
Escola Politècnica Superior
Universitat de Girona

Development of a 2D lateral action videogame
for Android platforms.

Desenvolupament d’un videojoc d’acció lateral
per a plataformes Android.

Projecte/Treball Fi de Carrera

GEINF. Pla 2016

Document: Memòria
Autor: Robert Bosch
Director: Gustavo Patow
Departament: Informàtica, Matemàtica Aplicada i Estadística
Àrea: LSI
Convocatoria: JUNY/2016

Contents

1 Introduction 6
1.1 Introduction . 6
1.2 Personal motivations . 7
1.3 Project motivations . 7
1.4 Project purposes . 7
1.5 Objectives . 7
1.6 Structure of this memory . 8

2 Feasibility study 9
2.1 Resources needed to develop this project . 9

2.1.1 Developer requirements . 9
2.1.2 Player requirements . 9

2.2 Initial budget . 10
2.3 Human resources . 10
2.4 Technological viability . 11

2.4.1 Economic viability . 11
2.4.2 Human costs . 11
2.4.3 Equipment costs . 11
2.4.4 Total costs . 11

3 Methodology 12

4 Planning 14
4.1 Working plan . 14
4.2 Planned tasks . 14

4.2.1 Planning . 14
4.2.2 Learning . 14
4.2.3 Implementation . 14
4.2.4 Verification . 15
4.2.5 Documentation . 15

4.3 Estimated scheduling . 16
4.4 Expected results of every task . 17

4.4.1 Planning . 17
4.4.2 Learning . 17
4.4.3 Implementation . 17
4.4.4 Verification . 17
4.4.5 Documentation . 17

5 Framework 18
5.1 Videogame engines . 18
5.2 Examples of videogame engines . 18

5.2.1 Unreal Engine . 18

2

Contents Contents

5.2.2 CryEngine . 19
5.2.3 GameMaker . 19
5.2.4 Havok Vision Engine . 20
5.2.5 Project Anarchy . 20
5.2.6 ShiVa . 21
5.2.7 BigWorld . 21
5.2.8 GameSalad . 21
5.2.9 Leadwerks . 22
5.2.10 App Game Kit . 22
5.2.11 FPS creator Reloaded . 23
5.2.12 Reach3dx . 23
5.2.13 HeroEngine . 24
5.2.14 Marmalade . 24
5.2.15 Turbulenz . 25
5.2.16 Unity . 26

5.3 Chosen engine . 26

6 System requirements 27
6.1 Functional requirements . 27
6.2 Nonfunctional requirements . 29

7 Studies and decisions 30
7.1 Basic concepts . 30

7.1.1 GameObject . 30
7.1.2 Component . 31

7.2 2D Graphics . 32
7.2.1 Camera . 32
7.2.2 Light . 32
7.2.3 Sprites . 32
7.2.4 Textures . 32

7.3 2D Physics . 32
7.3.1 2dCollider . 32
7.3.2 Rigidbody2d . 32

7.4 Interface . 32
7.4.1 Canvas . 32

7.5 User Input . 33
7.5.1 Keyboard Input . 33
7.5.2 Touch Input . 33

7.6 Sound . 33
7.6.1 Audiosource . 33

7.7 Libraries used . 33
7.7.1 UnityEngine . 33
7.7.2 System . 33

7.8 Unity class diagram . 34

8 Analysis and Design 37
8.1 Description . 37
8.2 Analysis . 37

8.2.1 Actors . 37
8.2.2 Use cases . 37
8.2.3 Use case sheets . 39

3

Contents Contents

8.2.4 Activity diagrams . 41
8.3 Design . 44

8.3.1 User interface . 44
8.3.2 Artwork . 44

8.4 Class diagram . 44
8.5 Classes . 46

8.5.1 Enemic N animator . 46
8.5.2 Enemic N . 47
8.5.3 Moviment . 49
8.5.4 Plataforma . 50
8.5.5 Generation control . 51
8.5.6 Controlador . 52
8.5.7 Fons davant . 53
8.5.8 Fons darrera . 53
8.5.9 Scenery control . 54
8.5.10 Llum . 55
8.5.11 Camara . 56
8.5.12 Persistent . 57
8.5.13 Gui . 58
8.5.14 Player . 59
8.5.15 Player animator . 61
8.5.16 Daga . 62

9 Deploying and testing 63
9.1 Touch/swipe recognition . 63
9.2 Animation . 65
9.3 Sound playing . 65
9.4 Rhythm variation . 66
9.5 Parallax background . 67
9.6 Interface . 69

10 Implementation and results 71
10.1 Development process . 71
10.2 Normative and legislation . 71
10.3 Resulting application . 71

11 Conclusions 76
11.1 Scheduling differences . 76
11.2 Real scheduling . 77
11.3 Conclusions . 78

12 Future work 79
12.1 Future work . 79

Bibliography 80

13 User manual 81
13.1 Instalation . 81
13.2 Game controls . 81

14 Annex 83

4

Contents Contents

14.1 Spritesheets and textures . 83

5

Chapter 1

Introduction

In this chapter we are going to explain the main motivations, objectives and purpose of this
project. Also at the end, we will present a brief summary of the distinct sections of this memory.

1.1 Introduction
A videogame is a game played in an electronic device, where one or diverse players interact
with it.

Nowadays, the videogame industry is an ever growing sector able to compete with both cinema
and music industries, actually surpassing their profits. The future of videogames is constantly
changing and open to new markets, for example games on smartphones and tablets. 1.1

An endless runner game is one where the player keeps running forward, avoiding or destroying
certain obstacles and/or enemies. The game developed in this project is specifically a 2D endless
runner, developed for Android.

Figure 1.1: Mobile Gaming Revenue (in Millions of $USD)

6

Chapter 1. Introduction 1.2. Personal motivations

1.2 Personal motivations
I personally find videogames an interesting aspect of the computer engineering degree, and a
good way to put together knowledges about programming, software engineering, multimedia,
computer graphics, and also art, which also interests me on a personal level.

Furthermore, I am also interested in learning about the Unity game engine and getting used to
its functionalities, and this project is a great way to learn thoroughly about a game development
platform.

1.3 Project motivations
The game of this project is a very simple idea, which can be further developed into a more
complex game, simply by adding features. So, this game could be further developed and become
a good seller in the Android store, called Play Store, or at least give the creator some credit
and publicity.

1.4 Project purposes
The main purpose of this project is to develop a game of the 2D endless runner game for Android.

The main character would be able to interact with the game through swipes and touches
on the screen, without any control GUI. Enemies and obstacles will keep appearing from the
right side of the screen, moving to the left. Then the player will have to use one of the available
gestures to either avoid or destroy the menace. Certain enemies require certain gestures, and
the player is required to react quickly at the sight of a hostile object approaching.

This videogame will be developed using a free game development platform: Unity.

1.5 Objectives
The main objective of this project is to develop a 2D endless runner game for Android. The
tasks can be split in the following:

• Study of the Android platform

• Study of the Unity platform

• Study of Unity of programming languages (C#)

• Planning of the game. Script and defining the elements of interaction.

• Implementation of possible actions by the player and interaction with the environment.

• Development of a prototype of the game

• Design and implementation of algorithms of artificial intelligence of enemies.

• Implementation of designs and animations of sprites for Android.

• Creating the final model of the game

• Refinement of the documentation.

7

1.6. Structure of this memory Chapter 1. Introduction

1.6 Structure of this memory
This project report is divided into 15 chapters, which include all project information and
conclusions.

• Chapter 1. Introduction, motivation, purposes and objectives of the project. It explains
the reason of its development, its objectives and the organization of this document.

• Chapter 2. Feasibility study. It specifies the parameters that make possible the development
of the project.

• Chapter 3. Methodology. This chapter defines the used methodology, explaining the
reasons for its use.

• Chapter 4. Planning. It defines the strategy followed to develop and finalize the objectives
and the timing.

• Chapter 5. Framework and previous concepts. This chapter explains the various issues
surrounding the development of the project to better understand the project.

• Chapter 6. System Requirements. Contains various system requirements for full operation
of the application.

• Chapter 7. Studies and decisions. It describes the hardware and software libraries used
during the development project.

• Chapter 8. Analysis and design. This chapter describes the design used in the system,
as well as specifications, deployment diagrams, classes and methods of the project.

• Chapter 9. Implementation and testing. In this chapter it is explained how the different
parts of the system are implemented and tested.

• Chapter 10. Deploying and results. Describes the process to deploy the game and presents
the final results.

• Chapter 11. Conclusions. The conclusions are set out at the end of the project.

• Chapter 12. Future work. It describes improvements and features for new versions of the
game.

• Chapter 13. Bibliography. This chapter contains biographical references used by the
project.

• Chapter 14. User manual. The last chapter includes a manual that explains the operation
and installation in order to use the game correctly.

8

Chapter 2

Feasibility study

2.1 Resources needed to develop this project
The Unity engine, while being itself free, has a series of system requirements, different for
developing and for playing games.

In bold we highlight the available resources for the development.

2.1.1 Developer requirements
OS: Windows 7 SP1+, Windows 8, 10; Mac OS X 10.8+. Windows XP & Vista are not
supported; and server versions of Windows & OS X are not tested.

GPU: Graphics card with DX9 (shader model 2.0) capabilities. Anything made since 2004
should work.

Additional platform development requirements:

1. iOS: Mac computer running minimum OS X 10.9.4 version and Xcode 6.x.

2. Android: Android SDK and Java Development Kit (JDK).

3. Windows 8.1 Store Apps / Windows Phone 8.1: 64 bit Windows 8.1 Pro and Visual
Studio 2013 Update 2+.

4. WebGL: Mac OS X 10.8+ or Windows 7 SP1+ (64-bit editor only)

So the OS and GPU requirements were already ok, I only had to download and install Unity,
the Android SDK and JDK (Java Development Kit).

2.1.2 Player requirements
1. Desktop:

(a) OS: Windows XP SP2+, Mac OS X 10.8+, Ubuntu 12.04+, SteamOS+
(b) Graphics card: DX9 (shader model 2.0) capabilities; generally everything made since

2004 should work.
(c) CPU: SSE2 instruction set support.
(d) Web Player (deprecated): Requires a browser that supports plugins, like IE, Safari

and some versions of Firefox

9

2.2. Initial budget Chapter 2. Feasibility study

2. iOS: requires iOS 6.0 or later.

3. Android: OS 2.3.1 or later; ARMv7 (Cortex) CPU with NEON support or
Atom CPU; OpenGL ES 2.0 or later.

4. WebGL: Any recent desktop version of Firefox, Chrome, Edge or Safari

5. Windows Phone: 8.1 or later

6. Windows Store Apps: 8.1 or later

All the devices used in testing fulfill this requirements.

2.2 Initial budget
This project requires no initial investment. For the future, if we decide to publish it on Steam
Greenlight, it will only require about 100AC and then to pay 30% of profits to Steam once we
start selling. The program used for the development of the games is Unity 5, which requires no
special given license for use. If the sells were to exceed 100000AC annually, then it would require
a professional license.

2.3 Human resources
The optimal team for the realization of this project required a project manager, programmers,
designers, analysts and artists of several disciplines. The tasks would be defined and divided
depending on the role of the worker and the needs of the moment.

• The task of a programmer is to transform all the game ideas into functional code.

• The task of a designer would be to define the structure of the code and algorithms used.

• The task of the analyst would choose what is the best tool developments, investigate
market trends and future technologies.

• The tasks of the artists are to create scenarios, sprites, soundtracks, sound effects,
backgrounds, interfaces and all the artistic aspects of the videogame.

• The task of the project manager would be to set priorities and manage the project team.

In this project all roles are performed by myself, with the help of the tutor of the project.

10

Chapter 2. Feasibility study 2.4. Technological viability

2.4 Technological viability

2.4.1 Economic viability
Estimated economic viability of the project can be divided into two parts, and human costs
costs of equipment and software.

2.4.2 Human costs
The human costs would be based on the following costs per hour:

• Programmer costs: 10AC/hora

• Designer costs: 15AC/hora

• Analyst costs: 18AC/hora

• Artist costs: 10AC/hora

• Manager costs: 18AC/hora

2.4.3 Equipment costs
The cost of machinery and software should take into account the costs of used computers and
software licenses used.

2.4.4 Total costs
In conclusion the estimated cost for the development of the project would be about 7865AC.

11

Chapter 3

Methodology

We have not used a standard methodology for the general development of this project, instead
we choose to use a personalized methodology, due to its advantages in the concrete problem of
developing a videogame.
The different steps of this methodology are as follows:

1. Choosing the tools and programming language.

2. Learning the language and tools chosen.

3. Dividing the project into different parts.

4. Planning the work according to the different parts in which the project has been divided.

5. Developing each part of the project.

6. Checking correctness of each part of the project. If not correct, return to the above-mentioned
step.

7. Merging the different parts of the project. If errors are found, return to the fifth point.

8. Generating different scenarios for the proper functioning of the project. If errors are
found, return to the fifth point.

9. Nuancing the documentation written during the project development.

In the following diagram 3 the steps used are graphically represented.

12

Chapter 3. Methodology

Figure 3.1: Project Methodology

13

Chapter 4

Planning

In this chapter the various tasks of the project and the timing assigned to them will be described.

4.1 Working plan
The working plan of the videogame is divided in tasks, which broadly are planning, learning,
implementation, verification and documentation.

4.2 Planned tasks

4.2.1 Planning
The first task is to decide the tasks and the scheduling, and also how the game is going to be,
and the general software structure.

4.2.2 Learning
In order to begin working with Unity and C#, it is necessary to learn how they work and how
they interact.

4.2.3 Implementation
The implementation consists of software engineering, design, programming and artwork. It can
be divided in the specific game parts.

4.2.3.1 Player

The interaction with the player is done through the main character. This task consists in
managing the player input/interaction and merging it with the actions of the main character,
and also making the character react to the environment.

4.2.3.2 Scenario

The scenario is where the game takes place. It is mostly a design task, but also has algorithms
for its generation and movement.

14

Chapter 4. Planning 4.2. Planned tasks

4.2.3.3 Interface

The interface of this game is minimal, it is meant to display the score and allow the player to
restart the game. There is no ingame interface, as the player has only one life.

4.2.3.4 Enemies

The enemies and obstacles require a certain behavior scripting, and also they must interact
with the environment and player.

4.2.3.5 Art design

The art design consists of:

1. Sprites and animation

2. Backgrounds

3. Scenarios

4. Music and sound

5. Interface design

For the music and sound part, free material (creative commons) has been used. As for the
other aspects, they have been developed by me.

4.2.4 Verification
During the developing process the algorithms have been verified and dynamically modified to
suit the needs of the game.

4.2.5 Documentation
The documentation written during the development process is then refined and perfected.

15

4.3.
Estim

ated
scheduling

C
hapter

4.
Planning

4.3 Estimated scheduling

16

Chapter 4. Planning 4.4. Expected results of every task

4.4 Expected results of every task

4.4.1 Planning
The planning is expected to suit the timeline.

4.4.2 Learning
It is expected to adquire the knowledge necessary to develop the project.

4.4.3 Implementation
It is expected for the game to be functional/playable.

4.4.3.1 Player

The player must be able to interact with the game, and of course the main objective of it is to
be fun to play.

4.4.3.2 Scenario

The scenario must be quickly understandable but also aesthetically pleasing.

4.4.3.3 Interface

The interface of this game has the only purpose to show the score, so it’s not meant to be very
elaborate.

4.4.3.4 Enemies

The enemies are meant to difficult the game and make the player react quickly, thus creating
the game action.

4.4.3.5 Art design

The art is expected to be monothematic and visually appealing, but also clean and easy to
understand by the player.

4.4.4 Verification
The resulting game must be bug-free and fully tested.

4.4.5 Documentation
The resulting documentation must reflect all the decisions taken, and it must be easily readable.

17

Chapter 5

Framework

5.1 Videogame engines
In order to develop a game, the most frequent option is to use a game engine. A game engine
is a software that enables the creation, design and display of a video game. They are based
on different parts, such as rendering, physics, collision detection, sound, scripting, animation,
artificial intelligence, networking, streaming, memory management, multithreading, location
and graphic scenes.
This kind of software is designed for game developers so that they don’t have to worry about
direct manipulation over the graphics libraries on a concrete operating system.
Also, game engines aren’t used only in videogaming ambits, but are also used in architectural
visualizations, training simulations, modeling and physical simulation tools for realistic animations
and film scenes.

5.2 Examples of videogame engines

5.2.1 Unreal Engine

It is an engine created by Epic Games. It allows developing for the following platforms:
Android, HTML5, iOS, Linux, Mac, Oculus, PC, PS4, SteamOS, Xbox One. It is free. It is
based in C++.

The big difference of this engine over others is that it has a system of nodal design, suitable for
users with little programming knowledge who want to use the advanced features of the system.
It also has a a good amount of tutorials and feedback from other users.

18

Chapter 5. Framework 5.2. Examples of videogame engines

5.2.2 CryEngine

It is an engine created by Crytek. It allows developing for the following platforms: Android,
iOS, PC, PS3, PS4, Xbox 360, Xbox One, Wii U. It is free.

It has been used in all of their titles with the initial version being used in Far Cry, and continues
to be updated to support new consoles and hardware for their games. It has also been used
for many third-party games under Crytek’s licensing scheme, including Sniper: Ghost Warrior
2 and SNOW.

5.2.3 GameMaker

It is an engine created by YoYo Games. It allows developing for the following platforms:
Android, Browser, iOS, Mac, PC, PS3, PS4, Vita, Windows Phone. It is free, but the paid
version has more features. It is based in GML. It is oriented to 2D development.

GameMaker accommodates the creation of cross-platform and multi-genre video games using
drag and drop action sequences or a sandboxed scripting language known as Game Maker
Language.

19

5.2. Examples of videogame engines Chapter 5. Framework

5.2.4 Havok Vision Engine

It is an engine created by Havok. It allows developing for the following platforms: Android,
iOS, PS3, Vita, Wii, Wii U, Windows 8, Xbox 360. It is based in C++.

Havok provides a physics engine component and related functions to video games. Since the
SDK’s launch in 2000, it has been used in over 600 video games. Havok supplies tools (the
"Havok Content Tools") for export of assets for use with all Havok products from Autodesk 3ds
Max, Autodesk Maya, and Autodesk Softimage.

5.2.5 Project Anarchy

It is an engine created by Havok. It allows developing for the following platforms: Android,
iOS, PC, Tizen. It is an Android oriented version of the Havok Vision Engine.

20

Chapter 5. Framework 5.2. Examples of videogame engines

5.2.6 ShiVa

It is an engine created by ShiVa. It allows developing for the following platforms: Android,
Blackberry, iOS, Linux, Mac, PS3, SteamOS, Vita, Wii, Windows, Windows Phone 8, Xbox
360. It is based in Lua, but has a C++ plug-in system.

Numerous applications have been created using ShiVa, including the Prince of Persia 2 remake
for Mobiles and Babel Rising published by Ubisoft. With ShiVa 2.0, the next version of the
Editor is currently under heavy development. ShiVa users with licenses newer than Jan 1st
2012 are invited to download the beta builds, test thoroughly and provide feedback.

5.2.7 BigWorld

It is an engine created by Wargaming. It allows developing only for the following platforms
Browser and PC. It’s oriented to MMOG (Masive Multiplayer Online Games) development.

5.2.8 GameSalad

It is an engine created by Gamesalad. It allows developing for the following platforms: Android,
HTML5, iOS, Mac, Windows. It is free, but has a paid version with more features.

21

5.2. Examples of videogame engines Chapter 5. Framework

5.2.9 Leadwerks

It is an engine created by Leadwerks. It allows developing for the following platforms: Linux,
Mac, PC. It is based in OpenGL.

It is aimed primarily at non-programmers for composing games in a drag-and-drop fashion.

5.2.10 App Game Kit

It is an engine created by The Game Creators. It allows developing for the following platforms:
Android, iOS, Mac, PC. It is not free, but has a free trial version. It is based in C++ or AGK
BASIC.

Software produced with the App Game Kit is written in a language called AGK Script.
This language has powerful inbuild commands including commands for 2D graphics, physics
and networking. The commands make use of the platforms’ native functions to improve
performance. They are also designed to enhance code readability. The AGK Script commands
have extensive online documentation.

22

Chapter 5. Framework 5.2. Examples of videogame engines

5.2.11 FPS creator Reloaded

It is an engine created by The Game Creators. It allows developing for the following platforms:
Oculus Rift, PC. It is not free.

Its main objective is to develop an FPS game (First Person Shooter).

5.2.12 Reach3dx

It is an engine created by Gamebase. It allows developing for the following platforms: Android,
Flash, HTML5, iOS. It is not free. It is based in OpenFL and Haxe.

23

5.2. Examples of videogame engines Chapter 5. Framework

5.2.13 HeroEngine

It is an engine created by Idea Fabrik. It allows developing only for PC. It is not free. It is
designed for massively multiplayer and online games.

At first developed for the company’s own game Hero’s Journey, the engine won multiple awards
at tradeshows, and has since been licensed by other companies.

The engine has online creation. For example, one developer can be creating a house and
the entities inside, while another works on the landscaping and terrain around it. Each sees
the other’s work in real time.

5.2.14 Marmalade

It is an engine created by Marmalade. It allows developing for the following platforms: Android,
BlackBerry, iOS Mac, Windows, Tizen. It is not free. It is based in C++, but also allows Lua,
HTML or Objective-C.

The underlying concept of the Marmalade SDK is write once, run anywhere so that a single
codebase can be compiled and executed on all supported platforms rather than needing to be
written in different programming languages using a different API for each platform. This is
achieved by providing a C/C++ based API which acts as an abstraction layer for the core API
of each platform.

24

Chapter 5. Framework 5.2. Examples of videogame engines

5.2.15 Turbulenz

It is an engine created by Turbulenz. It allows developing only for Browser. It is based on
HTML5.

25

5.3. Chosen engine Chapter 5. Framework

5.2.16 Unity

It is an engine created by Unity Technologies. It allows developing for the following platforms:
Android, BlackBerry, iOS, Linux, Mac, PS3, PS4, Xbox 360, Xbox One and more. It is free
to use, but if the game earnings exceed 100000AC annually, a payment license is required. Also,
if the games developed are commercial, a certain amount of the earnings will go to Unity
Technologies. It allows programming in C# or Javascript.

5.3 Chosen engine
The chosen engine for this project is Unity.
The main criteria in order to choose an engine are the following:

• It has to allow Android developing.

• It has to be free.

• Its scripting language has to be a familiar one.

• It has to have a good amount of tutorials.

• Its community has to be large in order to get support.

• Preferably it has to allow multiplatform development.

So by following these criteria I have chosen Unity, for I think it fulfills the needs of this project.

26

Chapter 6

System requirements

This chapter describes the requirements to be met by the system, both functional and nonfunctional.
On one hand the functional requirements are the services offered by the application regardless
of its implementation. On the other hand, the non-functional requirements are constraints
imposed by the platform or the problem.

6.1 Functional requirements
The application requirements are:

• Begin the game

• Move the character to avoid enemies and obstacles

• Die when a character is damaged

• Show the score and be able to restart

Figure 6.1: Game schematic diagram

27

6.1. Functional requirements Chapter 6. System requirements

Figure 6.2: Jump, attack and throw respectively.

The player is always in the same horizontal position, but the enemies and the scenery move
to the left. The enemies spawn on the right. The player must be able to either avoid or destroy
the enemies.

The player can do three actions: jump (swipe up), attack (swipe down) and throw (swipe
right). Attacking and throwing can both be performed in the air while jumping, but actions
cannot be interrupted.

Jumping will allow the player to avoid obstacles, and it is the most basic defensive action.
Attacking will destroy an enemy who is very close to the player, and throwing will hit an
enemy at a longer distance.

The game rhythm changes creating relaxed temporal zones and stressful temporal zones.
This allows the player to relax from stressful game parts and also not get bored in a very easy
zone.

The rhythm changes can also be appreciated by the player through a change in the illumination.
The darker the light gets, the faster everything will be moving, and viceversa. The speed does
not change discretely but in a continuous fashion, and the rhythm changes in a prefixed random
interval, between 1.5 - 2.5 minutes.

28

Chapter 6. System requirements 6.2. Nonfunctional requirements

6.2 Nonfunctional requirements
Basically, non-functional requirements relate to the availability of resources, security or external
interfaces. As for the security matters, there is no access control requirement for the program.
Also, the program does not keep any confidential data. The implementation and testing of the
game have been carried out in the following devices:

29

Chapter 7

Studies and decisions

Hereafter we will describe the characteristics and features of Unity used in the development of
this project. For the Unity class diagram, please refer to section 7.8.

7.1 Basic concepts

7.1.1 GameObject
This is the Base class for all entities in Unity scenes.

It inherits from Object, which is the base class for all objects Unity can reference.

In Unity, Prefabs are non instantiated objects (class only) which can be instantiated into
the scene in any moment.

7.1.1.1 Public functions

• AddComponent: Adds a component class named className to the game object.

• BroadcastMessage: Calls the method named methodName on every MonoBehaviour
in this game object or any of its children.

• CompareTag: Checks if this game object tagged with a given tag

• GetComponent: Returns the component of Type type if the game object has one
attached, null if it does not.

• GetComponentInChildren: Returns the component of Type type in the GameObject
or any of its children using depth first search.

• GetComponentInParent: Returns the component of Type type in the GameObject or
any of its parents.

• GetComponents: Returns all components of Type type in the GameObject.

• GetComponentsInChildren: Returns all components of Type type in the GameObject
or any of its children.

• GetComponentsInParent: Returns all components of Type type in the GameObject
or any of its parents.

• SendMessage: Calls the method named methodName on every script in this game
object.

30

Chapter 7. Studies and decisions 7.1. Basic concepts

• SendMessageUpwards: Calls the method named methodName on every script in this
game object and on every ancestor of the behaviour.

• SetActive: Activates/Deactivates the GameObject.

7.1.1.2 Static functions

• CreatePrimitive: Creates a game object with a primitive mesh renderer and an appropriate
collider.

• Find: Finds a game object by name and returns it.

• FindGameObjectsWithTag: Returns a list of active GameObjects tagged tag. Returns
empty array if no GameObject was found.

• FindWithTag: Returns one active GameObject tagged tag. Returns null if no GameObject
was found.

7.1.1.3 Inherited public functions

These are the public functions inherited from Object.

• GetInstanceID: Returns the instance id of the object.

• ToString: Returns the name of the game object.

7.1.1.4 Inherited static functions

These are the static functions inherited from Object.

• Destroy: Removes a GameObject, component or asset.

• DestroyImmediate: Destroys the object obj immediately. It is strongly recommended to
use Destroy instead.

• DontDestroyOnLoad: Makes the object target not to be destroyed automatically when
loading a new scene.

• FindObjectOfType: Returns the first active loaded object of Type type.

• FindObjectsOfType: Returns a list of all active loaded objects of Type type.

• Instantiate: Returns a copy of the object original.

7.1.2 Component
This is the Base class for everything attached to GameObjects. The code will never directly
create a Component. Instead, we write a script code, and attach the script to a GameObject.

Component also inherits from Object, so it has the same inherited methods (Destroy, Instantiate.̇.)

31

7.2. 2D Graphics Chapter 7. Studies and decisions

7.2 2D Graphics

7.2.1 Camera
It is the 2D view of the scene. See figure 7.1. Its perspective and position can be changed.

7.2.2 Light
It illuminates the scene. See figure 7.2. It can be a directional light, a point light or an ambient
light.

7.2.3 Sprites
A sprite is a two-dimensional bitmap that is integrated into a larger scene. All the sprites made
for this project can be found in the annex.

7.2.4 Textures
A texture is an image that fills a 3D object surface.

7.3 2D Physics

7.3.1 2dCollider
Base class of all colliders: BoxCollider, SphereCollider, CapsuleCollider, MeshCollider, EdgeCollider.

A collider is used to detect collisions between Rigidbody2Ds. 7.8

7.3.2 Rigidbody2d
This class controls an object’s position through physics simulation. Adding a Rigidbody
component to an object will put its motion under the control of Unity’s physics engine. Even
without adding any code, a Rigidbody object will be pulled downward by gravity and will react
to collisions with incoming objects if the right Collider component is also present.
The Rigidbody also has a scripting API allows applying forces to the object and controls it in
a physically realistic way.

7.4 Interface

7.4.1 Canvas
It is an element that can be used for screen rendering. See figure 7.3. Elements on a canvas
are rendered after scene rendering, either from an attached camera or using overlay mode.
It is used in this project for displaying the interface.

32

Chapter 7. Studies and decisions 7.5. User Input

7.5 User Input

7.5.1 Keyboard Input
In the Input settings we configure the user keyboard input. In this project this is only used for
debugging.

7.5.2 Touch Input
The Unity touch detection can detect single touches but not swipes. So, in order to detect
swipes, an external library or an algorithm must be used.

7.6 Sound

7.6.1 Audiosource
Audiosource is the main Unity component for sound management. In 2D, the sounds have no
3D special effect.

7.7 Libraries used

7.7.1 UnityEngine
It is the main Unity library which contains the basic objects and methods described above.

7.7.2 System
System contains the C# classes and data types.

33

7.8. Unity class diagram Chapter 7. Studies and decisions

7.8 Unity class diagram
This is a simplified view of the Unity class diagram.

34

Chapter 7. Studies and decisions 7.8. Unity class diagram

Figure 7.1: Camera

Figure 7.2: Orange point light

35

7.8. Unity class diagram Chapter 7. Studies and decisions

Figure 7.3: Edge Collider (Green line)

Figure 7.4: Canvas

36

Chapter 8

Analysis and Design

In this chapter we will describe the videogame in detail and the elements of its design.

8.1 Description
As said in the above chapters, this videogame is a 2D endless runner. The player is always in
the same horizontal position, but the enemies and the scenery move to the left. The enemies
spawn on the right. The player must be able to either avoid or destroy the enemies.

Figure 8.1: Game schematic diagram

8.2 Analysis

8.2.1 Actors
An actor in software engineering is a role performed by a user or another system that interacts
with the subject. In this project we have only 2 actors, the player and the developer, which is an
extension of the player with additional capabilities (keyboard interaction) that allow debugging
the game.

8.2.2 Use cases
A use case is a sequence of interactions that take place between the system and the actors in
response to an event initiated by the actor. The use cases are divided in 3 diagrams: interaction,
main menu and game.

37

8.2. Analysis Chapter 8. Analysis and Design

8.2.2.1 Interaction

8.2.2.2 Main menu

38

Chapter 8. Analysis and Design 8.2. Analysis

8.2.2.3 Game

8.2.3 Use case sheets

39

8.2. Analysis Chapter 8. Analysis and Design

40

Chapter 8. Analysis and Design 8.2. Analysis

8.2.4 Activity diagrams
The activity diagrams are divided in 2 diagrams: main menu and game.

8.2.4.1 Main menu

As we can see, the player starts the application. Then the system loads the first scene: the
main menu. It allows the player to start the game.

If the player starts the game, go to the next diagram: Game. If the player chooses to exit,
the application finishes.

41

8.2. Analysis Chapter 8. Analysis and Design

8.2.4.2 Game

The game starts loading the main game scene. It begins listening to events in parallel, and
starts the game controller. These events can come from within the system or from the player
interaction.

If the player interacts with the game (touching the screen), the game executes the player
action. If an enemy interacts with the player (because of reaching him, or because a random
event is that triggered), the game executes the enemy action.

The actions described above can result in the death of either the player or an enemy. If
the player is dead, the game returns to main menu (see Main Menu diagram). If an enemy is

42

Chapter 8. Analysis and Design 8.2. Analysis

dead, the score is increased and the enemy disappears.

The controller has two functions: object generation and game rhythm management. Both
are triggered by a random time. The object generation is the creation of both enemies and
platforms. They are not interdependent, and the platforms appear more often than enemies.
The game rhythm changes will make the global game speed faster or slower in a progressive
way. It also implies a change in the scene lighting.

43

8.3. Design Chapter 8. Analysis and Design

8.3 Design

8.3.1 User interface

The interface is not meant to be fancy, but purely functional. Likewise, artwork will be left for
future work.

Figure 8.2: Basic interface menu

8.3.2 Artwork

In the annex are included all the spritesheets used (even when not used, expected for future
work) in the game.

8.4 Class diagram

In the next page we can see the game class diagram, with relations, methods and members.

44

Chapter 8. Analysis and Design 8.4. Class diagram

45

8.5. Classes Chapter 8. Analysis and Design

8.5 Classes

8.5.1 Enemic N animator

8.5.1.1 Description

This class controls the animations and transitions of an enemy N. The transition process will
be further explained in Chapter 9.

8.5.1.2 Unity components

This is an Animation Controller. Its role is to manage the state transitions between animations.

8.5.1.3 Members

• count: This integer holds the value of the time that has passed since the animation has
entered the current state.

8.5.1.4 Methods

• onStateEnter: This is an override of the Unity method with the same name. It is
triggered when an animation state is entered. Here the time counter is initialized.

• onStateUpdate: This is an override of the Unity method with the same name. It is
triggered in every step during an animation state. Here the counter is incremented, and
when it reaches a given prefixed number, an action of the enemy is performed.

onStateUpdate{
counter = counter + 1
i f (counter > NUMBER){

performAction ()
}

}

• onStateExit: This is an override of the Unity method with the same name. It is triggered
when an animation state is exited. Sometimes the action described in the above method
is performed here.

46

Chapter 8. Analysis and Design 8.5. Classes

8.5.2 Enemic N

8.5.2.1 Description

This class represents an individual enemy. The function of the enemies is to be an obstacle/menace
for the player.

Figure 8.3: Example of enemy

8.5.2.2 Unity components

It is a game object (prefab) that has multiple instances. It has scripts and 2D physics elements:
a 2DCollider and a 2DRigidBody, and it has an animation controller.

8.5.2.3 Methods

• start: This is an override of the Unity method with the same name. It is triggered
when the object is created. It initializes the enemy, giving it its motion and starting the
enumerator.

• onCollisionEnter2D: This is an override of the Unity method with the same name. It
is triggered whenever the collider throws a collision event. It handles the collisions with
the player and with the object Daga. The first one results in the enemy’s death when the
player is attacking, or in performing an action when it is not. The second also results in
death for the player.

onCol l i s ionEnter2D (ob j e c t){
// ob j e c t i s the ob j e c t who c o l l i d e s
i f (ob j e c t . type = daga){

d i e
}
e l s e i f (ob j e c t . type = playe r){

i f (p laye r . a c t i on == ATTACK){
d i e

47

8.5. Classes Chapter 8. Analysis and Design

}
e l s e {

performAction ()
}

}
}

• timer: This is the method of the enumerator. It performs an action (attack the player)
and reinitializes the enumerator.

48

Chapter 8. Analysis and Design 8.5. Classes

8.5.3 Moviment

8.5.3.1 Description

This is an interface which allows objects to move horizontally.

8.5.3.2 Unity components

This is a script which will be used by objects who have a simple horizontal movement.

8.5.3.3 Members

• velocitat: This variable holds the speed of the object. Positive values mean left and
negative mean right.

• rb: This is the RigidBody2D of the object that will be moved.

8.5.3.4 Methods

• start: This is an override of the Unity method with the same name. It is triggered when
the object is created. It initializes the object giving it its initial motion.

• update: This is an override of the Unity method with the same name. It is triggered on
every step. It keeps the object moving on a constant speed.

49

8.5. Classes Chapter 8. Analysis and Design

8.5.4 Plataforma

8.5.4.1 Description

This class represents a platform, on the top of which the player and the enemies move.

Figure 8.4: Example of platform with its collider in green

8.5.4.2 Unity components

It is a game object (prefab) that has multiple instances. It has 2D physics elements: a
2DCollider and a 2DRigidBody, and it has a fixed sprite.

50

Chapter 8. Analysis and Design 8.5. Classes

8.5.5 Generation control

8.5.5.1 Description

This class manages the generation of enemies and platform instances in the game.

8.5.5.2 Unity components

This is an abstract Game Object with scripts.

8.5.5.3 Members

• x: This holds the horizontal generation position value.

• t_max: This is the upper value for the time interval generation for platforms.

• t_min: This is the lower value for the time interval generation for platforms.

• y_max: This is the upper value for the vertical position interval generation for platforms.

• y_min: This is the lower value for the vertical position interval generation for platforms.

• t_maxN: This is the top value for the time interval generation for enemy N.

• t_minN: This is the low value for the time interval generation for enemy N.

• y_maxN: This is the top value for the vertical position interval generation for enemy N.

• y_minN: This is the low value for the vertical position interval generation for enemy N.

8.5.5.4 Methods

• GenPlataformes: This enumerator generates an instance of the platform.

• GenEnemicN: This enumerator generates an instance of enemy N.

51

8.5. Classes Chapter 8. Analysis and Design

8.5.6 Controlador

8.5.6.1 Description

This is the main control object. It holds the generation controller, the persistence controller
and the scenery controller, and also manages rhythm variation.

8.5.6.2 Unity components

This is an abstract Game Object with scripts.

8.5.6.3 Members

• glob_velocitat: This variable holds the global game speed.

• ritme: This variable holds the rhythm speed.

8.5.6.4 Methods

• start: This is an override of the Unity method with the same name. It is triggered when
the object is created. It initializes the rhythm enumerator and its subclasses: Scenery
contol, Generation control and Persistent.

• update: This is an override of the Unity method with the same name. It is triggered at
every step. It changes the speed according to the current rhythm.

• ritme: This enumerator changes randomly the rhythm, and is triggered again in a random
time between a given interval (1.5-2.5 minutes).

Enumerator r i tme {
r itme = random
temps = random (1 . 5 , 2 . 5)
r e to rna e spe ra r (temps)

}

52

Chapter 8. Analysis and Design 8.5. Classes

8.5.7 Fons davant

8.5.7.1 Description

This is the foreground of the scenery landscape.

8.5.7.2 Unity components

It is a 3D Game Object (a Quad) with a texture.

8.5.8 Fons darrera

8.5.8.1 Description

This is the background of the scenery landscape.

8.5.8.2 Unity components

It is a 3D Game Object (a Quad) with a texture.

Figure 8.5: Both background objects seen in 3D view

53

8.5. Classes Chapter 8. Analysis and Design

8.5.9 Scenery control

8.5.9.1 Description

This class controls the parallax effect of the background and the lighting changes when the
rhythm changes.

8.5.9.2 Unity components

This is an abstract Game Object with scripts.

8.5.9.3 Members

• speed: This variable holds the value of the speed of the background. It is relative to the
game speed.

• flag: This flag is used to activate/deactivate the background movement.

8.5.9.4 Methods

• start: This is an override of the Unity method with the same name. It is triggered when
the object is created. It initializes the movement of the background.

• update: This is an override of the Unity method with the same name. It is triggered at
every step. It moves the background and changes the lighting according to the current
rhythm.

update{
GLOB_velocitat = ritme ∗ FACTOR1
llum . i n t e n s i t y = ritme ∗ FACTOR2

}

• start: This starts the background movement.

• stop: This starts the background movement.

54

Chapter 8. Analysis and Design 8.5. Classes

8.5.10 Llum

8.5.10.1 Description

This is the light that illuminates the scene.

Figure 8.6: Light

8.5.10.2 Unity components

This is a Directional Light, which illuminates the 2D scene from above. It has an orange color.

55

8.5. Classes Chapter 8. Analysis and Design

8.5.11 Camara

8.5.11.1 Description

This is the 2D camera that allows the player to see the scene.

Figure 8.7: Camera

8.5.11.2 Unity components

This is a Camera, which uses a 2D projection.

56

Chapter 8. Analysis and Design 8.5. Classes

8.5.12 Persistent

8.5.12.1 Description

This is a special object that survives scene changes in order to store values between scenes.

8.5.12.2 Unity components

This is a persistent Game Object, meaning it does not disappear when changin between scenes.

8.5.12.3 Members

• enemics: This variable holds the value of the amount of enemies killed.

• temps: This variable holds the value of the amount of time spent.

• flag: This flag blocks the time counter when in the menu.

8.5.12.4 Methods

• start: This is an override of the Unity method with the same name. It is triggered when
the object is created. It initializes the variables to 0.

• update: This is an override of the Unity method with the same name. It is triggered at
every step. It updates the time variable.

• enemicmort: This is triggered when an enemy is killed, and increments the variable
enemics.

• parar: This stops the time.

• reiniciar: This restarts the variables.

57

8.5. Classes Chapter 8. Analysis and Design

8.5.13 Gui

8.5.13.1 Description

This class manages the GUI displaying.

8.5.13.2 Unity components

This is a Canvas, where the menu Gui will be drawed.

8.5.13.3 Methods

• onGui: This is an override of the Unity method with the same name. It is triggered
when the canvas is able to draw. It draws the interface.

58

Chapter 8. Analysis and Design 8.5. Classes

8.5.14 Player

8.5.14.1 Description

This is the main character controller, which also reads the user input.

Figure 8.8: Player in the scene

8.5.14.2 Unity components

It is a game object (prefab) that has multiple instances. It has associated scripts and 2D physics
elements: a 2DCollider and a 2DRigidBody, and it has an animation controller. It also has an
AudioSource and a Scene Manager.

8.5.14.3 Members

• min_swipe_dist_y: This variable holds the minimal vertical length for a swipe to be
detected.

59

8.5. Classes Chapter 8. Analysis and Design

• min_swipe_dist_x: This variable holds the minimal horizontal length for a swipe to
be detected.

• jump_force: This variable holds the value of the force applied upwards when jumping.

• impact: This holds the sound performed when attacking.

• startPos: This is the initial position of the player.

• audio: This is the Audiosource that plays sounds.

• accio: This holds the value of the current action. 0 means no action, 1 means attacking
and 2 means throwing.

8.5.14.4 Methods

• start: This is an override of the Unity method with the same name. It is triggered
when the object is created. It initializes the enemy giving it its motion and starting the
enumerator.

• update: This is an override of the Unity method with the same name. It is triggered at
every step. It calls readKeyboard (developer only) and readSwipe.

• onCollisionEnter2D: This is an override of the Unity method with the same name. It
is triggered when the collider throws a collision event. It handles the collisions with the
enemies. If the player is not attacking, it triggers the method the method die.
onCol l i s ionEnter2D (ob j e c t){

// ob j e c t i s the ob j e c t who c o l l i d e s
i f (ob j e c t . type = enemy){

i f (a c t i on != ATTACK){
d i e

}
}

}

• fiaccio: It allows the player to perform a new action. It is called when an action is
finished.

• die: It destroys the player and changes the Scene to the main menu.

• upSwipe: It performs the actions of an "up" swipe (activating the corresponding animation)

• downSwipe: It performs the actions of a "down" swipe (activating the corresponding
animation)

• rightSwipe: It performs the actions of a "right" swipe (activating the corresponding
animation)

• leftSwipe: It performs the actions of a "left" swipe (activating the corresponding animation)

• readKeyboard: It reads the user input via keyboard and launches one of the swipe
methods.

• readSwipe: It reads the user input via touch and launches one of the swipe methods.

60

Chapter 8. Analysis and Design 8.5. Classes

8.5.15 Player animator

8.5.15.1 Description

This class controls the animations and transitions of the player.

8.5.15.2 Unity components

This is an Animation Controller, like Enemic N animator.

8.5.15.3 Members

• count: This integer holds the value of the time that has passed since the animation has
entered the current state.

8.5.15.4 Methods

• onStateEnter: This is an override of the Unity method with the same name. It is
triggered when an animation state is entered. Here the time counter is initialized.

• onStateUpdate: This is an override of the Unity method with the same name. It is
triggered at every step during an animation state. Here the counter is incremented, and
when it reaches a given prefixed number, if the action is throw, the player creates a Daga
object.

onStateUpdate{
counter = counter + 1
i f (p laye r . a c t i on == throw && counter > NUMBER){

createDaga
}

}

• onStateExit: This is an override of the Unity method with the same name. It is triggered
when an animation state is exited. Sometimes the action described in the above method
is performed here, in the same way of onStateUpdate.

61

8.5. Classes Chapter 8. Analysis and Design

8.5.16 Daga

8.5.16.1 Description

This is the sword thrown when the player performs the action throw.

Figure 8.9: Daga flying in the scene

8.5.16.2 Unity components

It is a game object (prefab) that has multiple instances. It has 2D physics elements: a
2DCollider and a 2DRigidBody.

62

Chapter 9

Deploying and testing

In this chapter we will detail how the specific elements of the videogame have been programmed.

9.1 Touch/swipe recognition
The game input uses swipes as actions. In order to detect the swipe directions we use the
following algorithm:

void readSwipe (){
i f (Input . touchCount > 0){

Touch touch = Input . touches [0] ;
switch (touch . phase) {

case TouchPhase . Began :
s ta r tPos = touch . p o s i t i o n ;
break ;

case TouchPhase . Ended :
f loat sw ip eD i s tVe r t i c a l = (new Vector3

(0 , touch . p o s i t i o n . y , 0) − new Vector3 (0 ,
s ta r tPos . y , 0)) . magnitude ;

i f (sw ip eD i s tVe r t i c a l < minSwipeDistY) {
f loat sw ipeDi s tHor i zonta l = (new Vector3

(touch . p o s i t i o n . x , 0 , 0) − new Vector3
(s ta r tPos . x , 0 , 0)) . magnitude ;

i f (sw ipeDi s tHor i zonta l > minSwipeDistX) {
f loat swipeValue1 = Mathf . Sign

(touch . p o s i t i o n . x − s ta r tPos . x) ;
i f (swipeValue1 > 0) {

r ightSwipe () ;
break ;

} else i f (swipeValue1 < 0) {
l e f t Sw ip e () ;
break ;

}
}

}
sw ipeD i s tVe r t i c a l = (new Vector3 (0 , touch . p o s i t i o n . y , 0) −

new Vector3 (0 , s ta r tPos . y , 0)) . magnitude ;
i f (sw ip eD i s tVe r t i c a l > minSwipeDistY){

63

9.1. Touch/swipe recognition Chapter 9. Deploying and testing

f loat swipeValue2 = Mathf . Sign (touch . p o s i t i o n . y −
s ta r tPos . y) ;

i f (swipeValue2 > 0) {
upSwipe () ;
break ;

} else i f (swipeValue2 < 0) {
downSwipe () ;
break ;

}
break ;

}
}

}
}

This algorithm captures the initial offset and detects the movement. If the new offset is at
enough distance from the initial one, it triggers a swipe.

It uses Touchphase in order to detect whether the swipe is beginning (to capture the initial
position) or ending (to capture the final position). When it has the final position, the vertical
and horizontal distances are calculated (using Vector3).

64

Chapter 9. Deploying and testing 9.2. Animation

9.2 Animation
For the player and enemy animation we use sprites, which we cut in Unity to create animations.
In order to change from one animation to another, we use the Unity’s Animation Controller,
which is a deterministic state machine. The conditions of the state change are both state ending
and the reading of a variable "action", which is manipulated in the code of the states or by the
player/enemy.

The initial state is main_walk, and is entered on the creation of the animator. When the
variable "action" has the value 1 and the state is main_walk, it triggers the transition main_walk
- main_hit. When the value is 2 and state is main_walk, it triggers main_walk - main_throw.
On any state, when its animation is ended, the transition will be going back to main_walk.

At figure 9.1. is the state machine for the player character

Figure 9.1: Player Animation Controller

9.3 Sound playing
The sound playing uses the Unity embedded Audiosource functionalities. These functionalities
are basically the usage of AudioSource objects (which are a source of sound) and Sound objects
(which are sound instances). The Audiosource is a Component, and we call its sound playing
method with the sound we want to play.
audio = GetComponent<AudioSource >() ;
audio . PlayOneShot (impact , 0 . 7F) ;

65

9.4. Rhythm variation Chapter 9. Deploying and testing

9.4 Rhythm variation
The rhythm variation is based in an enumerator that loops infinitely, changing the rhythm
when triggered (with a random time). It also alters the global speed constantly according to
the current rhythm, adding to it the value of "ritme" multiplied by a scale factor, thus creating
an acceleration.

void Update () {
GLOB_velocitat += ritme ∗0 .01 f ;

}

IEnumerator Ritme (){
while (true){

r i tme = Random . value ∗ (0 . 01 f − −0.01 f) +
−0.01 f ;

GameObject . Find (" llum ") .
GetComponent<Light> () . i n t e n s i t y = 1.45 f − r i tme ∗200 ;
y i e l d return new WaitForSeconds (

Random . value ∗ (10 − 1) + 1) ;
}

}

66

Chapter 9. Deploying and testing 9.5. Parallax background

9.5 Parallax background

The parallax background is the visual effect produced when 2 layers of background move in
parallel planes. This produces an aesthetically pleasing effect of movement and simulates depth.
In order to achieve this, we use Unity’s embedded 3D functionalities, thus creating 2 different
3D objects with the textures, that will be seen in 2D.

Figure 9.2: 3D Objects forming the Parallax background

67

9.5. Parallax background Chapter 9. Deploying and testing

Then we have to make them move according to the speed of the game, so we multiply the
background speed and the global speed, finding a speed v. This will be used to calculate the
new value of the texture offset in every step, using the variable time (a counter that will be
incremented at every step). We multiply the time for the speed and a scale factor, and this
will give us the horizontal component of the vector offset. Finally we apply this offset to the
background texture.

void Star t (){
time = 0 ;

}
void Update () {

i f (f l a g == 1) {
time += 1 ;
f loat v = speed ∗ GameObject . Find

(" cont ro l ado r ") . GetComponent
<contro lador> () . GLOB_velocitat ;

o f f s e t = new Vector2 (time ∗ 0 .01 f ∗ v , 0) ;
}
GetComponent<Renderer >() . mate r i a l . mainTextureOffset

= o f f s e t ;
}
public void stop (){

f l a g = 0 ;
}
public void play (){

f l a g = 1 ;
}

68

Chapter 9. Deploying and testing 9.6. Interface

9.6 Interface
The interface is created totally via scripting. It is purely functional and has no artistic elements.

Figure 9.3: Basic menu interface

It displays the enemies killed and time spent when possible (when there is a last game),
otherwise leaves the fields empty. So the first step is to try to get the value of "enemics" and
"temps" which are variables from the object persistent, representing the enemies killed and the
time elapsed respectively. If we can’t get them, we leave the values in 0, so that they won’t be
shown.

The rest of the code is about drawing TextFields and giving them the variable values and
configurating a button that will call the game scene when pressed.

void OnGUI () {
int enem = 0 ;
int time = 0 ;
try{
enem= GameObject . Find (" p e r s i s t e n t ") . GetComponent<p> () . enemics ;
time= GameObject . Find (" p e r s i s t e n t ") . GetComponent<p> () . temps ;
}
catch (Exception){}

i f (enem==0)
GUI . TextFie ld (new Rect (400 , 100 , 200 , 200) , " " , 5 0) ;

else
GUI . TextFie ld (new Rect (400 , 100 , 200 , 200) , " "+enem , 5 0) ;

i f (time==0)
GUI . TextFie ld (new Rect (700 , 100 , 200 , 200) , " " , 5 0) ;

else
GUI . TextFie ld (new Rect (700 , 100 , 200 , 200) , " "+time , 5 0) ;

69

9.6. Interface Chapter 9. Deploying and testing

i f (GUI . Button (new Rect (100 ,100 ,200 ,200) , " S ta r t ␣Game")) {
try{ GameObject . Find (" p e r s i s t e n t ") . SendMessage (" r e i n i c i a r ") ; }
catch (Exception){}
SceneManager . LoadScene ("main ") ;

}
}

70

Chapter 10

Implementation and results

10.1 Development process
First of all, we selected the videogame type, a 2D endless runner. After that, we decided the
videogame mechanics and objectives of the project. The following step was to select a videogame
development engine. For this project Unity was selected. Then we decided which language of
Unity we would use, which ended up being C#. The next step was to begin learning all the
funcionalities of Unity, oriented to the development of the specific type of game we wanted.
Afterwards we began the development of the project, following the steps described in chapter
3. During the development, testing and beta tester feedback was used.
Once finished the main game mechanism, we dedicated the last days to refining the documentation
and the game itself.

10.2 Normative and legislation
This project has no problem with the current legislation and normative.
Refering to the Ley organica de protección de datos de caracter personal (LOPD), this project
does not store any personal data.
Refering to the Ley de servicios de la sociedad de la información y comercio electrónico (LSSICE),
this project is not an economic activity.

10.3 Resulting application
All the tasks of the objectives have been accomplished.
Below are several snapshots of the videogame, displaying different stages of it. The rhythm
variations can also be observed in the different scene lighting of every screen.

71

10.3. Resulting application Chapter 10. Implementation and results

On the very beginning of the game, we see the player floating over platforms. The visual
effect is that the player is moving forward to the right, but in fact the player is still and the
scenario is moving to the left.

The platforms form an irregular terrain due to their random generation in the vertical position,
and cannot be individually distinguished. The background is moving at two different speeds
forming the parallax effect. See Figure 10.1.

Randomly, we can see a change in the game rhythm. We also notice it due to a change in
illumination.

Figure 10.1: Player and scenery

72

Chapter 10. Implementation and results 10.3. Resulting application

The first enemy appears. Since it is far away from the player, the best idea is to use throw.
The throwing animation of the player is played and a flying sword appears, moving towards
the enemy. If it hits, the enemy dies.

In this screenshot we can also see a different illumination, meaning this is a faster zone than
the previous one. See Figure 10.2.

Figure 10.2: Enemies appear, player uses throw

73

10.3. Resulting application Chapter 10. Implementation and results

Certain obstacles/enemies cannot be killed. Then, the only option the player has left is to
jump. Jump can also be used to avoid regular enemies, or to attack or throw in the air, in
order to hit a target that is floating. See Figure 10.3.

Figure 10.3: Player uses jump to avoid an obstacle

74

Chapter 10. Implementation and results 10.3. Resulting application

When an enemy is very close to the player, the best option is to attack: jumping would
not avoid it and throwing would be too slow. So, if the player uses the attack commando, the
enemy will be killed when hit.

At Figure 10.4 we can also see the fastest game pace possible. As we can see, the background
has turned almost black, because the light is very weak. It means the game speed will increase
strongly in the next seconds, making this area a difficult one in the game.

Figure 10.4: Player uses attack to kill an enemy

75

Chapter 11

Conclusions

11.1 Scheduling differences
Several differences can be observed between the real and planified timeline.

• In general, everything took more time than expected.

• The learning was very practical-oriented, so the implementation began simultaneously.

• The implementation took more time than expected. We had to restart the Unity project
several times due to errors in the configuration.

• The development of the art design also took some time, but in the beginning of the
development prototype sprites were used.

• The verification began when the player and scenario were created and lasted longer than
expected.

Since a certain margin was left for perfecting everything in the last weeks, the project has
been successfully completed, but the resulting game requires a lot more work to be commercially
acceptable.

76

C
hapter

11.
C
onclusions

11.2.
R
ealscheduling

11.2 Real scheduling

77

11.3. Conclusions Chapter 11. Conclusions

11.3 Conclusions
The conclusions of this project are the following:

• The main objectives have been successfully accomplished.

– Planning of the game. Script and defining the elements of interaction.
– Implementation of possible actions by the player and interaction with the environment.
– Development of a prototype of the game
– Design and implementation of algorithms of artificial intelligence of enemies.
– Implementation of designs and animations of sprites for Android.
– Creating the final model of the game
– Refinement of the documentation.

• I have realized developing a videogame is a very complex task, probably more adequate
for a team.

• Writing a memory fully in English and in Latex was an enriching experience in both
competences.

• I have learned about Android platform

• I have learned about the Unity platform

• I have learned about programming languages (C#)

• The resulting game requires way more work to be commercialized.

78

Chapter 12

Future work

12.1 Future work
The possible future improvements of the videogame are the following:

1. Perfect the gameplay so that the player will have a better game experience.

2. Improve the interfaces.

3. Publish the game to Play store.

4. Create an online service (maybe, a REST service) to display best scores.

5. Add more enemies with different behaviors.

6. Improve the artwork and graphics.

7. Improve the music and sound effects.

8. Add more scenarios and decorations.

79

Bibliography

[1] Android. https://www.android.com/. Accessed: 2016-02/03.

[2] Another open game art website. http://open.commonly.cc/. Accessed: 2016-04/06.

[3] C sharp community examples. http://www.csharp-station.com/, . Accessed:
2016-02/04.

[4] C sharp programming guide. https://msdn.microsoft.com/en-us/library/67ef8sbd.
aspx, . Accessed: 2016-02/04.

[5] C sharp tutorial. http://www.tutorialspoint.com/csharp/, . Accessed: 2016-02/04.

[6] Information about game engines. http://www.develop-online.net/. Accessed:
2016-06-01.

[7] List of open game art websites. http://v-play.net/game-resources/
16-sites-featuring-free-game-graphics. Accessed: 2016-04/06.

[8] Monodevelop. http://www.monodevelop.com/. Accessed: 2016-02/03.

[9] Open game art. http://opengameart.org/. Accessed: 2016-04/06.

[10] Parallax effect. http://pixelnest.io/tutorials/2d-game-unity/
parallax-scrolling/. Accessed: 2016-04-20.

[11] Sprite design. http://design.tutsplus.com/tutorials/
how-to-create-an-animated-pixel-art-sprite-in-adobe-photoshop--cms-20428.
Accessed: 2016-03/04.

[12] Unity. https://unity3d.com/, . Accessed: 2016-02/06.

[13] Unity+android. http://www.androidauthority.com/
an-introduction-to-unity3d-666066/, . Accessed: 2016-02/03.

[14] Unity api. http://docs.unity3d.com/ScriptReference/index.html, . Accessed:
2016-02/06.

[15] Unity community. http://answers.unity3d.com/, . Accessed: 2016-02/06.

[16] Unity examples and information. https://madewith.unity.com/, . Accessed: 2016-03.

[17] Unity manual. http://docs.unity3d.com/Manual/index.html, . Accessed: 2016-02/06.

[18] Unity tutorials. https://unity3d.com/learn/tutorials, . Accessed: 2016-02/03.

80

https://www.android.com/
http://open.commonly.cc/
http://www.csharp-station.com/
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
http://www.tutorialspoint.com/csharp/
http://www.develop-online.net/
http://v-play.net/game-resources/16-sites-featuring-free-game-graphics
http://v-play.net/game-resources/16-sites-featuring-free-game-graphics
http://www.monodevelop.com/
http://opengameart.org/
http://pixelnest.io/tutorials/2d-game-unity/parallax-scrolling/
http://pixelnest.io/tutorials/2d-game-unity/parallax-scrolling/
http://design.tutsplus.com/tutorials/how-to-create-an-animated-pixel-art-sprite-in-adobe-photoshop--cms-20428
http://design.tutsplus.com/tutorials/how-to-create-an-animated-pixel-art-sprite-in-adobe-photoshop--cms-20428
https://unity3d.com/
http://www.androidauthority.com/an-introduction-to-unity3d-666066/
http://www.androidauthority.com/an-introduction-to-unity3d-666066/
http://docs.unity3d.com/ScriptReference/index.html
http://answers.unity3d.com/
https://madewith.unity.com/
http://docs.unity3d.com/Manual/index.html
https://unity3d.com/learn/tutorials

Chapter 13

User manual

13.1 Instalation
The game is an android APK. It has no special requirements for its instalation, except the
technical requirements stated in chapter 2. The APK just has to be opened on an Android
device or emulator.

13.2 Game controls
The game controls are simple swipes:

1. Left to right swipe 13.2: throw

2. Down to up swipe 13.2: jump

3. Up to down swipe 13.2: hit

4. To interact with the interfaces, all the buttons are touchable 13.2.

Figure 13.1: Screen touch

81

13.2. Game controls Chapter 13. User manual

Figure 13.2: Right swipe

Figure 13.3: Up swipe

Figure 13.4: Down swipe

82

Chapter 14

Annex

14.1 Spritesheets and textures

Figure 14.1: Player still

Figure 14.2: Player attack

Figure 14.3: Player throw

83

14.1. Spritesheets and textures Chapter 14. Annex

Figure 14.4: Enemy still

Figure 14.5: Enemy attack1

Figure 14.6: Enemy attack2

Figure 14.7: Enemy dies

84

Chapter 14. Annex 14.1. Spritesheets and textures

Figure 14.8: Enemy still

Figure 14.9: Enemy attack1

Figure 14.10: Enemy attack2

Figure 14.11: Enemy dies

Figure 14.12: Enemy attack1

Figure 14.13: Enemy attack2

85

14.1. Spritesheets and textures Chapter 14. Annex

Figure 14.14: Enemy dies

Figure 14.15: Blood splash

Figure 14.16: Platform

Figure 14.17: Flying sword

Figure 14.18: Spike

86

Chapter 14. Annex 14.1. Spritesheets and textures

Figure 14.19: Background 1

87

14.1. Spritesheets and textures Chapter 14. Annex

Figure 14.20: Background 2

88

	Introduction
	Introduction
	Personal motivations
	Project motivations
	Project purposes
	Objectives
	Structure of this memory

	Feasibility study
	Resources needed to develop this project
	Developer requirements
	Player requirements

	Initial budget
	Human resources
	Technological viability
	Economic viability
	Human costs
	Equipment costs
	Total costs

	Methodology
	Planning
	Working plan
	Planned tasks
	Planning
	Learning
	Implementation
	Verification
	Documentation

	Estimated scheduling
	Expected results of every task
	Planning
	Learning
	Implementation
	Verification
	Documentation

	Framework
	Videogame engines
	Examples of videogame engines
	Unreal Engine
	CryEngine
	GameMaker
	Havok Vision Engine
	Project Anarchy
	ShiVa
	BigWorld
	GameSalad
	Leadwerks
	App Game Kit
	FPS creator Reloaded
	Reach3dx
	HeroEngine
	Marmalade
	Turbulenz
	Unity

	Chosen engine

	System requirements
	Functional requirements
	Nonfunctional requirements

	Studies and decisions
	Basic concepts
	GameObject
	Component

	2D Graphics
	Camera
	Light
	Sprites
	Textures

	2D Physics
	2dCollider
	Rigidbody2d

	Interface
	Canvas

	User Input
	Keyboard Input
	Touch Input

	Sound
	Audiosource

	Libraries used
	UnityEngine
	System

	Unity class diagram

	Analysis and Design
	Description
	Analysis
	Actors
	Use cases
	Use case sheets
	Activity diagrams

	Design
	User interface
	Artwork

	Class diagram
	Classes
	Enemic N animator
	Enemic N
	Moviment
	Plataforma
	Generation control
	Controlador
	Fons davant
	Fons darrera
	Scenery control
	Llum
	Camara
	Persistent
	Gui
	Player
	Player animator
	Daga

	Deploying and testing
	Touch/swipe recognition
	Animation
	Sound playing
	Rhythm variation
	Parallax background
	Interface

	Implementation and results
	Development process
	Normative and legislation
	Resulting application

	Conclusions
	Scheduling differences
	Real scheduling
	Conclusions

	Future work
	Future work

	Bibliography
	User manual
	Instalation
	Game controls

	Annex
	Spritesheets and textures

