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Abstract  

Four inks for the production of ZnO semiconducting films have been prepared with zinc 

acetate dihydrate as precursor salt and one among the following aminoalcohols: 

aminopropanol (APr), aminomethyl butanol (AMB), aminophenol (APh) and aminobenzyl 

alcohol (AB) as stabilizing agent. Their thermal decomposition process has been analyzed in 

situ by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and 

evolved gas analysis (EGA), whereas the solid product has been analysed ex-situ by X-ray 

diffraction (XRD) and infrared spectroscopy (IR). Although, except for the APh ink, 

crystalline ZnO is already obtained at 300 ºC, the films contain an organic residue that 

evolves at higher temperature in the form of a large variety of nitrogen-containing cyclic 

compounds. The results indicate that APr can be a better stabilizing agent than ethanolamine 

(EA). It gives larger ZnO crystal sizes with similar carbon content. However, a common 

drawback of all the amino stabilizers (EA included) is that nitrogen atoms have not been 

completely removed from the ZnO film at the highest temperature of our experiments (600 

ºC). 
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EXPERIMENTAL PROCEDURE 

Samples preparation 

Zinc acetate dihydrate [Zn(CH3COO)2·2H2O, ZAD] was purchased from Panreac, 2-

metoxyethanol (ME) from Aldrich, ethanolamine (EA) from Acrös Organics and the other 

aminoalcohols [(S)-(+)-2-amino-1-propanol (APr), (S)-(+)-2-amino-3-methyl-1-butanol 

(AMB), 2-aminophenol (APh) and 2-aminobenzyl alcohol (AB)] from Aldrich. All the 

reagents were used as received. Figure 1 shows the molecular structure of EA and the other 

closely related aminoalcohols used in this study. 

The inks were prepared as follows. 0.5 g of ZAD (2.3 mmol) were treated with an 

equimolar amount of the corresponding stabilizer (EA, APr, AMB, APh or AB) and mixed in 

5 mL of solvent (ME). All mixtures were kept at 60 ºC under continuous stirring for 30 min. 

Except for the inks containing aromatic stabilizers (APh and AB), that became dark due to 

their strong photoreactivity, the other ones remained transparent clear solutions for weeks. 

 Precursor thin films were deposited by drop coating on glass substrates.  

 

Thermal analysis 

To study the thermal evolution of the inks, thermogravimetric (TGA), and differential 

scanning calorimetry (DSC) analyses were done in dry air and pure oxygen atmospheres 

(flow rate of 50 mL/min) at a heating rate of 10 ºC/min up to 600 ºC in uncovered alumina 

and aluminium pans, respectively. A drop of ink corresponding to a ZnO mass around 200 μg 

was poured inside the pans. The ink wetted the inner walls of the pan leaving behind a film of 

“nominal thickness” (i.e. the thickness of ZnO, if it were a dense homogeneous film) around 

0.5 μm. We used the TGA-851e and DSC-822e apparatus of Mettler-Toledo. 

Complementary Evolved Gas Analysis (EGA) of the evolved species during ink 

decomposition was done in vacuum at 20 ºC/min up to 600 ºC, using a MKS quadrupole 

mass spectrometer (Microvision Plus). 

 

Structural analyses 

The films structure was analysed after heating them at 10 ºC/min in air up to 300 and 

600 ºC. The first samples were kept for 5 min at 300 ºC, whereas the second ones were 

cooled down without any delay after reaching 600 ºC. X-ray diffraction (XRD) measurements 

were carried out with a PANalytical X’Pert PRO MPD Alpha1 powder diffractometer in 
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Bragg-Brentano θ/2θ geometry with Cu K1 radiation ( = 1.5406 Å). Films were scratched 

from the substrate and the resulting powder was put inside KBr pellets for infrared (IR) 

spectroscopy with a Nicolet 400FTIR instrument. Carbon and nitrogen content was quantified 

by elemental organic analyses (EOA) with the Thermo EA Flash 2000 (Thermo Scientific, 

Milan, Italy) equipment working in standard conditions (helium flow: 140 ml/min; 

combustion furnace at 950 ºC; chromatographic column oven at 65 ºC). And, finally, film 

morphology was observed by scanning electron microscopy (SEM) with a JEOL JSM-7100F 

and a JEOL J-6510 in planar and cross-section views.  

 

RESULTS AND DISCUSSION 

TG/DSC experiments 

After solvent evaporation, that finishes below 150 ºC (ME boiling point, 124 ºC), 

thermal decomposition of the inks is revealed by two mass-loss steps (Fig.2). According to 

previous observations on the EA ink [14], ZnO appears after the first decomposition step with 

maximum decomposition rate in the 230-270 ºC range depending on the particular stabilizer. 

DSC experiments indicate that the first decomposition step is endothermic (in the case of EA 

and APr) or isenthalpic (for APh and AB) and, when exothermic in air (as in the case of 

AMB – Fig.2a), the decomposition temperature remains the same as in pure oxygen. This 

observation shows that a higher oxygen concentration does not advance the decomposition 

reaction; i.e. this step is not triggered by reaction with the oxygen molecules of the furnace 

atmosphere.  

The second mass-loss step that corresponds to elimination of the organic residue is 

much more dependent on the particular stabilizer. It is centred on around 270 ºC for the 

aliphatic stabilizers (Fig.2a) whereas it appears at higher temperature for the APh (440 ºC) 

and AB (480 ºC) inks (Fig.2b). Furthermore, the inks with aromatic stabilizers lose much 

more mass during the second step (Fig.2b), as expected because of the large mass and high 

thermal stability of the aromatic ring. Elimination of the organic residue proceeds through 

reaction with oxygen leading to prominent exothermic DSC peaks (Fig.2), the decomposition 

heat being higher for the aromatic stabilizers.  

 It must be pointed out that the second mass-loss step is not related with evaporation of 

the stabilizer. Firstly, because its temperature is not correlated with the stabilizer boiling 

point (300 ºC for APh and 160 ºC for AB). Secondly, because during ink formation the 



 

stabilize

[14]. 

 

Figure 
sta
lin

 

 

ºC is sm

Zn atom

This ph

precurs

mass of

er probably

2. TG an
abilizers. TG
nes are the e

Finally, it is

maller than t

ms have bee

henomenon

ors [17]. Th

f the residu

y reacts with

d DSC cur
G curves ar
expected fin

s worth not

the expecte

en lost durin

 has alread

he Zn loss h

ue outside th

h ZAD to fo

rves of ink
re normalize
nal masses if

ing that, ex

ed mass for 

ng the decom

dy been re

has been ac

he TG furn

orm a comp

k decompo
ed to the m
f the residue

cept for the

pure ZnO (

mposition p

ported for 

ccurately qu

nace with an

plex precurs

sition for: 
mass after so

e is 100% Z

e APh TG cu

(horizontal l

process (pre

ZAD [16] 

uantified for

n independe

sor molecul

a) aliphati
olvent evap
ZnO. 

urve, the re

lines in Fig

esumably du

 and for C

r the EA ink

ent more st

e, as shown

 

c and b) a
poration. Ho

ecorded mas

.2). In other

uring the fir

CuO metal 

k by measu

table microb

5 

n for EA 

aromatic 
orizontal 

ss at 600 

r words, 

rst step). 

organic 

uring the 

balance, 



 

and com

spread o

The hor

cannot 

with th

decomp

alumina

since, a

the first

volatile

 

Figure 
sub
Ho

 

 

XRD, I

Except 

will not

up to 3

mparing thi

on a glass s

rizontal line

discard that

he experim

position. Th

a pans (tho

as said abov

t decompos

es out of film

3. TG cur
bstrate. Ma
orizontal lin

IR and EOA

ZnO forma

for APh th

t be include

00 ºC all th

is mass with

substrate. T

e marks the

t some ME

mental TG 

his experim

ose of Fig.2

ve, oxygen 

sition step c

ms that out o

rves of the
ss is norma

ne: mass of t

A results 

ation after 

hat, after the

ed in the stud

he inks exh

h the one o

The TG curv

e mass of Z

 evaporatio

curves sug

ent is also 

2) reproduc

does not tr

can be attri

of bulk mat

 EA ink d
alized to the
the ZAD+D

the first m

e second st

dies for 600

hibit the cha

obtained aft

ves normali

AD+EA pr

on still occu

ggests that 

useful to as

ce reasonab

igger decom

ibuted to a 

terial [17]. 

decomposed
 final mass 

DEA precur

mass-loss ste

tep, degrade

0 ºC present

aracteristic p

ter repeating

ized to the f

recursor if Z

urs up to 15

more than

ssess that th

bly well wh

mposition, t

surface eff

d inside an 
measured e
sor if no Zn

ep has been

ed becomin

ted in the fo

peaks of he

g the exper

final mass a

Zn were not

0 ºC, comp

n 25% of 

he TG expe

hat occurs 

the observe

fect, i.e. an 

alumina p
externally to
n atoms wer

n assessed 

ng a powder

ollowing sec

exagonal Zn

riment with

are shown i

t lost. Altho

parison of th

Zn is lost

eriments do

in films. A

ed shift by 2

easier tran

 

pan and on 
o the TG ap
re lost. 

by XRD (

r and conse

ctions, after

nO sometim

6 

h the ink 

in Fig.3. 

ough we 

his level 

t during 

one with 

Anyway, 

20 ºC in 

nsport of 

a glass 
pparatus. 

(Fig. 4). 

equently 

r heating 

mes with 



 

(002) p

origin (

Applica

these ex

is partia

 

Figure 
AP
pat
un

 

film, ha

(Fig.5a)

preferential 

(nor does it 

ation of Sch

xtreme valu

ally due to t

4. XRD sp
Ph film did 
ttern of pu

nknown pha

IR spectra a

ave the char

). The absen

orientation

correspond

herrer’s form

ues are for E

the large con

pectra measu
not survive

ure ZnO (J
se. 

are consiste

racteristic v

nce of this 

n (Fig.4a). I

d to the ZnO

mula delive

EA and for 

ntent of org

ured after h
e at this tem
JCPDS 36-

ent with XR

vibrational b

band for th

In the AB 

O cubic pha

ers crystal s

AB films, r

ganic residu

heating the 
mperature). A

1451). The

RD results i

band of ZnO

he APh film

curve, one

se) is obser

ize values r

respectively

ue revealed b

films up to
At the botto
e arrow in 

n the sense

O at 400-60

m means tha

e additional 

rved. All pe

ranging betw

y. This poor

by IR spectr

o 300ºC (a) 
om of figure

a) indicate

 that all film

00 cm-1 [18

at ZnO has 

 peak of u

eaks are very

ween 7 and

r crystalline

roscopy.  

 

and 600ºC 
e b, the bars
es the peak

ms, except t

] already at

not been p

7 

unknown 

y broad. 

d 13 nm; 

e quality 

(b) (the 
s are the 
k of an 

the APh 

t 300 ºC 

produced 



 

after the

bands c

confirm

Figure 
the

 

heat tre

e first decom

centred at 1

med by the b

5. IR spectr
e bands rela

The organi

eatment at 6

mposition s

580 and 14

bands at 150

ra measured
ated to CH3 

c residue c

600 ºC (Fig

step. In add

410 cm-1 [1

00 (weak) an

d after a hea
and CH2 gr

contribution

.5b). Now, 

dition, all IR

9]. Again, r

nd 1280 (in

at treating a
roups. 

n to the IR 

the absorba

R spectra co

retardation 

ntense) cm-1

at 300ºC (a)

spectra is s

ance due to

ontain very 

of APh film

 related to t

) and 600ºC

substantially

o ZnO reach

intense carb

m decompo

the precurso

 (b). Inset: 

y reduced a

hes saturatio

8 

boxylate 

osition is 

or [20]. 

 

detail of 

after the 

on (zero 



9 
 

transmittance) for all films. Unfortunately, the method used to make these measurements 

(film flakes inside KBr pellets) precludes any attempt of quantification. Consequently, 

although one can see varying intensities of the carboxylate and (aliphatic) C-H-stretching 

bonds [21] (inset of Fig.5b) from film to film, from these slight differences one cannot infer 

higher or lower organic content. Instead, the elemental C and N contents have been quantified 

by EOA. The determined percentage of N is below the technique sensitivity (0.2%), but 

quantification of C has been possible (see Table I). EA and APr films have the lowest carbon 

content (0.2-0.3%) and the AB film, the highest (3.5%).  

Removal of the organic residue as well as thermal activation of grain growth improves 

considerably the film crystalline quality at 600 ºC. XRD peaks are much narrower and 

attributable to wurtzite ZnO (Fig.4b). The AB and APr films have the largest crystal sizes 

(27-28 nm) whereas the smallest ones are found in the AMB and EA films (21 nm) (Table I). 

The lack of any significant preferential crystalline orientation can be due to the use of low-

boiling temperature solvent [6]. However, use of adequate substrates (Pt(111) and amorphous 

SiNx on c-Si) can promote preferential orientation along the c-axis even for ZAD+EA inks 

dissolved in ME [12]. 

 

Table I. Average ZnO crystal size at 600 ºC obtained from the XRD curves by applying 
Scherrer’s formula to the (100), (002) and (101) peaks; and carbon content measured by 
elemental analysis at the same temperature. 

  EA  APr  AMB  AB 

crystal size (nm)  21.1  26.8  21.2  28.0 

C content (%)  0.2‐0.3  0.2‐0.3  0.4  3.5 

 

 

Analysis of the evolved gases 

 EGA experiments in vacuum have allowed detecting the volatile products of the inks 

decomposition. Many fragments have been detected up to m/z=150 whose identification has 

been based on the computational and experimental work of Bouchoux’s group on the 

reactivity of aliphatic aminoalcohols [22]. These authors found that their dissociation 

produces a number of nitrogenated cyclic fragments, the simplest ones being azidine 

(m/z=44), azetidine (58), pyrolidine (68) and piperidine (85). In Fig.6a we have plotted the 

EGA curves of several intense signals that can be assigned to these cyclic fragments during 

decomposition of the AMB ink. These curves can be compared with the mass-loss curve 
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for the AB and APr inks and of similar size with AMB. In contrast, APh degrades to powder. 

Carbon contamination quantified by EOA reaches a minimum concentration with EA and 

APr, while for AB it is 10 times higher. Contamination by nitrogen could not be quantified. 

However, analysis of the evolved gases indicates that nitrogen atoms have not been 

completely removed at 600 ºC. Films are not homogeneous; all of them have ripples that arise 

from internal stresses during decomposition. 

 To sum up, the comparative studies undertaken for the 5 aminoalcohols proposed as 

stabilizers in ink manufacture and their evolution to ZnO films demonstrate the influence and 

effect of the linkers (spacers of the aminoalcohol on the global process). We have proved 

that: a) aromatic aminoalcohols behave worse than EA due to either their degradation and 

transformation to powdered material (APh) or the retention of higher contents of carbon after 

the thermal treatment; b) aliphatic aminoalcohols are clearly a better choice, giving ZnO 

films with less doping carbon but showing ripples whose height decreases as follows EA > 

APr > AMB. These aminoalcohols H2N-CH(R1)CH2OH only differ in the nature and bulk of 

the substituent R’ that could play a key role in determining the morphology and also the 

crystal sizes of the films. 
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