test the
results  of our approach with state-of-the-art algorithms, we
compared  MARGA with the well-known BET [14], BSE [15] and
SPM  [2] tools. Although the latter does not provide a direct
brain  mask but a tissue segmentation, following the work of
Boesen  et al. [30] one can generate the brain mask by thresh-
olding  the sum of GM,  WM and CSF probability masks.

3.3.1.  NAMIC  database
The first NAMIC data set is composed by 20 scans of 3 T
with  the corresponding ground truth (brain mask) for each
case.  Table 1 summarizes the obtained results along with the
ones  provided by BET, BSE and SPM. The mean DSC for each
algorithm  was 0.965 ± 0.012 for MARGA, 0.936 ± 0.015 for BET,
0.907  ± 0.021 for BSE, and 0.922 ± 0.021 for the SPM. Our algo-
rithm  provided the best DSC average, while BET provided 3.5%,
SPM 5.6%, and BSE 6.4% less of accuracy. To analyze the statisti-
cal  significance of these comparisons we carried out a one-way
ANOVA  analysis for comparing the performance of the differ-
ent  methods. Since the pvalue was near zero, the performance
of at least one method was significantly different from the
other  ones. Bonferroni correction method was then used to
counteract  multiple comparisons [31–34]. Fig. 11 confirms the
statistical  significant difference between MARGA and the rest
of  methods.

Qualitative results for the four algorithms are shown in
Fig.  12, comparing their result with the provided ground-
truth.  The two upper rows correspond to the subject 01020,
where  notable differences appear between our approach and
the  rest of techniques. For the MARGA approach the two
masks  (green and red) are almost equal to their intersection,
while standard tools differ specially on the cortex. For the
BET  and BSE techniques the intersection is always smaller
than  the ground truth, while for the SPM the intersection is
the  ground truth mask itself since the SPM segmentation is
larger  than the ground truth. On the other hand, the two  last
rows  correspond to subject 01042, where MARGA, BSE and SPM
techniques depict a similar performance, being the automat-
ically  obtained masks bigger than the ground truth, while the
BSE  provides again a smaller mask. In both cases this qualita-
tive  analysis is quantitatively confirmed by the DSC shown in
Table  1.

Moreover, we have also tested the performance of MARGA
when  using just a single modality (T1w or T2w) during the
segmentation process. Analyzing the results, we  observed
that  better DSC percentage was obtained when using T2w
(0.948  ± 0.031) than when using T1w (0.855 ± 0.034). Notice that
both  values are lower than those obtained with the com-
bined  used of T1w and T2w images (0.965 ± 0.012). Fig. 8 shows
a  qualitative example of the segmentation results obtained
(T1w,  T2w and the combination of T1w and T2w masks,
respectively). The same parameter configuration was used for
the three tests. It is important to remark that we  adopted a
conservative  behavior on the segmentation growing process,
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Fig. 9 – Brain extraction results obtained over the BrainWeb database with 1% noise and 0% intensity inhomogeneity (first
and third rows) and also with 9% noise and 40% intensity inhomogeneity (second and fourth rows). First column shows the
original data, second column the ground truth mask (red) and MARGA mask (green), and the third column ground truth (red)
and BET mask (blue). Dark green and purple belongs to the intersection of BET and RG with the ground truth, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 10 – Example of bad brain segmentations with the original RG approach. From left to right: axial, coronal, sagittal views.
First row shows the original image, second row illustrates the result of the RG approach, while third shows the
improvement of MARGA.

specially in T1w images since the obtained results for T2w
images  complement the ones of T1w (see example of Fig. 8).

The  second part of the NAMIC database is composed by
5  scans acquired with a different protocol than the first one.
Table  2 summarizes the obtained results from all the methods.
The  mean DSC is slightly lower for MARGA (0.952 ± 0.006), BET
(0.935  ± 0.019) and SPM (0.850 ± 0.008) while decreases consid-
erably  for BSE (0.575 ± 0.036). Note that the algorithms have
performed  differently on these cases which are highly affected
by  the low rang of intensities in the provided images. The sta-
tistical  significance has been tested as in the previous data set,
although the few number of cases prevent us to extract signif-
icant  conclusions. The tests concluded that, in this case, only
SPM  and BSE have DSC means significantly lower than MARGA
while  BET and MARGA are not significantly different, even
though  as shown in Table 2 the DSC mean is clearly higher
for  MARGA.

Furthermore, we  have also analyzed the results for MARGA
when  using T1w and T2w separately. We  observed that better

DSC  percentage was obtained when using T2w (0.898 ± 0.037)
than  when using T1w (0.846 ± 0.020). The results with this data
set follow the same behavior than the previous one, having
both  T1w and T2w values lower than those obtained with the
combined  used of T1w and T2w images (0.952 ± 0.006).

3.3.2.  SALEM  database
The SALEM database is composed by scans of 1.5 T, where
ground  truth is not available. With the aim to provide also
a  quantitative analysis using this database, we compared the
overlap  of the masks obtained by the four algorithms MARGA,
BET,  BSE and SPM. This allows to assess how similar among
them  were the performances of these techniques. The results
are  summarized in Table 3, obtaining a mean overlap in DSC
between  MARGA and BET, MARGA and BSE, and MARGA and
SPM  of 0.951 ± 0.009, 0.943 ± 0.013 and 0.962 ± 0.008, respec-
tively.  Therefore, in this database, SPM provided the most
similar  performance to MARGA, while the biggest differences
were  with BSE.
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Table 1 – Performance of the our modified approach
applied over the 3 T GE scans (10 normal controls and 10
schizophrenic patients) on axial orientation.
Comparison with the DICE similarity measure of
MARGA, BET, BSE and SPM tools [parameters:
Tlower = 0.35; Tupper = 0.8; MinSliceThr = 40;
MaxSliceThr = 40; MinSlice = 25; MaxSlice = 20].

3 T GE data set

Pat. id MARGA BET BSE SPM

01019 0.964 0.920 0.891 0.926
01020 0.987 0.927 0.910 0.921
01025 0.977 0.951 0.917 0.937
01026 0.973 0.960 0.905 0.886
01029 0.943 0.926 0.903 0.903
01033 0.960 0.944 0.890 0.931
01034 0.970 0.918 0.917 0.932
01035 0.957 0.947 0.923 0.923
01041 0.933 0.946 0.914 0.921
01104 0.968 0.951 0.930 0.928

AVG. 0.960 0.937 0.904 0.925
SD. 0.014 0.015 0.029 0.020

01011 0.968 0.943 0.897 0.902
01015 0.968 0.923 0.918 0.937
01017 0.976 0.947 0.913 0.918
01018 0.962 0.943 0.924 0.947
01028 0.977 0.928 0.896 0.879
01039 0.974 0.921 0.909 0.934
01042 0.968 0.965 0.934 0.969
01044 0.947 0.923 0.832 0.911
01045 0.966 0.928 0.906 0.935
01073 0.967 0.917 0.912 0.906

AVG. 0.970 0.936 0.910 0.920
SD. 0.009 0.015 0.011 0.022

TOTAL AVG. 0.965 0.936 0.907 0.922
SD. 0.012 0.015 0.021 0.021

Fig. 13 qualitatively illustrates the performance of the
algorithms using two examples of this database. Although
both  initial images are fairly similar, the outcome result
shows  interesting differences to highlight. In concrete, we

Table 2 – Performance of the our modified approach
applied over the 3 T Siemens scans (5 lupus patients).
Comparison  with the DICE similarity measure of
MARGA, BET, BSE and SPM tools [T1w parameters:
Tlower = 0.45; Tupper = 0.8; MinSliceThr = 100;
MaxSliceThr = 80; MinSlice = 89; MaxSlice = 58. T2w
parameters: Tlower = 0.45; Tupper = 0.8; MinSliceThr = 120;
MaxSliceThr = 80; MinSlice = 80; MaxSlice = 62].

3 T Siemens data set

Pat. id MARGA BET BSE SPM

00001 0.951 0.933 0.561 0.842
00002 0.958 0.904 0.547 0.854
00003 0.946 0.944 0.567 0.849
00004 0.957 0.955 0.640 0.863
00005 0.946 0.941 0.561 0.844

AVG. 0.952 0.935 0.575 0.850
SD 0.006 0.019 0.036 0.008

0.88 0. 9 0.92 0.94 0.96 0.98

SPM

BSE

BET

MARGA

b

3 groups have means significantly different from MARGA

MARGA BET BSE SPM

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Fig. 11 – Significance test of the performance of MARGA for
the  first NAMIC database. Mean boxplots are shown on the
left  and Bonferroni output on the right.

have chosen the cases with larger differences among them
where  our approach successfully segments the brain or vice
versa.  The upper part of the figure shows a case where MARGA
fails  to exclude the eyes (only in three slices), while other
techniques are able to distinguish them as non-brain. This is
probably due to the low resolution (1.5 T) of the images that
implies  that sometimes is difficult to distinguish and separate
some  of the parts of the brain with the non-brain. Note that in
this case, the rest of algorithms also had problems to segment
some  of these parts. On the other hand, the bottom part of
Fig.  13 illustrates a case where MARGA works better than the
rest  of algorithms. For instance, in this case the BET algorithm
included  the eyes and other non-brain regions into the final
mask.  Observe also that MARGA is able to segment the front
of  this subject while BET and BSE failed to this purpose.
Besides, this case of study shows that SPM has a performance
similar to the one of our approach.

4.  Discussion

In this paper we tested the skull stripping algorithm proposed
by  Park and Lee [1] in a new scenario. The results obtained
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Fig. 12 – Qualitative comparison of the performance of the MARGA (green), BET (blue), BSE (yellow) and SPM (purple)
algorithms using two  examples of the NAMIC database, which contained an annotated ground-truth (red). The intersection
of the automatic algorithms and the ground truth is shown in brown. Subject numbers 1020 and 1042, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 13 – Qualitative comparison of the performance of MARGA (green) when compared to BET (blue), BSE (yellow), and SPM
(purple) skull stripping algorithms. The intersection between MARGA and rest of algorithms is shown in brown. The
subjects shown are 001 and 010, respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)
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Table 3 – Performance of the our modified approach applied over the 1.5 T scans on axial orientation. Comparison with
the  DICE similarity measure of MARGA against BET, BSE and SPM tools [parameters: Tlower = 0.35; Tupper = 0.8;
MinSliceThr = 20; MaxSliceThr = 16; MinSlice = 18; MaxSlice = 10].

1.5 T data set

Pat. id MARGAvsBET MARGAvsBSE MARGAvsSPM BETvsBSE BETvsSPM BSEvsSPM

001 0.953 0.948 0.958 0.971 0.969 0.963
002 0.957 0.951 0.968 0.972 0.966 0.960
003 0.958 0.952 0.970 0.969 0.960 0.953
004 0.958 0.954 0.969 0.972 0.970 0.963
005 0.951 0.915 0.960 0.936 0.969 0.930
006 0.931 0.924 0.945 0.954 0.943 0.930
007 0.957 0.947 0.964 0.968 0.969 0.963
008  0.955 0.947 0.955 0.959 0.956 0.947
009 0.955 0.949 0.969 0.976 0.970 0.966
010 0.937 0.943 0.957 0.955 0.949 0.943

AVG. 0.951 0.943 0.962 0.963 0.962 0.952
SD 0.009 0.013 0.008 0.012 0.010 0.014

were not satisfactory, and this fact drove us to extend this
proposal.  Two main issues were identified to understand the
poor  performance of the original approach. Firstly, the fact
that  we  were dealing with axial oriented brains instead of
coronal  ones affects the intensity distribution of the slices,
mainly  in the ones corresponding to the top and bottom
extremes of the head, where the brain is a small part of the
image  surrounded by many  different tissues and structures.
On  the other hand, the approach also failed when using lower
resolution  images acquired with 1.5 T scanners. This issue
was  more  noticeable at the extremes of the head, where the
intensity  of the brain and non-brain tissues is even more
similar.

To  solve these issues two main contributions have been
proposed in the MARGA approach. Firstly, we  divided the vol-
ume  in three different parts, since the intensity distribution
on  the middle slices is very different to those containing the
extremes  of the brain. Therefore, the proposed partition is
driven  by the contrast variation, and it allows to dynamically
modify the range of intensities that take place in the seg-
mentation. This way, the obtained 2D masks are smaller in
these  slices, avoiding oversegmentation in the cortex of the
brain.  Secondly, we  proposed to use multispectral information
coming  from T1w and T2w images, since both images pro-
vide  complementary information that helps the segmentation
algorithm. Specifically, T1w images enhance the white matter
tissue,  while T2w images enhance gray and CSF tissues, fact
that  allows the method to segment the inner tissues with T1w
images  and the cortex of the brain in T2w images. The use of
both  sequences did not need any additional medical resource,
since  both modalities are commonly used in brain imaging
protocols of clinical practice.

We  tested the performance of MARGA with a synthetic MRI
volume  and two different databases of patients, comparing
the  obtained results with three well-known skull stripping
algorithms: BET, BSE and SPM. Our approach has provided
better  results than those techniques for the databases pre-
sented,  both quantitatively and qualitatively. In conclusion,
our  improved algorithm is stable and permits to obtain
satisfactory skull stripping results when dealing with axial
oriented  MRI  images acquired at 1.5 T or 3 T.
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Chapter 4

Multi-channel registration of FA

and T1w images in the presence of

atrophy: application to Multiple

Sclerosis

In this chapter, we present a new pipeline for the co-registration of structural T1-weighted

(T1w) scans and diffusion tensor imaging (DTI) derived fractional anisotropy (FA) maps

to a common space. We test the performance of a MC registration approach applied

to T1w and FA data using simulated brain atrophy images. Experimental results are

compared with a standard single-channel (SC) registration approach.
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Summary

Co-registration of structural T1-weighted (T1w) scans

and diffusion tensor imaging (DTI)-derived fractional

anisotropy (FA) maps to a common space is of partic-

ular interest in neuroimaging, as T1w scans can be

used for brain segmentation while DTI can provide

microstructural tissue information. While the effect of

lesions on registration has been tackled and solu-

tions are available, the issue of atrophy is still open

to discussion. Multi-channel (MC) registration algo-

rithms have the advantage of maintaining anatomical

correspondence between different contrast images

after registration to any target space. In this work, we

test the performance of an MC registration approach

applied to T1w and FA data using simulated brain

atrophy images. Experimental results are compared

with a standard single-channel registration approach.

Multi-channel registration of fractional anisotropy
and T1-weighted images in the presence 
of atrophy: application to multiple sclerosis

Both qualitative and quantitative evaluations are pre-

sented, showing that the MC approach provides bet-

ter alignment with the target while maintaining better

T1w and FA co-alignment.

KEY WORDS: neuroimaging, registration, multiple sclerosis, atrophy.

Introduction

Nowadays, research studies in multiple sclerosis (MS)

(Ashtari et al., 2014) involve the use of both conven-

tional magnetic resonance imaging (MRI) (Goruku et

al., 2011) and quantitative MRI methods such as diffu-

sion-weighted (DW) imaging (DWI); these new MRI

techniques are also used in other diseases affecting

the brain (Baglieri et al., 2013). A key challenge in

quantitative MRI analysis is the registration of scans

to structural images that can be used to segment gray

matter (GM), white matter (WM) and lesions.

However, both lesions and tissue atrophy can

adversely affect registration. While in this study we

focus on MS, this can also be seen in other neurolog-

ical conditions, particularly in older cohorts where

age-related or vascular lesions are seen in combina-

tion with disease-related tissue atrophy, for example in

subjects with Alzheimer’s disease. The effects of

lesions on registration and tissue segmentation have

already been assessed on T1-weighted (T1w) volu-

metric scans, and techniques for minimizing them

developed (Sdika et al. 2009; Chard et al., 2010;

Battaglini et al., 2012; Ceccarelli et al., 2012).

However, MS-associated atrophy (as shown in Fig. 1)

is also a substantial issue, making registration inaccu-

rate. This is particularly apparent when the target is a

template based on healthy control data and the source

scan is from a person with progressive MS, where

ventricular enlargement may be prominent (as shown

in Fig. 2) (Derakhshan et al., 2010). In such a situation

very large deformations are required to bring the ven-

tricles into alignment, and methods developed to work

with healthy controls may fail.

In the case of multi-contrast regional studies a regis-

tration step is often also required to align several sub-

jects to a template space while maintaining intra-sub-

ject alignment of images with different contrasts such

as T1w scans and diffusion MRI-derived indices.

Registration of multi-spectral MRI data is usually

undertaken either independently for each modality or
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using transformations determined by registering T1w

structural scans. However, diffusion MRI metrics, such

as fractional anisotropy (FA), also contain structural

information complementary to that of T1w scans, and

so using both simultaneously to guide image registra-

tion may improve alignment in multi-modal analysis

(Park et al., 2003; Geng et al., 2012). Several registra-

tion strategies have been proposed over the last few

years:

1. Single-channel (SC), where individual different con-

trast datasets are deformed independently. In situa-

tions where source and target images belong to differ-

ent modalities, e.g., T1w, T2-weighted (T2w), DW, dif-

fusion tensor (DT), the registration is considered

multi-modal (Wells et al., 1996; Ourselin et al., 2000;

Guimond et al., 2001; Archip et al., 2007; Studholme,

2008; Klein et al., 2010; Walimuni et al., 2011), while

if source and target images correspond to the same

image modality the registration is mono-modal

(Thirion, 1996, 1998; Rueckert et al.,1999, 2003;

Studholme et al., 2004; Vercauteren et al., 2007,

2008; Modat et al., 2010a). In this work, a multi-modal

strategy is used when intra-subject registration is per-

formed, and a mono-modal one when we perform SC

inter-subject registrations.

2. Single modality-based approaches, where only one

dataset is used to estimate the deformations and the

other datasets are deformed according to the first. In

this work, we based the deformations on the T1w

sequence (T1w-based).

3. Multi-channel (MC) registration processes where

each space contains more than one modality to com-

pute the deformation. A previous co-alignment

between the images in each space (source and tar-

get) is needed. The MC approach performs a simul-

taneous registration of two different modalities to a

specific target (Park et al., 2003; Miller et al., 1993;

Guimond et al., 2002; Avants et al., 2007), exploiting

the complementary information in images of different

modalities. This solution was previously developed

by Studholme (2008), who combined structural and

full DT information into the same registration

process. More recently, Daga et al. (2011) proposed

a normalised mutual information (NMI) expression

able to perform this MC registration in a more com-

putationally efficient manner, although only using the

FA information rather than the full tensor. The latter

approach (Daga et al., 2011) is the one used in this

work.

Registration of MRI images affected by lesions and

atrophy to a healthy target space is challenging, but

can be improved by taking care of some of the prob-

lems. There exist freely available algorithms that

include lesion filling, e.g. at the websites of FSL

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling), SPM-

LST (http://www.applied-statistics.de/lst.html), and SPM-

SLF (http://eia.udg.edu/salem/slfToolbox/software.html),

which allow lesion inpainting of T1w images in order to

minimize biases in image intensity distributions.

However, such algorithms have not yet been devel-

oped for other modalities, in particular for DT imaging

(DTI)-derived indices. Fewer studies have proposed

solutions to the issue of registering multiple images of

different contrast also affected by severe atrophy to a

common space. In this study we tackle the specific

issue of improving alignment between T1w and FA

data for a single subject after registration to a common

space. This is a particular concern when dealing with

MS subjects because of the differences in the extent

of atrophy across subjects, who sometimes also show

large ventricular enlargement (Fig. 2). In such cases,

the substantial anatomical structural difference

between the source and target images requires very

large deformations. Furthermore, in MS, both MS

lesions and atrophy affect the different MRI process-

E. Roura et al.
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Figure 1 - Images in a healthy subject (on the left) and in an MS

patient with ventricular enlargement and lesions (on the right). 
a,e) T1w axial images; b,f) T1w sagittal images; c,g) FA axial images; d,h)

FA sagittal images. The lesions are circled in red.
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ing tasks. However, as shown elsewhere (Battaglini et

al., 2012; Roura et al., 2012), the presence of lesions

does not significantly affect the quality of the registra-

tion process, while atrophy may introduce large seg-

mentations and registration errors. Hence, in this work

we will focus on the effects of atrophy on registration

and propose techniques to limit this.

Multi-channel approaches may help by maintaining

anatomical correspondence between T1w and FA

images of each subject, after registration to any target

space (e.g. to a healthy subject from the same study

or to a common standard space). This is true even

when large-scale deformations are necessary to

match patient data to healthy targets. However, the

specific registration of T1w and FA maps within the

subject’s space is not a simple task since the tissue

contrast of these images is very different. In addition,

these two modalities are often affected by different

levels of partial volume effects due to differences in

voxel sizes, as well as by sequence-specific image

distortions. 

The aim of our study is two-fold: first to demonstrate

the validity of the MC registration approach for the

registration of T1w and FA images to a target space,

and second, to test whether the results obtained from

the MC approach outperform those obtained with

mono-modal SC registration or with the T1w-based

approach. We therefore developed a new pipeline that

includes a co-registration step between T1w and FA

images followed by MC registration to a standard

space. In order to achieve a good co-registration of

T1w and FA images in the subject’s space, T2w and

non-DW (b0) images are also used.

Figure 2 - Misalignment between T1w and FA

brain images of an MS patient after registration to

a healthy subject. 
The box at the top shows the input images (original MS

patient on the left and target healthy subject on the right).

The box at the bottom shows: the checkerboard between

T1w and FA of the original healthy subject (top row) and

the checkerboard between the two output images of the

single-channel registration (bottom row).

In line with the work of Modat et al. (2010b), we pro-

pose to generate simulated brain atrophy images by

using healthy control scans deformed to match scans

from MS patients. This approach enables us to eval-

uate different registration approaches by registering

these simulated images back to the unaltered healthy

control scans. Previous studies have outlined a num-

ber of different algorithms that can be used to simu-

late atrophy for different specific applications

(Camara et al., 2006; Karaçali and Davatzikos, 2006).

However, there is no established method for simulat-

ing MS lesions on both T1w and FA images. In this

study, therefore, we propose a simple method in

which MS brains are simulated using Demons regis-

tration (DReg) of healthy subjects to MS subjects

(Thirion, 1998; Vercauteren et al., 2008), whose

images contain both MS lesions and atrophy, and an

independent method is then used to test the registra-

tion of each atrophied dataset back to its original

healthy subject. To evaluate the registration pipeline

we performed both qualitative and quantitative analy-

sis of the registration results, comparing the MC

approach with standard SC registrations back to the

original healthy subject images. In our study, 10

healthy subjects and 10 MS patients were used to

generate 100 brain atrophy simulations. A qualitative

evaluation using checkerboards and difference

images as well as a quantitative analysis using the

mean intensity difference are included in this work.

Furthermore, in order to evaluate the impact of the

lesions in the MS subjects, we also analyzed registra-

tion results when the MS lesions on T1w had been

filled prior to the atrophy simulation.
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Methods

MRI data

SUBjECTS

Ten healthy subjects (mean age: 41.8 years, 4 males

and 6 females) and 10 patients with MS (6 relapsing-

remitting, 3 secondary progressive, 1 primary progres-

sive, mean age: 41.6 years, 3 males and 7 females,

mean disease duration: 13.2 years, median Expanded

Disability Status Scale score = 2.5) were scanned on

a 3T Philips Achieva scanner (Philips, Best, The

Netherlands), with a 32-channel head coil. 

MRI PROTOCOL

i) Dual echo proton density T2w scan: voxel size = 1

x 1 x 3 mm, TR = 3500 ms, TE = 19/85 ms; ii) three-

dimensional (3D) fast-field echo T1w structural

scan: voxel size = 1 x 1 x 1 mm, TR = 6.9 ms, TE =

3.1 ms, inversion time TI = 824 ms, field of view 256

x 256 x 180 sagittal slices; iii) DTI acquisition: car-

diac-gated SE-EPI, TR ≊ 24 s (depending on the

subject’s heart rate), TE = 68 ms, number of DW

directions = 61 (b = 1200 s/mm2), number of non-DW

(b0) scans = 7, voxel size = 2 x 2 x 2 mm, SENSE

acceleration factor = 3.1. 

ATROPHy SIMULATIONS

From the 10 healthy subjects we generated a total of

100 simulations of atrophied brains. This was done by

deforming the 10 healthy subjects into the native

space of each of the 10 patients in order to introduce

different rates of MS atrophy; for this purpose we

used DReg. To generate the data for the testing pur-

poses, T1w, FA, T2w and b0 images were used,

although here we evaluate only the performance of

the registrations done using the T1w and FA images.

Furthermore, another set of 100 simulations was gen-

erated after first filling the MS lesions (Chard et al.,

2010) on the T1w images, prior to performing the

atrophy simulation.

Image processing

The image processing strategy presented in this work

consists of three parts: i) pre-processing steps; ii) reg-

istration of T1w and FA images to a target space; and

iii) evaluation of different registration pipelines (SC,

MC and T1w-based).

prE-proCESSINg

Pre-processing involves calculation of the DT maps,

including FA maps, from the DW images (DTI pro-

cessing), and the creation of MC datasets for each

subject (intra-subject registration) to be used in the

creation of the simulated atrophy data (simulated

atrophy data).

DTI processing. The DTI dataset was first corrected

for eddy current distortions using the eddy_correct

command from the FMRIB Software Library

(http://www.fmrib.ox.ac.uk/fsl), assuming a linear co-

registration between all the 3D volumes, with the first b0

image being taken as the reference image. The free

open-source toolkit Camino (http://www.camino.org.uk)

was then used to fit the DT and compute the FA in each

voxel in the space of the first b0 image. For anatomical

reference and registration purposes, we also computed

the average b0 image, after the co-registration step,

from seven non-DW b0 images acquired as part of the

DTI dataset.

Intra-subject registration. To perform the registration

of T1w and FA images to a common space, it is essen-

tial to first align these images in the subject’s native

space. We registered the FA images to the T1w data

in native space in order to retain the information from

the higher resolution of these scans.

Figure 3 shows the overall scheme for co-registering

T1w and FA images. For each of the 10 healthy sub-

jects and 10 MS patients’ datasets we performed the

following steps: 

E. Roura et al.
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Figure 3 - Pipeline for the generation of the multi-

channel data (T1w + FA). 
Ref = reference image; Mov = moving image; NR_l =

NiftyReg linear; NR_nl = NiftyReg non-linear.
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1. The average b0 volume was aligned to the correspon-

ding anatomical T2w using a non-rigid registration

method from NiftyReg (http://cmic.cs.ucl.ac.uk/

home/software) (Modat et al., 2010a) to correct for EPI-

induced distortions in the DW data (Muhlert et al., 2013). 

2. The T2w images were then aligned with the T1w

images via affine registration with NiftyReg (Ourselin et

al., 2000, 2001, 2002). 

3. The composition of the deformation field (b0 to T2w,

computed at step 1) and the transformation matrix

(T2w to T1w, computed at step 2) allows us to trans-

form images from the DTI space to the T1w space

(and vice versa). This transformation was then applied

to FA maps to obtain FA co-registered to T1w data in

native space. The co-registered images (FA and T1w)

obtained in this step were used as target images in the

SC and T1w-based registration strategies of the simu-

lated atrophy datasets, and concatenated to generate

the MC data of T1w and DW images in native space,

needed as the input for the MC registration.

Once the MC data had been created, we had all the data

needed to test the registration of T1w and FA images to

a target space using either an MC or an SC registration

method. We always combined subsequent transforma-

tions in order to apply a single interpolation to the data

and avoid interpolation-related biases and errors. 

Simulated atrophy data. The strategy used to gener-

ate these simulations consists of three steps (Fig. 4): 

1. Deformation of each T1w image from a healthy sub-

ject space to each MS patient space. This registration

uses the NiftyReg software (Ourselin et al., 2000,

2001, 2002; Modat et al., 2010a) for rigid and affine

registration and DReg (Vercauteren et al., 2008) for

the deformation process. 

2. Transportation of each healthy subject’s FA map

into the same subject’s T1w space using the intra-sub-

ject registration pipeline as detailed above (Fig. 3). 

3. Application of atrophy deformation, obtained in step

1 using the T1w image, to the aligned FA map result-

ing from step 2. 

These three steps were performed for each of the 10

healthy subjects to match them to each of the 10 MS

patients (Fig. 4) in such a way that we obtained 100

simulated atrophy datasets, derived from original MS

subjects and also containing MS lesions. This set of

data was used for evaluating the registration perform-

ance. Henceforth we will refer to the 10 healthy sub-

jects’ dataset as HS
T1w

, HS
FA

and HS
MC

. The original 10

MS subjects’ datasets will be referred to as MS
T1w,Orig

,

MS
FA,Orig

(an MC dataset from the original MS patients

was not created as they were used only as the targets

to simulate atrophy). The 100 datasets deformed to

simulate MS will be the input of the registrations and

will be referred to as MS
T1w,Sim

, MS
FA,Sim

and MS
MC,Sim

.

Note that first subindex refers to the image modality

and the second to the specific subset.

It is important to note that DReg is a symmetric log-

domain diffeomorphic registration algorithm that

deforms the input source image (I
source

(x,y,z)) into the tar-

get image (I
target

(x,y,z)) returning both the deformation

field T and the inverse deformation field T-1 (both con-

sisting of a vector field where each vector is applied to

each voxel). Those two deformations allow transforma-

tion of either the input I
source

(x,y,z) into the resultant image

(R
D
(x,y,z)) by T, or the inverse by T-1. The inverse trans-

formation of the atrophy generation provides us with the

ground truth that is needed to evaluate how well our reg-

istration approach can recover the simulated atrophy.

To summarize, DReg receives I
source

(x,y,z) and

I
target

(x,y,z) and outputs: 

DReg(I
source

(x,y,z),I
target

(x,y,z)) → [R
D
(x,y,z),T

D
,T

D
-1]; [1]

where R
D
(x,y,z), T

D
and T

D
-1 are the output image and the

transformations T mentioned earlier. Here I
source

, I
target

and

R
D

are HS
T1w

, MS
T1w,Orig

and MS
T1w,Sim

, respectively.

The non-linear registration method used in this step of

atrophy generation was performed using the

Symmetric Log-Domain Diffeomorphic Demons

Algorithm (Vercauteren et al., 2008), which has the

advantage over previous Demons algorithms of pro-

viding the inverse of the spatial transformation.

Demons is an iterative optimization procedure, which

tries to minimize the cost function based on the sum of

squared differences of the two images (I
source

and I
target

)

plus the regularization of a Gaussian kernel by a sec-

ond order optimization method. 

Using this atrophy simulation procedure we also cre-

ated another set of 100 simulations in which, in accor-

dance with the approach of Chard et al. (2010), the

lesions on MS
T1w,Regj

(with j = SC, T1w-based and MC)

images were filled before performing the registration

of the HS
T1w

to each MS patient space (step 1). 

Registration

In this section we focus on the main purpose of this

work, which is to use an MC approach based on the

work of Daga et al. (2011), which, in turn, is based on

the Free Form Deformation (FFD) algorithm of

Multi-channel registration in the presence of atrophy
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Figure 4 - Pipeline used to simulate atrophy in healthy subjects.
NR_l = NiftyReg linear registration (rigid+affine); DReg = Demons regis-

tration. R1, R2, and R3 refer to the three registration steps performed in

this pipeline.
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Rueckert et al. (1999), and to compare it with classi-

cal SC approaches. The three different strategies

evaluated in this study and explained here below all

start from the co-registered MS
T1w,Sim

and MS
FA,Sim

images, and the MS
MC,Sim

obtained from the data prepa-

ration in the pre-processing step, as well as the HS
T1w

,

the HS
FA

and the HS
MC

. Note that Demons is based on

a non-parametric approach that includes a Gaussian

smoothing kernel, while FFD is a parametric model

that uses B-Splines. Therefore, the two transformation

models are independent, and recovering simulated

deformation created with the Demons using FFD is

appropriate and unbiased.

The FFD algorithm consists of the same main registra-

tion steps, i.e. the optimization of a cost function,

transformation of the moving image and interpolation

function. The similarity measure used by Modat et al.

(2010b) is based on the NMI. This measure is regular-

ized by adding a penalty term (bending energy) com-

puted at the control point positions in order to smooth

the transformation. This cost function is optimized by

the conjugate gradient ascent. The transformation

model locally deforms the moving image using cubic

B-Splines. Moreover, as stated by Daga et al. (2011),

when the MC approach is used a reformulation of the

NMI is needed.

Therefore, after deforming the original healthy subject

images (Isource
(x,y,z)) into simulated atrophy images

(R
D
(x,y,z)) by registering them to the MS patients

(I
target

(x,y,z)) we recovered the simulated atrophy with

the NiftyReg software, NReg, by registering the

R
D
(x,y,z) images back to the original subject data

(I
source

(x,y,z)). NReg receives R
D
(x,y,z) and I

source
(x,y,z)

and outputs:

NReg(R
D
(x,y,z),I

source
(x,y,z)) → [R

N
(x,y,z),T

N
]; [2]

The result of this registration, where R
N
(x,y,z) is the

warped image and T
N

is the deformation field, is com-

pared with the original image, I
source

, where an ideal

registration should give:

T
N
(R

D
(x,y,z)) = T

D
-1(R

D
(x,y,z)); [3]

where R
D

= MS
i,Sim

, I
source

= HS
i
and R

N
= MS

i,Regj
, with i =

T1w, FA, MC and j = SC, T1w-based, MC respective-

ly. The process explained above is used to compare

the performance of the three different registration

strategies, when registering the 100 simulations to the

original healthy subjects:

1. Mono-modal single-channel registration. Each

specific modality, MS
T1w,Sim

and MS
FA,Sim

, is registered to

its corresponding target modality, HS
T1w

and HS
FA

respectively, as schematically shown in figure 5a. We

use the registration of Modat et al. (2010a). The out-

put of these registrations are noted as MS
T1w,RegSC

and

MS
FA,RegSC

respectively.

2. T1w-based registration. In this registration

approach the deformation of one modality is used as

a transformation model for all the source images. We

refer to this strategy as a one modality-based SC

approach, which in our experiments applies the

transformations from MS
T1w,Sim

to HS
T1w

also to trans-

form MS
FA,Sim

into the target space, HS
FA

. This strate-

gy is schematically represented in figure 5b. The out-

put of this registration will be MS
T1w,RegT1w-based

and

MS
FA,RegT1w-based

.

3. Multi-channel registration. Conversely to the SC

approaches 1) and 2), here the different modalities are

merged into one MC dataset for both source, MS
MC,Sim

,

and target, HS
MC

, images. This approach is based on

the work presented by Daga et al. (2011) where the

NMI similarity measure from Modat et al. (2010a) was

re-edited to share the information of different modali-

ties during registration. Figure 5c illustrates the MC

approach, where the images are simultaneously regis-

tered to the target. The output of this registration will

be MS
T1w,RegMC

and MS
FA,RegMC

.

Evaluation

We evaluate the performance of the registration in two

ways using simulated atrophy and its recovery: i) using

a qualitative analysis based on a checkerboard image

(visual agreement); ii) calculating the mean intensity of

the absolute value of the difference images.

CHECKERBOARD IMAGE

The checkerboard between the registered T1w and FA

images allows visual inspection of alignment accuracy

E. Roura et al.
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Figure 5 - Three different registration strategies compared in the

analysis of the experimental results.
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based on the continuity of structural features and it

shows: i) how well the registration process works in

terms of matching the source image to the target

image; ii) how well different source image modalities,

e.g. T1w and FA, are aligned to each other in the tar-

get space.

DIFFERENCE IMAGE

Here the registration performance is assessed within

each modality using a global rather than a local index.

A difference image D(x,y,z) is calculated using the tar-

get (I
target

(x,y,z)) and the registered image (R
N
(x,y,z)) of

the same modality (e.g. HS
FA

and MS
FA,Regj

respectively,

or HS
T1w

and MS
T1w,Regj

with j = SC, T1w-based, MC),

and it is assumed that better registration corresponds

to a lower overall mean value.

These difference images have been used in previous

applications, i.e. to help localize MS lesion changes

in longitudinal studies (Lladó et al., 2012) or to

detect anatomical structures in medical images

(Díez et al., 2011). For each registration method

(Fig. 5) we computed D(x,y,z), performing a voxel-

wise subtraction between the original subject (target

in each registration) and the registration result. To

compute D(x,y,z), the results of each registration

method were normalized due to the vastly different

intensities that may appear in the T1w images. We

chose to normalize to the CSF, because WM and GM

may differ in T1w images from healthy and from MS

subjects. Therefore, we considered the ratio: intensi-

ty voxel divided by mean of the CSF. Furthermore,

we quantified the mean of D(x,y,z), Mean
D
, which

provides a quantitative measure of the goodness of

the registration methods, where the smaller Mean
D

is, the more accurate the registration. Note that to

compute the difference we always used the absolute

values.

In order to assess the registration performance at tis-

sue-class level, Mean
D

was computed for the whole

brain as well as for WM and GM masks. The whole

brain mask was obtained using the Brain Extraction

Tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) (Smith,

2002) while the tissue class segmentation was per-

formed using the SPM8 toolbox (http://www.fil.ion.

ucl.ac.uk/spm) (Ashburner and Friston, 2005).

However, as the result of the segmentation is a prob-

ability map per tissue type, we performed a maximum

likelihood operation to identify voxels belonging to

masks of GM and WM, which were computed by

assigning each voxel the class of maximum likelihood

(probability threshold 0.5). 

To assess whether Mean
D

values were significantly

different when calculated for each registration

method, the Bonferroni correction test (Holm, 1979)

was performed to counteract multiple comparisons. To

analyze the statistical significance of these compar-

isons, we carried out a one-way ANOVA to compare

the performance of the different methods, considering

as a null hypothesis (H
0
) that the means are equal with

a 5% confidence level (α = 0.05).

results

Data processed in the pre-processing section were then

used for all the registration experiments, with original

healthy subjects (10 cases) as target and simulated MS

subjects (100 cases) as source. We repeated these

experiments with the MS subjects in which lesions had

first been filled, before simulation. Figure 6 shows an

example of the images through the various steps for SC

registration (original, simulated and registered).

Checkerboard evaluation

The first assessment was based on qualitative analy-

ses using the checkerboard images to compare how

the structures were aligned with each other for each

combination of images: i) T1w result vs T1w target;

ii) FA result vs FA target; and iii) T1w result vs FA

result. This was performed for SC, MC and T1w-

based registrations (as summarized in figure 4). In

this stage, as well as comparing against the target,

we checked whether the registration process kept

the original alignment between T1w and FA for each

registration approach.

In particular, we carefully inspected the alignment of the

corpus callosum, which is very close to the ventricles,

and can therefore be affected by their large enlarge-

ment, and can undergo thinning as a result of patholo-

gy but also of large image processing deformations,

especially when registered to a healthy brain. Also, we

assessed the cortical regions because their low FA val-

ues make them challenging to register properly with

T1w. Figure 7 provides an illustration of the combined

results for each registration strategy and each modality

for one of the simulated MS datasets, with large defor-

mations due to severe simulated atrophy.

Multi-channel registration in the presence of atrophy
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Figure 6 - Original atrophied and registered T1w images. 
The bottom row illustrates the problem of the registration back to the orig-

inal healthy subject, using a single-channel registration pipeline, where

the software is not able to recover the ventricles.
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On visual inspection we observed that:

1. When employing the SC approach in the presence

of a high level of atrophy the registration cannot recov-

er structures like the corpus callosum and therefore

the alignment with the target image is not accurate.

Moreover, poor structure alignment is also observed

when comparing the co-alignment of MS
T1w,RegSC

and

MS
FA,RegSC

in the target space, e.g. the FA WM struc-

tures do not match the WM structures on the T1w

image. 

2. When employing the T1w-based registration

approach, similar results are noticeable when compar-

ing the results of the registration between the same

modality source and target images, e.g. MS
FA,RegT1w-based

and HS
FA

or MS
T1w,RegT1w-based

. As expected, though, the

co-alignment of T1w and FA images in the target

space, e.g. of MS
FA,RegT1w-based

with MS
T1w,RegT1w-based

, is bet-

ter due to their initial co-registration. 

3. Finally, when employing the MC approach the cor-

pus callosum of the registered images, MS
FA,RegMC

and

MS
T1w,RegMC

, is better aligned with the corresponding tar-

get images, HS
FA

and HS
T1w

, compared to what is

observed with the SC method, for both T1w and FA

data. Due to the inherent co-registration of MS
FA,RegMC

and MS
T1w,RegMC

, structures are well matched even

across modalities.

Difference image evaluation

The difference image between MS
T1w,Regj

and HS
T1w

was

computed for all simulated data and for j = SC, MC

(Fig. 8), while the difference image for FA was comput-

ed for j = SC, T1w-based, MC (Fig. 8).

On visual inspection, SC registration was associated

with higher intensity differences between registered

and target T1w images in the corpus callosum and

periventricular areas. T1w-based registration was

associated with higher intensity differences for FA

images. The MC approach provided the lowest inten-

sity differences for both T1w and FA images. This

was confirmed in all the simulated data and registra-

tion tests.

To corroborate the visual results, we compared the

Mean
D

image between the different registration meth-

odsas shown in figure 9. SC and MC registrations pro-

duced similar results on T1w over the whole brain or

the GM mask. No consistent pattern was observed on

the T1w registrations of the WM mask. For registration

of FA images, the MC approach presented lower mean

difference values for all cases (whole brain, WM mask

and GM mask; Fig. 9).

Last, we assessed whether the Mean
D

scores differed

between the SC and MC registrations. Analyzing the

Bonferroni test, we observed that for T1w images, SC

and MC approaches showed no significant differ-

ences. Instead, for FA images, the MC approach led to

significantly lower Mean
D

for whole brain, GM and WM

masks (p<<0.01). This can be explained by the fact

that the T1w image provides information for example

in GM regions where FA presents very low contrast.

We conclude that MC registration provides better

alignment to a target as well as better T1w and FA co-

alignment in target space.

Simulated images with lesions filled

Similarly to the results presented before, the registra-

tion strategies for both T1w and FA images followed a

similar trend when registering the simulated images

with the MS lesions-filled T1w dataset, obtaining bet-

ter FA and T1w image alignment with MC. We per-

formed statistical analysis using the Bonferroni test

obtaining significant differences between strategies

(p<<0.01). On the other hand, we also performed a

balanced one-way ANOVA analysis individually for

each registration strategy (SC, T1w-based and MC)

E. Roura et al.
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Figure 7 - Checkerboard images of all the combinations for the

three strategies (SC, T1w-based and MC). 
The top row of each strategy corresponds to T1w-T1w and FA-FA com-

parisons separately while the second row corresponds to comparison of

T1w-FA results. Orange circles show regions of poor registration, where-

as green circles show regions of accurate registration.
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Figure 8 - Difference image of T1w and FA from SC, MC and T1w-based approach.
Difference of T1w images from a) SC and b) MC results. Difference between FA images for c) SC registration, d) T1w-based approach, and e) MC regis-

tration. The brighter the voxels the greater the differences. All the images are from the same subject at the same location where first row are axial and

second row are sagittal image orientations. The range of intensities has been optimized for better visualization of the differences (voxel values range in

all the images from 0 to 1).

Figure 9 - Bar plot of the mean intensity of the difference image for the T1w images on the left and FA images on the right. 
Values for each patient (319, 342, ... 739) are the mean of the 10 MS simulations; the error bar illustrates the standard deviation.
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between simulated images with lesions and simulated

images with lesions filled. The p-values obtained in all

cases did not suggest to reject the null hypothesis

(p>>0.05), confirming that the effect of the MS lesions

was not significant in the proposed atrophy simulation.

Figure 10 illustrates the results obtained for the

MS
FA,RegMC

when using both the original and lesion-filled

simulations.

Discussion

Registration of the individual T1w images to the target

space showed similar performances between the

mono-modal SC, T1w-based and MC approaches.

This may relate to the well-defined tissue contrast

between GM and WM on these images, but could also

be due to preserved signal in GM, allowing the SC

approach to perform well. On the FA maps, however,

both qualitative and quantitative evaluations demon-

strated significantly better registration when the MC

approach was used. This was apparent on whole

brain, GM and WM alignment. It was also reflected in

the alignment of FA with T1w data after registration,

which provided substantially greater accuracy when

using the MC strategy. We also demonstrated that

MC, compared to SC and T1w-based, offers improved

results of T1w and FA co-registration in common

space; even though both MC and T1w-based strate-

gies rely on initial co-registration of FA and T1w in

native space, the final direct alignment, i.e. T1w and

FA alignment, in common space was significantly bet-

ter for MC techniques.

An important point to consider in this experimental

analysis is that the SC approach provided good co-

registration between the input image and the target

space. This may not be the case in real patient data,

where it is well known that WM and GM contain

lesions, causing localized and sometimes diffuse

intensity changes across the whole brain. In our simu-

lations we evaluated the effect of atrophy, but not focal

intensity changes, such as the WM lesions that are

characteristic of MS. The rationale for our choice to

concentrate on atrophy was highlighted in the intro-

duction and rested on the fact that the influence of

WM lesions on registration outcomes is limited when it

comes to the whole brain (Roura et al., 2012). This

was also shown when repeating the experiments

using simulations created using previously lesion-

filled T1w images from MS subjects. Moreover, strate-

gies to cope with lesions, such as inpainting, have

been proposed and validated only for the T1w modal-

ity (Sdika and Pelletier, 2009; Chard et al., 2010;

Battaglini et al., 2012), while they still need to be

developed for DTI-derived indices such as FA where

local properties of signal intensities are far from uni-

form even within a specific tissue type. Furthermore, it

is important to consider standard target spaces such

as the MNI atlas or a group-specific atlas built with MS

patient data, which could simplify registration of

patient scans.

Despite the clear improvements presented in this

work, there are some limitations that should be

addressed in future studies. For instance, we generat-

ed simulated atrophy by registering T1w images of

healthy controls to T1w images of MS patients and

then we applied the same transformation to FA images

of the same subjects. This procedure ensured that the

FA and T1w images were deformed equally, but it did

not accurately reproduce the presence of MS lesions.

Previous evaluations, though, confirmed that lesions

have minimal effect on MC (T1w and FA) registration

to a common space (Battaglini et al., 2012; Roura et

al., 2012), therefore justifying the use of the proposed

strategy as a simple means of atrophy generation

without having to explicitly consider MS lesions.

Following previous work presented by Daga et al.

(2011), we focused on the evaluation of an MC

pipeline applied to T1w and FA images. However, it is

well known that other indices from the DTI matrix or

even other imaging modalities could provide comple-

mentary information and could also be used for the

MC registration pipeline.

In conclusion, this paper has presented an MC regis-

tration approach for moving T1w and FA images to a

healthy control target space. The registration

pipeline was tested in people with MS with atrophy

and marked ventricular enlargement. For the experi-

mental evaluation, we proposed our own atrophy

generation framework based on deforming healthy

subjects by registering them to real MS patients with

MS lesions and atrophy. We created 100 simulated

atrophy images from original healthy subjects who

were registered to the patients. A comparison

between SC and MC registration with qualitative and

quantitative analysis has been presented. We have

shown that for FA, more than for T1w images, MC

registration offers significant improvements in align-

ment accuracy over SC or T1w approaches. Studies

registering FA maps to common space should con-

sider using MC registrations in preference to SC or

T1w-based pipelines.

Figure 10 - Boxplot of the MC registration results when using

the original and lesion-filled simulations. 
Differences are computed between the MS

FA, RegMC
result image and the

original HS
FA

.
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Chapter 5

A toolbox for multiple sclerosis

lesion segmentation

In this chapter, we present a new toolbox to segment WML of MS patients. This method

is based on the outlier thresholding of GM brain tissue on the FLAIR images followed by

a set of FP reduction rules. To prove the robustness of the method, we have evaluated its

performance with more than 100 MRI scans of different nature, including data from the

MICCAI Challenge 2008, where we have submitted our results.

The proposed method has been published in the following paper:

Paper published in Neuroradiology

Volume: 57, Issue: 10, Pages: 1031-1043. Published: October 2015.

DOI: 10.1007/s00234-015-1552-2

JCR RNMMI IF 2.485, Q2(41/125)
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Introduction 

Lesion segmentation plays an important role in the diagnosis and follow-up of multiple sclerosis 
(MS). This task is very time-consuming and subject to intra- and inter-rater variability. In this paper, 
we present a new tool for automated MS lesion segmentation using T1w and fluid-attenuated 
inversion recovery (FLAIR) images. 

Methods 

Our approach is based on two main steps, initial brain tissue segmentation according to the gray 
matter (GM), white matter (WM), and cerebrospinal fluid (CSF) performed in T1w images, followed 
by a second step where the lesions are segmented as outliers to the normal apparent GM brain 
tissue on the FLAIR image. 

Results 

The tool has been validated using data from more than 100 MS patients acquired with different 
scanners and at different magnetic field strengths. Quantitative evaluation provided a better 
performance in terms of precision while maintaining similar results on sensitivity and Dice similarity 
measures compared with those of other approaches. 

Conclusion 

Our tool is implemented as a publicly available SPM8/12 extension that can be used by both the 
medical and research communities. 

Keywords 

Multiple sclerosis, Magnetic resonance images, Lesion detection, Lesion segmentation, Automated 
tool 
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Chapter 6

Automated detection of Lupus

white matter lesions in MRI

images

In this chapter, we present a new approach based on the proposal presented in the previ-

ous chapter to automatically segment WML on Lupus patients. We incorporate context

information from an in-house group-wise atlas to reduce FP detections from the posterior

fossa. This proposal has been evaluated in 20 patients, which have been labeled semiauto-

matically to be used as a gold standard segmentation.

The proposed method has been published in the following paper:

Paper submitted to Frontiers in Human Neuroscience

Currently in revision

JCR PS IF 3.626, Q1(13/76)
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Automated detection of Lupus white matter lesions in MRI images
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Abstract

Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white
matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by
using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue
observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification
of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w
image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM) and cerebrospinal
fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM distribution. A set of post-
processing steps based on lesion size, tissue neighbourhood, and location are used to refine the lesion candidates. The
proposal is evaluated on 20 patients, presenting qualitative and quantitative results in terms of precision and sensitivity
of lesion detection (True Positive Rate (62%) and Positive Prediction Value (80%) respectively) as well as segmentation
accuracy (Dice Similarity Coefficient (72%)). Obtained results illustrate the validity of the approach to automatically
detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a
simple parameter configuration.

Keywords: Magnetic resonance images, Lupus disease, Image analysis, Automatic lesion detection and segmentation.

1. Introduction

Several brain diseases present abnormalities in the white
matter tissue, usually denoted as white matter lesions (WML).
Segmenting these WML is important to diagnose and bet-
ter understand these diseases as well as monitoring its
progression. However, performing this task manually is
tedious and very time consuming. Hence, several works
have been proposed to tackle automatically this lesion seg-
mentation problem. For instance, several works have been
presented in multiple sclerosis lesion segmentation [1, 2,
3, 4, 5, 6, 7, 8], stroke [9], vascular dementia [10, 11] and
other diseases [12, 13]. Instead, few attempts have been
done on semiautomatic or automatic segmentation of Lu-
pus lesions [14, 15, 16, 17], which are few and isolated, and
have the particularity of being very small and focal WML.

Magnetic resonance imaging (MRI) is the gold stan-
dard technique for studying the brain in lupus [18]. The
neuroimaging findings are classified as small or large vessel

∗Corresponding Author. E. Roura (eloyroura@eia.udg.edu)
University of Girona, Campus Montilivi, Ed. P-IV
17071, Girona (Spain).
Phone: +34 972418878; Fax: +34 972 418259

disease, and inflammatory-type lesions [19]. Small ves-
sel disease is represented by white-matter hyperintensi-
ties/lesions, recent small subcortical infarcts, lacunes, mi-
crobleeds, and brain atrophy [20]. WML are the most
common findings of small vessel disease seen in lupus, and
represent small T2-hyperintensities following the distribu-
tion of the white matter (periventricular, deep, subcorti-
cal), and including also the white matter at the basal gan-
glia, and cerebellum [18, 19]. Over the recent years, WML
have been shown to function as an independent predictor
for the neurolupus activity and injury, and quantitative
methods are increasingly proposed for the quantification
and follow-up of the WML in neurolupus.

Previous approaches, such as the automated one of
Scully et al [17], have used a supervised strategy to deal
with the lupus WML segmentation problem. In their work,
local morphometric features extracted from multiple se-
quences, including T1w, T2w, and fluid-attenuated inver-
sion recovery (FLAIR) images, were used to train a super-
vised classifier that takes advantage of a different subset
of the features to segment lesion voxels. With a differ-
ent viewpoint, in our work we present an unsupervised
approach to automatically segment WML in Lupus pa-
tients by using only T1w and FLAIR images. This work

Preprint submitted to Frontiers in Human Neuroscience



Figure 1: Scheme of the full lesion segmentation process.

can be seen as an extension of the tool recently presented
by Roura et al. [8], in which the focus was the segmenta-
tion of multiple sclerosis lesions. The whole pipeline can
be considered as a two main step process: pre-processing
and WML segmentation. The first step is focused on the
image enhancement by performing different intensity cor-
rections on the brain and co-aligning all the image modal-
ities. The second one, performs the lesion segmentation
by detecting outliers to the normal apparent gray mat-
ter brain tissue on the FLAIR image as was previously
done by Souplet et al. [21] and Roura et al. [8]. Given the
specific properties of the Lupus WML, we introduce a set
of post-processing steps to reduce possible false positive
(FP) detections which are based on lesion size, lesion tis-
sue neighbourhood and lesion location. The last one aims
to eliminate the FP detections usually found in the poste-
rior fossa due to frequent scanner artefacts, yet this is an
uncommon location for WML in neurolupus (up to 7% of
patients versus 40-60% in frontal lobes) [19].

We introduced this constraint in the segmentation by
using an in-house atlas created with the unbiased template
creation algorithm proposed by Fonov et al. [22], which was
then segmented into 12 brain structures including the pos-
terior fossa using the Computational Morphometry Toolkit
software 1.

The evaluation of the Lupus WML segmentation has
been done on a dataset of 20 patients comparing quan-
titatively the results obtained by our tool with the ones

1http://www.nitrc.org/projects/cmtk/

performed manually by an expert radiologist. This ground
truth (GT) has been used to compute quantitative mea-
sures in terms of detection, such as True Positive Rate
(TPR) and Positive Prediction Value (PPV), and in terms
of segmentation accuracy by using the Dice Similarity Co-
efficient (DSC). Both detection and segmentation results
show the ability of the approach to automatically detect
and segment focal WML in Lupus patients. The code of
our approach is publicly available as a Statistical Paramet-
ric Mapping (SPM8/12) toolbox extension with a simple
parameter configuration 2.

2. Materials and methods

2.1. Data

This study included 20 Lupus patients. The brain
MRIs were performed between 2014 and 2015 at Hospital
Clinic, University of Barcelona, the main national refer-
ral institution for lupus. All scans were performed at 3
Tesla Siemens MAGNETOM TIM Trio scanner, using a
32-channel head coil, with the same protocol including 3D
T1 and 3D FLAIR, with a voxel size = 1 × 1 × 1mm3.
The lesions were semiautomatically annotated on FLAIR
images by neuroimaging experts. They present a lesion
volume variation (mean±standard deviation) and range
(min-max) per patient of 0.217 ± 0.325[0.011 − 1.459] ml.

2http://atc.udg.edu/salem/slsToolbox/index.html
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Figure 2: FLAIR 2D axial slice (a) showing 2 lesions (in green) of 4 voxels each (b), both completely surrounded by white matter. Original
image and tissue segmentation result of two slices forward are shown in (c) and (d). The bottom row shows four zooms of the original image,
ground truth (green), candidates regions (red) and final lesion segmentation (blue).

2.2. MRI pre-processing

To deal with the Lupus WML segmentation, several
pre-processing steps (see Figure 1) are required to optimise
the overall performance, as seen in previous works [4, 5, 6,
23, 8, 7]. Since our aim is to provide a publicly available
Lupus segmentation tool as an extension of the SPM8/12
all the required steps are performed within the Matlab
environment.

The first step of the pre-processing consists in the intra-
subject registration. For this, we follow a similar proce-
dure than the one used in Roura et al. [8]. In this case, we
register FLAIR to the T1w image, where the target space
used (corresponding to the Montreal Neurological Insti-
tute (MNI) [24]) as well as the co-registration software are
provided by the SPM toolbox.

One of the most common pre-processing step is the
skull stripping process [25, 26, 27, 28], which we incorpo-
rate into our pipeline using the SPM tissue segmentation
algorithm [29], avoiding therefore the use of external li-
braries such as BET [26] or BSE [25]. Given that this
process provides the probability map of the three main
brain tissues (white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF)), we performed a maximum like-
lihood thresholded at 0.5 to determine directly the brain
mask [30, 28]. This process is performed on the T1w im-
age, although the brain mask is applied on the FLAIR
image where the rest of the pre-processing will be carried
out, since intensity corrections of the T1w image are han-
dled by the SPM tissue segmentation process itself.

It is well known that MRI images obtained directly
from the scanner present noise and undesired artefacts
(movement, high signal value, blood, flow artefacts, etc) [31].
These abnormalities may be corrected during the scan-
ning procedure while others such as inhomogeneities in the

magnetic field [32] must be attenuated by post-scanning
processes. We first apply the anisotropic diffusion filter
of Perona and Malik [33] in order to enhance the image
by smoothing its histogram with the 3D Matlab imple-
mentation 3 of this algorithm. Given the reduced size of
the lesions, we have carefully run this method over all the
patients with a restrictive parameter configuration (1 it-
eration, K = 50, and option=1), reducing the iterations
and gradient modulus, and focusing on contrast instead of
region size.

To correct the bias field we used the Matlab method
proposed by Thode et al. [34], which is based on an expec-
tation maximisation model (EM) that relies on the same
generative models and bias field estimation computations
of the well-known non-parametric, non-uniform intensity
normalisation (N3) method [35]. This approach requires to
mask out the low intensity voxels, thus the brain mask ob-
tained from T1w image is used when correcting the FLAIR
image.

2.3. Lupus lesion segmentation

Lupus lesions, similarly to other WML such as multiple
sclerosis lesions, are characterised by being hyperintense
regions in the FLAIR images. Due to the fact that the
GM is the highest intensity tissue in this image modality,
we used its histogram distribution to identify the hyper-
intense outliers. In order to obtain the GM distribution,
we used the same SPM tissue segmentation [29] applied
in the skull stripping process. At this point the lesion de-
tection can be performed as a thresholding process, com-
monly computed by µ+ασ, where the standard deviation

3http://www.mathworks.com/matlabcentral/fileexchange/

14995-anisotropic-diffusion--perona---malik-
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(σ) is determined using the full width at half maximum
(FWHM) of the main peak (µ). We can then adjust the
number of detected candidate lesions via the α parameter,
observing a good trade off when setting this parameter to
2.5, assuming more than 98% of the histogram belonging
to GM.

Afterwards, we apply a set of post-processing steps to
remove FP lesions that remained after thresholding the
FLAIR image: 1) Lesion size: we constraint the minimum
size of the lupus lesion to be 3mm3. Therefore, we elimi-
nate hyperintense voxels or a group of voxels smaller than
this size. 2) Lesion tissue neighbourhood: because the
lupus lesions should appear in the WM, the surrounding
voxels must strictly belong to WM. Therefore, we intro-
duce a parameter to limit the proportion of the WM over
GM and CSF in the lesion neighbourhood. We observed in
our tests that the best trade off was obtained when using
the ratio 0.7. Looking at Figure 2, one can see how the
neighbours of the two higher hyperintense regions marked
in green in Figure 2 (b), all belong to WM in the tissue
segmentation, while other candidate regions seen in the
centre (marked in red) are not considered lesions because
the neighbours voxels belong to GM. This neighbourhood
operation is applied in 3D. Figure 2(c)(d) shows the origi-
nal image and the tissue segmentation result of two slices
forward, where the candidates marked in red are attached
to GM and therefore eliminated with the neighbourhood
constraint. 3) Lesion location: since Lupus lesions are
rarely present in the posterior fossa [18, 19], and this par-
ticular area is highly prone to present hyperintense arte-
facts, we have decided to exclude this region when looking
for possible lesion candidates. This is done automatically
by registering an atlas with the corresponding structure
segmentation to the T1w image. In particular, we use
an in-house 3T template created over healthy subjects us-
ing the unbiased template creation approach proposed by
Fonov et al. [22]. This procedure, as stated by the authors,
converges after 20 iterations, meaning that 20 non-rigid
registrations must be performed for each subject of the
population. The nonlinear registration process relies on
the Automatic Nonlinear Image Matching and Anatomi-
cal Labeling (ANIMAL) of Collins et al. [36]. In order to
obtain the structure segmentation of the healthy template,
we have re-arranged the 83 labels of the T1w atlas from
Hammers et al. [37] into 12 regions 4. Subsequently, our
template was segmented into these 12 regions using the
Computational Morphometry Toolkit (CMTK) 5. To reg-
ister the in-house template T1w image to each patient we
used the SPM registration module, similarly to the intra-
subject registration process. Finally, using the deforma-
tion field obtained by the non-rigid registration, we are
able to bring the structure corresponding to the posterior
fossa to each of the patient’s space and therefore remove

4http://www.pmod.com/files/download/v35/doc/pneuro/5674.

htm
5https://www.nitrc.org/projects/cmtk/

FP in this area caused by artefacts. A summary of the full
pipeline is illustrated in Figure 1.

3. Experimental results

We have quantitatively analysed the obtained results
evaluating three different measures, TPR and PPV for le-
sion detection, sensitivity and precision respectively, and
DSC in terms of segmentation accuracy. Figure 3 shows
the obtained results per patient. We have stratified the
population according to three different groups depending
on the number of GT lesions per patient: 1) low lesion
burden (< 5 lesions); 2) medium lesion burden (between
5 − 25 lesions); 3) high lesion burden > 25 lesions.

Regarding the obtained results, both group and to-
tal averages of all the measures are over 50%, specially
highlighting the group with more than 25 lesions, where
we obtain a TPR = 81% ± 14, a PPV = 96% and a
DSC = 95% ± 1. When considering the whole dataset,
these values are: TPR = 62%±19, PPV = 80%±25, and
DSC = 72% ± 22; this is due to the lower performance
obtained in the first group, where a small error represents
a big percentage in the total measure.

To better understand the results, we also show two cor-
relation plots, one with the number of lesions and one with
the lesion volume (see Figure 4). We have fitted a linear
polynomial curve and showing also the expected fit, which
is basically the ideal correlation. Looking at the number
of lesions correlation, the model lies under the expected fit
meaning that the approach underestimates the number of
lesions. However, we obtained a very high Pearson’s coef-
ficient (r = 0.93), i.e. the whole dataset can be linearly
explained because all the samples follow the same trend,
except one outlier which also has a correct stratification.
Besides, one can see how the stratification results fit for
most of the patients with the expected groups, except for
two cases which are close to the group limit.

Regarding the lesion volume correlation, the model fit-
ting shows also a very good correlation, with only one
sample out of the confidence level. The model coincides
almost perfectly with the expected fit and Pearson’s coef-
ficient is also high with r = 0.96. Notice that this high
fitting illustrates in terms of total affected tissue volume
that the FP and FN are not significant compared to the
TP.

Some samples of qualitative results are shown in Fig-
ure 5, where we compare the results of our automated tool
with the GT annotations. We have chosen different sam-
ples to illustrate the performance in patients with differ-
ent lesion load. Notice that the total lesion volume is very
small in all of them, but the automatic detection provides a
good performance in terms of TP while having a reduced
number of FP and FN. When illustrating the whole 3D
volume in the figure, those FP and FN are inappreciable
because they are smaller than 0.01ml. However, we show
some FP and FN examples on the 2D slices for the second

4



Figure 3: Bar plots of each patient representing the DSC, TPR and PPV values. The population is stratified in four groups depending on
the GT number of lesions, from left to right: < 5; [5− 25]; > 25].

Figure 4: Correlation with number of lesions (stratified by the three groups) on the left and lesion volume, in terms of voxels, on the right.

5



and third group, zooming also into these regions in the
first group.

4. Discussion

WML are the most common radiological finding in neu-
rolupus. They are non-specific findings, being frequently
observed in older age groups, migraine, chronic diseases,
heart diseases, diabetes, high-blood pressure, dyslipidemia
and other vascular risk factors, although they are also
present in asymptomatic subjects without known diseases [18].
However, WML are found in 40-60% of neurolupus pa-
tients, even at the onset of the disease, and many previous
reports showed a higher frequency of WML in neurolupus
when compared with lupus without neurolupus and gen-
eral population [18, 19, 20, 38].

The pathogenesis of WM hyperintensity is attributed
to chronic small vessel disease, which is supported by a
study with radiologic-pathologic correlation in patients with
neurolupus [39]. The underlying mechanisms for small ves-
sel disease in neurolupus are not well understood, although
multiple factors are incriminated, including accelerated
atherosclerosis, direct immune mediated alterations, mi-
croembolisms, intimal hyperplasia, erythrocytes extrava-
sation, fibrin thrombi and coagulopathy [18, 40, 41].

In neurolupus, WML involve preferentially the frontal
and parietal regions, different from primary autoimmune
demyelinating diseases such as multiple sclerosis. WML
were repeatedly correlated with lupus duration, cognitive
dysfunction, cerebrovascular syndrome, seizures, antiphos-
pholipid antibody and low complement (C3, C4, CH50)
levels [15, 42, 43]. A quantitative WML analysis in lupus
patients demonstrated that age, duration of neuropsychi-
atric manifestations and total corticosteroid dosage were
independent predictors for WML [15]. Importantly, there
was demonstrated a positive association between the lesion
burden and the score of lupus activity (Systemic Lupus
Erythematosus Disease Activity Index-SLEDAI) and in-
jury (Systemic Lupus International Collaborating Clinic-
SLICC). This means that WML are an independent pre-
dictor for lupus activity and injury, and suggests that the
quantification of WML (either by number or, maybe bet-
ter, by volumetric methods) and their follow-up, could be
used for monitoring the disease progression and response
to therapy [14, 15, 18].

We have proposed in this work an automated tool which
presents a good correlation in both number of lesions and
lesion volume, as seen in Figure 4. Even though the ob-
tained results tend to underestimate the lesion detections,
the number of lesions detected have shown a good cor-
relation with the stratified population into three groups.
Notice that the FN rate has a weak influence on the final
lesion volume, since Lupus WML are small focal lesions,
characteristic of this particular disease. Nevertheless, FN
rate could be improved by decreasing the minimum lesion
size, but this could lead to misclassification of scanner arte-
facts (more FP detections). Besides, in order to reduce this

FP detection rate introduced by the artefacts of the scan-
ner, we have set a high lesion neighbourhood restriction to
belong to WM.

The parameter configuration has been set up with an
exhaustive analysis over both α and lesion tissue neigh-
bourhood parameters, testing values from 1 to 3 each 0.1
and from 0 to 1 each 0.05 respectively. The analysis showed
that the optimal configuration was with the α of 2.5 and
tissue neighbourhood ratio of 0.7. We want to remark this
will be the default configuration of the tool, however, other
configurations provided very similar results.

Even though this study has been evaluated with a dataset
of 20 patients, we observed promising results in both le-
sion detection and segmentation, highly comparable to the
state of the art approach of Scully et al. [17]. We believe
that the benefits of an unsupervised approach, which al-
lows to avoid the training stage and therefore having man-
ually annotated cases by experts, will help to the commu-
nity to quantify WML on Lupus patients, specially consid-
ering that we provide a public tool which is straightforward
to use in SPM8/12.

5. Conclusions

In this work we have presented an approach to perform
WML segmentation on Lupus patients. We have main-
tained the same pre-processing pipeline applied in [8], but
now implemented in MATLAB code, fact that facilitates
the integration to SPM8/12, the installation and execu-
tion. The lesion segmentation process has been modified
specially on the application of the refinement constraints
due to the difference on the lesion features. Results shown
in this manuscript demonstrate the good performance of
the approach. The correlation results in both number of
lesions and lesion volume, illustrates the validity of the
approach as a tool for clinicians when diagnosing Lupus
patients or evaluating the disease evolution in patients
treated with different therapies.
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[3] Lladó X., Ganiler O., Oliver A., et al. Automated detection of
multiple sclerosis lesions in serial brain MRI Neuroradiology.
2012;54:787–807.

6



Figure 5: Qualitative results of the approach. First row of each patient shows the original FLAIR image and second row shows the automatic
segmentation (green=TP, red=FP, and yellow=FN).

7



[4] Schmidt Paul, Gaser Christian, Arsic Milan, et al. An auto-
mated tool for detection of FLAIR-hyperintense white-matter
lesions in Multiple Sclerosis NeuroImage. 2012;59:3774–3783.

[5] Cabezas M., Oliver A., Roura E., et al. Automatic multi-
ple sclerosis lesion detection in brain MRI by FLAIR thresh-
olding Computer Methods and Programs in Biomedicine.
2014;115:147–161.

[6] Cabezas M., Oliver A., Valverde S., et al. BOOST: a supervised
approach for multiple sclerosis lesion segmentation Journal of
Neuroscience Methods. 2014;237:108 – 117.
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Chapter 7

Main results and discussion

This chapter outlines the main results and discussions derived from this thesis. Although

we present our contributions related to the various papers, all of them target the same

final goal, i.e. to develop automated tools to help in the analysis of Brain MRI images,

with the main focus on the detection and segmentation of WML (see Section 1.4). We

divided the outcomes of this thesis according to the different pre-processing contributions:

1. Skull-stripping (MARGA): As stated in previous work and in this thesis, when

trying to segment the brain, sometimes standard tools that are used worldwide (BET,

BSE), do not properly remove the non-brain tissues. With the aim of improving

these cases, we have based our approach on the work of Park and Lee [34] and

contributed new strategies. On the one hand, in terms of implementation, we took

into account the contrast variation throughout the whole brain when processing

the axial orientation. On the other hand, in terms of image modalities, we used

multispectral information obtained from T1w and T2w. These two sequences provide

complementary information that enhanced the segmentation process. We improved

the accuracy of WM segmentation by using T1w, while GM and CSF was better

segmented on T2w. Besides, the common protocol in daily clinical practice includes

these two modalities, therefore no extra resources are required. The robustness of

our algorithm has been tested with both synthetic and real MRI data outperforming

the state-of-the-art in some datasets. Qualitative and quantitative evaluations have

proved the good performance of this approach.

2. Multi-channel registration: The use of complementary information provided by

different MRI modalities allows us to build a greater understanding of the human

body. This is also true when dealing with computer vision algorithms, whose per-

formance depends on the information received. In this thesis, we also tackled the
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issue of co-registration of conventional and diffusion MRI when registering it in

a common space. Note that we did not evaluate the effect of WML but of the

MS atrophy, because WML has a reduced impact on the registration of the whole

brain. This fact was highlighted in Roura et al. [132], an issue covered in the Master

Thesis [133], where we analysed our pipeline simulating atrophy patients after the

WML were inpainted [94,134–136]. This process was carried out with three different

strategies, single-channel and T1w approaches being commonly used in the current

literature, while multi-channel has been recently proposed by several authors. The

results obtained from the MC registration showed significant improvement over the

SC and T1w approaches.

3. Exhaustive analysis of the pre-processing: Skull-stripping and registration are

two of the several steps covered in this complex topic of image pre-processing where

the image enhancement is the basic aim. Image noise and intensity inhomogeneities

are usually present in all acquisitions. These aspects, as well as those mentioned

above, have been extensively analysed in this thesis, considering all the standard

methods in the state-of-the-art for each of the pre-processing steps (skull-stripping,

image denoising, intensity inhomogeneities correction, and registration). We have

come up with a standard pipeline used in all our experiments, but especially in the

WML segmentation tool that we have presented in this thesis. Besides, all these

experiments have been tested on a wide variety of images with different resolutions

in both 1.5T and 3T scanners.

The second part of the main results refers to the WML segmentation applications:

1. Multiple Sclerosis: Segmentation and detection of WML in MS is of particular

interest when diagnosing and assessing the evolution of the disease, which indeed is

a tedious task for radiologists. In this thesis, we have presented a new tool to help

doctors perform this task, allowing them to quantify the number of lesions and the

lesion burden. We introduced an iterative strategy, which increases the performance

specially when dealing with 3T data, while the 1.5T dataset used here did not

allow us to prove the same improvement, mainly due to the difference on the lesion

burden as one can read in the discussion of the paper in Chapter 5. This method was

tested over more than 100 patient images from three different databases (see dataset

description in Chapter 5) with different properties and acquired at different magnetic

field strengths (3T and 1.5T). The good performance shown in all the experimental
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results, especially when evaluating the results with the MICCAI Grand Challenge

2008 algorithms for both training and testing data, proves the robustness of this

tool. We were able to maintain a regular and reduced FP rate while TP rate was

similar to the state-of-the-art methods. Although in the manuscript describing the

tool, we stated that pre-processing must be done beforehand and we recommended

strictly following the pipeline, the final version of our tool incorporates all these steps,

insuring the same performance in a user-friendly GUI to be used straightaway.

2. Lupus: The same core of the WML segmentation tool was tested over a database

of Lupus patients. This disease also presents WML, whose quantification is a good

predictor for Lupus activity and injury. There is a lot of literature on automated

WML segmentation for MS and other neurological diseases, but it has seldom been

explored in Lupus. In order to adapt the tool to this end, we included an atlas

registration to segment the posterior fossa, where WML are rarely present and be-

cause this area is also prone to FP detections due to hyperintensities induced by

the artefacts from the scanner. Also, another post-processing step was used to test

20 Lupus patients, obtaining highly satisfactory results when comparing a manual

ground truth with the outcomes of the tool.

In this regard, we have avoided the adaptation of the pre-processing approaches presen-

ted earlier in this thesis, such as MARGA for the skull stripping procedure. This task is

currently performed by masking the output of the inner SPM tissue segmentation, which

allows to reduce the computational cost of this process. Regarding the co-registration step,

we have also used the inner process of the SPM, since good results have been obtained

and no extra compilation is needed.

Related collaborations:

In neurological diseases, tissue measurements are also a key step when measuring at-

rophy. Automatic tissue segmentation methods do not take into account the possible

lesions appearing in the WM, and this fact highly affects their measurements. In collab-

oration with another thesis carried out in this group, we studied the impact of WML on

tissue measurements [103,104], where we contributed by automatically segmenting WML

with the tool presented here. In this study, we showed how the % of error in the total

normal-appearing WM volume was lower when the lesions were segmented and filled be-

fore the tissue segmentation. As this work highlights the importance of refilling WML,

the necessity of WML segmentation is also reflected.
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The WML segmentation tool includes a previous image pre-processing before the le-

sion segmentation is done. Although pre-processing involves both skull-stripping and

co-registration, none of the above mentioned have been adapted for the WML segment-

ation toolbox. Our skull-stripping has been implemented in C++ and its adaption to

the tool would need a new implementation in MATLAB by using the GPU core. This

requirement is especially needed to improve the computational time, and remains as an

open line for future collaborations or PhD theses. Therefore, we have decided to use the

SPM itself for this purpose. Regarding the multi-channel approach, it is not possible at

the moment since none of our database provides DTI data. However, the in-house atlas

used for the structure segmentation consists of T1w and FLAIR images, thus a new multi-

channel registration pipeline considering these two modalities might be used to enhance

the structure segmentation.



Chapter 8

Conclusions

We have satisfactorily covered all the goals proposed in this thesis. We have been very

active during the four years invested in this thesis, as proven by the number of publications

in both international conferences and journals. We have also been on several research stays

in some of the most relevant research centres in the field.

We believe that the results and contributions produced in this thesis will have a high

impact on the community and will achieve the main goal of helping the community of brain

MRI analysis, and especially for the diagnosis and monitoring of neurological diseases.

8.1 Research stays

During this PhD thesis, Eloy Roura had the opportunity of going on the following research

stays:

• 4 months in the Biomedical Image Computing Group in the University of Washington

under the supervision of Dr. Colin Studholme. In this center, we had to deal with

MRI of neonates where the biggest challenge was the rapid tissue evolution. This

fact makes common approaches used in adults unsuitable for such a scenario. In

premature infants, one can sometimes appreciate intraventricular hemorrhages, a

type of bleeding that looks hyperintense in T1w images. Our goal here was to

improve the current automatic segmentation of these lesions with novel methods

that have produced a journal paper (submitted to NeuroImage:Clinical).

• 3 months in the Montreal Neurological Institute in McGill University under the

supervision of Dr. Arnold Douglas, Dr. Sridar Narayanan and Dr. Parya Momayyez.

This project consisted of the hypothesis of finding a correlation between the visual
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system connectivity and its acuity tests on paediatric MS patients. This was a

preliminary study during which we strongly confirmed our knowledge in the field

and produced an internal technical report.

• 5 months in the Institute of Neurology in the University College London under

the supervision of Dr. Claudia AM Wheeler-Kingshott and Dr. Torben Schneider.

During this research stay, we worked on the Master Thesis, work that has contributed

to the MC pipeline presented in this thesis.

8.2 Contributions

The results of this thesis led to the following contributions to both the scientific and

medical communities:

• Experimental tests have been carried out with several datasets of different charac-

teristics: a) 1.5T data with 45 MS patients manually annotated by experts to obtain

the GT lesion segmentation; b) 3T data with 10 Lupus patients and 10 schizophrenic

patients from the public NAMIC database. c) 3T simulated data with 10 brain cases

from the BrainWeb; d) 3T DTI data with 10 MS patients and 100 simulations of

MS atrophy; e) 3T data with 70 MS patients with different lesion loads from the

Hospital Vall d’Hebron. These cases were also manually annotated by experts; f) 3T

dataset with 20 Lupus patients with different lesion loads from the Hospital Cĺınic,

University of Barcelona.

• A novel method for isolating the brain from the rest of the head, obtaining prom-

ising results compared to the state-of-the-art. This method has been tested with

simulated and real MS patients. We have shown that this algorithm is stable and

permits us to obtain satisfactory skull stripping results when dealing with axial ori-

ented MRI images acquired at 1.5T or 3T. This method has produced a conference

abstract (ECTRIMS 2013) and a journal paper (Computer Methods and Programs

in Biomedicine 2014).

• A novel MC registration approach to move T1w and FA images to a healthy con-

trol target space. The registration pipeline has been tested on people with MS with

atrophy and marked ventricular enlargement. We proposed our own atrophy genera-

tion framework for an experimental evaluation. We have shown that MC registration
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offers significant improvements in alignment accuracy compared to SC or T1w ap-

proaches. This work has produced two conference abstracts (ISMRM 2012, ISMRM

2013) and a journal paper (Functional Neurology 2015).

• An exhaustive analysis of the impact of pre-processing methods with special focus

on WML segmentation. We have developed our skull-striping method and compared

its performance with the BET, BSE and SPM. We have tested several configurations

for both image denoising [46] and intensity inhomogeneity correction with SPM [47]

and N3 [48]. Finally, we have also compared different pipelines in terms of flux

execution, aiming to propose a standard pipeline for this purpose.

• A novel method to segment WML using T1w and FLAIR images. Our tool is

publicly available as an SPM8/12 extension toolbox [http://atc.udg.edu/salem/

slsToolbox], which is easily adaptable and has a default configuration to be used

straightaway. We have provided a user-friendly GUI for doctors to interact with. The

tool has been tested with different parameter configuration on both MS and Lupus

patients. From this approach, we published a conference abstract (ECTRIMS 2015),

a conference paper (SPIE 2016), and two journal papers (Neuroradiology 2015 for

MS and Frontiers in Human Neuroscience 2016 for Lupus)

8.3 Future work

Several aspects have to be taken into account in MRI analysis, especially from the com-

puter science point of view. In this thesis, we have exhaustively covered some of them but

there is still room for improvement on both the pre-processing and lesion segmentation

processes. Besides, our collaborations in other projects listed in the publications can be

considered in order to enhance the current online tool.

The skull-stripping method presented in this thesis has been developed in a non-optimised

c++ code. However, our WML segmentation tool was implemented in MATLAB as an

SPM8/12 toolbox since it is commonly used in the clinical community. Therefore, an

efficient MATLAB implementation of this method, which handles computer resources ac-

curately, would allow us to include this skull-stripping algorithm in the final version of

the tool. Techniques such as OPENCL and GPU programming may help to enhance the

computational cost.

Despite the clear improvements presented with the MC pipeline approach, the analysis

of other registration approaches, such as SyN or ANTs that use different mathematical

http://atc.udg.edu/salem/slsToolbox
http://atc.udg.edu/salem/slsToolbox
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models, in the three strategies presented in this work would be useful to reinforce our

findings.. Besides, there are some limitations that should be addressed in future stud-

ies. For instance, we generated simulated atrophy by registering T1w images of healthy

controls to T1w images of MS patients and then applied the same transformation to FA

images of the same subject. This procedure ensured that the FA and T1w images were

equally deformed, but it did not accurately reproduce the presence of MS lesions. Previous

evaluations, though, confirmed that lesions have a minimal effect on MC (T1w and FA)

registration to a common space [132, 136], therefore, justifying the use of the proposed

strategy as a simple way for atrophy generation without having to explicitly consider MS

lesions. Following the previous work presented by Daga et al. [71], we focused on the

evaluation of an MC pipeline applied to T1w and FA images. However, it is well-known

that other indices from the DTI matrix or even other imaging modalities could provide

complementary information and could also be used in the MC registration pipeline.

In the latest publications, we have started to use structure information from an in-house

atlas, a fact that allows us to treat the parts of the brain differently. A more exhaustive

analysis on the behaviour of each of the structures could help in the lesion refinement. One

of the issues when labelling the brain in different structures lies in the registration process

with an atlas, thus, the use of our MC pipeline could enhance this alignment. Even tough

our MC pipeline was optimised for the alignment of conventional and diffusion MRI, this

same pipeline could be adapted for other image modalities (T1w and FLAIR). At the

moment, we are using T1w and FLAIR images because the other modalities (PDw and

T2w) in the studied database did not provide valuable information to our segmentation

approach. On the other hand, we could consider using DTI information to improve the

detection and segmentation of WML. Another issue that can be studied to optimise the

WML segmentation toolbox is to standardise a uniform threshold and automated para-

meters configuration. We believe that a proper image normalisation obtaining similar

histogram distributions for the different tissues could help to uniform the set-up of the

tool.

Finally, we would like to include all the topics we have tackled in this thesis in the

online tool. In parallel, other projects related to the MS field have been carried out and

the main author of this thesis has taken part in them. The combination of all the projects,

performing some steps iteratively, like tissue segmentation and lesion segmentation and

correcting errors at each step for both methods, may lead to better results and improve-

ments in the automated processes. Besides, with this global tool, new biomarkers could

be used to describe the disease, e.g. measures of atrophy, lesion volumes classified per
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tissues, structures or regions, evolution of both lesions and atrophy, etc. Follow-up studies

have an important interest in monitoring the disease’s evolution. We did not tackle this

scenario in this thesis, but our group has previous knowledge in this field. To incorporate

all the methods in one online tool would also be a huge contribution to the daily clinical

practices of radiologists and neurologists in order to obtain quantitative reports covering

different aspects: number of lesions, volume of lesions, atrophy volume, matter loss, region

affected, etc.





Bibliography

[1] J. Love, “Demyelinating diseases,” Journal of Clinical pathology, vol. 59, no. 11, pp.

1151–1159, 2006.

[2] M. Crow, “Systemic lupus erythematosu,” in Goldman’s Cecil Medicin, 24th ed.,

L. Goldman and A. Schafer, Eds. Elsevier Saunders, 2011, ch. 274.

[3] M. Crow, “Etiology and pathogenesis of systemic lupus erythematosus,” in Kelley’s

Textbook of Rheumatology, 9th ed., G. Firestein, R. Budd, and S. e. a. Gabriel, Eds.

Elsevier Saunders, 2012, ch. 79.

[4] G. Pons-Estel, G. Alarcón, L. Scofield, L. Reinlib, and G. Cooper, “Understanding

the epidemiology and progression of systemic lupus erythematosus,” Seminars in

arthritis and rheumatism, vol. 39, no. 4, p. 257, 2010.

[5] R. Cervera, M. A. Khamashta, J. Font, G. D. Sebastiani, A. Gil, P. Lavilla, J. C.

Mejia, A. O. Aydintug, H. Chwalinska-Sadowska, E. de Ramon, A. Fernandez-Nebro,

M. Galeazzi, M. Valen, A. Mathieu, F. Houssiau, N. Caro, P. Alba, M. Ramos-Casals,

M. Ingelmo, G. R. Hughes, and E. W. P. on Systemic Lupus Erythematosus, “Mor-

bidity and mortality in systemic lupus erythematosus during a 10-year period: A

comparison of early and late manifestations in a cohort of 1,000 patients,” Medicine,

vol. 82, no. 5, pp. 299–308, 2003.
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Torrentà, À. Rovira, and X. Lladó, “Intensity based methods for brain mri longit-

udinal registration. a study on multiple sclerosis patients,” Neuroinformatics, vol. 12,

no. 3, pp. 365–379, 2014.



104 BIBLIOGRAPHY

[66] E. Roura, T. Schneider, M. Modat, P. Daga, N. Muhlert, D. Chard, S. Ourselin,
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