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Abstract 14 

Using low-cost sensors, data can be collected on the occurrence and duration of overflows in 15 

each combined sewer overflow (CSO) structure in a combined sewer system (CSS). The 16 

collection and analysis of real data can be used to assess, improve, and maintain CSSs in 17 

order to reduce the number and impact of overflows. The objective of this study was to 18 

develop a methodology to evaluate the performance of CSSs using low-cost monitoring. This 19 

methodology includes (1) assessing the capacity of a CSS using overflow duration and rain 20 

volume data, (2) characterizing the performance of CSO structures with statistics, (3) 21 

evaluating the compliance of a CSS with government guidelines, and (4) generating decision 22 

tree models to provide support to managers for making decisions about system maintenance. 23 

The methodology is demonstrated with a case study of a CSS in La Garriga, Spain. The rain 24 

volume breaking point from which CSO structures started to overflow ranged from 0.6 mm 25 

to 2.8 mm. The structures with the best and worst performance in terms of overflow 26 

(overflow probability, order, duration and CSO ranking) were characterized. Most of the 27 

obtained decision trees to predict overflows from rain data had accuracies ranging from 70 to 28 

83%. The results obtained from the proposed methodology can greatly support managers and 29 

engineers dealing with real-world problems, improvements, and maintenance of CSSs. 30 
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1. INTRODUCTION 38 

A combined sewer system (CSS) collects rainwater runoff, domestic sewage, and industrial 39 

wastewater in the same pipe. Normally, these systems will transport the total volume of 40 

sewage to a wastewater treatment plant (WWTP) for treatment. However, some rain episodes 41 

result in volumes of runoff that, when mixed with domestic and industrial waste, can exceed 42 

the capacities of a CSS. When capacity is exceeded, a combined sewer overflow (CSO) 43 

occurs, which is the discharge of untreated sewage (mixed with urban runoff) from a CSO 44 

structure directly into surface water. 45 

 46 

Because CSOs contain untreated domestic and industrial waste, toxic materials, and debris, 47 

they impact the physicochemical, biological, hydraulic, and aesthetic status of receiving 48 

water bodies. For example, overflows can result in oxygen depletion, increased turbidity, and 49 

higher concentrations of micropollutants, heavy metals, and pathogenic and faecal organisms 50 

in surface waters (Passerat et al., 2011). Since the adoption of the Water Framework 51 

Directive 2000/60/EC by the European Union in the year 2000, Member States must apply 52 

local measures to address pollution affecting their surface waters. Most historic European 53 

cities, such as London, Paris and Rome, are drained by CSSs. In the United States, over 40 54 

million people in 770 cities are served by CSSs, which release approximately 850 billion 55 

gallons of untreated wastewater and stormwater each year (EPA, 2004; EPA, 2014). Thus, 56 

decreasing the occurrence of overflows is an important part of reducing pollution in surface 57 

waters and requires accurate monitoring of CSO structures to provide reliable performance 58 

data to managers and engineers. 59 

 60 

In previous studies, usually only a few CSO structures within a CSS were monitored (e.g. 61 

Gruber et al., 2005; Tetzlaff et al., 2005). Simultaneously monitoring all of the structures 62 

within one system would provide more useful information about the performance of the CSS 63 

as a whole but was until today cost prohibitive. Thus, researchers and engineers have resorted 64 

to using mathematical sewer models, calibrating the models with flow or level measurements 65 

taken in the sewer system (e.g. Kleidorfer et al., 2009; Gamerith et al., 2011). The main 66 

drawback of this modelling approach is that the real behavior of CSSs may not be accurately 67 

represented if the model was not calibrated properly. Schroeder et al. (2011) used real data to 68 

study the relationship between rainfall height and overflow activity, but the data was from 69 

only a few CSO structures within a network. More recently, Montserrat et al. (2013) 70 

developed and validated a low-cost method to measure the occurrence and duration of 71 

overflows using temperature sensors, which makes measuring all of the CSO structures 72 

within a CSS economically feasible.  73 

 74 

Just as important as data collection, however, is the analysis and application of data. 75 

Municipalities, industries, and research centers regularly collect large amounts of data using 76 

the vast array of measurement technologies available today. The ability to analyze and learn 77 

from collections of data is essential to making informed decisions. Managers of CSSs must 78 

make important decisions concerning the maintenance and upgrade of CSO structures. The 79 

maintenance of sewer systems is a large cost to a municipality. For instance, the EPA 80 

estimated that for one CSO structure containing a screen facility, 10 overflows per year 81 

would have an annual operation and maintenance cost of approximately $10,000 USD (EPA, 82 

1993). With a 50-year lifespan, CSSs eventually need to be replaced or upgraded (Center for 83 

Sustainable Systems, 2013). In the United States, the upgrades could cost approximately $64 84 

billion USD over the next 20 years (EPA, 2008). Many municipalities cannot afford to pay 85 

for upgrades without federal and state aid, but federal spending on sewage infrastructure is 86 

falling (Tibbetts, 2005). Thus, municipalities or companies that manage sewers need to make 87 
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the best use of the money that is available to them for maintenance and upgrades. 88 

 89 

If managers could monitor and analyze data on the occurrence and duration of overflows 90 

within each and every CSO structure of a CSS, then they could assess how the structures 91 

perform, pinpoint where the weak spots are within the system, and then make decisions 92 

accordingly. The structures in which overflows occur most often are prime candidates for 93 

maintenance and upgrades, and conversely, structures that have low frequencies of overflow 94 

need less attention. Ideally, managers would have access to a tool that assesses or predicts 95 

which structures are likely to overflow as a result of rain. Such a tool would help to 96 

coordinate post-rainfall maintenance tasks, and costs could be decreased by spending less 97 

time and effort checking on those structures that, through assessment, have been recognized 98 

as unlikely to overflow. Similarly, managers could focus on updating only those structures 99 

whose improvement would yield the greatest reduction of CSOs, which can best be 100 

determined through monitoring and assessment. Using data from monitoring overflows can, 101 

therefore, help CSS managers to decide on the most appropriate and cost-effective strategies 102 

for maintenance and improvement, which is crucial when budgets for sewer infrastructures 103 

are decreasing. 104 

 105 

To the best of our knowledge, no prior studies have evaluated the performance of a CSS 106 

based on data from monitoring the occurrence and duration of overflows in all or most of the 107 

CSO structures within the system. The recent development of low-cost CSO-monitoring 108 

methods (e.g. Montserrat et al., 2013) offers an excellent opportunity for the thorough 109 

evaluation of CSSs. The insight gained from such an evaluation can be used to improve their 110 

overall performance while reducing the negative impacts of overflows. The objective of this 111 

study was to develop a methodology to evaluate the performance of CSSs using data from 112 

low-cost monitoring. This methodology has four components: (1) assessing the capacity of a 113 

CSS, (2) characterizing the performance of CSO structures, (3) evaluating the compliance of 114 

a system with government guidelines, and (4) providing support for managers to make 115 

decisions about system maintenance. The methodology is demonstrated with a case study of a 116 

CSS in La Garriga, Spain. 117 

 118 

 119 

2. MATERIALS AND METHODS 120 

2.1 Data collection 121 

We used a case study to demonstrate the methods described in this section, though they can 122 

be applied to any CSS. The case study is in La Garriga, a village in the northeast of Spain. 123 

This system collects urban and industrial wastewater from La Garriga, as well as a portion of 124 

the wastewater from two adjacent municipalities. The drainage area of the whole urban 125 

catchment is 370 Ha. The wastewater is conveyed to the La Garriga WWTP by gravity-126 

induced flow through 7.3-km-long circular pipes. Diameters of the pipes range from 300 to 127 

800 mm. The CSS consists of a total number of 14 CSO structures, of which 8 are the side-128 

flow type and 6 are the transverse type. Structure 14 is located at the entrance of the WWTP. 129 

A map of the system with the labeled CSO structures is illustrated in Fig. 1. 130 

 131 

We monitored the occurrence and duration of CSOs in the La Garriga CSS over the course of 132 

11 months (from July 2011 through May 2012). CSO Structures 1 through 14 were monitored 133 

using low-cost temperature sensors, as described by Montserrat et al. (2013). Briefly, an 134 

abrupt shift of temperature from a sensor installed at the overflowing structure indicates the 135 

start of a CSO event, and the recovery of the signal back to the baseline temperature 136 

corresponds to the end of the event. The data used in this study concerning the duration of the 137 
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CSO events and overflowing order for each structure, as well as the information on the rain 138 

episodes, is provided in Supp. Data in the file ‘Rain_CSO_Information.xlsx’. More 139 

information about the materials and methods used to collect the data is given in Montserrat et 140 

al. (2013). Of the 14 CSO structures that were monitored, we analyzed data from 12 141 

structures; data from Structures 9 and 13 were not considered in the study due to the poor 142 

quality (high background noise) of the gathered data. 143 

 144 

During the evaluated period 53 independent rain episodes occurred and were monitored. The 145 

inter-episode time between independent rain episodes was calculated as the average time the 146 

system needs to return to dry weather flow conditions (6 hours in the La Garriga system). 147 

 148 

(Figure 1) 149 

 150 

2.2 Methodology for CSS evaluation 151 

2.2.1 Assessing the capacity of a CSS 152 

We assessed the capacity of a CSS by plotting the duration of overflows versus rain volume 153 

for each rain episode and each individual structure. Fig. 2 shows two examples of how the 154 

capacity of the CSS can be assessed by evaluating the behavior of individual structures using 155 

overflow duration and rainfall data. The first example, Fig. 2A, belongs to a structure with 156 

high activity in which overflows occur even with rain volumes as low as 2 mm. This example 157 

indicates that the CSS does not have the capacity to assimilate the increased flow from rain 158 

episodes. The second example, Fig. 2B, shows a CSS in which the structure starts to overflow 159 

only after rainfall reaches a volume greater than 25 mm. In case A, data were fitted by a 160 

linear curve (R
2
: 0.98), while data in case B were fitted better by a quadratic curve (R

2
: 0.95). 161 

We also determined the breaking point of each CSO structure, defined as the rain volume at 162 

which the structure starts to overflow, shown as dashed line in Fig. 2B. The lower the slope 163 

and the greater the breaking point, the higher the capacity of the system or the better the 164 

stormwater retention capacity of the catchment. These cases are examples of two extreme 165 

scenarios and qualitatively show how CSS behavior changes as storage capacity increases. 166 

 167 

Figs. 2A and 2B were generated using a numerical model example of a subcatchment of the 168 

case study, and afterwards the methodology was applied to the collected field data. The 169 

model was developed using the Storm Water Management Model version 5.0.022 170 

(Rossmann, 2007), and details about the model development and the making of the CSO 171 

duration-rain volume curves are provided in Supp. Data. 172 

 173 

(Figure 2) 174 

 175 

  176 
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2.2.2 Characterizing the performance of CSO structures 177 

We developed a detailed statistical analysis on the data we collected of the occurrence and 178 

duration of CSO events. To characterize system performance, we calculated and plotted the 179 

following parameters for each CSO in the network over the entire data collection period: (i) 180 

total number of overflows, (ii) total duration of overflows (sum of the durations of all 181 

overflows in the period), (iii) average overflow duration, (iv) the average chronological order 182 

that a CSO structure begins to overflow compared to all the other structures in the network, 183 

and (v) overflow probability. These parameters are indicators of the performance of each 184 

CSO structure and can be used to compare different structures within the same system. To 185 

calculate the total number of overflows, we counted any number of overflows that occurred 186 

during one independent rain episode as a single, independent CSO event. 53 independent rain 187 

episodes occurred during the study period, so the maximum number of CSO events per 188 

structure would be 53 for this case-study. 189 

 190 

We developed ranking curves to provide information about the order in which a structure 191 

overflows with respect to the other structures in a CSS. For each rain episode, we identified 192 

which structure overflowed first and assigned a value of 1 as its overflow position; then we 193 

assigned consecutive values of overflow positions to the other structures in the order that they 194 

overflowed. For a particular structure (z) and for each overflow position (i), we used Eq. (1) 195 

to calculate the CSO ranking index – the fraction of CSO events in which the structure 196 

overflowed in position i or lower. 197 

 198 

Eq. (1) 199 

 200 

 201 

where #z is the total number of times during the monitored period that z overflowed, Ci,z is the 202 

number of times that z overflowed in i
th 

position, and n is the number of CSO structures in the 203 

CSS. The maximum value of i is equal to n. 204 

 205 

The ranking curves are obtained by plotting the ranking index of each CSO structure with 206 

respect to overflow position i and reach a maximum y-axis value of 1. To compare the 207 

performance of different structures, each curve was fitted by a power function (F(x)=X
b
), and 208 

the exponent b of the function was used to rank the structures according to their ranking 209 

index. 210 

 211 

Confidence intervals were calculated to see whether significant statistical differences existed 212 

among the parameter values of the different CSO structures. The confidence interval (Ci) (Eq. 213 

(2)) gives the range of values in which the true average is located. 214 

 215 

 216 

Eq. (2) 217 

 218 

 219 

where Avg is the average value of the sample, SD is the standard deviation of the sample, n is 220 

the number of samples, and E is a statistical value that depends on the size of the sample and 221 

the confidence limits. The value for E is found in the T-table (for n< 25) or Z-table (for n ≥ 222 

25). The Ci with 95% confidence limits was calculated for each parameter. In the case of 223 

parameters that represent proportions, the Cip was calculated as 224 

 225 

 226 
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 227 

 228 

Eq. (3) 229 

 230 

where p is the proportion of the studied variable. 231 

 232 

The confidence interval Ci was calculated for the variables average overflow duration and 233 

average chronological order, while the Cip was calculated for the overflow probability. The 234 

calculated confidence intervals are valid for normally distributed variables, such as those 235 

calculated here, since they represent averages or proportions over a sample of data from each 236 

variable. 237 

 238 

 239 

 240 

2.2.3 Evaluating the compliance of a CSS with government guidelines 241 

The number of overflows per year per CSO structure is a common emission standard referred 242 

to in CSO regulation guidelines. Hence, we can evaluate the compliance of a CSS with 243 

government guidelines by comparing the number of overflows measured in each CSO 244 

structure of a CSS to the maximum number of overflows suggested by the guidelines. Table 1 245 

gives some examples of the permitted number of overflows per year in six countries. In some 246 

cases, such as in Belgium, Denmark, or the Netherlands, the permitted number of overflows 247 

is dependent on the sensitivity of the receiving waters (Zabel et al., 2001). Sometimes, the 248 

threshold is estimated using models fed with representative pluviometric data of the region 249 

(e.g. the ITOGH in Spain described in Hernáez et al., 2011). It is worth noting that the 250 

guidelines are site-dependent and differ in the permitted number of overflows. Furthermore, 251 

the definition of overflow frequency is crucial. For instance, overflows can be counted as 252 

events (or spills), or as overflow days (which can be calendar days or running days). Taking 253 

one definition or another significantly changes the results (Dirckx et al., 2014). 254 

 255 

(Table 1) 256 

 257 

2.2.4 Providing support to managers for CSS maintenance 258 

Decision trees are predictive models based on supervised machine learning. In supervised 259 

learning, a teacher (the user) gives a computer program example input data and their desired 260 

or known outputs, and the program learns a general rule that maps inputs to outputs. The map 261 

is known as a decision tree, which can then be used to predict the results of input data with 262 

unknown outputs. If trained on high-quality data, decision trees can make accurate 263 

predictions (Kingsford and Salzberg, 2008). The output of decision trees visually and 264 

explicitly represent predictions and can therefore be an important tool for decision making. 265 

 266 

Because of their power and utility for aggregating diverse types of data and making 267 

predictions, decision trees have become very popular in a variety of fields, such as 268 

environmental engineering, medicine, and bioinformatics (Kingsford and Salzberg, 2008; 269 

Rudin, 2012). In the field of wastewater treatment, decision trees have been used to design 270 

and develop tools to cope with highly complex environmental problems such as wastewater 271 

plant supervision or the selection of wastewater treatment systems (Poch et al., 2004), aimed 272 

at assisting in the decision-making process to find an optimal solution. 273 

 274 

  275 
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In this study, we constructed decision trees for CSO structures as part of a tool to help 276 

managers make decisions about CSS maintenance. A decision tree consists of nodes 277 

connected by branches. There are two types of nodes in a decision tree: (1) internal nodes that 278 

represent explanatory variables, and (2) terminal nodes, or leaves, which give the response 279 

variable. Branches extend from internal nodes, with each branch defining a range of values 280 

for the internal node. The appropriate branch will be selected depending on the value for the 281 

internal node input by the user, leading to the next node. The process of branch selection 282 

continues until a prediction (leaf) is reached. 283 

 284 

The specific technique used to induce the decision trees was the J48 algorithm, which is 285 

based on the C4.5 algorithm (Quinlan, 1993). Waikato Environment for Knowledge Analysis 286 

(WEKA) Version 3.6.0 was used to generate the trees. The input data, or explanatory 287 

variables, were rain characteristics (total volume, duration, maximum intensity, and time 288 

since the previous rain episode), and the output, or response variable, was whether or not the 289 

CSO structure overflowed. Data on rain episodes and CSO occurrence and duration were 290 

used to build each decision tree through a k-fold cross-validation procedure; the data set is 291 

randomly split into more or less equal k folds (or subsets), and the algorithm is run k times. 292 

At each time, k-1 folds are used as training data to generate the tree, while the remaining fold 293 

is used as validation data. The prediction error (i.e. the accuracy) of the trees is calculated 294 

from the validation data. A thorough description of the cross-validation procedure is given in 295 

Rokach and Maimon (2008). This technique is especially suited for relatively small data sets 296 

(n<1000; De’ath, 2007), since the trees are trained on all the data sets. In this study, k=10 297 

folds was used. Furthermore, we developed a user-friendly computer application to visualize 298 

the different decision trees that are obtained with known characteristics of a rain episode. The 299 

application was programmed in JScript and is available in Supp. Data in the 300 

‘CSO_application’ zip file. 301 

 302 

 303 

3. RESULTS AND DISCUSSION 304 

3.1 Assessing the capacity of a CSS 305 

For each of the 12 structures evaluated, we plotted the CSO duration versus rain volume for 306 

each rain episode during the 11-month study period. The rain episodes ranged in volume from 307 

0.4 to 51.4 mm. Fig. 3 illustrates two examples with different behaviour obtained from the 308 

collected data. Fig. 3A refers to Structure 11 and shows that for rain volumes lower than 20 309 

mm only a few overflow events occurred, with durations between 6-27 min. Even for rain 310 

volumes larger than 20 mm all but one of the overflow durations were less than 50 min. In 311 

this case, the rain volume breaking point at which the structure starts to overflow was 312 

established at 2.2 mm. For that case, non-linearity holds between the rain volume and the 313 

overflow duration (R
2
: 0.31). Fig. 3B corresponds to Structure 7, for which the breaking point 314 

of the system was also set at 2.2 mm. However, after a rain volume of 15 mm, increasing rain 315 

volumes resulted in longer CSO durations, reaching saturation around 200 min. The data 316 

were fitted by a sigmoidal curve (R
2
: 0.86). The rain volume breaking points for the other 317 

structures ranged from 0.6 mm to 2.8 mm (provided in Supp. Data). 318 

 319 

 320 

(Figure 3) 321 

 322 

  323 
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Plotting overflow duration versus rainfall volume and fitting the data is useful to assess the 324 

behavior of each CSO structure and evaluate the efficacy of the CSS’s design. CSSs are 325 

typically designed with a target value for the capacity of the system, for instance two times 326 

the mean dry weather flow (De Toffol, 2006). Whether or not the target capacity is achieved 327 

by the CSS can be determined from collecting and analyzing data as described here. 328 

 329 

 330 

3.2 Characterizing the performance of CSO structures 331 

By applying our characterization method to the case study, we were able to gain an 332 

understanding of the performance of each CSO structure in the La Garriga CSS and highlight 333 

the system’s weak points. Structures 7 and 14 each had the greatest numbers of overflow 334 

events, 36 and 49 respectively, during the 11-month study period. By far, Structure 14 (at the 335 

inlet of the WWTP) had the greatest total overflow duration, with close to 10,000 minutes 336 

(about 7 days) for the 53 rain episodes (see Supplementary Data, Fig. SD2). The other CSO 337 

structures had total overflow durations ranging from 294 to 2,113 minutes. 338 

 339 

Fig. 4 shows the averages of the variables that we evaluated with a 95% Ci. For overflow 340 

probability, Structure 14 had a probability of overflowing (avg = 0.9) during any given rain 341 

episode that was significantly greater than the probabilities of all the other CSO structures. 342 

Structure 7 had the second highest average overflow probability (avg = 0.7), but not 343 

significantly different than other structures. Structure 11 had the lowest probability (avg = 344 

0.3). As for average overflow duration, Structure 14 had a significantly higher value (avg = 345 

186 min) than the other structures, and Structure 11 had the lowest overflow duration on 346 

average (5.5 min). The overflow durations of the other structures in the network were 347 

between 10 and 40 minutes, with no significant difference among them. Finally, analysis of 348 

the average order of overflow showed that Structure 7 tended to overflow first (average order 349 

of overflow = 2.6), with a significant difference between the order of overflow of most of the 350 

other structures. Structure 10 had the second average value for overflow order (avg = 3.1), 351 

and Structures 1, 11, and 12 tended to overflow last (averages around 7). 352 

 353 

The inclusion of the Ci in the average allows us to state with 95% confidence whether or not 354 

there is significant difference among the evaluated variables of the different CSO structures. 355 

In addition to the obvious importance of Structures 14 and 7 for the performance of this CSS, 356 

comparisons can be made between select groups of structures in order to find significant 357 

differences between them. For instance, Structures 2 and 11 had on average less overflow 358 

duration than Structures 5 and 7, and Structures 7 and 10 overflowed on average before 359 

Structures 1, 5, 6, 11, and 12. 360 

 361 

(Figure 4) 362 

 363 

Each CSO structure can be characterized by a ranking index, based on the orders in which a 364 

structure overflows during rain episodes. Fig. 5 shows the ranking curves for each CSO 365 

structure and its corresponding exponent b. The vertical axis of the plot is the ranking index 366 

and the horizontal axis is the i
th

 place of overflow in the network. For example, in the case of 367 

Structure 7, almost 80% of the times that it overflowed, it was in the first 3 places (1
st
, 2

nd
, or 368 

3
rd

 structure in the network to overflow). Structure10 had a similarly high ranking. On the 369 

other hand, Structure 11 overflowed in the first three places only around 7% of the times that 370 

it overflowed. Looking at the ranking curves, Structures 7 and 10 had curves with the lowest 371 

value for exponent b (0.26 and 0.31, respectively), while Structures 1 and 11 had the highest 372 

exponents (1.3 for each). Structures 7 and 10 overflowed in the first 4 places around 80 to 373 
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85% of the time – more than any other structures, and Structures 1 and 11 overflowed in the 374 

first 4 places the least – approximately 20% of the time. The lower the value of b, the sooner 375 

the structure is likely to overflow within the network. 376 

 377 

(Figure 5) 378 

 379 

Using these methods for characterizing system performance, Structures 14, 7, and 10 stand 380 

out as problematic, at least compared to the other structures. Characterization of the structures 381 

highlighted those with the best and worst performance in terms of overflow. It should be 382 

noted that for a CSO structure that overflows often, the problem may not be with the structure 383 

itself but may originate from other, more distant factors, such as the overloading conditions 384 

downstream from the system. A proper investigation must be carried out to determine the true 385 

cause of frequent overflows. Nonetheless, from the characterization information, 386 

management strategies can be devised and implemented, such as seeking out the cause of 387 

overflows or installing upgrades or extra reinforcements. Without this analysis, it would not 388 

have been possible to know which of the CSO structures were most reactive to rain episodes. 389 

 390 

 391 

3.3 Evaluating the compliance of the CSS with government guidelines 392 

Fig. 6 is a schematic of the CSS of La Garriga and includes the number of CSOs measured 393 

during the 11-month study for each CSO structure. We compared the number of overflows 394 

for each CSO structure in the La Garriga CSS during the study period to the number of 395 

overflows per CSO structure per year permitted by Spain’s ITOHG, which is 15-20 396 

overflows. We are aware of the specificity of ITOHG to the Galician region with a very 397 

particular pluviometric regime. Hence, the results obtained here are for illustration purposes 398 

only. The 11 months of study accumulated a rainfall volume of 525 mm. The analysis of the 399 

rainfall series from 2009 to 2013 registered in the La Garriga rain gauge resulted in an 400 

average annual precipitation of 642 mm. Considering a 95% confidence interval, the 401 

precipitation of the evaluated period was assumed to be representative of an average 402 

pluviometric year. Our study period was only 11 months, and we recognize that a 12-month 403 

study period would have been best for comparison with government guidelines for annual 404 

overflows. Most of the structures in our 11-month case study exceeded the number of 405 

recommended overflows per year. Only three out of the 12 CSO structures (Nos. 2, 11, and 406 

12) in the La Garriga CSS meet or closely meet the ITOHG guidelines. None of the CSO 407 

structures in La Garriga would comply with the CSO guidelines of the countries outside of 408 

Spain shown in Table 1. 409 

 410 

The CSO structures with the least overflows were CSO 2, 11, and 12 (≤ 21 overflows). CSO 411 

2 is a lateral structure that receives discharges from a residential neighborhood with a highly 412 

pervious surface. CSOs 11 and 12 are located at the beginning of the system. Moving further 413 

down the system, the number of overflows is higher. CSO 5 (30 overflows) and 7 (36 414 

overflows) are lateral structures located at the outlet of densely urban areas. CSO 4 (29 415 

overflows) is located along the main sewer trunk and receives most of the runoff from La 416 

Garriga and contributing areas (all the urban and part of the industrial areas). CSO 3 (32 417 

overflows) is a lateral structure at the outlet of a recently developed industrial area with a 418 

mostly impervious surface. CSO 1 (29 overflows) is a lateral structure that receives 419 

wastewater from part of a neighboring municipality. Given that CSO 1 is located towards the 420 

end of the system, backwater effects could be increasing the number of overflows at this 421 

point. At the very end of the system and at the entrance of the WWTP is CSO 14, which had 422 

by far the highest number of overflows (49) of all the CSO structures. 423 
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 424 

Evaluating the compliance of a CSS with government guidelines can help to define 425 

appropriate CSS management strategies, which can range from upgrades to improve CSS 426 

performance, to measures aimed at increasing the stormwater retention capacity of the 427 

catchment, so that local overflow recommendations are met. However, as addressed in 428 

section 2.2.3, compliance with standards is a major issue in which site-specific regulations 429 

have to be considered. 430 

 431 

(Figure 6) 432 

 433 

 434 

3.4 Providing support to managers for CSS maintenance 435 

For our case study of the La Garriga CSS, we constructed a decision tree for each CSO 436 

structure. Supp. Data Table SD2 gives a summary of the configurations and accuracies of the 437 

decision trees constructed for the La Garriga CSS. Overall, the trees had simple 438 

configurations. The number and types of explanatory variables needed to make predictions 439 

differ among the CSO structures. In other words, different rain characteristics will cause 440 

different structures to overflow more than others. For instance, Structures 3, 7, 8, and 10 need 441 

only one explanatory variable to reach the response variable. Rain volume will be the primary 442 

determinant of whether or not Structures 3 and 7 overflow, while the maximum intensity of a 443 

rain episode will mainly control whether or not Structures 8 and 10 overflow. The more 444 

complex a tree is, the more explanatory variables are involved. An exception was the tree for 445 

Structure 7, which had 8 branches, 4 nodes, 5 leaves, and only one explanatory variable (rain 446 

volume). As an example, a description of the decision tree made for Structure 14 is included 447 

in Supp. Data, Fig. SD3. Structure 14 had the highest accuracy (91%) and Structure 2 the 448 

lowest (57%). The accuracy of the other trees ranged between 70 and 83%. 449 

 450 

Fig. 7 shows both the successful and the incorrect overflow predictions made by the model 451 

for each CSO structure during 53 rain episodes. In this example, the trees predicted whether 452 

or not a CSO structure would overflow with given rain volumes of each rain episode, which 453 

were sorted from highest to lowest rain volume along the x-axis. The white spaces in the 454 

figure denote correct predictions of structures that did not overflow during a particular rain 455 

episode, while the black spaces represent correct predictions of the occurrence of overflow. 456 

Grey squares show where the model’s predictions did not match observations (real data from 457 

monitored CSOs). For all the rain episodes and structures, the prediction succeeded in 89% of 458 

cases. 459 

 460 

(Figure 7) 461 

 462 

We developed a computer application, called “La Garriga CSO Network Simulator”, to 463 

visualize the different decision trees that are obtained with known characteristics of a rain 464 

episode. The application has a user-friendly interface that allows predictions to easily be 465 

made and clearly understood for the La Garriga CSS. Though this particular application was 466 

made for the La Garriga CSS, the same application format can be developed for any CSS and 467 

used by managers, engineers, or maintenance crew. For a description of the interface and to 468 

open the application, see the ‘CSO_application’ zip file in Supp. Data. 469 

 470 

Typically, sewer maintenance crew have to visit each CSO structure in a CSS after rainfall to 471 

check if overflow occurred and to do any maintenance work that might be necessary. 472 

Structures that don’t overflow usually would not require checking or maintenance post-473 
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rainfall. Maintenance time, and therefore money, would be better spent by focusing on the 474 

structures that have a tendency to overflow. Thus, the CSO prediction tool described here 475 

could save time and money for sewer managers and crew by indicating the CSO structures 476 

that need to be checked after a rain episode with given characteristics. This is especially true 477 

for large CSSs with high numbers of CSO structures, when one sewer management company 478 

must manage several CSSs in one or more municipalities, or when maintenance crew is 479 

limited. The prediction of overflows through decision trees would also present an advantage 480 

for real-time control of CSSs. By means of weather forecast information (rain volume, 481 

duration and max. intensity), it would be possible to identify which structures overflow and 482 

take actions to maximize the usage of CSS volume (Schütze et al., 2004). 483 

 484 

 485 

 486 

4. CONCLUSIONS 487 

In order to assess, improve, and maintain CSSs, we developed a comprehensive methodology 488 

to analyze data collected from the low-cost monitoring of CSO structures. Monitoring was in 489 

the form of measuring rainfall data and the occurrence and duration of CSOs using 490 

temperature sensors. 491 

 492 

CSS capacity is assessed by analyzing the relationship between the overflow duration and 493 

rain volume for each single CSO structure and each rain episode. In the case study, the La 494 

Garriga CSS was found to have a capacity in which overflows occur with rain volumes as 495 

little as 2 mm. To characterize the performance of each structure within a CSS, a statistical 496 

analysis is used. Through the statistical analysis, we determined the overflow probability and 497 

ranking index of each structure in the La Garriga CSS, which highlighted the structures that 498 

were most problematic. To evaluate compliance with legislation, the measured number of 499 

overflows for each CSO structure was compared to the annual permitted number of overflows 500 

per structure recommended by government-issued guidelines. Finally, to predict which 501 

structures in a CSS will overflow after a rain episode, we constructed a predictive model 502 

using decision trees, which can be used to optimize post-rainfall maintenance of CSSs. The 503 

decision trees for the La Garriga CSS had accuracies ranging from 70 to 83%, with two 504 

exceptions – one tree with an accuracy of 91% and another with 57%. 505 

 506 

The methodology presented in this study is an effective and affordable package for 507 

municipalities and companies that manage sewer systems, as well as for engineers and 508 

scientists who need to gain a better understanding of the CSSs they are providing services for 509 

or in which they are conducting studies. Each of the analyses included in the methodology is 510 

based on the direct, simultaneous measurements of overflows in all of the CSO structures 511 

within a CSS. In this study, data was collected from sensors by manually downloading the 512 

data onto a computer once per month. To make CSO monitoring even more efficient and 513 

effective, future studies should use online sensors that collect and transmit data to online data 514 

storage in real time. A program could be set up to analyze the raw data as it is transmitted. 515 

Real-time data collection and analysis would negate the need for predictive models and could 516 

further reduce maintenance costs. Online sensors are the future of monitoring and are 517 

recommended for municipalities that can afford to install them. 518 

 519 

 520 

  521 
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629 

Fig. 1. Overview of the La Garriga catchment with the CSO structures numbered. The 630 

analyses were conducted using data from all of the CSO structures except Structures 9 and 631 

13. 632 

 633 

 634 

Fig. 2. CSO duration versus rain volume for two hypothetical CSSs. Fig. 2A shows data from 635 

a poorly-designed CSS with high CSO activity, while Fig. 2B shows data from a system with 636 

higher capacity. In Fig. 2B, the vertical dashed line indicates approximately the maximum 637 

volume of rain (about 25 mm) that the system can assimilate before it begins to overflow. 638 

 639 

 640 
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641 

Fig. 3. Rain volume versus overflow duration obtained for CSO Structures 11 and 7 during 642 

the studied period (53 rain episodes). The vertical dashed line indicates approximately the 643 

maximum rain volume that the system can assimilate before it begins to overflow, which was 644 

2.2 mm in both cases. 645 

 646 

 647 

648 

Fig. 4. Evaluated parameters of the CSO structures (dots represent the average value, and the 649 

lines represent the 95% Ci). The x-axis is each structure of the CSS (note that Structures 9 650 

and 13 do not have values because they were not used in this study). 651 

 652 
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 653 

Fig. 5. Ranking curves for each CSO structure. The y-axis is the ranking index, and the x-axis 654 

is the i
th

 place of overflow in the network. In the legend shows in parentheses the value of 655 

exponent b of the power function fitted to each curve. 656 

 657 
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 658 

 659 

Fig. 6. Schematic of the La Garriga CSS. The number of overflows that occurred in each 660 

CSO structure during the 11–month study is graphed. 661 

 662 

 663 

Fig. 7. A plot of the predicted and observed responses of each CSO structure in the La 664 

Garriga CSS for 53 rain episodes that occurred in La Garriga. The black squares indicate 665 

instances where the model correctly predicted overflow (the prediction matched observation), 666 

the white squares indicate when the model correctly predicted that an overflow did not occur, 667 

and the grey squares show where the model incorrectly predicted overflow or no overflow 668 

(the prediction did not match observation). 669 
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 670 

Table 1. Permitted number of overflows proposed by CSO regulation guidelines in different 671 

countries (adapted from De Toffol, 2006; Hernáez et al., 2011; FWR, 2012). 672 

 673 

Country 
Belgium 

(Flanders) 
Denmark Netherlands USA 

 

U.K.  

Spain 

(Galicia) 

Nº 

CSOs 

per year 

7 2-10 3-10 4-6 3-10 15-20 
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