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gen (N) increases downstream from dams.
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ABSTRACT

River regulation has fundamentally altered large sections of the world's river networks. The effects of dams on the
structural properties of downstream reaches are well documented, but less is known about their effect on river ecosys-
tem processes. We investigated the effect of dams on river nutrient cycling by comparing net uptake of total dissolved
nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) in river reaches located upstream and downstream from
three reservoir systems in the Ebro River basin (NE Iberian Peninsula). Increased hydromorphological stability, organic
matter standing stocks and ecosystem metabolism below dams enhanced the whole-reach net uptake of TDN, but not
that of TDP or DOC. Upstream from dams, river reaches tended to be at biogeochemical equilibrium (uptake ~ release)
for all nutrients, whereas river reaches below dams acted as net sinks of TDN. Overall, our results suggest that flow reg-
ulation by dams may cause relevant N cycling discontinuities in rivers. Higher net N uptake capacity below dams could
lead to reduced N export to downstream ecosystems. Incorporating these discontinuities could significantly improve

predictive models of N cycling and transport in complex river networks.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Human needs, including drinking water supply, irrigation, flood con-
trol and hydropower, have fostered the construction of dams along river
networks worldwide (Lehner et al., 2011). Today, more than 25% of the
global river flow is dammed or diverted (Voérésmarty et al., 2010).
Around 50,000 large dams (defined as more than 15 m in height) and
over 800,000 smaller ones are in operation, and more are still being con-
structed (Nilsson et al., 2005; Zarfl et al., 2015). Dams have become
common features in many landscapes, and have fundamentally altered
large sections of the world 's river networks (Graf, 1999). The Mediter-
ranean region is especially abundant in dams because of the high water
demand and dry climatic conditions (Nilsson et al., 2005). In particular,
the Iberian Peninsula hosts ~20% of the European reservoirs and has the
largest number of dams per inhabitant and per land area in the world
(Léonard and Crouzet, 1999).

The serial discontinuity concept (SDC) (Ward and Stanford, 1983)
recognizes that dams and associated reservoirs create breaks or dis-
continuities in the river continuum. Dams affect structural proper-
ties of downstream reaches, reducing flood frequency (Haxton and
Findlay, 2008; Poff et al., 1997), simplifying channel geomorphology
(Graf, 2006; Petts and Gurnell, 2005), reducing sediment load (Tena
etal,2011; Xuetal., 2006), and altering water chemistry (Friedl and
Wiiest, 2002; Humborg et al., 1997) and temperature (Olden and
Naiman, 2010; Preece and Jones, 2002). These changes alter commu-
nity composition (Haxton and Findlay, 2008), and increase biofilm
biomass below dams (Ponsati et al., 2014). Additional impacts in-
clude changes in growth, foraging, reproduction, and migration of
aquatic species (Johnson et al., 2008; Murchie et al., 2008). The im-
pact seems to be directly related to the degree of flow alteration,
which in its turn is related, among other factors, to the reservoir
age and dam size as well as to the regional climate (Poff and
Zimmerman, 2010).

Less is known about the effect of dams on river ecosystem processes,
despite their inherent importance to ecosystem services that rivers pro-
vide (Wilson and Carpenter, 1999). Dams can affect organic matter de-
composition (Arroita et al., 2015; Casas et al., 2000; Mendoza-Lera et al.,
2012), ecosystem metabolism (Aristi et al., 2014; Uehlinger et al,, 2003)
or biofilm functioning (Munn and Brusven, 2004; Ponsati et al., 2014).
Particular attention needs to be given to nutrient cycling in rivers and
how much it is affected by the presence of dams. The SDC proposes
that river nutrient cycling will be strongly altered by dams, especially
in low to mid-order streams (Ward and Stanford, 1983), even though
empirical evidence of such a pattern is not strong. To our knowledge,
no studies have specifically investigated the effect of dams on nutrient
cycling in rivers. However, some studies conducted in lake outlets
show that the combined effects of stable benthic habitat and lake-
derived source-waters may result in high in-stream uptake of phospho-
rus (P) and low in-stream uptake of nitrogen (N) (Arp and Baker, 2007;
Hall and Tank, 2003; Hall et al., 2002).

Discontinuities in nutrient cycling are important to be understood,
since they reflect changes in nutrient retention, removal, and transport
which ultimately may affect nutrient loading and eutrophication of
freshwater and coastal ecosystems (Alexander et al., 2000; Mulholland
etal,, 2008). Noteworthy, results from most river nutrient cycling studies
are derived from estimates of gross nutrient uptake (i.e. immobilization
of nutrients from the water column) which may overestimate the net
influence of streams on nutrient downstream export because they do
not take into account the release of immobilized nutrients to the water
column (Brookshire et al., 2009; Newbold et al., 1982; Roberts and
Mulholland, 2007). Release processes (e.g. mineralization, nitrification,
desorption), however, can be relevant in streams, and may counterbal-
ance to some extent nutrient immobilization processes (e.g. assimilation,
denitrification, and adsorption), or even result in a net downstream re-
lease of nutrients (von Schiller et al., 2015). Therefore, measurements
of net nutrient uptake provide a more accurate information on actual

nutrient export from a given river reach and on the relevance of
in-stream processes at catchment scale (Bernal et al., 2012).

To examine the effect of dams on river nutrient cycling, we com-
pared net uptake of dissolved nitrogen (N), phosphorus (P) and organic
carbon (DOC) between river reaches located upstream and downstream
from three reservoir systems. We predicted that the net uptake of
downstream reaches would be increased with respect to upstream
reaches because of higher hydromorphological stability, larger organic
matter standing stocks and increased biological activity below dams.
In the case our prediction is true, incorporating these alterations could
significantly improve predictive models of biogeochemical cycling and
transport in complex river networks.

2. Materials and methods
2.1. Study sites

We sampled reaches upstream (control) and downstream (impact)
from reservoirs in three rivers within the Ebro River catchment
(NE Iberian Peninsula; Fig. 1). The Cinca River drains a 9000-km?
limestone-dominated catchment in the Central Pyrenees. Precipitation
averages ~800 mm and tends to be greater in winter, although dis-
charge peaks in late spring and early summer with the thaw (Begueria
et al., 2003). Two successive large reservoirs, Mediano and EI Grado,
with a storage capacity of 436 and 399 hm?, respectively, separate the
control and impact reaches. The Montsant River and the Siurana River
drain smaller (170 and 347 km?, respectively) limestone-dominated
catchments. Their climate is strongly Mediterranean, with an average
annual precipitation of ~600 mm, 80% of it falling from October to
April (Candela et al., 2012). The Margalef reservoir (3 hm?) and the
Siurana reservoir (12 hm?) separate the control and impact reaches in
the Montsant River and the Siurana River, respectively.

The studied reservoirs differ in their hydrological operation. Those in
the Cinca River are subject to important water abstraction, which is
diverted for irrigation and hydropower, whereas no significant abstrac-
tion occurs either in the Margalef or in the Siurana reservoirs. All studied
reservoirs release deep water, which depending on the period, varies
from epilimnetic to hypolimnetic. All have set environmental flows, de-
fined as 10% of the seasonal average. The regulation capacity (i.e. the
ratio between river annual discharge and reservoir storage capacity) is
0.46 year ! in the Siurana River, 1.75 year™ ! in the Cinca River and
3.64 year~ ' in the Montsant River (Aristi et al., 2014).

The length of selected reaches ranged from 500 to 2500 m. The con-
trol and impact reaches were as close as possible to the reservoir inlet
and outlet, respectively. No lateral surface-water inputs were present
along the reaches. For measurements, we placed 6 equidistant transects
along each reach. We performed three sampling campaigns at different
hydrological periods: summer and autumn of 2011, and winter of 2012.
Because the control reach of the Montsant River was dry in summer
2011, we performed the sampling campaign in May 2012, just before
the summer drought.

2.2. Hydrogeomorphological characteristics

We obtained daily means of water level for the Cinca and Siurana
rivers from the water agencies (Confederacién Hidrografica del Ebro,
and Agencia Catalana de I'Aigua, respectively). For the Montsant, we
calibrated precipitation data (Servei Metereologic de Catalunya) against
a pressure transducer (Levelloger LCT F100/M30 and Barologger LT
F15/M5, Solinst, Georgetown, USA) installed in the river during the
study. We assessed disturbance by extreme flow events on the basis
of incipient movement of streambed particles (Leopold et al., 1964).
Once at each site, we determined the size distribution of 150 stones col-
lected randomly in the wet channel following the method by Wolman
(1954). We established the discharge thresholds for initiation of sedi-
ment motion and for disruption of riverbed based on a comparison



170 D. von Schiller et al. / Science of the Total Environment 540 (2016) 168-177

Control
-

.

: *’\‘\"\
~ ;,\\" ru\
\_‘_01_._\ _.

i w:f.» S
7
&i f’t/,‘f- /'f

EBRO basin
0 50 100km

N f”f"
e

S

Impacts

CINCA

\

MONTSANT

Control
-

_2500m

SIURANA

Contl})l/
Impact
P
0 1000 m

Fig. 1. Geographical location of the sampling sites in the three studied rivers within the Ebro River catchment.

between actual and critical dimensionless shear stress, calculated from
water depth, channel slope, riverbed material density and mean grain
diameter (Acufia et al.,, 2007). We assessed riverbed stability according
to the time elapsed since the last sediment-moving flood (moderate
flood, ST-1) and to the time elapsed since the last riverbed-disrupting
flood (severe flood, ST-2).

On each sampling date, we measured the wetted width, water
depth, water velocity and discharge at each transect with an
acoustic Doppler velocity meter (Flow Tracker, Handheld-ADVr, Sontek
Corporation, San Diego, CA, USA). Additionally, we calculated the mean
light irradiance for each reach and season from solar radiation and can-
opy cover. We estimated the canopy cover by taking photographs along
the reach with a digital camera with fisheye lens (E171-A Nikon-8 mm,
Nikon D3000, Nikon Corporation, Tokyo, Japan). We obtained the re-
ceived solar radiation (W m~2 h™!) from the closest meteorological
station and applied it to the obtained proportion of radiation for
each moment of the day calculated with the software HemiView 2.1
(Dynamax Inc., Houston, TX, USA).

2.3. Organic matter, algal biomass and ecosystem metabolism

We determined the concentration of suspended particulate organic
matter (SPOM) by taking three water samples (2 L) at each transect
and filtering them through pre-ashed and pre-weighed glass fiber filters
(Whatman GF/F, Whatman International, Maidstone, UK). At each
transect, we also took five replicates of benthic particulate organic
matter (BPOM), including live biomass and detritus, with Surber nets
(0.09 m? of sampling surface, 0.2 mm mesh size). We froze filters and
benthic samples for transport. Once in the laboratory, we dried (70 °C,
72 h), weighed, ashed (500 °C, 5 h) and reweighed them to estimate
ash-free dry mass. Additionally, at each transect, we took four biofilms
samples for chlorophyll-a (Chl-a) measurements. For each sample, we
scrapped the light-exposed sides of three to four cobbles in a known

volume of filtered river water and froze aliquots at —20 °C until
analysis. We estimated the scraped surface by covering stones with alu-
minum foil of known density and later converting from aluminum
weight to surface area. In the laboratory, we extracted Chl-a with ace-
tone 90% v/v overnight at 4 °C and quantified spectrophotometrically
(Shimadzu UV1800, Shimadzu Corporation, Kyoto, Japan) after filtra-
tion (Whatman GF/C fibreglass filters) of the extract (Jeffrey and
Humphrey, 1975).

We calculated metabolism from diel DO changes by the two-station
method, except in the Siurana control reach in summer and winter,
where unreliable results forced us to use the single-station method
(Reichert et al., 2009). We recorded temperature and DO at 10-min in-
tervals at the upstream and downstream ends of each reach with optical
oxygen probes (YSI 6150 connected to YSI 600 OMS; YSI Corporation,
Yellow Springs, OH, USA). We estimated reaeration coefficients with
the night-time method (Hornberger and Kelly, 1975) using the first
5 h after sunset. We calculated the nominal travel time of water measur-
ing with a bromide sensor (WTW Br 800, WTW, Weilheim, Germany)
the time between the peaks of the two breakthrough curves at the
upstream and downstream stations after a slug addition of bromide
(Hubbard et al., 1982). We calculated ecosystem respiration (ER) as
the sum of net DO production rate during the dark period and respira-
tion values during the light period. Gross primary production (GPP)
was the sum of net metabolism rate during the light period and respira-
tion rates during the light period. We calculated net ecosystem metab-
olism (NEM) as the sum of GPP and ER.

2.4. Water physico-chemical characteristics

We followed a Lagrangian approach (Writer et al., 2011) to sample
the same parcel of water as it moved downstream at the thalweg of
each transect along the reach two times per day (midnight and noon).
For this purpose, we used the nominal travel times estimated with the
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slug additions of bromide. We measured water temperature, conductivity,
dissolved oxygen (DO) and pH with hand-held probes (WTW multiline
3310, WTW, Weilheim, Germany; YSI ProODO handled, YSI Inc., Yellow
Springs, OH, USA). In parallel, we collected water samples and filtered
them through glass fiber filters (Whatman GF/F) into plastic bottles and
froze them at — 20 °C until analysis. We determined the concentration of
total dissolved phosphorus (TDP) after acid digestion colorimetrically
using a Smartchem 140 spectrophotometer (Alliance-AMS, Frepillon,
France). We determined DOC and TDN concentrations on a Shimadzu
TOC-V CSH coupled to a TNM-1 module (Shimadzu Corporation, Kyoto,
Japan).

2.5. Whole-reach net uptake

For each sampling date and time of the day (noon and midnight), we
calculated the net uptake (U,) of TDN, TDP and DOC from the longitu-
dinal variation in ambient concentration along the reach following the
spiraling method (von Schiller et al., 2011). The spiraling method has
a number of advantages compared to the more commonly used mass-
balance method (e.g. Roberts and Mulholland, 2007) and other alterna-
tive methods (e.g. Heffernan and Cohen, 2010; Hensley et al., 2014). For
further details on the advantages, assumptions, limitations and a
sensitivity analysis of the spiraling method see von Schiller et al.
(2011) and von Schiller et al. (2015). First, we estimated the net uptake
coefficient per unit of reach length (Kne, in m~!) using the 1st-order
equation

Cl
= G () M

where C is river-water ambient nutrient concentration (inpg NL™', ug P
L=! orpg CL™1) and Cl is ambient river-water chloride concentration
(in pg L™ 1) at the top of the reach (top) and at each sampling location
along the reach (x, in m). We calculated ke and its 95% confidence in-
terval (CI) from the regression between the natural logarithm of the
river-water nutrient concentration corrected by chloride concentration
and the downstream distance (x) after linearizing Eq. (1). Then, we cal-
culated U, based on the equation

Unet = (QCAVg knet) /w 2)

where Q is the average discharge, Ca,, is the average ambient nutrient
concentration in river water and w is the average wetted width from
the 6 sampling locations along the reach. U, integrates nutrient uptake
and release processes occurring along the reach and can be positive
(uptake > release), negative (uptake < release) or 0 (uptake = release)
depending on the value of k... We estimated an upper and lower limit
of Uper based on the 95% CI of Kyer. We assumed that Uy, was indistin-
guishable from 0 (uptake ~ release) when its 95% CI contained 0 (von
Schiller et al., 2011).

2.6. Statistical analyses

We tested differences in hydrogeomorphology, POM, Chl-a and me-
tabolism variables using generalized linear models (GLMs) with River
(3 levels: Cinca, Montsant and Siurana), Season (3 levels: autumn, win-
ter and summer) and Reach (2 levels: control and impact) as indepen-
dent factors. For water physico-chemical variables and whole-reach
net uptake, we added Time of the day (2 levels: midnight and noon)
as independent factor to the GLMs. Interactions were not considered
due to the low number of values. When the effect of a factor was statis-
tically significant, we applied the post hoc Tukey test to identify differ-
ences between levels of that factor. We performed Pearson-moment
correlations to examine relationships between whole-reach net uptake
and metabolism variables. All statistical analyses were done with the

software Statistica (version 6.0; StatSoft, Tulsa, Oklahoma, USA). In all
cases, differences were considered significant if p < 0.05.

3. Results
3.1. Hydromorphological characteristics

Dams increased downstream hydrological stability, mainly by re-
ducing the frequency of moderate floods. The time since the last moder-
ate flood (ST-1) was consistently higher in impact than in control
reaches (Table 1). Yet, there were no differences between reaches in
the time since the last severe flood (ST-2; Table 1). Instead, there
were differences among seasons in ST-2, with higher values in winter
than in summer (Table 1). Mean discharge, water velocity, width and
depth measured during the sampling campaigns differed among rivers,
with generally higher values in the Cinca than in the Montsant and
Siuranarivers (Table 1). There were no consistent differences in hydrau-
lics between control and impact reaches, with reduced values below the
dam in the Cinca, increased values in the Montsant, and no major effect
in the Siurana (Table 1). Light irradiance was generally higher in control
than in impact reaches (Table 1), because reaches below dams tended to
be incised and single-channel with a larger riparian cover, whereas con-
trols tended to be braided reaches running across a wide active channel.
In addition, light irradiance followed seasonal and phenological
changes, with highest values in summer, medium values in winter
and lowest values in autumn (Table 1).

3.2. Organic matter, algal biomass and ecosystem metabolism

Organic matter standing stocks and epilithic algal biomass increased
consistently below dams (Table 2). BPOM, SPOM and Chl-a were on
average 2.1-, 2.0- and 8.1-fold higher, respectively, in impact than in
control reaches (Table 2). Only BPOM showed differences among rivers,
being higher in the Montsant than in the Cinca and Siurana rivers
(Table 2). Most BPOM in control reaches was a combination of alloch-
thonous detritus (leaves and wood) coming from upstream and lateral
sources and relatively thin epilithic biofilms. In contrast, impact reaches
did not receive any significant BPOM inputs from upstream as a result of
the presence of dams, and the accumulated BPOM consisted mainly of
live authochthonous biomass (macrophytes and thick epilithic biofilms)
and a mixed detritus of decomposing authochthonous plants and
allocthonous lateral inputs. Differences in organic matter standing
stocks and algal biomass were reflected in changes in ecosystem
metabolism upstream and downstream from dams. GPP and ER were
on average 1.8-fold higher in impact than in control reaches, whereas
NEM showed no differences upstream and downstream from dams
(Table 2). Among the metabolism variables, only GPP showed a consis-
tent seasonal pattern with higher values in summer than in the other
seasons (Table 2). We found significant correlations between ER
and GPP (r = —0.76, p < 0.001, n = 18) and between ER and NEM
(r=40.83,p<0.001 n = 18).

3.3. Water physico-chemical characteristics

Dams had only a minor effect on the water physico-chemical variables
(Table 3). Water temperature, conductivity, DO and pH showed no differ-
ences upstream and downstream from dams (Table 3). Among these var-
iables, only DO and pH showed slightly higher but statistically significant
average values at noon than at midnight (Table 3). Average temperature
and pH were highest in summer, whereas conductivity was highest in au-
tumn and DO in winter (Table 3). Conductivity and pH also showed differ-
ences among rivers, with the highest conductivity in Siurana and the
highest pH in Cinca (Table 3).

The effect of dams on dissolved nutrient concentrations was only
evident for TDP, but not for TDN and DOC (Table 3). The TDP concentra-
tion was on average 1.8-fold higher in control than in impact reaches,
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Table 1

Hydrogeomorphological characteristics at each study site during the samplings. Numbers are the mean value for the whole study reach. The p-values of the factor main-effects in the gen-
eral linear models (GLMs) are shown in the lower part of the table; significant effects (p < 0.05) are marked in bold.

ST-1 ST-2 Discharge Velocity Width Depth Light
River Season Reach d d Ls! ms™’ m m Wm?2h!
Cinca Summer Control 14 38 1464 0.23 19.3 0.26 18894
Impact 452 1200 185 0.13 55 0.23 21135
Autumn Control 1 5 2549 0.32 273 0.30 1842
Impact 519 1267 231 0.22 0.4 0.24 2420
Winter Control 73 90 1398 0.23 22.7 0.26 8412
Impact 612 1360 180 0.18 43 0.24 10111
Montsant Summer Control 238 243 5 0.13 0.2 0.25 21141
Impact 246 246 9 0.26 0.4 0.23 13659
Autumn Control 98 343 28 0.05 0.4 0.19 6608
Impact 346 346 14 0.07 2.9 0.13 2435
Winter Control 28 47 23 0.11 0.7 0.11 13624
Impact 421 421 25 0.08 1.9 0.20 5662
Surana Summer Control 134 138 82 0.02 3.7 0.08 23799
Impact 142 142 220 0.05 14 0.18 16717
Autumn Control 233 237 8 0.12 2.2 0.09 6973
Impact 241 241 20 0.05 1.8 0.17 1185
Winter Control 96 340 11 0.10 0.8 0.13 10494
Impact 344 344 30 0.07 2.2 0.15 2150
GLM River effect 0.216 0.230 0.022 0.005 0.009 0.002 0.902
Season effect 0.106 0.046 0.763 0.962 0.978 0.694 <0.001
Reach effect 0.022 0.120 0.068 0.490 0.052 0.549 0.016

ST-1 = Time elapsed since the last moderate flood; ST-2 = Time elapsed since the last severe flood.

whereas the concentrations of TDN and DOC did not differ between up-
stream and downstream reaches. The concentrations of TDN, TDP and
DOC showed marked differences among rivers, with the Montsant
River showing on average the highest concentrations (Table 3). There
were no significant differences between midnight and noon concentra-
tions for any nutrient (Table 3).

3.4. Whole-reach net uptake
Among all nutrients, only the net uptake of TDN differed
significantly between reaches located upstream and downstream from

the dams (Table 4; Fig. 2). Une~TDN was higher in impact (mean +
SE = 1172 + 11.7 pyg N m 2 min~') than in control reaches

Table 2

(mean + SE = —0.02 & 4.54 ugg N m~2 min~!). In addition, Upe-TDN
in control reaches was = 0 (i.e. no net uptake or release) in 72% of the
cases, whereas in impact reaches it was = 0 in only 33% of the cases. In
contrast, Upe-TDP and U,,.-DOC did not differ upstream and downstream
from the dams. Ue-TDP was close to 0 in both control (mean + SE =
0.7 + 0.3 ug P m~2 min~') and impact reaches (mean + SE =
0.008 + 0.002 pug P m~2 min~ ). U,-DOC tended to be higher in impact
(mean =+ SE = 64.0 + 0.8 pg C m~2 min~!) than in control reaches
(mean + SE = 4.9 + 9.0 uyg C m~2 min™ '), but the high variability
made this difference statistically not significant. Both Upe~TDP and Upe-
DOC were = 0 in >72% of the cases in control and impact reaches. The
whole-reach net uptake of all nutrients showed no consistent differences
between midnight and noon or among rivers and seasons (Table 4).

Particulate organic matter, epilithic algal biomass and ecosystem metabolism at each study site during the samplings. Numbers are the mean value for the whole study reach. The p-values
of the factor main-effects in the general linear models (GLMs) are shown in the lower part of the table; significant effects (p < 0.05) are marked in bold.

BPOM SPOM Chl-a GPP ER NEM

River Season Reach gm? mg L’ g cm g0, m2d! g0, m2d"! g0, m2d"!
Cinca Summer Control 27.27 0.70 2.69 3.27 -1.70 1.56
Impact 47.63 0.71 8.58 6.00 -8.61 -2.61

Autumn Control 13.15 0.40 1.12 0.91 -4.62 -3.72

Impact 92.66 1.28 16.46 2.56 -6.99 -4.43

Winter Control 8.64 0.76 0.88 0.69 -3.09 -241

Impact 59.20 0.74 16.51 132 -4.53 -3.21

Montsant Summer Control 118.42 0.65 1.70 429 -7.52 -3.22
Impact 22428 1.05 16.02 3.96 -10.16 -6.20

Autumn Control 327.04 0.70 1.36 1.06 -4.75 -3.70

Impact 216.25 1.80 16.29 1.29 -3.15 -1.86

Winter Control 155.18 0.47 2.98 1.52 -2.15 -0.63

Impact 247.39 0.62 30.83 1.89 -4.34 -245

Surana Summer Control 1333 0.71 2.66 0.65 -1.42 -0.77
Impact 169.13 0.96 11.32 2.60 -3.40 -0.80

Autumn Control 28.48 0.69 8.70 0.68 -1.27 -0.59

Impact 146.88 2.26 32.05 1.06 -2.01 -0.96

Winter Control 15.64 0.67 0.91 0.26 -1.47 -1.21

Impact 281.17 1.78 38.73 2.78 -6.22 -3.44

GLM River effect 0.002 0.188 0.151 0.149 0.108 0.271
Season effect 0.609 0.184 0.143 0.004 0.307 0.873

Reach effect 0.017 0.005 <0.001 0.034 0.039 0.161

BPOM = Benthic particulate organic matter; SPOM = Suspended particulate organic matter; Chl-a = chlorophyll-a
GPP = Gross primary production; ER = Ecosystem respiration; NEM = Net ecosystem metabolism



Table 3

Water physico-chemical characteristics at each study site during the samplings. Numbers are the mean value (midnight value/noon value) for the whole study reach. The p-values of the factor main-effects in the general linear models (GLMs) are
shown in the lower part of the table; significant effects (p < 0.05) are marked in bold.

Temperature Conductivity DO pH NO3 NHZ TDN PO3" TDP DOC
River Season  Reach  °C uScm! mgL! - mgNL! mgNL! mgNL! mgPL! mgPL! mgCL!
Cinca Summer Control 17.7 (17.5/17.9) 323 (320-325) 9.0  (85/9.4) 880 (8.62-897) 0253 (0.245/0262) 0.023 (0.013/0.033) 0279 (0.262/0.295) 0.004 (0.003-0.004) 0.006 (0.004/0.009) 0.106 (0.105/0.107)
Impact 221 (22.0/222) 288 (291/284) 84  (7.6/92) 8.60 (8.60-8.60) 0.124 (0.131/0.117) 0.016 (0.015/0.017) 0246 (0.269/0.224) 0.002 (0.002/0.002) 0.007 (0.009/0.004) 0.446 (0.780/0.111)
Autumn Control 7.1 (6.3/7.8) 311 (312/310) 116 (11.4/11.9) 830 (8.26/8.34) 0.198 (0.208/0.189) 0.008 (0.008/0.008) 0.282 (0.284/0.281) 0.003 (0.003/0.003) 0.004 (0.005/0.004) 0.136 (0.141/0.130)
Impact 85  (82/88) 386 (397/375) 106 (10.3/109) 825 (822/828) 0280 (0.259/0.301) 0.031 (0.029/0.032) 0393 (0.379/0.407) 0.003 (0.003/0.003) 0.005 (0.006/0.004) 0.114 (0.114/0.114)
Winter Control 33  (28/39) 314 (314/314) 123 (122/12.4) 836 (8.33/839) 0258 (0.240/0276) 0.004 (0.004/0.004) 0289 (0.275/0.303) 0.002 (0.002/0.002) 0.006 (0.004/0.008) 0228 (0.129/0.237)
Impact 35  (3.1/3.9) 369 (369/369) 13.0 (12.7/133) 829 (827/832) 0288 (0.299/0.276) 0.004 (0.004/0.004) 0341 (0323/0.359) 0.002 (0.002/0.002) 0.004 (0.004/0.004) 0.767 (0.748/0.786)
Montsant Summer Control 151 (14.7/15.6) 362 (366/359) 9.5 (8.2/10.8) 8.54 (8.23/8.85) 0.011 (0.012/0.011) 0.008 (0.008/0.008) 0.164 (0.167/0.161) 0.017 (0.017/0.016) 0.024 (0.0026/0.023) 1.978 (2.002/1.954)
Impact 15.1 (14.9/15.4) 395 (400/390) 9.6 (8.4/10.8) 8.32 (8.18/8.46) 0.603 (0.625/0.582) 0.008 (0.008/0.008) 0.826 (0.846/0.806) 0.004 (0.004/0.004) 0.008 (0.009/0.007) 3.148 (3.143/3.153)
Autumn Control 13.6 (13.0/14.3) 769 (767/770) 8.6 (8.3/89) 7.79 (7.77/7.80) 2419 (2.123/2.716) 0.016 (0.015/0.018) 3.065 (2.786/3.344) 0.023 (0.023/0.024) 0.023 (0.023/0.024) 6.841 (6.887/6.795)
Impact 121 (12.3/119) 400 (400/400) 9.6 (9.1/10.1) 7.99 (7.98/8.01) 0384 (0.365/0.404) 0.006 (0.006/0.007) 0576 (0.577/0.575) 0.007 (0.006/0.008) 0.007 (0.006/0.008) 2.589 (2.586/2.529)
Winter Control 3.2  (2.6/3.7) 486 (486/486) 127 (122/133) 824 (8.14/833) 0462 (0.459/0.466) 0.008 (0.008/0.008) 0.589 (0.588/0.590) 0.011 (0.011/0.012) 0.017 (0.017/0.017) 1259 (1.224/1.294)
Impact 3.5 (3.7/34) 446 (444/447) 127 (11.8/136) 827 (8.20/835) 0.855 (0.835/0.874) 0.013 (0.010/0.016) 1.018 (1.016/1.020) 0.004 (0.004/0.004) 0.004 (0.004/0.004) 2.511 (2.539/2.484)
Surana Summer Control 234 (22.6/24.2) 646 (645/647) 7.7 (7.5/7.8) 830 (8.24/8.36) 0.141 (0.148/0.133) 0.018 (0.020/0.017) 0.226 (0.238/0.215) 0.007 (0.007/0.007) 0.010 (0.011/0.010) 0.743 (0.674/0.813)
Impact 14.7 (14.5/149) 635 (636/634) 9.1 (8.8/9.5) 832 (8.28/8.36) 0.096 (0.098/0.093) 0.016 (0.012/0.020) 0.285 (0.281/0.288) 0.003 (0.002/0.005) 0.010 (0.010/0.010) 2.176 (2.412/1.940)
Autumn  Control 11.8 (113/123) 703 (705/701) 109 (10.8/11.0) 823 (825/822) 0393 (0.378/0.408) 0016 (0.012/0.019) 0409 (0.392/0.427) 0.03 (0.003/0.002) 0.005 (0.006-0.004) 0.117 (0.113/0.120)
Impact 104 (9.7/112) 626 (626/626) 105 (10.1/11.0) 8.18 (8.20/8.16) 0295 (0.292/0.299) 0.038 (0.047/0.030) 0359 (0.347/0.370) 0.004 (0.003/0.005) 0.005 (0.004/0.006) 2.587 (2.625/2.548)
Winter  Control 3.3 (2.8/3.8) 705 (706/704) 12.5 12.5/12.5) 826 (8.24/8.27) 0.279 (0.286/0.273) 0.010 (0.009/0.010) 0.354 (0.353/0.355) 0.004 (0.004/0.004) 0.005 (0.005/0.005) 0.547 (0.527/0.567)
Impact 54 (4.6/6.1) 595 (598/591) 12.0 (11.5/12.5) 8.26 (8.21/8.30) 0.038 (0.046/0.031) 0.016 (0.015/0.018) 0.203 (0.201/0.204) 0.004 (0.005/0.004) 0.007 (0.007/0.007) 2.032 (1.947/2.116)
GLM River effect 0.515 <0.001 0.519 0.001 0.006 0.034 0.003 <0.001 <0.001 <0.001
Season effect <0.001 0.030 <0.001 <0.001 0.060 0.017 0.083 0.193 0.113 0.231
Reach effect 0.682 0.053 0.774 0.480 0.296 0.132 0.405 0.001 0.002 0.237
Time of the day 0.363 0.917 0.003 0.022 0.809 0.499 0.849 0.797 0.834 0.901
effect

DO = Dissolved oxygen; NO3 = Nitrate; NH; = Ammonium; TDN = Total dissoved nitrogen; PO3~ = Phosphate; TDP = Total dissolved phosphorus; DOC = Dissolved organic carbon
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Table 4

Whole-reach net uptake (U,) of total dissolved nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) at each study site during the samplings. Numbers are the mean value (mid-
night value/noon value) for the whole study reach. The p-values of the factor main-effects in the general linear models (GLMs) are shown in the lower part of the table; significant

effects (p < 0.05) are marked in bold.

Uper-TDN Upee-TDP Uper-DOC
River Season Reach pg N m™2 min! pg P m2 min™! pg Cm™ min!
Cinca Summer Control 0 (0/0) 9.5 (0/19.0) 26.8 (0/53.6)
Impact 2209 (349.4/92.6) 0 (0/0) 330.7 (661/0.4)
Autumn Control 0 (0/0) 0.1 (0/0.2) 0 (0/0)
Impact -446 (0/-89.2) 0 (0/0) 0 (0/0)
Winter Control 0 (0/0) 0 (0/0) 0 (0/0)
Impact 1775 (0/355.0) 0.1 (0.1/0) 0 (0/0)
Montsant Summer Control 0.0 (0/0) 0 (0/0) 0 (0/0)
Impact 4104 (820.8/0) 0 (0/0) 0 (0/0)
Autumn Control -147.2 (-294.5/0) 0 (0/0) 0 (0/0)
Impact 103.5 (100.0/107.0) 0 (0/0) 158.2 (147.4/169.0)
Winter Control 91.2 (77.6/104.8) 0 (0/0) 0 (0/0)
Impact 0.0 (0/0) 0 (0/0) 0 (0/0)
Surana Summer Control 0.0 (0/0) 0 (0/0) 14.8 (0/29.6)
Impact 55.2 (46.1/64.3) 0 (0/0) 87.3 (174.6/0)
Autumn Control 489 (0/97.9) 23 (-4.4/-0.05) 25 (5.1/0)
Impact 74.0 (0/148.0) 0 (0/0) 0 (0/0)
Winter Control 6.9 (13.8/0) -1.0 (-2.1/0) 0 (0/0)
Impact 57.7 (64.8/50.6) 0 (0/0) 0 (0/0)
GLM River effect 0.867 0.249 0.644
Season effect 0.283 0.283 0.271
Reach effect 0.041 0.523 0.134
Time of the day effect 0.804 0.195 0.295

There were no significant correlations between Upee-TDN, Upee-TDP
and U,,-DOC (p > 0.721), except for a positive correlation between
Unee-TDN and U,e-DOC when we only considered Upee-values # 0
(i.e. net uptake or release) (Fig. 3). In addition, U,e-TDN was significantly
correlated with ER and marginally significantly with GPP (Fig. 4). There
was higher U,.~TDN with higher ecosystem respiration (lower ER
values) and higher GPP, suggesting a coupling between ecosystem me-
tabolism and net uptake of N. In both cases, the highest U,e.~TDN values
occurred in impact reaches and were coincident with the lowest ER and
the highest GPP values. Up~-TDP showed no significant correlation with
metabolism variables (p > 0.010). U,,e-DOC showed a significant correla-
tion with GPP (r = 0.56, p = 0.015, n = 18), but the correlation was no
longer significant (r = 0.01, p = 0.977, n = 17) when an outlier with
unusually high Upe-DOC and GPP values (impact reach of the Cinca
River in summer) was removed.

4. Discussion

The presence of dams enhanced hydromorphological stability, the ac-
cumulation of organic matter and ecosystem metabolism in downstream
reaches. Flow regulation also altered river nutrient cycling by increasing
the whole-reach net uptake of dissolved N, but not of dissolved P or C.
The reaches located upstream from dams were close to biogeochemical
equilibrium with no significant net uptake of dissolved TDN, TDP or
DOC, whereas reaches located downstream from dams acted as net
sinks of TDN. However, dams did not interfere in the uptake of TDP and
DOC that remained similar between upstream and downstream reaches.

Reservoirs are particularly efficient in removing P (Harrison et al.,
2010), thus, streams below reservoirs can show a tendency towards P
limitation (i.e. low N:P ratios as in our case). As a result, in river reaches
located below reservoirs we would expect higher demand for P than for
N. In line with this expectation, results from studies on the effects of
lakes show a tendency for increased P uptake and reduced N uptake in
lake outlets. For instance, Arp and Baker (2007) showed no nitrate up-
take but high phosphate uptake at lake outlets, what they attributed
to the combined effects of stable hydrology and lake-derived source-
waters on the nutrient requirements of biological communities. Similar-
ly, Hall et al. (2002) reported one of the highest uptakes of phosphate in
a lake outlet from a set of 13 reaches, whereas Hall and Tank (2003)

measured the lowest uptake of nitrate at a lake outlet compared with
the other 10 streams in their study. In contrast to results from streams
below lakes, we observed increased N uptake and no changes in P up-
take below reservoirs. In the absence of more empirical evidence,
these apparently contradictory results suggest that differences in the
functioning of reservoirs and lakes could differently influence down-
stream nutrient cycling. For instance, nutrient removal tends to be
higher in reservoirs compared to lakes (Harrison et al., 2009), and
river reaches below reservoirs are exposed to deep water releases
(Friedl and Wiiest, 2002) and strong hydromorphological modifications
(Graf, 2006). Moreover, while results from lake outlets (Arp and Baker,
2007; Hall and Tank, 2003; Hall et al., 2002) were derived from esti-
mates of gross nutrient uptake, our results were derived from estimates
of net nutrient uptake. Gross nutrient uptake approximates nutrient de-
mand, whereas net nutrient uptake is the balance between gross nutri-
ent uptake and release (von Schiller et al., 2015). Thus, high gross
uptake as a result of high demand may be counterbalanced by high re-
lease. This could at least partially explain the lack of difference in net P
uptake between our control and impact reaches as well as the differ-
ences observed between the results from lake outlets (i.e. gross uptake
estimates) and results from our study (i.e. net uptake estimates). Unfor-
tunately, we did not measure gross uptake of nutrients in addition to net
uptake; thus, we were not able to establish the magnitude of gross up-
take in comparison to release in our study reaches. Furthermore, the
lack of difference in P uptake between our control and impact reaches
could also have been influenced by the low TDP concentrations (except
in the control of the Montsant River), which may have caused P limita-
tion and high P recycling in biofilms upstream and downstream from
dams (Ponsati et al., 2014).

In the absence of studies that have measured net uptake of TDN in
rivers, studies on the net uptake of dissolved inorganic nitrogen (DIN)
provide evidence on the net capacity of rivers to take up N. For instance,
Roberts and Mulholland (2007) reported an average DIN net uptake
close to 0 and values ranging from —6.2 to 36 uyg N m~2 min~' from
a North American forested headwater stream investigated over a
whole year. Bernal et al. (2012) measured net uptake of DIN in two
headwater streams in the Iberian Peninsula over two years and also
reported an average DIN net uptake close to zero but with a wider
range (—207.6 to 340.5 ug N m~2 min~!). In these headwater streams,
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Fig. 2. Whole-reach net uptake (Uy,) of total dissolved nitrogen (TDN; panel A), total dis-
solved phosphorus (TDP; panel B) and total dissolved organic carbon (DOC; panel C) in the
river reaches located upstream (control) and downstream (impact) from the dams. Box
plots display the 10th, 25th, 50th, 75th, and 90th percentiles and outliers. The asterisk
indicates significant difference as reported in Table 4.

biogeochemical equilibrium (Upee ~ 0) dominated most of the time sim-
ilarly as it happened in our control reaches (Bernal et al., 2012; Roberts
and Mulholland, 2007). In contrast, in our impact reaches net uptake
of TDN was # 0 in two thirds of the cases and the average value was
relatively high (mean 4+ SE = 117.2 4+ 11.7; range = —89.2-
820.8 uig N m~2 min~"). In addition to the influence of high metabolic
fluxes (see below), the high uptake of N measured in our impact reaches
may be partially explained by the fact that net uptake of TDN includes
the cycling of dissolved organic nitrogen (DON) in addition to that of
DIN (Brookshire et al., 2005). In this sense, DON accounted on average
for 30% of TDN in the impact reaches (von Schiller et al., unpublished
data). Unfortunately, we were not able to distinguish how much DIN
vs. DON contributed to N cycling in the investigated river reaches.
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Fig. 3. Relationship between the net uptake of total dissolved nitrogen (U,-TDN) and
the net uptake of dissolved organic carbon (Upe-DOC) when only Upe-values # 0
(i.e. net uptake or release) are considered. The results from the Pearson-moment correla-
tion are shown.

Furthermore, we should take into account that net uptake in our study
was only measured three times in each reach and during periods of
base flow. Net uptake could be strongly altered during flood periods
or just after floods (Grimm, 1987; Marti et al., 1997).

Metabolic fluxes were correlated with the net uptake of TDN. There
was higher U,.-TDN at higher ecosystem respiration (lower ER values)
and higher GPP. This coupling was driven by the high values of ER, GPP
and U,-TDN in impact reaches. In a parallel study, Aristi et al. (2014)
showed increased metabolic fluxes downstream from the dam as a re-
sult of higher hydromorphological stability and accumulation of organic
matter and algal biomass. Here, we show that enhanced metabolism
below dams also enhances the net uptake of TDN. Several studies have
found a positive relationship between metabolic variables and gross N
uptake (e.g. Fellows et al., 2006; Hall and Tank, 2003; Valett et al.,
2008). Our study adds to the lower number of studies that have report-
ed arelationship between metabolism and net N uptake (e.g. Heffernan
and Cohen, 2010; Heffernan et al., 2010).

To examine the relative contribution of autotrophs and heterotrophs
to assimilatory N uptake, we estimated the N demand by autotrophops
and heterotrophs based on the approach used by Hall and Tank (2003).
Predicted N demand was derived from metabolism assuming a respira-
tory quotient = 1 and a molar C:N = 20. We assumed net autotrophic
production to be 0.5 x GPP, and we used a moderate heterotrophic
growth efficiency (0.2) to estimate heterotrophic production. The pre-
dicted autotrophic vs. heterotrophic N demand ratio was 1.2 + 0.2
(mean + SE, n = 17; the control reach of Cinca River in summer with
a ratio = 90.6 was excluded). The ratio was similar between control
(1.0 £ 0.2) and impact reaches (1.3 + 0.2). Viewed with caution, our re-
sults suggest that autotrophs and heterotrophs contributed similarly to
assimilatory N uptake in the study reaches, and that this relative contri-
bution did not vary significantly between reaches located upstream and
downstream from dams. We did not investigate the primary uptake
compartments responsible for N uptake; however, a parallel study by
Ponsati et al. (2014) observed increased photoautotrophic and hetero-
trophic activity in epilithic biofilms downstream from the dams, indicat-
ing that this compartment may be a key driver of N uptake in the
investigated river reaches. Moreover, the positive correlation between
Unher-TDN and U,e-DOC when we considered U,e-values # 0 suggests
that coupled DOC and TDN uptake by heterotrophs could have been im-
portant during some periods. Nonetheless, dissimilatory N uptake via
denitrification could also have significantly contributed to N removal,
especially below dams where positive net N uptake was frequent.
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Fig. 4. Relationships of the net uptake of total dissolved nitrogen (U,e-TDN; mean of noon
and midnight values for each date and reach) with ecosystem respiration (ER; panel
A) and gross primary production (GPP; panel B) in the river reaches located upstream
(Control) and downstream (Impact) from the dams. Results from Pearson-moment
correlations are shown in each panel.

Indeed, in spring-fed rivers, which similarly to our impact reaches also
have stable hydromorphological conditions and high metabolic activity,
dissimilatory N uptake via denitrification was the predominant mecha-
nism of N removal despite high N demand by autotrophs and hetero-
trophs (Heffernan et al., 2010). Unfortunately, in our study we did not
directly measure denitrification, and our data (i.e. net N uptake esti-
mates) did not allow us to reliably estimate the magnitude and relative
importance of assimilatory vs. dissimilatory N uptake.

Diurnal changes (i.e. midnight vs. noon) observed in some variables
(i.e. DO, pH) were not reflected in diurnal changes in nutrient cycling. As
such, there were no differences in net uptake for TDN, TDP or DOC be-
tween midnight and noon samplings. Because primary production is de-
pendent on the light presence, this observation supports the fact that
despite the dominance of net heterotrophy (GPP < ER) autotrophic
and heterotrophic processes contributed similarly to nutrient uptake
in the investigated river reaches (Fellows et al., 2006). Our result are
sustained by results from other streams that have found differences in
gross uptake of N and P between day and night only during periods of
net autotrophy (Mulholland et al., 2006). Nonetheless, we should be
cautious in interpreting midnight-noon differences as the best proxies

for diel variability in uptake because maximum and minimum values
can occur at other moments of the day (Heffernan and Cohen, 2010).

5. Conclusions

Hydrologic regulation by dams in Mediterranean rivers enhances
hydromorphological stability, organic matter accumulation and meta-
bolic fluxes, thereby increasing the net uptake capacity of dissolved N
downstream. Consequently, not only reservoirs themselves, but also
river reaches located downstream from their dams may constitute
relevant N cycling discontinuities along regulated river networks. Our
results suggest that higher net N uptake capacity in river reaches
below dams could lead to less N exported to downstream systems.
How far this effect extends downstream along the rivers and over
wider geographical scales remains to be investigated. Incorporating
these discontinuities could significantly improve predictive models of
N cycling and transport in complex river networks.
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