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Abstract

Multiple Sclerosis (MS) is the most common chronic immune-mediated disabling
neurological disease affecting the central nervous system, in which the insulating
covers of the nerve cells in the spinal chord and brain are damaged. MS is charac-
terized by the presence of lesions in the brain, predominantly in the white matter
(WM) tissue of the brain. Due to the sensitivity of structural Magnetic Resonance
Imaging (MRI) disseminating WM lesions in time and space, it has become an
essential tool in the diagnosis and evaluation of MS. Furthermore, MRI measure-
ments of atrophied tissue in the brain have shown to correlate with the disability
status, demonstrating that tissue loss is an important component of the disease’s
progression.

This correlation between the amount of atrophied tissue in the brain and MS
disability status has increased the necessity of developing robust, automated brain
tissue segmentation methods capable of measuring the brain’s tissue volume accu-
rately. However, automated segmentation of brain tissue is still a challenging prob-
lem due to the complexity of the images, lack of contrast between tissues, noise,
intensity inhomogeneities and the absence of anatomy models that fully capture the
possible deformations in each structure. Moreover, it has been shown that WM
lesions reduce the accuracy of automated tissue segmentation methods, which high-
lights the necessity of handling these lesions before tissue segmentation, a process
known as lesion filling. However, lesion filling requires manually annotating lesions
before tissue segmentation, which is time-consuming, prone to variability among
expert radiologists, or not always readily available. This fact along with the need of
analyzing focal MS lesions quantitatively in individual and temporal studies has led
to the development of a large number of automated lesion segmentation methods of
MS lesions.

The main goal of this thesis is to develop a novel, fully automated brain tis-
sue segmentation method capable of computing accurate measurements of tissue
volume from images of MS patients with lesions. In order to fulfill this goal, we
have focused on each of the concatenated processes necessary to develop a fully au-
tomated tissue segmentation method. Firstly, we have analyzed and evaluated the
state-of-the-art of tissue segmentation methods on data from healthy subjects, where
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we have performed a quantitative review of the different tissue segmentation tech-
niques proposed, with the aim of understanding their advantages and drawbacks.
Our experimental results have shown that methods that incorporate morphological
prior information and/or spatial constraints are more robust to changes in acquisi-
tion sequences and intensity inhomogeneities, when compared with simpler strategy
intensity based methods.

In the second stage, we have studied and evaluated the effect of WM lesions on
tissue segmentation of MS patient images. In this regard, we have performed sev-
eral experiments using multi-center 1.5T MS data from different scanners in order
to analyze the effects of lesion signal intensities and lesion size on the performance
of several tissue segmentation methods not explicitly designed to handle with WM
lesions. In all these methods, the results obtained have indicated that the inclusion
of WM lesions on tissue segmentation not only biased the total tissue volume mea-
surements by the addition of miss-classified lesion voxels, but also had a direct effect
on the differences observed in normal-appearing tissue. This effect has shown to be
less relevant in those methods that incorporate prior information and/or spatial
context.

In the third stage, we have focused on lesion filling, reviewing and analyzing
the accuracy of the different lesion filling techniques proposed in the literature.
Motivated by these results, we have proposed a new lesion filling technique with the
aim of overcoming the limitations of previously proposed methods. When compared
with these methods, our experimental results have shown that the proposed lesion
filling method is effective with different databases and is independent of the tissue
segmentation method used afterwards.

Finally, we have focused on a comprehensive analysis of the effects of automated
lesion segmentation and filling in tissue segmentation. We have evaluated the accu-
racy of two pipelines that incorporated automated lesion segmentation, lesion filling
and tissue segmentation on MS data, with the aim of understanding the extent of
the effect of remaining WM lesions on the differences in tissue segmentation. Our
findings have shown that up to certain lesion load, pipelines that incorporated au-
tomated lesion segmentation and filling are capable of significantly reducing the
impact of WM lesions on tissue segmentation, showing a similar performance to
pipelines where expert lesion annotations were used.

All these stages have served as the basis in the development of a novel, multi-
channel method designed to segment brain tissues in MRI images of MS patients.
The proposed tissue segmentation method has been designed and implemented using
a combination of intensity along with anatomical and morphological prior maps to
guide the tissue segmentation. WM outliers have been estimated and filled before
segmentation using a multi-channel post-processing rule-based algorithm with spa-
tial context, and prior anatomical and morphological atlases. The proposed method
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has been quantitatively and qualitatively evaluated using different databases of im-
ages containing WM lesions, yielding competitive and consistent results in both
general and MS specific databases. The percentages of errors obtained in the differ-
ent experiments carried out show that the proposed algorithm effectively improves
automated brain tissue segmentation in images containing lesions.

This PhD thesis is part of several project frameworks carried out by our research
group in collaboration with different hospital centers. As part of the goals of these
research projects, software implementations of all the proposed methods in this thesis
have been released for public use in the research community. The proposed lesion
filling method is currently being used by the collaborating hospitals. We believe that
the proposed, fully automated tissue segmentation method will also be beneficial in
clinical settings.






Resum

L’Esclerosi Miltiple (EM) és la malaltia neurologica cronica incapacitant més co-
muna del sistema nerviés central, on el recobriment aillant de les cel-lules nervioses
a la medul-la espinal i el cervell estan danyades. L’EM es caracteritza per la presen-
cia de lesions en el cervell, predominantment en el teixit de la substancia blanca.
Gracies a la seva sensibilitat per mostrar 'activitat focal de les lesions i el progrés
de la malaltia, la ressonancia magnética (RM) s’ha convertit en una eina essencial
per al diagnostic i 'avaluacié de 'EM. Igualment, s’ha demostrat que I'atrofia del
teixit cerebral mesurada a través de la RM esta relacionada amb l'increment de la
discapacitat, mostrant que la pérdua de teixit és un component important de la
progressié de la malaltia.

La correlacié existent entre 'atrofia del teixit cerebral i 'estat d’incapacitat de
la malaltia, ha augmentat la necessitat de desenvolupar eines automatiques de seg-
mentacié amb capacitat per mesurar de forma precisa el volum dels teixits cerebrals.
No obstant, la segmentacié automatica del teixit cerebral segueix sent un problema
complicat, fonamentalment a causa de factors com la complexitat de les imatges,
les diferéncies en les intensitats de teixit, el soroll de les imatges, les diferencies
en ’homogeneitat de les adquisicions o 1’absencia de models anatomics capagos de
modelar cadascuna de les estructures del cervell. Aixi mateix, s’ha demostrat també
que les lesions de substancia blanca redueixen la precisié dels metodes automatics
de segmentacio, subratllant aixi la necessitat de processar les lesions abans de la
segmentacié utilitzant un procés conegut com lesion filling. Tanmateix, el procés
de lesion filling requereix que les mascares de lesié siguin conegudes a priori, el que
pot ser dificil d’aconseguir, comportant temps i sent propens a variabilitat entre
radiolegs. Aquest fet i la necessitat d’analitzar les lesions d’EM tant en estudis indi-
viduals com temporals ha portat al desenvolupament d’un gran nombre de metodes
automatics de segmentacié de les lesions.

L’objectiu principal d’aquesta tesi és el desenvolupament d’'un nou metode de
segmentacié totalment automatic capag de mesurar amb precisié el volum cerebral
en imatges de pacients d’EM amb lesions. Per aconseguir-ho, en aquesta tesi ens hem
concentrat en cadascun dels processos necessaris per a desenvolupar aquest metode.
Primer, hem fet un resum qualitatiu i quantitatiu de les tecniques de segmentacio
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ja existents a la literatura utilitzant diferents conjunts d’imatges de subjectes sans,
amb l'objectiu d’entendre els avantatges i inconvenients de les diferents tecniques.
Els resultats obtinguts demostren que els metodes que incorporen informacio a priori
de tipus morfologica o de context local tendeixen a ser menys proclius als canvis en
I’adquisicio de les seqiiencies o en les homogeneitats de les intensitats, en comparacio
amb metodes més simples basats només en intensitat.

En segon lloc, hem estudiat i analitzat 1’efecte que produeixen les lesions de
substancia blanca a la segmentacié d’imatges de pacients d’EM. A tal fi, hem real-
itzat diversos experiments utilitzant bases de dades de 1.5T adquirides en diferents
escaners per tal d’analitzar I'efecte de la intensitat i el volum de les lesions en les
diferencies en volum cerebral de diversos metodes de segmentacié de teixit. En tots
els metodes, la inclusio de les lesions en el procés de segmentacié no només introdueix
errors en els mesuraments del volum total de teixit a causa dels voxels de les lesions
mal classificats, sind que també té un efecte clar en les diferéncies de volum en el
teixit sa. Aquest efecte és menys rellevant en els metodes que incorporen informacié
a priori de tipus morfologica o de context local.

En tercer lloc, ens hem concentrat en el procés de lesion filling, on hem resumit
i analitzat la precisio de les diferents tecniques proposades en el camp. Aquesta
analisi ens ha servit de base per proposar una nova teécnica de lesion filling que
millori les limitacions observades en els metodes anteriors. Els resultats obtinguts
mostren que, en comparacié amb la resta de metodes proposats, el nostre metode és
efectiu amb diferents tipus d’imatges i independentment del meétode de segmentacio
utilitzat a continuacié.

Seguidament, hem realitzat una analisi completa dels efectes d’automatitzar la
segmentacio de les lesions de substancia blanca i el lesion filling en la posterior
segmentacié del teixit cerebral. Per aixo, hem avaluat 'eficacia de dos sistemes
automatics que incorporen aquests processos per tal d’entendre el paper de les lesions
residuals que no van ser detectades i, per tant no processades, en les diferéncies de
volum cerebral. Els nostres resultats mostren que els sistemes on la segmentacio de
les lesions i el lesion filling va ser automatic redueixen significativament 'impacte
de les lesions de substancia blanca a la segmentacio del teixit, mostrant un eficacia
similar als sistemes amb intervencié manual dels experts.

Cadascuna d’aquestes fases ens ha servit de base per al desenvolupament d’un
nou metode de segmentacié multi-canal dissenyat amb 1’objectiu de segmentar imat-
ges de RM de pacients d’EM. El metode que hem proposat s’ha desenvolupat i im-
plementat integrant no només la informacié provinent de la intensitat dels voxels,
sind a través de la incorporacié d’atles morfologics i estructurals que guien la seg-
mentacié del teixit. Els voxels candidats de ser lesions sén estimats i processats
abans de la segmentaci6 del teixit utilitzant un algoritme de post-processat basat
en la informacié del context local i la informacié anatomica i morfologica previa.
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Aquest metode de segmentacié ha estat avaluat de forma quantitativa i qualitativa
utilitzant diferents conjunts d’imatges que contenen lesions de substancia blanca.
Els resultats mostren que la precisié del metode proposat és consistent i molt com-
petitiva en tot tipus d’imatges en comparacié amb altres tecniques proposades. En
aquest sentit, els percentatges d’error obtinguts en els diferents experiments duts a
terme mostren que el metode proposat millora la segmentacié del teixit cerebral de
les imatges amb lesions.

Aquesta tesi doctoral forma part de diversos projectes que el nostre grup de
recerca esta duent a terme en col-laboracié amb els diferents centres hospitalaris
involucrats. Com a part d’aquests objectius, tots els programes desenvolupats durant
aquesta tesi s’han fet publics per al lliure s de la comunitat cientifica. En el cas del
metode de lesion filling, aquest ja esta sent utilitzat en els hospitals col-laboradors.
Pensem igualment que el metode de segmentacié proposat sera també 1til en futurs
entorns d’investigacio i assajos clinics.






Resumen

La Esclerosis Multiple (EM) es la enfermedad neurolégica crénica incapacitante méas
comun del sistema nervioso central, en donde el recubrimiento aislante de las células
nerviosas en la médula espinal y el cerebro estan danadas. La EM se caracteriza
por la presencia de lesiones en el cerebro, predominantemente en el tejido de la
sustancia blanca. Gracias a la sensibilidad de la resonancia magnética (RM) para
mostrar la actividad focal de las lesiones y el progreso de la enfermedad, la RM se
ha convertido en una herramienta esencial para el diagnéstico y la evaluacion de la
EM. Igualmente, se ha demostrado que la atrofia del tejido cerebral medida a través
de la RM esta relacionada con el incremento de la discapacidad, mostrando que la
pérdida de tejido es un componente importante de la progresion de la enfermedad.

La correlacion existente entre la atrofia del tejido cerebral y el estado de inca-
pacidad de la enfermedad, ha aumentado la necesidad de desarrollar herramientas
automaticas de segmentacién capaces de medir de forma precisa el volumen de los
tejidos cerebrales. Sin embargo, la segmentacion automatica del tejido cerebral sigue
siendo un problema complicado, fundamentalmente debido a factores como la com-
plejidad de las imagenes, las diferencias en las intensidades de tejido, el ruido de
las imagenes, las diferencias en la homogeneidad de las adquisiciones o la ausencia
de modelos anatomicos capaces de modelar cada una de las estructuras del cerebro.
Asimismo, se ha demostrado también que las lesiones de sustancia blanca reducen
la precision de los métodos automaticos de segmentacion, subrayando asi la necesi-
dad de procesar las lesiones antes de la segmentacion utilizando un proceso conocido
como lesion filling. No obstante, el proceso de lesion filling requiere que las mascaras
de lesion sean conocidas a priori, lo que puede ser dificil de conseguir, conllevando
tiempo y siendo propenso a variabilidad entre radiélogos. Este hecho y la necesidad
de analizar las lesiones de EM tanto en estudios individuales como temporales ha
llevado al desarrollo de un gran niimero de métodos automaticos de segmentacion
de las lesiones.

El objetivo principal de esta tesis es el desarrollo de un nuevo método de seg-
mentacion totalmente automatico capaz de medir con precision el volumen cerebral
en imagenes de pacientes de EM con lesiones. Para conseguirlo, en esta tesis nos
hemos concentrado en cada uno de los procesos encadenados necesarios para desar-



xxii Resumen

rollar tal método. Primero, hemos realizado un resumen cualitativo y cuantitativo
de las técnicas de segmentacion ya existentes utilizando diferentes conjuntos de ima-
genes de sujetos sanos, con el objetivo de entender las ventajas e inconvenientes de
cada técnica. Los resultados obtenidos demuestran que los métodos que incorporan
informacion a priori de tipo morfolégica o de contexto local tienden a ser menos
proclives a los cambios en la adquisicién de las secuencias o en las homogeneidades
de las intensidades, en comparacion con métodos mas simples basados solamente en
intensidad.

En segundo lugar, hemos estudiado y analizado el efecto que producen las le-
siones de sustancia blanca en la segmentacién de imagenes de pacientes de EM.
Para ello, hemos realizado varios experimentos utilizando bases de datos de 1.5T
adquiridas en diferentes escaneres con el fin de analizar el efecto de la intensidad y
el volumen de las lesiones en las diferencias en volumen cerebral de varios métodos
de segmentacion de tejido. En todos los métodos, la inclusion de las lesiones en el
proceso de segmentacion no so6lo introduce errores en las mediciones del volumen to-
tal de tejido debido a los vixeles de las lesiones que fueron mal clasificados, sino que
también tienen un efecto claro en las diferencias de volumen observadas en el tejido
sano. Este efecto es menos relevante en los métodos que incorporan informaciéon a
priori de tipo morfolégica o de contexto local.

En tercer lugar, nos hemos concentrado en el proceso de lesion filling, donde
hemos resumido y analizado la precision de las diferentes técnicas propuestas en
el campo. Este andlisis nos ha servido de base para proponer una nueva técnica
de lesion filling que mejore las limitaciones observadas en los métodos anteriores.
Los resultados obtenidos muestran que en comparacion con el resto de métodos
propuestos, nuestro método es efectivo con diferentes tipos de imagenes e indepen-
dientemente del método de segmentacion utilizado a continuacion.

Seguidamente, hemos realizado un andlisis completo de los efectos de autom-
atizar la segmentacion de las lesiones de sustancia blanca y el lesion filling en la
posterior segmentacion del tejido cerebral. Para ello, hemos evaluado la eficacia de
dos sistemas automaticos que incorporan estos procesos con el fin de entender el
papel de las lesiones residuales que no fueron detectadas y, consecuentemente no
procesadas, en las diferencias de volumen cerebral observadas. Nuestros resultados
muestran que los sistemas donde la segmentacion de las lesiones y el lesion filling
fue automatico reducen significativamente el impacto de las lesiones de sustancia
blanca en la segmentacion del tejido, mostrando un eficacia similar a los sistemas
con intervencion manual de los expertos.

Cada una de estas fases nos ha servido de base para el desarrollo de un nuevo
método de segmentacion multicanal disenado con el objetivo de segmentar imagenes
de RM de pacientes de EM. El método que hemos propuesto se ha desarrollado e
implementado integrando no sélo la informacién proveniente de la intensidad de los
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voxeles, sino a través de la incorporacion de atlas morfologicos y estructurales que
guian la segmentacion del tejido. Los voxeles candidatos de ser lesiones son esti-
mados y procesados antes de la segmentacion del tejido utilizando un algoritmo de
postproceso basado en la informacion del contexto local y la informacién anatéomica
y morfologica previa. Este método de segmentaciéon ha sido evaluado de forma cuan-
titativa y cualitativa usando diferentes conjuntos de imagenes que contenian lesiones
de sustancia blanca. Los resultados muestran que la precision del método propuesto
es consistente y muy competitiva en todo tipo de imagenes en comparacién con
otras técnicas propuestas. En este sentido, los porcentajes de error obtenidos en los
diferentes experimentos llevados a cabo muestran que el método propuesto mejora
la segmentaciéon del tejido cerebral de las imagenes con lesiones.

Esta tesis doctoral forma parte de varios proyectos que nuestro grupo de investi-
gacion esté llevando a cabo en colaboracion con los diferentes centros hospitalarios
involucrados. Como parte de estos objetivos, todos los programas desarrollados du-
rante esta tesis se han hecho publicos para el libre uso de la comunidad cientifica.
En el caso del método de lesion filling, éste ya esta siendo utilizado en los hospitales
colaboradores. Pensamos igualmente que el método de segmentacién propuesto sera
también til en futuros entornos de investigacién y ensayos clinicos.






Chapter 1

Introduction

In this first chapter, we introduce the reader to the research context and background
of this thesis, situating the work in the research line of our group. Afterwards, we
describe the proposed objectives and the respective stages to cover. Finally, we
summarize the main structure of this thesis, highlighting the conceptual thread
between each of the articles that compose its main core.

1.1 Research context

1.1.1 Multiple Sclerosis

The human nervous system can be divided into the central nervous system (CNS)
consisting of the brain and the spinal chord, and the peripheral nervous system,
which connects the CNS with the sense organs [7]. CNS is mainly composed of two
tissues: gray matter (GM), which consists of neuronal cell bodies; and white matter
tissue (WM), which is mainly composed of myelinated axon tracts [67]. The brain
itself is composed mostly of GM and WM, both surrounded by the Cerebro-spinal
fluid (CSF), which provides basic mechanical and immunological protection to the
brain inside the skull [67].

Multiple sclerosis (MS) is the most common chronic immune-mediated disabling
neurological disease of the CNS [68], in which the insulating covers of the nerve cells
in the spinal chord and brain are damaged [18]. Nowadays, MS is the most frequent
non-traumatic neurological disease that causes more disability in young adults. It
follows a similar behavior to other putative autoimmune diseases, and affects twice
as many women as men [19]. It has a low incidence in childhood, but the probability
increases rapidly in young adulthood reaching a peak between 25 and 35 years, and
then slowly declines, becoming rare at 50 and older [48]. So far, the world estimate
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for the disease is in 2.3 million cases, being relatively common in Europe, the United
States, Canada, New Zealand, and parts of Australia, but rare in Asia, and in the
tropics and subtropics [48].

MS is characterized by areas of inflammation, demyelination, axonal loss, and
gliosis scattered throughout the CNS, often causing motor, sensorial, vision, coordi-
nation, deambulation, and cognitive impairment [17]. Demyelination is the process
of progressive damage to the protective covering (myelin sheat) around the axon of
the neurons. Demyelinated axons conduct impulses at reduced or spontaneous ve-
locity causing impairment in sensation, movement and cognition [18]. The different
clinical courses of the disease are generally grouped into four subtype forms [45]. The
Relapsing/Remitting (RRMS) form of the disease is characterized by exacerbation
times where symptoms are present. These periods are followed by periods of remis-
sion, where the patient recovers partially or totally from the disease’s symptoms.
The Secondary Progressive (SPMS) form is characterized by a gradual intensifica-
tion of symptoms between affection relapses. The Progressive remitting (PRMS)
form is typified by an increase in the relapse times with significant recovery but
with worsening symptoms in new relapse intervals. Lastly, the Primary Progressive
(PPMS) form is characterized by a severe decrease of remission times with special
localization in the brain. In general, 50% of RRMS patients develop the SPMS form
of the disease after 10 years. After 25 years, 90% of RRMS patients will develop the
SPMS form [45].

1.1.2 Magnetic Resonance Imaging in MS

Magnetic Resonance Imaging (MRI) is a noninvasive medical imaging technique used
in radiology to generate image representations of different internal anatomical organs
and physiological processes of the body. Over the last 40 years, MRI has evolved
as a clinical modality [34], and, in particular, as an essential tool for the diagnosis
and evaluation of central nervous system disorders such as MS [24]. In MRI, MS
plaques are well-delimited regions with hypointense signal intensity with respect to
GM on T1-weighted (T1-w), while hyperintense with respect to GM on T2-weighted
(T2-w), Proton Density-weighted (PD-w) and Fluid Attenuated Inversion Recovery
(FLAIR) modalities (see Figure 1.1).

In this aspect, new criteria for MS diagnosis and monitoring has been revised over
the last years [51], due to the sensitivity of structural MRI disseminating WM lesions
in time and space [27]. Additionally, various studies have analyzed the correlation
between MRI brain tissue atrophy measurements and MS disability status, showing
that tissue loss is an important indication of the disease’s progression [15, 26, 28, 59].
Tissue loss seems to increase through the course of MS at a similar rate between
0.3% and 0.5% per year, independently of the MS subtype [21, 59]. In general, GM
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Figure 1.1: MRI image modalities. A) T1l-w image sequence. B) T2-w image
sequence. C) PD-w image sequence. D) FLAIR sequence. MS plaques are shown
inside red circles on the FLAIR modality. MS plaques are hyperintense with respect
to GM and WM in T2-w, PD-w and FLAIR sequences, while hypointense with
respect to WM on the T1-w modality.

atrophy is associated more with disability changes than with WM atrophy [29], not
only in the RRMS and SPMS MS subtypes [28, 59], but also in Clinically Isolated
Syndrome (CIS) patients, where several studies have shown significantly greater
ventricular cavities and an associated GM loss in MRI scans of CIS patients that
will develop MS compared to those who will not [13, 26].

1.1.3 Image analysis in MS

Manual analysis of brain images is impractical in practice, given the large number of
two-dimensional slices of each three-dimensional MRI patient image and the possible
intra/inter observer variability between experts. This has led to the development
since the early nineties of a wide number of lesion and tissue segmentation methods,
with the aim of reducing the time needed for manual interaction and the inherent
variability of manual annotations [16, 33, 41].

Pre-processing of MRI images

Acquired brain MRI volumes incorporate non-brain tissue parts of the head such
as eyes, fat, spinal cord or the skull. Brain tissue extraction from non-brain tissue
is commonly referred in the literature as skull-stripping (see Figure 1.2 B and C).
Skull-stripping has a direct effect on the performance of automated methods, as the
inclusion of skull or eyes as brain tissue may lead to unexpected results in tissue
classification [1, 52|, while unintended removal of the cortical surface may result
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Figure 1.2: MRI pre-processing steps. A) T1l-w image sequence. B) Computed
brain mask using the BET approach [66] and C) skull stripped T1-w sequence . D)
Estimated T1-w bias-field using the N3 method proposed by [65].

in underestimation of the cortical thickness [60]. Among the different methods
proposed for skull-stripping [1, 42, 56|, methods such as BET [66] and BSE [63] are
being replaced by more modern methods such as ROBEX [39] and BEaST [25].

Furthermore, inherent characteristics of the MRI acquisition process such as
differences in the magnetic field, bandwidth filtering of the data or eddy currents
driven by field gradients usually result in image artifacts that may also have a
negative impact on the performance of the methods [64]. In these cases, intensity
correction of the MRI images is performed either before lesion/tissue segmentation,
or as an integrated part of the tissue segmentation pipeline (see Figure 1.2 D).
Among the available strategies [3, 38|, the N3 [65] and N4 [72] methods are currently
the most widely used tools used for bias field correction.

Automated lesion segmentation

MRI based diagnostic criteria for MS has led to an increasing need to analyze fo-
cal MS lesions quantitatively in individual and temporal studies [9, 51]. Different
sequences such as, T2-w, PD-w and FLAIR, are often used in lesion detection and
segmentation, as MS lesions appear brighter than GM and WM in them. How-
ever, WM lesions often present a similar signal intensity profile to CSF in T2-w.
In contrast, FLAIR sequences suppress fluids from the image, restraining the CSF

tissue effects on the acquired image, although some severe T2-w hyperintense lesions
appear similar to CSF in FLAIR [37].

A wide number of automated lesion segmentation techniques have been proposed
over the last few years [31, 44]. In these methods, lesion segmentation is based either
on supervised or unsupervised strategies. Supervised methods employ a training set
of correctly-identified observations that are used as prior information to learn the
lesion’s characteristics. Newer proposed strategies integrate a spatial decision forest
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[32], statistical methods [69], patch-based models [36] or adaptive dictionary learning
strategies [22]. In contrast, learning methods using unsupervised intensity models
involve grouping data into categories based on some measure of inherent similarity
or distance characteristics of the input images. Among these, most recent methods
include probabilistic models that separate WM lesions from normal-appearing tissue
by considering lesions as an outlier class [37, 40, 71], or techniques that make use of
the signal intensity of lesions on FLAIR to apply several thresholding methods with
post-processing steps to automatically segment lesions [55, 61].

Automated brain tissue segmentation in MS

The correlation between brain tissue atrophy measurements and MS disability status
[26, 28] has increased the necessity of developing robust automated brain tissue
segmentation methods capable of measuring brain tissue volume accurately [35].
However, the automated segmentation of brain tissue is still a challenging problem
due to the complexity of the images, the existence of lesions, lack of contrast between
tissues, noise, intensity inhomogeneities, partial volume effects and the absence of
anatomy models that fully capture the deformations possible in each structure [8, 41].

A wide number of brain tissue segmentation methods not designed to deal ex-
plicitly with MS lesions have been proposed so far, usually on T1-w sequences, as
this modality clearly separates GM from WM. These include unsupervised intensity
models based on Bayesian inference [4, 50, 58, 73, 76], Markov Random Fields mod-
els [6, 70, 78], or unsupervised clustering methods [11, 49]. In contrast, supervised
learning approaches also combine T'1-w sequences with other modalities such as T2-
w and PD-w using K-Nearest-Neighbor classifiers [20, 75], Support Vector Machines
2, 74], Random Forests [77, 47], or trained Gaussian mizture models [54].

However, different studies have shown that tissue abnormalities found in MS
patients images such as WM lesions reduce the accuracy of tissue segmentation
methods [5, 14]. Effectively, WM lesions on T1-w are hypointense with respect to
normal-appearing WM, and therefore, lesion voxels that are classified as GM distort
the overall GM volume. However, at a certain lesion volume, lesion voxels may also
have an effect on the differences observed in normal-appearing tissue. WM lesions
with signal intensity between the GM and WM interface, if are actually classified
as WM decrease the mean overall signal intensity of the WM, causing GM voxels
with signal intensities similar to WM lesions to be also misclassified as WM. In
contrast, if WM lesions are classified as GM, normal-appearing WM voxels with
signal intensities similar to lesions may be misclassified as GM.
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Figure 1.3: Lesion filling example on a slice of a T1-w scan. A) T1-w image sequence
containing WM lesions (depicted by red arrows). B) Segmented T1-w sequence
containing lesions. GM is depicted in light gray color, WM in white color and CSF
in dark gray color. C) T1-w sequence after lesion filling. D) Segmented lesion filled
T1-w sequence.

Lesion filling

In MS, when hypointense WM lesions are not included in the segmentation model,
they have to be pre-processed before tissue segmentation in order to reduce the
effects of WM lesions on the segmentation. Historically, WM lesions have been
masked-out of the T1-w before segmentation, and their volume added to the WM
afterwards [15]. Although this method effectively reduces the error in tissue volume,
it has been shown in several studies that this approach is not optimal [5, 14], because
on images with high lesion load, the lack of lesion voxels may be modifying the
original WM tissue distribution of the image, introducing significant differences in
tissue segmentation.

In this respect, several strategies have proposed in-painting lesions on the T1-
w with signal intensities of the normal-appearing WM before tissue segmentation
[5, 14, 46, 62], a process known in the literature as lesion filling (see Figure 1.3 for
an example). However, most of the available lesion filling methods require manual
delineations of lesions, which may be a tedious, challenging and time-consuming task
depending on the characteristics of the image [44]. When available, lesion filling has
demonstrated a significant reduction not only in the associated errors of WM lesions
in tissue volume measurements [53], but also in image registration [12, 23, 62] and
cortical thickness measurements [46].
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1.2 Research background

This thesis is positioned within the framework of different research projects associ-
ated with the Computer Vision and Robotics Institute (VICOROB) of the Univer-
sity of Gironal. VICOROB has been working on numerous medical image analy-
sis projects since 1996, mainly in segmentation and registration of mammography
images. In 2009, this research group started a fruitful collaboration with several
medical MS research teams with the aim of developing new automated techniques
capable of segmenting MS lesions and calculating atrophy measurements that can
be transferred to experts for clinical use. In particular, our research in the MS field
has been carried out within the following research projects:

1. [ 2009 - 2012 | PI09/91918 “SALEM: Segmentacién Automatica de Lesiones
de Esclerosis Miltiple en imagenes de resonancia magnética” awarded by the
Instituto Carlos III.

2. [ 2009 - 2012 | VALTEC09-1-0025 “SALEM: Eines per a la segmentaci6 au-
tomatica de lesions d’Esclerosi Multiple en ressonancia magnetica” awarded
in 2009 by the Generalitat de Catalunya within the “Projectes de valoritzacié
VALTEC”.

3. [ 2015 - 2017 | TIN2014-55710-R: NICOLE: “Herramientas de neuroimagen
para mejorar el diagnosis y el seguimiento clinico de los pacientes con Esclerosis
Multiple” awarded in 2014 by the spanish call Retos de investigacion 2014.

4. [ 2015 - 2019 | BiomarkEM.cat: “New technologies applied to clinical practice
for obtaining biomarkers of atrophy and lesions in magnetic resonance images
of patients with multiple sclerosis”. Awarded in 2015 by the Fundaci6 la Maraté
de TV3.

Since then, the research group has published original contributions in different
fields such as image pre-processing [56], MS lesion segmentation [9, 10, 44, 55],
temporal analysis [30, 43], image registration [23, 57], and tissue segmentation [8].
All the projects have been carried out in collaboration with different medical MS
teams from:

e The Hospital Vall d’Hebron: Dr. Rovira, who is the director of the “Unitat de
Ressonancia Magnetica-Centre Vall d’"Hebron" (URMVH) and has participated
in numerous research projects funded by public and private institutions in the
last few years, as well as Dr. Pareto and technicians Huerga and Corral. This

Thttp:/ /vicorob.udg.edu
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group is part of the MAGNIMS network, a European network of centers that
share an interest in the MS study through MRI.

e The Clinica Girona / Hospital Santa Caterina: Dr. Vilanova and Dr. Barcel6
are the codirectors of the “Unitat de Ressonancia Magnetica' at the Clinica
Girona and are members of several national and international radiology soci-
eties.

e The Hospital Josep Trueta: Dr. Ramié-Torrenta, who is the current coordina-
tor of the "Unitat de Neuroimmunologia i Esclerosi Multiple', as well as Drs.
Robles and Beltran, who work in the radiology unit.

1.3 Objectives

As part of the SALEM, NICOLE and BiomarkEM.cat research project frameworks,
the main goal of this thesis is:

to develop a novel, fully automated brain tissue segmentation
method capable of computing accurate tissue volume measure-
ments in images of MS patients.

Different sub-objectives have to be covered first in order to fulfill the main goal.
All these stages can be considered as sub-objectives that allow us to gain a better
knowledge of the different parts that compose a fully automated tissue segmentation
method for MS images containing lesions. In what follows, we detail these proposed
sub-goals:

e to analyze and evaluate the state of the art of tissue segmentation
methods. This stage aims to quantitatively review and evaluate the different
tissue segmentation techniques proposed in order to understand their advan-
tages and drawbacks first on images without MS lesions. In order to fulfill
this goal, we plan to perform different experiments using public databases of
healthy subjects that incorporate manual tissue annotations, which will allow
us to perform a quantitative evaluation of the accuracy of the methods.

e to study and evaluate the effect of WM lesions on tissue segmenta-
tion of MS patient images. Although it is known that the inclusion of WM
lesions in tissue segmentation distorts the measurements of brain volume, this
effect has not been studied and compared with different tissue segmentation
methods. In this respect, the second stage focuses on the analysis of the ef-
fects of WM lesions on the tissue distributions of a set of tissue segmentation
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approaches. Our hypothesis here is that a better knowledge of the correlation
between lesion attributes, such as signal intensity and lesion size, and the dif-
ferences observed in tissue volume of the analyzed algorithms may be beneficial
to design a tissue segmentation method for MS. Hence, we aim to perform sev-
eral experiments using multi-center MS data from different scanners in order
to analyze the effects of WM lesions on tissue segmentation.

e to reduce the effect of WM lesions on tissue segmentation of MS
patient images designing and implementing a new lesion filling algo-
rithm. As said in section 1.1.3, WM lesions have to be pre-processed before
the tissue segmentation in order to reduce the effects of those lesions on the
segmentation. In this regard, the third sub-goal is two-fold: firstly, to com-
pare the accuracy of different lesion filling techniques proposed in the litera-
ture, analyzing their accuracy on databases with 1.5T and 3T field strengths,
and secondly, after analyzing the benefits and drawbacks of each method pro-
posed, we aim to propose a new lesion filling algorithm in order to overcome
the possible limitations of existing methods.

e to analyze and evaluate the effect of automated algorithms that per-
form WM lesion segmentation and filling on the tissue segmentation.
Although lesion filling techniques have already been successfully applied to re-
duce the effect of WM lesions on tissue segmentation, WM lesions are usually
annotated manually before tissue segmentation. In contrast, the effect of both
automated lesion segmentation and filling on tissue segmentation is still un-
clear. The fourth stage of this thesis aims to understand the effects of the
inherent errors in automated lesion segmentation on the posterior lesion fill-
ing and tissue segmentation. Thus, we plan to perform several experiments
with different pipelines that incorporate automated lesion segmentation, le-
sion filling and tissue segmentation. Using these experimental data, we aim to
evaluate the accuracy of these pipelines on MS data, analyzing and evaluating
the extent of the effect of remaining WM lesions on the differences in tissue
segmentation, which may be beneficial in updating the knowledge gained from
previous stages.

e to propose a new, fully automated tissue segmentation method for
MS patient images. Finally, we aim to benefit from these sub-objectives
to propose a novel, fully automated tissue segmentation method able
to deal with images of MS patients with different levels of brain atrophy and
lesion loads. In this last stage, we aim to validate the accuracy of the proposed
method by comparing it with the state of the art in tissue segmentation in MS.

By developing a novel brain tissue segmentation method intended for MS patients’
images, we refer to the tissue segmentation into GM, WM and CSF in transversal
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studies. We do not concentrate on the differences in tissue volume at different stages,
but on the effect of WM lesions in the final tissue segmentation. All these stages
will be carried out using not only public databases but also different 1.5T and 3T
databases of MS patients from the collaborating hospital centers. Furthermore,
as part of the goals of the research frameworks in which this thesis is
located, implementations of all the proposed methods will be publicly
available to the research community.

1.4 Document structure

A graphic description of the structure of this thesis linking all the chapters presented
is shown in Figure 1.4. Connections between the chapters depict the conceptual link
between them. The rest of the document is organized as follows:

e Chapter 2. Comparison of 10 brain tissue segmentation methods
using revisited IBSR annotations. We present here a comprehensive com-
parison of the accuracy of 10 brain tissue segmentation methods on two public
MRI databases. This chapter is based on the paper published in the Journal
of Magnetic Resonance Imaging in 2015.

e Chapter 3. Evaluating the effects of white matter multiple sclero-
sis lesions on the volume estimation of 6 brain tissue segmentation
methods. After reviewing different tissue segmentation techniques using pub-
lic data, we perform a detailed analysis of the effects of WM lesions on the
brain tissue volume measurements of six of these tissue segmentation methods
using MS data from different hospital centers collaborating in the research
projects. This chapter is based on our paper published in the American Jour-
nal of Neuroradiology in 2015.

e Chapter 4. A white matter lesion-filling approach to improve brain
tissue volume measurements. In this chapter, we propose a new technique
to fill WM lesions on 1.5T and 3T data, validating its accuracy with respect to
other methods in the literature. This chapter is based on the paper published
in the Neurolmage: Clinical journal in 2014.

e Chapter 5. Quantifying brain tissue volume in multiple sclero-
sis with automated lesion segmentation and filling. In this chapter
we present a detailed evaluation of the performance of different automated
pipelines that incorporate lesion segmentation, lesion filling and tissue seg-
mentation on MS data. This analysis is novel in the sense that this is the first
work to evaluate two automated pipelines on MS data. This chapter is based
on the paper published in the Neurolmage: Clinical journal in 2015.
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Figure 1.4: Organization of the document. Preliminary Chapter 1 describes the research
context and main objectives of this thesis. Chapters 2 to 6 introduce the main contri-
butions of this work based on the different projects submitted or published in research
journals. Chapter 7 presents a general discussion of the results obtained from Chapters 2
to 6. Finally, the main conclusions and proposed future work are presented in Chapter 8.
Connections between chapters depict a conceptual link between them.
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e Chapter 6. Automated brain tissue segmentation of MR images in

the presence of white matter lesions. Here we propose a new, fully auto-
mated tissue segmentation pipeline designed to deal with MS patient images
containing lesions. We validate the accuracy of the proposed method com-
paring the performance with other state-of-the-art techniques. Data from the
MRBrainS13 challenge as well as data from our hospital collaborators is used
to perform the evaluation. This chapter is based on the paper submitted to
the Medical Image Analysis journal in 2016.

Chapter 7. Results and discussion. This chapter provides a comprehen-
sive discussion of the results obtained in this thesis.

Chapter 8. Conclusions and future work. Finally, the main conclusions
based on the contributions of this thesis are defined. Based on these conclu-
sions, we also point out different future work to improve and extend the work
carried out in this thesis.



Chapter 2

Comparison of 10 brain tissue
segmentation methods using
revisited IBSR annotations

In this chapter, we perform a quantitative evaluation of the accuracy of 10 auto-
mated brain tissue segmentation methods. The methods are compared using the
Internet Brain Segmentation Repository (IBSR) databases IBSR20 and IBSR18 !.
The performance of these methods is then evaluated by ranking their accuracy based
on their significant differences with respect to the other methods. This proposed
evaluation has been published in the following paper:

Paper published in the Journal of Magnetic Resonance in Medicine (JMRI)
Volume: 41, Issue: 1, Pages: 93-101, Published: January 2015

DOI: 10.1002/jmri.24517

JCR RNMMI IF: 3.210 Q1(23/125)

thttps://www.nitrc.org/projects/ibsr/
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Sergi Valverde, Arnau Oliver, Mariano Cabezas, Eloy Roura, Xavier Lladd. “Comparison of 10 brain tissue
segmentation methods using revisited IBSR annotations”. Journal of magnetic resonance imaging. Vol. 41, 1
(Jan. 2015) : p. 93-101

First published: 24 January 2014

DOI: http://dx.doi.org/10.1002/jmri.24517

http://onlinelibrary.wiley.com/doi/10.1002/imri.24517/full

ABSTRACT

Purpose

Ground-truth annotations from the well-known Internet Brain Segmentation Repository(IBSR) datasets
consider Sulcal cerebrospinal fluid (SCSF) voxels as gray matter. This can lead to bias when evaluating the
performance of tissue segmentation methods. In this work we compare the accuracy of 10 brain tissue
segmentation methods analyzing the effects of SCSF ground-truth voxels on accuracy estimations.

Materials and Methods

The set of methods is composed by FAST, SPM5, SPM8, GAMIXTURE, ANN, FCM, KNN, SVPASEG, FANTASM,
and PVC. Methods are evaluated using original IBSR ground-truth and ranked by means of their performance
on pairwise comparisons using permutation tests. Afterward, the evaluation is repeated using IBSR ground-
truth without considering SCSF.

Results

The Dice coefficient of all methods is affected by changes in SCSF annotations, especially on SPM5, SPM8 and
FAST. When not considering SCSF voxels, SVPASEG (0.90 + 0.01) and SPM8 (0.91 + 0.01) are the methods from
our study that appear more suitable for gray matter tissue segmentation, while FAST (0.89 + 0.02) is the best
tool for segmenting white matter tissue.

Conclusion

The performance and the accuracy of methods on IBSR images vary notably when not considering SCSF voxels.
The fact that three of the most common methods (FAST, SPM5, and SPM8) report an important change in their
accuracy suggest to consider these differences in labeling for new comparative studies.

J. Magn. Reson. Imaging 2014. ©2014 Wiley Periodicals, Inc. J. Magn. Reson. Imaging 2015;41:93-101.
© 2014 Wiley Periodicals, Inc.



Chapter 3

Evaluating the effects of white
matter multiple sclerosis lesions
on the volume estimation of 6
brain tissue segmentation methods

In this chapter, we present a study of the impact of MS white matter lesions on the
brain tissue measurements of six well-known segmentation techniques. These include
straightforward techniques such as Artificial Neural Network (ANN) and fuzzy C-
means (FCM) as well as more advanced techniques like the Fuzzy And Noise Tolerant
Adaptive Segmentation Method (FANTASM), FMRIB’s Automated Segmentation
Tool (FAST), and Statistical Parametric Mapping (SPM) with versions SPM5 and
SPMS. This proposed evaluation has been published in the following paper:
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Evaluating the Effects of White Matter Multiple Sclerosis
Lesions on the Volume Estimation of 6 Brain Tissue
Segmentation Methods

A. Oliver, Y. Diez, M. Cabezas, J.C. Vilanova, L. Ramié-Torrentd, A. Rovira, and X. Lladd
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S. Valverde,

ABSTRACT

BACKGROUND AND PURPOSE: The accuracy of automatic tissue segmentation methods can be affected by the presence of hypoin-
tense white matter lesions during the tissue segmentation process. Our aim was to evaluate the impact of MS white matter lesions on the
brain tissue measurements of 6 well-known segmentation techniques. These include straightforward techniques such as Artificial Neural
Network and fuzzy C-means as well as more advanced techniques such as the Fuzzy And Noise Tolerant Adaptive Segmentation Method,
fMRI of the Brain Automated Segmentation Tool, SPM5, and SPM8.

MATERIALS AND METHODS: Thirty Tl-weighted images from patients with MS from 3 different scanners were segmented twice, first
including white matter lesions and then masking the lesions before segmentation and relabeling as WM afterward. The differences in total
tissue volume and tissue volume outside the lesion regions were computed between the images by using the 2 methodologies.

RESULTS: Total gray matter volume was overestimated by all methods when lesion volume increased. The tissue volume outside the
lesion regions was also affected by white matter lesions with differences up to 20 cm® on images with a high lesion load (=50 cm®). SPM8
and Fuzzy And Noise Tolerant Adaptive Segmentation Method were the methods less influenced by white matter lesions, whereas the
effect of white matter lesions was more prominent on fuzzy C-means and the fMRI of the Brain Automated Segmentation Tool.

CONCLUSIONS: Although lesions were removed after segmentation to avoid their impact on tissue segmentation, the methods still
overestimated GM tissue in most cases. This finding is especially relevant because on images with high lesion load, this bias will most likely
distort actual tissue atrophy measurements.

ABBREVIATIONS: ANN = Artificial Neural Network; FANTASM = Fuzzy And Noise Tolerant Adaptive Segmentation Method; FAST = FMRIB Automated Segmen-
tation Tool; FCM = fuzzy C-means; H1 = Hospital Vall d’Hebron, Barcelona, Spain; H2 = Hospital Universitari Dr. Josep Trueta, Girona, Spain; H3 = Clinica Girona, Girona,
Spain; WML = white matter lesion

uring the past few years, MR imaging brain tissue segmenta-
D tion techniques have become important tools in the clinical
evaluation and progression of MS because they make it possible to
measure the changes in brain atrophy and lesion load.'> How-
ever, white matter lesions (WMLs) can significantly affect tissue
volume measurements if these lesions are included in the segmen-
tation process.*® Several studies have analyzed the effects of
WDMLs on brain tissue measurements of common segmentation
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techniques such as SPM5 (http://www.fil.ion.ucl.ac.uk/spm/)”
and FMRIB Automated Segmentation Tool (FAST, http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FAST).® Chard et al’ studied the effect of
synthetic lesions on SPM5 segmentations for different WML voxel
intensities (from 30% to 90% of normal WM intensity) and lesion
loads (from 10 to 20 cm?). The authors reported that GM volume
was overestimated by ~2.3%, whereas WM tissue was underesti-
mated by ~3.6% in scans with 15 cm® of simulated lesions. More
recently, Battaglini et al* also analyzed the effects of different WML
intensities and lesion loads on tissue measurements obtained with
FAST software. The authors showed again that total GM volume
tended to increase with higher lesion loads in segmented images with
generated simulated lesions. Gelineau-Morel et al® performed a sim-
ilar study on the effects of simulated and real WMLs but on tissue
volume measurements outside lesion regions. The authors reported
that on images with simulated lesions, FAST clearly underestimated
GM outside lesion regions as long as lesion volume increased and
lesion intensities approximated those of GM tissue. The incidence of
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WDMLs on real scans was smaller, but FAST still tended to underesti-
mate GM with increasing lesion loads.

On the other hand, various studies have also analyzed the cor-
relation between brain tissue atrophy and MS disability progres-
sion.”'® These studies showed a brain atrophy decrease rate be-
tween 0.3% and 0.5% of change in brain parenchyma per year in
patients with MS,”'® with a decrease in GM and WM volume of
up to 0.4% and 0.2% per year, respectively.'® This statement along
with study results such as those found by Battaglini et al* and
Gelineau-Morel et al® indicates that a portion of brain atrophy
could be hidden by the inclusion of WMLs on tissue
segmentation.

In this study, we performed a quantitative evaluation of the
effects of WMLs on brain tissue volume measurements to analyze
the extent to which tissue estimations are affected by changes in
WML volume and intensity. In contrast to other similar stud-
ies,*® our analysis extended the number of segmentation meth-
ods involved, offering a comparative evaluation of the effects of
WDMLs on the volume measurements of 6 segmentation methods.
Furthermore, given the reported correlation between brain atro-
phy rates and disability progression,”'° it can be clinically rele-
vant for the MS community to extend the analysis of the effects of
simulated WML to real data of patients with MS; hence, our anal-
ysis was focused exclusively on data from the T1-weighted images
from patients with clinically confirmed MS.

MATERIALS AND METHODS

Image Acquisition

The dataset consisted of 30 MR images from patients with clini-
cally confirmed MS at 3 different hospitals (Fig 1). Each patient
underwent MR imaging by using the same protocol (T1-
weighted, T2-weighted, proton-attenuation-weighted, and
FLAIR images), though a different scanner was used at each hos-
pital. Ten patient images from Hospital Vall d’'Hebron, Barce-
lona, Spain, (H1) were acquired on a 1.5T Magnetom Symphony
Quantum (Siemens, Erlangen, Germany), with 2D conventional
spin-echo T1-weighted (TR, 450 ms; TE, 17 ms), dual-echo pro-
ton-attenuation T2-weighted sequences (TR, 3750 ms; TE, 14/86
ms), and FLAIR sequences (TR, 9000 ms; TE, 114 ms; and TI,
2500 ms). Ten patient images from Hospital Universitari Dr. Jo-
sep Trueta, Girona, Spain, (H2) were acquired on a 1.5T Intera
scanner (R12) (Philips Healthcare, Best, the Netherlands) with
2D conventional spin-echo T1-weighted (TR, 653 ms; TE, 14 ms),
dual-echo proton-attenuation T2-weighted (TR, 2800 ms; TE,
16/80 ms), and FLAIR sequences (TR, 8153 ms; TE, 105 ms; and
TI, 2200 ms). Ten patient images from Clinica Girona, Girona,
Spain, (H3) were acquired on a 1.5T Signa HDxt scanner (GE
Healthcare, Milwaukee, Wisconsin) with 3D fast-spoiled gradient
T1-weighted (TR, 30 ms; TE, 9 ms; flip-angle, 30°), fast spin-echo
T2-weighted (TR, 5000-5600 ms; TE, 74—77 ms), proton-atten-
uation-weighted (TR, 2700 ms; TE, 11.9 ms), and FLAIR se-
quences (TR, 9002 ms; TE, 80 ms; and TT, 2250 ms). All images
were acquired in the axial view with a section thickness of 3 mm.

Images of Patients with MS
WML masks were semiautomatically delineated from proton-atten-
uation-weighted images by using Jim software (Xinapse Systems,
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FIG1. Tl-weightedimages from the 3 hospitals and scanners involved
in the study: 1.5T Magnetom Symphony Quantum (Siemens) from H1
(fAirst row), 1.5T Intera (R12) (Philips) from H2 (middle row), and 1.5T Signa
HDxt (GE Healthcare) from H3 (last row).

http://www.xinapse.com/home.php) by expert radiologists at each
hospital. Then, the proton-attenuation-weighted images and lesion
masks were coregistered with T1-weighted images by affine registra-
tion."! The average means and SD lesion volumes for H1, H2,and H3
were 4.15 * 4.35 cm® (minimum = 0.11, maximum = 11.22 cm?),
21.79 = 17.79 cm® (minimum = 0.18, maximum = 52.45 cm?), and
4.78 = 4.60 cm® (minimum = 0.43, maximum = 16.34 cm?).

All T1-weighted patient images were processed following the
same pipeline (Fig 2). Internal skull-stripping and intensity-cor-
rection options were disabled on SPM5, SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/software/), and FAST. Instead, to reduce the
differences in brain area and signal image intensity produced by
different preprocessing tools, we skull-stripped all images by
using the Brain Extraction Tool (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/BET)"'? and intensity-corrected them by using N3.'?

As a second step, 2 sets were produced from preprocessed
images: an original set that included WMLs as part of current
tissue and a masked set in which the WMLs were masked out
before tissue segmentation and relabeled as WM after, following
the same procedure used by radiologists of the 3 hospitals.

Segmentation Methods

The set of methods was composed of 6 well-known automatic
brain tissue segmentation techniques: Artificial Neural Network
(ANN), fuzzy C-means (FCM), Fuzzy And Noise Tolerant Adap-
tive Segmentation Method (FANTASM), FAST, SPM5, and
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FIG 2. Our pipeline approach. From the 30 Tl-weighted scans of patients with MS, nonbrain parts are stripped and brain voxels are corrected for
intensity inhomogeneities. From the same corrected set (original), a new set is generated by removing WML masks from scans before segmen-
tation (masked). The scans of both sets are segmented into 1 of the 3 tissue classes (GM, WM, and CSF). Lesion voxels are added as WM after

segmentation on masked images.

SPM8. ANN and FCM were implemented for our study, while the
rest of the methods were obtained from available repositories. The
ANN method is based on self-organizing maps, also known as
Kohonen networks.'* ANN was implemented for our study by
using the Matlab 7.12 environment (MathWorks, Natick, Massa-
chusetts) following the technique proposed by Tian etal.'> FCM '
and FANTASM'” are both based on fuzzy-clustering techniques.
FCM implements the classic fuzzy-clustering approach, while
FANTASM adds neighboring information to increment the ro-
bustness of the method to intensity inhomogeneity artifacts and
noise. FCM was also implemented by using the Matlab environ-
ment and following the technique described in Pham,'® in which
clusters were initialized according to Bezdek et al.'®* FANTASM is
included in the MIPAV toolbox (http://mipav.cit.nih.gov).
FAST® guides the segmentation with spatial information through
the optimization of Hidden Markov Random Fields, and the
method is included in the fMRI of the Brain Software Library
toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). SPM5 and SPM8’
are based on an iterative Gaussian Mixture Model optimization,
weighting the probability of belonging to a certain tissue class with
a priori spatial information from tissue-probability atlases. How-
ever, SPM8 comes with a set of different characteristics to im-
prove registration and tissue segmentation. Both methods are in-
cluded in the SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8). All methods were run with default parameters.

Evaluation

Images from both the original and masked sets were segmented
into GM, WM, and CSF tissue classes by using the 6 presented
segmentation methods. Then, we computed the normalized tis-
sue volumes as the number of voxels classified as GM, WM, and
CSF, respectively, divided by the total number of voxels. Three
different analyses were performed on these data. First, we ana-
lyzed how lesion voxels were classified by each segmentation

method to establish to what extent the tissue volumes reported by
each algorithm on the original and masked images could be expected
to be different. Second, we analyzed the direct effect of lesions in the
global volume estimation by computing the differences in total tissue
volume as the percentage of change between original and masked
images. For example, in the case of GM tissue:

NGMVOriginal - NGMVMasked
0 = X
% GM NGMVypa 100,
where NGMVOngmal and NGMV,,_.q stand for the normalized

gray matter volumes of original and masked images, respectively.
Third, we also investigated the indirect effects of lesions in the rest
of the tissue volume outside lesion regions. These are tissue vol-
ume estimations that incorporate lesions in the segmentation
process but do not consider them when the volume is evaluated.

Statistical Analysis

The correlation among factors (differences in tissue volume, le-
sion load, and lesion intensity) was calculated by using Pearson
linear correlation coefficient (). The significance level a was set at
.05. This level was used both for confidence interval computation
and 95% significance hypothesis 2-tailed ¢ tests. All statistical
analyses were calculated by using the Matlab environment.

RESULTS
Lesion Classification
Figure 3 depicts the percentage of WML voxels classified either as
WM (Fig 3, top) or GM (Fig 3, bottom). Percentages are detailed
for each segmentation method and hospital. The amount of
WMLs that were classified as GM varied for each method, mostly
due to the differences among algorithms. Figure 4 illustrates the
differences among methods by showing the output classification
performed by each of the 6 segmentation methods.

Observed differences in the percentage of classified WML vox-
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els as GM and WM between hospitals can be attributed to each
particular scanner acquisition configuration that defines the tis-
sue signal-intensity distributions. The distance between WML
and WM mean signal intensities was highest in H3 as computed
by each of the 6 methods (range, from 89.2 = 4.45% to 92.22 *
4.45% of WML mean signal intensity with respect to WM) and
was lowest in H2 (range, from 95.3 = 1.76% to 100.34 = 6.39%).
As shown in Fig 1, there is a better contrast between GM and WM
tissue on the H3 images compared with the HI and H2 images.
The correlation between the percentage of lesion classification
and lesion size was not significant in all cases (r < 0.33, P > .05).
In contrast, the percentage of WML classified as GM or WM and
the distance between the mean WML and WM signal intensities
showed a moderate correlation in all hospitals (r > 0.6, P < .01).
On the basis of our data, the contrast between tissues computed as
the normalized difference between the mean GM and WM signal
intensity distributions was correlated with the distance between
the WM and WML mean signal intensities (r = 0.6, P < .001).

Differences in Total Tissue Volume Estimation

The mean percentage differences in total tissue volume between
the original and masked images are presented in Table 1. All
methods overestimated GM tissue in original scans, regardless of

100 T T T T T
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FANTASM FAST
Segmentation method

SPM5 SPMB

FIG 3. Percentage of voxels in WML regions having been classified as
GM (top) and WM (bottom) for each segmentation method and hos-
pital, H1 (<), H2 (L) or H3 (O). Reported values are means and SDs.

FIG 4. Classification output returned by each segmentation method on the same image. A,
Tl-weighted scan. B, Zoomed part of the scan with lesions outlined in red. Brain tissue segmen-
tation outputs also with lesions outlined for ANN (C), FCM (D), FANTASM (E), FAST (F), SPM5 (G),
and SPM8 (H). C-H, Segmented GM tissue is represented in gray; WM, in white; and CSF, in black.
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the hospital, but the overestimation was increased in H2 com-
pared with H1 and H3 due to greater lesion volumes in H2. The
differences among methods for the same hospital and tissue were
also significantly greater in H2 than in H1 and H3. Abnormally
low mean and high SD values observed in SPM5 for both GM
(0.10 = 2.68) and WM (1.04 = 3.01) in H2 were caused by 2
patients who exhibited very high opposite differences between
their respective original and masked images, decreasing the over-
all mean difference and increasing the SD.

Correlation between the differences in total mean tissue vol-
ume and lesion size was significant in all hospitals: Lesion size had
a direct effect on tissue segmentation. Table 2 shows the Pearson
correlation values obtained between differences in tissue volume
and lesion size across methods. All methods except SPM5 pre-
sented a positive correlation in GM and a negative correlation in
WM in H1 and H2. SPM5 correlated in H1 but not in H2, where
it was influenced by abnormal values in the 2 images with highest
lesion load. In H3, only FCM, FANTASM, and FAST were posi-
tively correlated in GM and negatively correlated in WM. The
correlation coefficients for ANN, SPM5, and SPM8 in H3 were
weak and not significant in GM and WM.

Volume Estimation of Tissue Outside Lesion Regions
The mean percentage differences in tissue volume outside lesion
regions between original and masked images are presented in Ta-
ble 3. The differences between the images segmented with lesions
and images in which the lesions were masked before tissue seg-
mentation were again higher in H2, and the methods still substan-
tially overestimated the GM outside the lesion regions to the det-
riment of WM, even though analyzed tissues were free of lesion
regions. In contrast, only SPM5 and SPM8 reported a noticeable
underestimation of GM in H3, also to the detriment of WM.
Differences in tissue volume outside the lesion regions correlated
with lesion size for all tissues and hospitals, indicating an effect of
lesion size not only on lesion voxels but also on tissue that is not
affected by lesions. Table 4 presents the correlation values obtained
across methods. In H1, there was a remarkable correlation for ANN,
FCM, FANTASM, and FAST in all tissues. The obtained values for
SPM8 were also significant in GM and
CSF. In H2, the correlation was significant
in ANN, FCM, and FANTASM in all tis-
sues. In H3, only FCM and FAST showed a
significant correlation in all tissues,
whereas FCM, FAST, SPM5, and SPM8
correlated significantly only in WM. All
methods except SPM5 and SPMS8 re-
ported a significant correlation for CSF.

DISCUSSION

Previous studies have shown that the
range of voxel signal intensities compos-
ing each of the tissue distributions can
be altered by WMLs if these voxels are
included in the segmentation process.*>
Lesion load and the apparent lesion sig-
nal intensity lead to observed changes in
tissue segmentation in original images.



Table 1: Average percentage of change in total tissue volume estimation between original and masked images®

Hi1 H2 H3
Method GM WM CSF GM WM CSF GM WM CSF
ANN 033042 —023*028 onm=om 159=*x137 —-056=*046 078076 025=*031 —0.16=*028 —0.09=*0.09
FCM 028 £037 —022*029 0.09*01 228*226 —090*0.83 094*090 028*023 —025x020 0.08*=0.09
FANTASM 023 026 —0.18 *=0.21 0.08=0.08 134*113 —049*037 080073 026*022 —0.24=*0.19 0.07 £0.08
FAST 029 £036 —0.29 £036 012013 192*x159 —128*103 047 *039 034*028 —037*03] 012 = 0.17
SPM5 020030 —021*£020 —0.14*054 010*268 —104=*3.01 053*05 004=*017 —018=* 036 0.15*£0.23
SPM8 0.08 =0.09 —0.08*=0.08 —0.04=0.18 055*034 —093*055 054*+042 009*015 —023*=0.25 017 =0.23

2 The results are divided by tissue and hospital. Reported values are the means *+ SD. Positive values indicate a tissue overestimation on original images compared with masked.

Table 2: Pearson correlation coefficients between method
differences in total volume estimation and WML size®

Method GM WM CSF
HI1
ANN 0.94 —0.90 0.89
FCM 0.93 —0.89 0.83
FANTASM 0.87 —-0.80 078
FAST 0.97 -0.97 0.96
SPM5 0.58° —0.89 —0.21°
SPM8 0.92 —0.63 —0.69
H2
ANN 0.91 —0.88 0.93
FCM 0.92 —0.94 0.92
FANTASM 0.89 —-0.87 0.84
FAST 0.95 —0.96 0.82
SPM5 —0.35° —0.06° 0.72
SPM8 0.76 -0.79 0.57°
H3
ANN 0.56° —0.55° 0.88
FCM 077 —0.84 0.88
FANTASM 0.74 -0.82 0.85
FAST 0.88 —0.94 0.92
SPM5 —0.06° —0.03° 0.21°
SPM8 0.56° —0.48° 0.09°

2 Correlation was computed for each method and hospital separately. All values were
found to be significant (P value < .05) unless otherwise noted.
® Not significant.

For instance, if a portion of the lesion voxels is classified as WM,
the mean overall WM intensity decreases, shifts WM boundaries
into darker intensities, and narrows GM tissue distribution.*®
Voxels that should have been classified as GM are assigned to
WM, increasing the WM volume estimation and decreasing GM
volume. If some of the WML voxels are classified as GM, the
apparent GM mean intensity increases and the WM tissue distri-
bution narrows. This change occurs because voxels that are theo-
retically classified as WM are assigned to GM, increasing GM
estimation against a lower WM volume estimation.

We compare our results with those in previous studies regard-
ing the effects of WMLs on brain tissue volume measurements.
However, given the differences in image data, criterion standards,
simulated lesions, and lesion voxel intensities among studies, a
direct comparison further than an analysis of trends with similar
WML intensities and lesion loads should be carefully performed.
Our experiments follow the same trend presented by Battaglini
et al,* and both studies show that FAST overestimates total GM
volume on images segmented with lesions. Similarly, our results
also coincide with those found by Chard et al® in simulated data,
and in both studies, SPM5 overestimated GM tissue on images
with lesions. In contrast, our results appear to be inconsistent with
those reported by Gelineau-Morel et al.® These studies showed a
significant correlation between WML intensity and an underesti-

mation of GM volume outside the lesions, especially when the
lesions had intensities similar to those of the mean GM. The ob-
served differences are caused by distinct signal-intensity profiles
of WMLs in each study. In the case of Gelineau-Morel et al,® the
WML signal intensities were noticeably more hypointense com-
pared with our data. The probability of voxels to be classified as
GM dropped as a result of the influence of hypointense WML
intensities in tissue distributions. Part of WML voxels with a sig-
nal intensity similar to that of GM were still classified as WM,
reducing the signal intensity threshold between GM and WM. As
a result, most of the partial volume voxels with signal intensity in
the boundary between GM and WM were classified as WM, arti-
ficially reducing the overall number of GM voxels.

Our results show that the classification of WML regions is
highly dependent on lesion voxel signal intensities and the varia-
tion of their signal intensity in terms of the WM signal distribu-
tion. Lesion segmentation is clearly determined by this variation
because the probability of WML voxels being classified as WM
will be higher as long as WML intensities resemble those of WM.
However, the signal-intensity contrast among tissues also plays an
important role because it can influence the amount of WML vox-
els that are classified as GM or WM. As long as the contrast among
distributions increases, more lesion voxels will be added into the
GM distribution. Although the main factor in the observed dif-
ferences in tissue volume across methods is caused by lesion vol-
ume, the percentage of lesion voxels that are classified as GM and
WM might also be a remarkable factor in the observed tissue-
volume differences, especially in images with high lesion loads.
Therefore, the relationship between image quality and lesion load
also might have to be considered to explain the differences in
tissue volume.

SPM8 was the method with the lowest difference in total tissue
volume between original and masked images. In contrast, FAST
was the method that was more affected by lesions. In general, all
methods overestimated GM in original scans, though values were
more significant in H2 than H1 and H3 due to higher lesion loads
in H2. In H1 and H3, most of the underestimated WM was shifted
into GM. The small percentage of lesions that were segmented as
CSF, especially the low lesion volume, limited the impact of WML
voxels on the overall CSF tissue distribution of original images.

SPM8 and FANTASM were the methods with the lowest inci-
dence of WML in tissue volume measurements outside lesion
regions, while FCM and FAST showed the largest differences
among all methods. Lesion volume also explains the limited effect
of WML on tissue segmentation outside lesion regions in H1 and
H3, compared with images with higher lesion loads such as the H2
images. In H1 and H3, although the behavior differs slightly for
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Table 3: Average percentage change in the volume estimation of tissue outside the lesion regions between original and masked scans®

H1 H2 H3
Method GM WM CSF GM WM CSF GM WM CSF
ANN 015*0.26 —0.10=*=0.18 0.07*0.08 070=*0.61 —031*024 0.67*=0.69 —0.01=0.28 0.04 =024 —0.12 *0.08
FCM 009 =016 —0.07*=0.13 005*008 127 *£169 —0.56*0.62 0.82 = 0.81 0.01£0.03 —0.03=0.05 0.05=*0.07
FANTASM  0.06 = 0.05 —0.05*0.05 0.03*=0.05 048*048 —0.25=*=0.18 0.68 =0.63 0.00*0.04 —0.02=0.05 0.04 =0.07
FAST 008 =014 —0.09=*=014 007*0.08 0.56=*0.87 —045*0.64 022*=033 0.02*0.07 —0.06 013 0.08*0.16
SPM5 0.06 2025 0.02*x0.I3 —019*054 —0.29 £261 —047*£291 021032 —020*024 023*034 0.06*0.15
SPM8 —0.03*£006 009*015 —010*0.23 013*030 —0.29*0.33 025*026 —0.15*0.12 014015 010*0.20

2 The results are divided by hospital and tissue. Reported values are the means *+ SD. Positive values indicate a tissue overestimation on original images compared with masked.

Table 4: Pearson correlation coefficients among method
differences in volume estimation of tissue outside the lesion
regions and WML size®

Method GM WM CSF
H1
ANN 0.77 —0.74 0.83
FCM 0.82 —0.80 0.71
FANTASM 0.80 -073 0.66
FAST 0.86 -0.93 0.97
SPM5 0.0 0.51° —0.30°
SPM8 —0.57° 0.95 -0.77
H2
ANN 0.85 -0.92 0.93
FCM 071 —0.84 0.94
FANTASM 0.66 —0.82 0.87
FAST 0.33° —0.46° 0.62°
SPM5 —0.43° 0.18° 0.65°
SPM8 0.16° -0.37° 0.30°
H3
ANN 0.07 —0.16° 0.79
FCM 0.50 -0.77 0.89
FANTASM 017 —0.57° 0.87
FAST 0.45 -073 0.89
SPM5 —0.78° 072 0.14°
SPM8 —0.64° 072 —0.01°

2 Correlation was computed for each method and hospital separately. All values were
found to be significant (P value <.05) unless otherwise noted.
® Not significant.

each method, the differences in tissues outside the lesion regions
are very small.

The differences outside the lesion regions are especially im-
portant because they highlight the bias introduced by WMLs on
the estimation of tissue volume that is not pathologically affected.
If one compares the results between total tissue volume and tissue
volume outside lesion regions, it can be observed that an impor-
tant part of the overestimated total GM is essentially derived from
the same hypointense WML voxels that are classified as GM.
Moreover, it is important to highlight the differences in the algo-
rithms. Methods such as FCM and ANN, which only rely on signal
intensity, introduce more errors in tissue segmentation compared
with methods such as SPM8 and SPM5, which incorporate spatial
information. This reinforces the necessity for selecting a segmen-
tation algorithm that does not depend on signal intensity only.
However, even though WML voxels have not been considered for
computing tissue volume outside the lesion regions, there is still a
clear tendency toward overestimating GM. On images with a high
lesion load, the observed differences in GM volume outside lesion
regions reach values that are equivalent to the yearly expected GM
atrophy.”'® Following these assumptions, SPM8, FANTASM,
and SPM5 are the methods with the lowest reported incidence of
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WML on brain tissue volume measurements, especially on images
with a high lesion load.

The present study is not free of limitations. The principal lim-
itation is the lack of tissue expert annotations, given that the study
incorporated a relatively large number of images from 3 different
hospitals and this task was time-consuming. A second limitation
of the study is the sensitivity of the tissue segmentation methods
to changes in the skull-stripping mask. Errors in the brain mask
may lead to the inclusion of blood vessels such as the internal
carotid arteries with hyperintense signal intensity, which might
bias the tissue distributions. A final limitation of the study is the
inherent difficulty of comparing previous studies, given the dif-
ferences in the scanner protocols used to acquire the images of
patients with MS. The differences in the acquisition protocol may
cause the observed differences in the lesion intensity profile com-
pared with previous works.*'® Our study shows that such an in-
tensity profile introduces variations in GM and WM tissue
distributions.

CONCLUSIONS

The results of this study indicate a direct relationship between the
differences in brain tissue volume and changes in lesion load and
WML intensity. Of the analyzed methods, SPM8 exhibited the
lowest incidence of WMLs in volume estimation, whereas FCM
yielded the highest GM overestimation. Furthermore, all methods
were affected by WMLs in tissue volume outside the lesion re-
gions. SPM8 and FANTASM exhibited the lowest differences in
tissue volume outside the lesion regions, whereas the influence of
WMLs outside the lesion regions is more important in methods
such as FCM and FAST. The latter results are especially important
because even when masking lesions after segmentation to avoid
the inclusion of lesion voxels segmented as GM into the volume
estimation, the methods tend to overestimate GM tissue on im-
ages segmented with lesions. On images with high lesion load, this
bias might conceal or falsify part of the GM and WM tissue
atrophy.

Disclosures: Sergi Valverde—RELATED: Grant: FI-DGR2013 research grant from the
Generalitat de Catalunya. Mariano Cabezas—RELATED: holds a 2014 European Com-
mittee for Treatment and Research in Multiple Sclerosis—Magnetic Resonance Imag-
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Chapter 4

A white matter lesion-filling
approach to improve brain tissue
volume measurements

In this chapter, we propose a new technique to fill WM lesions before the tissue
segmentation. The proposed approach is evaluated in both 1.5T and 3T data. We
validate our method comparing its accuracy with other proposed automated lesion
filling methods on the same data. Furthermore, the proposed technique has been
released for public use both as a standalone program or as an SPM8/SPM12 library.
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Multiple sclerosis white matter (WM) lesions can affect brain tissue volume measurements of voxel-wise seg-
mentation methods if these lesions are included in the segmentation process. Several authors have presented dif-
ferent techniques to improve brain tissue volume estimations by filling WM lesions before segmentation with
intensities similar to those of WM. Here, we propose a new method to refill WM lesions, where contrary to sim-
ilar approaches, lesion voxel intensities are replaced by random values of a normal distribution generated from
the mean WM signal intensity of each two-dimensional slice. We test the performance of our method by estimat-
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sities to those between gray matter (GM) and WM tissue. Tissue volume is computed independently using FAST
and SPM8. When compared with the state-of-the-art methods, on 1.5 T data our method yields the lowest devi-
ation in WM between original and filled images, independently of the segmentation method used. It also per-
forms the lowest differences in GM when FAST is used and equals to the best method when SPM8 is
employed. On 3 T data, our method also outperforms the state-of-the-art methods when FAST is used while per-
forms similar to the best method when SPM8 is used. The proposed technique is currently available to re-
searchers as a stand-alone program and as an SPM extension.
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White matter lesions
Lesion-filling
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1. Introduction

Magnetic resonance imaging (MRI) permits to assess tissue abnor-
malities in vivo and approximate histopathological changes of the mul-
tiple sclerosis (MS) disease (Ganiler et al., 2014; Kearney et al., 2014).
Several studies have shown that the percentage of change in brain atro-
phy tends to correlate with the progression of the disease (Pérez-
Miralles et al., 2013; Sormani et al., 2014). Moreover, changes in gray
matter (GM) atrophy are observed independently from white matter
(WM), and hence atrophy measures based on segmentation-based
methods are nowadays employed as they allow classifying brain tissues
separately (Pérez-Miralles et al., 2013). The performance of different
segmentation methods used to quantify brain atrophy or volume esti-
mation has been evaluated deeply in the last 5 years (Klauschen et al.,
2009; Derakhshan et al., 2010). However, it is well known that the pres-
ence of WM lesions can induce errors on brain tissue volume measure-
ments (Chard et al., 2010; Battaglini et al., 2012; Gelineau-Morel et al.,
2012) and non-rigid registration (Sdika and Pelletier, 2009; Diez et al.,
2014), if lesions are processed within the images. For instance, if WM le-
sion voxels are classified as WM, lesion voxels with hypointense signal

* Corresponding author.
E-mail address: svalverde@eia.udg.edu (S. Valverde).
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intensities are added into the WM tissue distribution, increasing the
probability of GM voxels with similar intensity to be misclassified also
as WM (Chard et al., 2010).

In the last years, some authors have proposed different techniques to
overcome these issues in MS patients by filling WM lesions with inten-
sities similar to those of WM before performing tissue segmentation and
image registration. These methods can be divided into two groups:
methods which use local intensities from the surrounding neighboring
voxels of lesions (Sdika and Pelletier, 2009; Battaglini et al., 2012;
Magon et al., 2013) and methods which use global WM intensities
from the whole brain (Chard et al., 2010). In all cases, the performance
of these methods is directly related with their ability to minimize the
impact of refilled voxels on original tissue distribution, not only due to
the addition of these voxels into the tissue distribution, but also due to
the effect on the global tissue distributions of filled images.

Within local methods, Sdika and Pelletier (2009) have proposed
to refill each WM lesion voxel with the mean of its three-dimensional
neighboring normal appearance white matter (NAWM) voxels.
Battaglini et al. (2012) have suggested refilling each WM lesion voxel
with intensities derived from a histogram of NAWM voxels surrounding
the two-dimensional lesions. In a recent study, Magon et al. (2013) have
proposed to refill each two-dimensional lesion with the intensity from
the mean of the surrounding area of the lesion. Regarding global

2213-1582/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).



S. Valverde et al. / Neurolmage: Clinical 6 (2014) 86-92 87

methods, Chard et al. (2010) have proposed a different approach by
using intensities re-sampled from a global WM distribution to refill
WM lesion voxels, based on the mean and standard deviation of the
total NAWM of the whole image. Both Chard et al. (2010) and
Battaglini et al. (2012) methods are available for the community. FSL-L
(Battaglini et al., 2012) runs from a computer command-line and does
not provide any graphical interface that aids the process. This technique
has been integrated into the latest FSL package, and therefore it depends
on the whole FSL installation. In the case of LEAP (Chard et al., 2010), the
method runs as a stand-alone script also from the command-line and
requires the installation and configuration of several external depen-
dencies, which may be difficult to install for non-computer experts.

In this paper we propose a new technique to refill WM lesions which
is a compromise between global and local methods. Hence, for each slice
composing the three-dimensional image, we compute the mean and
standard deviation of the signal intensity of NAWM tissue. On the one
hand, compared to local methods (Battaglini et al., 2012; Magon et al.,
2013) which only make use of a limited range of voxel intensities, the
fact of using global information from the whole image slice reduces
the bias caused by refilled voxels on GM and WM tissue distributions,
especially on images with high lesion load. On the other hand, com-
pared to other global methods (Chard et al., 2010), which are based
on the mean signal intensity of the NAWM of the three-dimensional
image, our method re-computes the mean signal intensity of the
NAWM at each two-dimensional slice with the aim of reproducing
more precisely the signal variability between MRI slices, especially in
low resolution images. In order to easily integrate it into current plat-
forms, the proposed method called SLF is currently available as a
stand-alone program and as SPM! extension at the SALEM group site
(http://atc.udg.edu/salem/slfToolbox).

To evaluate the performance of our method, we estimate the devia-
tion in GM and WM tissue volume between a set of healthy images and
the same images where artificial WM lesions have been refilled with the
proposed technique. To do so, we register WM lesion masks from diag-
nosed MS patients into two sets of 30 1.5 and 3 T T1-weighted (T1-w)
images of healthy subjects, respectively. Afterwards, we simulate realis-
tic lesions on healthy images by replacing the signal intensities of regis-
tered lesion voxels with values similar to those of the mean GM/WM
interface. Brain tissue volume is computed using both FAST (Zhang
et al.,, 2001) and SPM8 (Ashburner and Friston, 2005) segmentation
methods, in order to avoid possible correlations between the filling
and segmentation processes. Furthermore, we compare our results
with the same images where artificial WM lesions have been segment-
ed as normal tissue, masked-out before tissue segmentation, and
refilled using also the methods proposed by Chard et al. (2010);
Battaglini et al. (2012), and Magon et al. (2013).

2. Materials and methods

2.1. Image data

The first set of images is composed of 30 images of healthy subjects
(matrix size: 176 x 208 x 176, voxel size: 1 x 1 x 1.25 mm), acquired on
a 1.5 T Vision scanner (Siemens, Erlangen, Germany) and obtained from
the Open Access Series of Imaging Studies (OASIS) repository? (Marcus
et al., 2007). Only images from young and middle-aged subjects are se-
lected (age < 50) as they have not been diagnosed with any related pa-
thology. Image references included in the study are as follows: 2, 4, 5, 6,
7,9,11,12,14,17,18, 20, 25, 26,27, 29, 34, 37, 38, 40, 43, 44, 45, 47, 49,
50, 51, 54, 55, and 57.

The second set of images is composed of 30 images of healthy sub-
jects (matrix size: 256 x 150 x 256, voxel size: 0.92 x 0.92 x 1.20 mm)
acquired on a Philips 3 T scanner (Philips Healthcare, Best, NL) and

1 http://www.fil.ion.ucl.ac.uk/spm/software/spms/.
2 Publicly available at: http://www.oasis-brain.org.

obtained from the Information eXtraction from Images (IXI) repository
maintained by the Imperial College London in London, UK.? We selected
30 images acquired from the Hammersmith Hospital. Image references
included in the study are as follows: 12, 13, 14, 15, 33, 34, 39, 48, 49,
51, 52,57, 59, 72, 80, 83, 92, 95, 96, 97, 104, 105, 126, 127, 128, 131,
136, 137, 146, and 159.

2.2. Preprocessing

All images are manually reoriented to match the standard MNI
space. Skull-stripping is performed using the Brain Extraction Tool
(BET) (Smith, 2002), following the optimization workflow suggested
by Popescu et al. (2012), with the exception that cerebrospinal fluid tis-
sue has been refilled on skull-stripped images again. This procedure is
preferred over other alternatives as it provides the best performance
on some lesion-filling methods such as Chard et al. (2010), being also
the choice in other recent studies (Popescu et al., 2014). IXI images
are corrected from possible intensity non-uniformities and acquisition
artifacts using N4, the ITK (Ibafiez et al., 2003) implementation of the
N3 package (Sled et al.,, 1997). N4 is applied on IXI images with default
options. Images from the OASIS repository are provided already with N4
applied.

2.3. Lesion generation

We use a set of 37 patients with clinically confirmed MS, provided
with initial and follow-up studies (Diez et al., 2014). In these patients, le-
sions have been annotated semi-automatically on Proton Density-
weighted (PD-w) images by a trained technician using JIM software®
and afterwards co-registered with T1-w images. In order to maintain
the independence between the 1.5 and 3 T sets of images, we match
randomly 30 patients from the initial study into the OASIS images, and
we repeat the same procedure with the follow-up study and the IXI
image set.

MS lesion masks are registered into healthy images by a non-rigid
transformation (Rueckert et al., 1999). To ensure that resulting lesion
masks are placed on WM, we remove registered lesion voxels that have
not been segmented as WM by both FAST and SPM8 on the healthy
image. We computed a Wilcoxon rank sum test to analyze the difference
in lesion volumes generated between OASIS and IXI datasets, obtaining
that differences were not statistically significant (p = 0.162). The obtain-
ed mean lesion volume on OASIS images was 21.1 &+ 20.8 ml (range from
0.5 to 65 ml), while 15.4 4- 16.2 ml (range from 0.8 to 62 ml) on IXI3 T
images. Note that due to the existing anatomical differences between
1.5 and 3 T image subjects and the enforced WM tissue constraint,
the effect of registering the same MS lesion mask intoa 1.5and 3 T
image results in two different lesion masks. For instance, the effect
of registering lesions from the initial study into the 3 T dataset pro-
vided different lesion volumes (10.30 + 12.10 ml) and reported sta-
tistically significantly differences (p = 0.007) on the Wilcoxon rank
sum tests.

Artificial lesions are simulated by replacing registered lesion voxel
intensities with ones between the GM and WM interface, following
the same strategy shown in Battaglini et al. (2012). For each original
image, GM and WM tissue distributions are computed using only voxels
in agreement between FAST and SPM8. WM lesion voxels are filled with
random intensities coming from a newly generated normal distribution,
with mean equal to the average of the GM and WM mean values and
standard deviation equal to the difference between mean WM and
GM, divided by 4 (Battaglini et al., 2012). Artificial lesions are refilled
with the aim of simulating a profile which clearly separates their signal
intensity with healthy tissue. This intensity profile chosen does not

3 Publicly available at http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=
Main.Datasets.
4 Xinapse Systems, JIM software webpage, http://www.xinapse.com/home.php.
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reflect the entire scope of possible real lesions, but allows us to visualize
the magnitude of the differences in tissue volume between images with
artificial lesions and the same images where lesion have been filled with
the proposed method. The intensity profile chosen would not affect any
of the methods studied since they do not take into account the artificial
lesion intensities.

24. Lesion filling

The proposed method aims to combine the global approach of Chard
et al. (2010) with the similarity between refilled voxel intensities and
their surrounding voxels of local methods such as Battaglini et al.
(2012) and Magon et al. (2013). Basically, for each slice composing
the three-dimensional image, lesion voxel intensities are replaced by
random intensities of a normal distribution generated from the mean
NAWM intensity of the current slice. Fig. 1 summarizes the lesion-
filling process graphically.

The proposed algorithm requires two input images: a preprocessed
T1-w image (skull-stripped and intensity inhomogeneity corrected)
and its corresponding binary WM lesion mask. After testing the perfor-
mance of the method with different skull-stripping approaches (Smith,
2002; Shattuck et al., 2001), we observed that including this step inside
the filling process is not necessary, because the skull-stripping method
employed seems to not interfere significantly in the results obtained
(Wilcoxon significant rank-sum tests between differences in tissue vol-
ume between lesion-filled and original images of both datasets for GM
and WM tissue, p > 0.13).

WM lesions are masked out from the T1-w image using the provided
lesion mask, in order to avoid the influence of artificial lesions on tissue
distributions. The resulting image is used to estimate the probability of
each voxel to be classified as CSF, GM, and NAWM, by segmenting tissue
with a Fuzzy-C-means approach (Pham, 2001). The Fuzzy-C-means im-
plementation used here follows the algorithm described in Pham
(2001), with clusters initialized according to Bezdek et al. (1999). More-
over, input signal intensities are constrained to the mean plus three
standard deviations of the signal intensity of the image, in order to
avoid outlier signal intensities, such as residual parts of the eyes or
neck. From the obtained tissue segmentation output, we compute the

Skull stripped
image

three-dimensional NAWM mask from the image voxels with the highest
probability to pertain to the WM cluster.

Finally, the lesion-filling process is achieved as follows: for each axial
slice composing the three-dimensional image, we compute the mean
and standard deviation of the signal intensity of NAWM tissue. Axial
sampling is motivated because after testing the sampling procedure
on the coronal, axial and sagittal planes, we found that the best results
were obtained when we sampled the axial plane. This was due to the
fact that using the axial plane reduced the variability of possible existing
WM intensities, when compared to coronal and sagittal sampling. The
Fuzzy-C-means approach used to estimate the tissue probabilities is a
simple method which in fact does not take into account neither spatial
nor neighboring information, and hyper-intense signal intensities such
as residual parts of the eyes or the neck produced in the skull-
stripping process can bias significantly the clusters. The risk of adding
these parts into the WM distribution is minimized in the axial plane be-
cause we are reducing it to a certain slice where lesion volume is usually
lower than that in central slices. The computed mean and standard de-
viation values are used to generate a normal distribution with mean
equal to the computed NAWM mean intensity and standard deviation
equal to half of the computed NAWM standard deviation. Standard de-
viation is always fixed to half of the WM mean independently of the
dataset used. This value was chosen empirically with the aim of
balancing the accuracy of the method with both 1.5 and 3 T images.
Although a specific tuning of this parameter could provide a better
performance on certain cases, we decided to fix it avoiding therefore
the number of parameters to tune. Lesion voxel intensities from the
current image slice are replaced by random values of the generated
distribution. The procedure is repeated until all image slices are
completed.

2.5. Volume analysis

We compute the absolute percentage % difference in normalized
gray matter volume (NGMV) and normalized white matter volume
(NWMV) between each original and its correspondent lesion-filled im-
ages. Normalized volumes are obtained as the ratio of voxels outside
lesion regions segmented as GM or WM and the total number of

For each image slice

4

mean _wm
5 b —> std_wm
—_— 2
WM mask
Lesions are WM resulted
masked-out From the WM mask, lesion-filled
generate a distribution with mean image

WM lesions
mask

extract
tissue probabilities
for each image voxel

WM intensity of the mask and std/2

fill all lesion voxels with random

¥

values from the distribution

Fig. 1. Proposed algorithm for filling WM lesions. From a preprocessed T1-w image (skull-stripping and intensity inhomogeneity corrected), WM lesions are masked out using the pro-
vided WM lesion binary mask. Using a Fuzzy-C-means approach, we estimate the probability of each image voxel to be classified as CSF, GM, and NAWM. For each slice composing the
whole image, lesion voxel intensities are replaced by a random intensity derived from a normal distribution with mean and half of the standard deviation of the NAWM tissue intensities

of the current slice.
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segmented voxels, respectively. For instance, the % difference in NGMV
is computed as:

NGMV jijeq—NGMV o i

% = NGMV g x 100

where NGMVjeq and NGMV,;; values refer to the computed vol-
umes for the lesion-filled and original images, respectively. The higher
the performance of the lesion-filling method, the lower the percentage
difference between lesion-filled and original images.

In order to analyze possible correlations between the filling process
and the segmentation method employed, brain tissue volume is calcu-
lated independently on the same subjects using FAST (Zhang et al.,
2001) (v.5.0.5) and SPM8 (Ashburner and Friston, 2005) (v.4667)
approaches.

2.6. Statistical analysis

We compare the performance of our method with respect to other
existing techniques such as the ones proposed by Chard et al. (2010);
Battaglini et al. (2012), and Magon et al. (2013). We also add two
more sets of images into the comparison: images segmented with arti-
ficial lesions and images where WM lesions have been masked out be-
fore tissue segmentation. Given the small differences in NGMV and
NWMV between original and lesion-filled images, the use of a standard
Analysis of the Variance (ANOVA) or a classic t-test is impractical here.
Instead, we perform a series of permutation tests to determine signifi-
cant differences in tissue volume between pairs of methods (Menke
and Martinez, 2004; Valverde et al., 2014). The permutation tests return
the mean pand standard deviation o of the fraction of times that the dif-
ference in NGMV and NWMV for a current lesion-filling method is
smaller than the rest of methods with p-value < 0.05. Afterwards,
methods are presented in 3 ranks determined by the mean and standard
deviation of the best method and the distance with respect to the mean
of the rest of methods (Valverde et al., 2014). In our experiments, we set
the number of comparisons between each pair of methods to N = 1000.

3. Results

3.1. OASIS dataset (1.5 T data)

Fig. 2 depicts the absolute mean % difference in NGMV and NWMV
between the 30 original 1.5 T images and the same images with artificial
lesions (NONE), masked-out lesions before segmentation (MASKED),
and lesion-filled using Magon et al. (2013) (MAGON), Battaglini et al.
(2012) (FSL-L), and Chard et al. (2010) (LEAP), and finally our proposed
algorithm SLF.

10 T T T T T T T T T T T T T T T T T

o BIGM tissue| .
WM tissue

abs % difference in NGMV/NWMV (FAST) >

a1

LEAP SLF

1
MAGON FSL-L
LESION FILLING METHOD (1.5T)

NONE MASKED

When FAST is used, SLF reports the lowest absolute mean difference
in NGMV (0.16 4 0.14), followed by LEAP (0.40 4 0.30) and FSL-L
(0.43 + 0.58) methods. Our proposal also provides the lowest differ-
ence in NWMV (0.29 + 0.36), followed by FSL-L (0.81 + 1.28). Maxi-
mum values in NGMV are found in NONE images, with differences up
to 2.30 & 2.62 in NGMV and 3.85 £ 4.81 in NWMV.

When SPMS is used, SLF also reports the lowest differences in NGMV
(0.09 £ 0.14), followed by LEAP method (0.12 £ 0.13). Our proposed
method also performs better than the rest of the methods on NWMV
(0.20 £ 0.24), followed by the LEAP method (0.36 + 0.40). Again, the
highest differences in NGMV (1.84 4+ 1.97) and NWMV (4.82 + 4.58)
are found in NONE images. Table 1 shows the absolute mean difference
in WM volume for all methods where lesion volume has been ranged by
size intervals. Results are presented for both SPM8 and FAST segmenta-
tion methods.

Table 2 presents the performance of each filling-method after run-
ning all possible pair-wise permutation tests. With a significant p-value
of <0.05, all tests run on images segmented with FAST show the superi-
ority of SLF over the other methods presented. On images segmented
with SPMS, all tests show a clear superiority of SLF over the other
methods on NWMV, while a similar performance of SLF and LEAP over
the other methods on NGMV.

3.2. IXI dataset (3 T data)

We also test the performance of our algorithm using 3 T data. As be-
fore, Fig. 3 shows the absolute mean % difference in NGMV and NWMV
between the 30 original 3 T images and the same images with added le-
sions (NONE), masked-out lesions before segmentation (MASKED), and
lesion-filled methods MAGON, FSL-L, and LEAP, and our proposed ap-
proach SLF.

When FAST is used, SLF reports the lowest absolute mean % differ-
ence in NGMV (0.06 + 0.06), followed by LEAP (0.09 4 0.10). Our meth-
od SLF also performs the lowest difference in NWMV (0.09 + 0.09),
followed again by LEAP (0.12 + 0.08). Maximum values in NGMV are
found in NONE images, with differences up to 1.40 4+ 1.56 in NGMV
and 1.00 + 1.32 in NWMV.

When SPMS8 is used, both LEAP (0.04 4+ 0.06) and SLF (0.05 + 0.05)
yield the lowest absolute % mean difference in NGMV. On NWMYV, also
LEAP (0.09 4 0.12) and SLF (0.08 4 0.09) report the lowest absolute
mean % difference in volume between original and lesion-filled images.
Again, highest differences in NGMV (1.84 4+ 1.97) and NWMV (4.82 +
4.58) are found in NONE images. Table 3 shows the absolute mean dif-
ference in WM volume for all methods on IXI images, where lesion vol-
ume has been ranged by size intervals. Results are presented for both
SPM8 and FAST segmentation methods.

Table 4 shows the performance of each filling-method after running
the permutation tests. Tests run on images segmented with FAST show

10, T T T

WGM tissue] 4
WM tissue|

NONE MASKED MAGON FSL-L
LESION FILLING METHOD (1.5T)

N B o O N ©
T

abs % difference in NGMV/NWMV (SPM8) [TJ
-

(=]

Fig. 2. Absolute % difference in NGMV and NGWM between original and filled images from the OASIS (1.5 T) dataset. (a) Results for images segmented using FAST. (b) Results for images
segmented with SPM8. Gray bars represent the absolute mean % difference in NGMV, while white bars represent the absolute mean % difference in NWMV. Lines above each bar represent

the standard deviation for each method and tissue.
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Table 1

Absolute mean difference in NWMV between original and filled images from the 1.5 T
OASIS images. Results are presented for both SPM8 and FAST segmentation methods. Le-
sion volume is ranged by size intervals with n = 6 by interval. Values indicate the mean
and standard deviation of the absolute difference in volume (n 4 ) of each lesion-
filling method at a current lesion interval.

Method/  0.5-4 ml
lesion(ml) (n = 6)

4-11 ml
(n=6)

11-20 ml
(n=6)

25-36 ml
(n=6)

>36 ml
(n=6)

SPM8 segmentation method

NONE 047 +£ 050 154 +£ 095 271 4+ 0.60 7.09 &+ 1.42 10.64 + 3.10
MASKED  1.56 +£ 094 242 +£ 070 149 4+ 043 3.16 + 1.35 391 £ 1.76
MAGON 0.03 £+ 0.03 0.08 + 0.07 024 £+ 025 0324+ 0.19 195+ 1.25
FSL-L 0.03 £ 0.01 0.10 & 005 031 £ 0.15 0.55 4+ 0.07 238 £+ 1.26
LEAP 0.04 £ 0.04 0.10 £ 005 0.19 & 0.05 044 4+ 022 092 + 042
SLF 0.03 £ 0.03 0.04 £ 0.03 0.09 &+ 0.06 0.23 &+ 0.20 0.55 + 0.23
FAST segmentation method

NONE 021 £ 021 0.71 £ 038 1.88 £ 0.56 4.55 +2.04 895 + 4.36
MASKED  9.52 + 1.20 8.36 £+ 1.30 11.53 4 491 742 4+ 1.08 579 £ 1.92
MAGON 0.08 £ 0.04 025+ 022 091 4+ 063 1.28 +£0.39 624 + 2.74
FSL-L 0.03 £+ 0.02 0.05 4+ 0.05 030 £ 021 0.58 +0.19 2.13 £ 1.22
LEAP 0.08 +£ 0.07 034 £ 0.10 0.65 + 0.13 1.07 + 0.66 2.50 + 0.80
SLF 0.07 £ 005 0.13 £ 009 0.22 4+ 0.15 0.36 & 0.30 042 + 0.16

a significant superiority of SLF over the rest of the methods on NWMV,
and a slightly better performance of SLF with respect to LEAP on
NGMV, although both methods are clearly superior to the rest of
methods presented. When SPM8 is used, tests show a similar perfor-
mance of SLF and LEAP over the rest of the methods on both NWMV
and NGMV.

4. Discussion

Several studies have proposed to use different filling techniques in
order to reduce the effects of WM lesions on brain tissue measurements
of T1-w images. Up to date, only LEAP (Chard et al., 2010)° and FSL-L
(Battaglini et al., 2012)° are publicly available methods that permit to
refill T1-w images given a WM lesion mask. The Lesion Segmentation
Toolbox (LST) proposed by Schmidt et al. (2012) also provides a
lesion-filling approach based on the work of Chard et al. (2010), but it
is dependent of a FLAIR image and an internal lesion-probability map
obtained during the lesion segmentation step.

In general, deviation in tissue volume between original and lesion-
filled images tends to be higher on 1.5 T OASIS images than on 3 T IXI
images. The observed deviation is caused by differences in intensity,
slice thickness and dimensionality between datasets. On IXI images,
the distance between GM and WM signal intensity distributions is
narrower than that of 1.5 T data. Applying the lesion generation algo-
rithm (Battaglini et al., 2012) with identical parameters of those used
with 1.5 T images creates simulated lesions whose intensity are notice-
ably similar to the mean WM, because the standard deviation of the
generated lesion distribution is the mean between the GM and WM tis-
sue divided by 4. However, this fact only explains the difference found
on images segmented with artificial lesions. In the rest of the methods,
the signal intensity of the generated lesions is not interfering with the
obtained results since in all cases lesion voxels are replaced before tissue
segmentation. On images where lesions have been masked before seg-
mentation (MASKED), the lower deviation in tissue volume of 3 T im-
ages can be explained by the increase in the resolution of the images
when compared to 1.5 T data, which reduces the effect of masked voxels
in tissue distributions. The same reason can be behind the lower devia-
tion found on all four lesion filling methods. By increasing the number of
slices, differences produced by the methods on certain slices can be
smoothed by tissue segmentation methods. Moreover, the use of a re-
duced sampling space or a better tuning of the parameters involved in

5 http://www.nmrgroup.ion.ucl.ac.uk/analysis/lesionfill. html.
S http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling.

the WM tissue distribution generated to refill lesion voxels could in-
crease the performance of the presented method. Nevertheless, in all
our experiments we decided to fix the standard deviation to 2 for
simplicity.

Analyzing the results by dataset, on 1.5 T images from the OASIS
dataset, our results show that compared to the available methods, the
proposed algorithm SLF reduces significantly the differences in NWMV
between original and filled images, independently of the brain tissue
segmentation method used to measure the tissue volume. With the
same data, SLF also reduces significantly the differences in NGMV
when FAST is used. Although our method reports the lowest mean % dif-
ference in NGMV when SPM8 method is used, the permutation test
clearly shows that differences between SLF and LEAP are not relevant.
On 3 Timages from the IXI dataset, SLF also yields the lowest mean % dif-
ferences in NGMV and NWMV, when FAST is used to measure tissue vol-
ume. These results are clearly significant in NWMYV, but not in NGMV,
although our method reports also the lowest difference among all
methods. When SPMS8 is used, SLF presents a similar performance of
that of LEAP, and both methods tie on the results of the significance
tests.

Compared with local methods, our algorithm performs quantitative-
ly better than local methods on images with high lesion load (> 36 ml).
The MAGON method incorporates all neighbor voxels surrounding a
WM lesion region to compute a mean intensity which is used to refill
all lesion voxels. On images with high lesion load touching GM tissue,
including GM voxels can decrease refilled intensities and modify the tis-
sue distribution of filled images. FSL-L overpasses this limitation by
building an intensity distribution based only on WM voxels surrounding
lesions. However, on large lesion regions, all lesion voxels will be filled
with a narrow range of intensities coming from the neighboring voxels
that can have a direct incidence on GM and WM tissue distributions. By
contrast, lesion volume appears to affect less global methods. In our
case, the intensity distribution generated to refill lesion voxels will be
independent of both the size and the position of lesion. Furthermore,
the effect of filled voxels on the global WM tissue distribution is
smoothed by the addition of intensities which try to reassemble the
global NAWM of the current slice.

Compared with global methods, there are some interesting differ-
ences between our method and LEAP. Contrary to local methods, global
methods have to deal with the skull-stripping process before processing
images. LEAP incorporates the skull-stripping process as part of the pro-
cessing pipeline. In addition, LEAP also allows the user to provide a brain

Table 2

Permutation tests for obtained absolute % differences in NGMV and NWMV on 1.5 T im-
ages. Reported values are mean and standard deviation (J, 0,) of the fraction of times
when each method produces significant p-values (p < 0.05). (a) Results when using FAST.
(b) Results when using SPM8. Positive values indicate that in average, the method out-
performs the other methods in pair-wise significant tests. Negative values indicate the
contrary. Rank 1: (Lo — Oy, Mo, Tank 2: (Ko — 205, Po — To), rank 3: (Ho — 300, to — 20,].

NGMV NWMV
Method p+ o Method p+ o
(a) FAST segmentation method (1.5 T)
Rank 1 SLF 0.83 + 0.41 SLF 0.83 + 0.41
Rank 2 FSL-L 0.33 + 0.82 FSL-L 0.33 + 0.82
LEAP 0.33 + 0.82 LEAP 0.33 + 0.82
Rank 3 MAGON —0.17 £ 0.98 MAGON —0.17 £ 0.98
MASKED —0.23 + 041 MASKED —0.23 £ 041
NONE —0.50 + 0.84 NONE —0.50 + 0.84
(b) SPM8 segmentation method (1.5 T)
Rank 1 SLF 0.67 + 0.52 SLF 0.83 + 0.41
LEAP 0.67 4+ 0.52
Rank 2 MAGON 0.00 + 0.89 LEAP 0.33 + 0.82
FSL-L 0.00 + 0.89 MAGON 0.17 + 0.75
Rank 3 NONE —0.67 £ 0.52 FSL-L 0.00 + 0.89
MASKED —0.67 + 0.52 MASKED —0.50 + 0.84
NONE —0.83 £ 041
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Fig. 3. Absolute mean % difference in NGMV and NWMV between original and filled images from the IXI (3 T) dataset. (a) Results for images segmented using FAST. (b) Results for images
segmented with SPM8. Gray bars represent the absolute mean % difference in NGMV, while white bars represent the absolute mean % difference in NWMV. Lines above each bar represent

the standard deviation for each method and tissue.

mask. By contrast, our method does not deal with skull-stripping inter-
nally, and the method requires an already skull-stripped image or a
brain mask. As noted previously, the skull-stripping method employed
seems to not interfere significantly in the results obtained by our meth-
od. While setting up each of the different processes involved in the pro-
posed pipeline, we found that, at least with our data, the performance of
LEAP decreased or failed in 1.5 T scans when the skull-stripping
methods BSE (Shattuck et al., 2001) and BET (Smith, 2002) were used
with default options. By contrast, LEAP provided the best results when
the optimized method proposed by Popescu et al. (2012) was used.
This fact motivated the selection of this skull-stripping method for all
the experiments of the study.

Furthermore, on both datasets, we have also compared the differ-
ences between our method and LEAP estimating the mean NAWM in-
tensity used as a basis to fill lesion voxels. In most of the images, the
global mean NAWM intensity does not differ significantly between
fityk” on LEAP and our Fuzzy-C-means approach. Hence, we can reject
the hypothesis that observed differences in 1.5 T images can be caused
by the approach employed to compute the NAWM tissue distribution
before filling lesion voxels. However, on both lesion-filling approaches,
tissue segmentation methods tended to increase the apparent mean
WM tissue distribution on 1.5 T images with high lesion load (>40 ml)
due to the increase of voxels refilled with intensities higher than the ac-
tual mean WM signal intensity. This effect is clearly more visible on
LEAP than in our method, especially when FAST is used. The resolution
of the OASIS 1.5 T images (176 x 208 x 176 slices) is lower than that
of IXI 3 T images (256 x 150 x 256 slices). On images with low number
of slices, each slice has a higher weight into the global tissue distribu-
tion. After comparing the a priori WM tissue distribution values estimat-
ed by both the LEAP and SLF methods with the already computed WM
tissue distributions obtained from healthy images, we found that as le-
sion size increases, global methods such as LEAP and SLF tend to in-
crease the differences in tissue volume with respect to original images.
In both methods, we have observed that the a priori estimated mean in-
tensity of the WM distribution tends to be higher than the actual tissue
distribution as computed by FAST and SPM8 on healthy images. As le-
sion volume increases, the addition of more filled voxels with intensity
higher than the actual mean tissue intensity is more prominent, causing
a displacement of the mean intensity of the WM distribution returned
by the segmentation methods on filled images. Consequently, more
voxels bordering GM/WM are segmented as GM and WM tissue volume
decreases. In this scenario, the strategy followed by SLF, where WM is
sampled independently at each slice, is more robust to the increase of
lesions size than a global estimation of the WM tissue (LEAP) because

7 Available at: http://sourceforge.net/projects/fityk.

possible errors introduced by a particular slice are not propagated into
the rest of the slices. Contrary to SPM8, which estimates the tissue dis-
tributions based on a Gaussian Mixture Model approach of the whole
image, FAST builds a network of neighboring relations based on a Mar-
kov random field approach, more sensible to changes between slices.
The same reason can also be behind the better performance of our
method on 3 T when FAST is used. Compared with 1.5 T images, the
probability of intensity change between slices is less prominent on 3 T
images due to a higher resolution between slices.

Analyzing the possible deviations in tissue volume caused by each
tissue segmentation process, we obtained results which suggest that
the chosen tissue segmentation method does not affect significantly
the performance of our filling-method. Results between the same filled
images segmented with FAST and SPMS8 differ (<0.1%) in the worst case
on both datasets and tissues. By contrast, MAGON, FSL-L and LEAP
switch their rank on 1.5 T images, depending on the segmentation
method used. On 3 T images, only MAGON and FSL-L appear to switch
between ranks when FAST or SPMS is used, respectively.

The present study is not free from limitations. The most important
one is the lack of images of MS patients with brain tissue expert annota-
tions. All images from MS patients taken from Diez et al. (2014) have
been only provided with lesion annotations delineated by a trained ex-
pert, but not brain tissue annotations. To overpass this limitation, we
have registered WM lesions from MS patients into healthy images as
performed in Battaglini et al. (2012) and double-checked that registered

Table 3

Absolute mean difference in NWMV between original and filled images from the 3 T OASIS
images. Results are presented for both SPM8 and FAST segmentation methods. Lesion vol-
ume is ranged by size intervals with n = 6 by interval. Values indicate the mean and stan-
dard deviation of the absolute difference in volume (i 4 0) of each lesion-filling method at
a current lesion interval.

Method/  0.8-3 ml 4-6 ml 6-13 ml 16-21 ml >21 ml
lesion(ml) (n = 6) (n=6) (n=6) (n=6) (n=6)
SPM8 segmentation method

NONE 0.68 + 0.56 0.92 4+ 0.31 1.61 +£ 085 3.37 + 0.81 5.16 + 1.83
MASKED  0.07 + 0.03 0.21 4+ 0.16 034 + 022 1.07 + 0.79 1.42 + 0.65
MAGON 0.05 £ 0.10 0.15 4 0.28 0.14 £ 0.15 0.47 4+ 044 041 £ 0.22
FSL-L 0.06 + 0.06 0.06 + 0.03 0.19 +£ 0.16 0.80 + 0.80 1.32 + 0.53
LEAP 0.01 + 0.01 0.03 4+ 0.02 0.05 + 0.05 0.13 + 0.15 0.22 + 0.18
SLF 0.03 £ 0.03 0.02 4 0.01 0.09 £ 0.12 0.09 4+ 0.06 0.16 & 0.13

FAST segmentation method

NONE 0.14 £ 0.10 0.24 + 0.06 0.52 + 034 1.27 + 035 294 + 1.67
MASKED  0.07 + 0.05 0.17 &+ 0.07 0.41 £+ 027 095 + 025 223 + 1.13
MAGON 0.05 + 0.03 0.07 &+ 0.06 0.08 + 0.04 0.59 + 0.55 1.07 £ 0.79
FSL-L 0.04 +£ 0.02 0.03 + 0.02 0.03 +£ 0.02 0.18 + 0.20 0.77 &+ 0.45
LEAP 0.07 £ 0.05 0.03 +£ 0.03 0.14 £ 0.13 0.19 +£ 0.16 0.29 + 0.13
SLF 0.03 £ 0.02 0.04 + 0.02 0.08 £ 0.06 0.20 + 0.15 0.34 + 0.14
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Table 4

Permutation tests for obtained absolute % differences in NGMV and NWMV on 3 T images.
Reported values are mean and standard deviation (L, 0,) of the fraction of times when
each method produces significant p-values (p < 0.05). (a) Results when using FAST.
(b) Results when using SPM8. Positive values indicate that in average, the method out-
performs the other methods in pair-wise significant tests. Negative values indicate the
contrary. Rank 1: (Lo — Op, o], rank 2: (Lo — 205, o — Op], rank 3: (U, — 300, to — 20,].

NGMV NWMV
Method p+o Method p+o
(a) FAST segmentation method (3 T)
Rank 1 SLF 0.67 £+ 0.52 SLF 0.67 + 0.52
LEAP 0.66 + 0.51 LEAP 0.50 £+ 0.55
FSL-L 033 £+ 0.82
Rank 2 MAGON 0.00 £+ 0.8 MAGON —0.17 £+ 0.98
FSL-L 0.00 £+ 0.3
Rank 3 MASKED —0.50 + 0.84 MASKED —0.50 + 0.84
NONE —0.83 + 041 NONE —0.83 + 041
(b) SPM8 segmentation method (3 T)
Rank 1 LEAP 0.67 + 0.52 LEAP 0.67 + 0.52
SLF 0.67 + 0.52 SLF 0.67 £+ 0.52
MAGON 0.17 £+ 0.98 MAGON 0.17 £+ 0.98
Rank 2 FSL-L —0.33 + 0.82 FSL-L —0.17 £ 0.98
MASKED —0.33 + 0.82
Rank 3 NONE —0.83 + 041 MASKED —0.50 + 0.84
NONE —0.83 + 041

lesions have replaced voxels segmented as WM by FAST and SPMS. This
strategy has a negligible impact on the performance of the filling-
methods analyzed in this study, because we assure a priori that generat-
ed lesions are on WM, and moreover none of the methods use informa-
tion from the artificial lesions generated. Furthermore, although we
tested the performance of the proposed method with two datasets
with different magnetic field strengths, our results are limited to these
two different scanners with particular configurations, and hence it is
difficult to generalize the results to all 1.5 and 3 T scanners.

In conclusion, the results of this study show that regardless of the le-
sion size, the SLF method performs consistently well compared to other
existing methods such as LEAP, especially on 1.5 T images. Furthermore,
the results obtained show that the proposed method can be an effective
method for low resolution images. The skull-stripping process does not
especially affect the accuracy of the method, which allows integrating it
with different preprocessing pipelines. Additionally, volume estima-
tions of lesion filled images processed by our algorithm appear to be
not affected by the segmentation method employed. In contrast to
other approaches, SLF may be installed by non-computer experts who
can easily use it without any parameter tuning. SLF is currently available
to researchers as a stand-alone script and as an SPM library extension
which facilitates to incorporate the lesion filling process into the expert
workflow for tissue volume segmentation.
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Chapter 5

Quantifying brain tissue volume in
multiple sclerosis with automated
lesion segmentation and filling

In this chapter, we present a detailed evaluation of the performance of different
pipelines that incorporate fully automated processes such as lesion segmentation,
lesion filling and tissue segmentation on MS data. For each automated pipeline,
we analyze the percentage of error in tissue segmentation between a set of 70 MS
images, where WM lesions have been refilled before segmentation and the same
images processed at different levels of automation from manually masking lesions to
fully automated lesion segmentation and filling. This analysis has been published
in the following paper:
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Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) le-
sions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion
segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of
error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70
clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits
with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion
Brain filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray
Multiple sclerosis matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion an-
MRI notations were filled before segmentation. Our results showed that fully automated lesion segmentation and fill-
Brain atrophy ing pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed
Automated tissue segmentation similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines,
White matter lesions the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. How-
Lesion filling ever, the % of error was significantly lower when automatically estimated lesions were filled and not masked be-
fore segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of
accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient
not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between man-

ual annotations.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

1. Introduction

Multiple sclerosis (MS) is associated with irreversible brain damage
not only in demyelinated plaques, but also in normal-appearing gray
matter (GM) and white matter (WM), where recent studies have
shown that the rate of tissue loss per year in MS patients ranges from
0.7% to 1.6% in GM, and 0.6% to 0.9% in WM (Filippi et al., 2013;
Pérez-Miralles et al., 2013; Sastre-Garriga et al., 2014). Given the corre-
lation between brain atrophy and disease disability, measuring the
change in tissue volume is clinically relevant because it allows for opti-
mizing possible treatments and patient management in early stages of
the disease (Filippi et al., 2013; Sastre-Garriga et al., 2014; Uher et al.,
2014).
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Girona, Spain.
E-mail address: svalverde@eia.udg.edu (S. Valverde).
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Automated tissue segmentation techniques based on magnetic reso-
nance imaging (MRI) such as the Statistical Parametric Mapping (SPM)
(Ashburner and Friston, 2005), FAST (Zhang et al., 2001), or SIENA-X
(Smith et al., 2002) are currently standard tools to assess brain tissue
volume (De Bresser et al., 2011; Valverde et al.,, 2015a). The reproduc-
ibility of these techniques has been analyzed in several studies using
scan-rescan measurement tests, reporting mean percentages of error
in FAST GM of —0.22% (De Boer et al., 2010), 0.05% (De Boer et al.,
2010) and —0.80% (Nakamura et al., 2014) in SPM8 GM, 1.50%
(Nakamura et al.,, 2014) in SIENA-X GM, 0.13% (De Boer et al., 2010) in
FAST WM, and 0.25% (De Boer et al., 2010) in SPM WM. However,
existing differences for a particular method in different studies may be
influenced by the same image data, imaging hardware and acquisition
parameters (Clark et al., 2006). Furthermore, several authors have re-
ported that the inclusion of WM lesions in tissue segmentation can af-
fect significantly the accuracy of these techniques (Battaglini et al.,
2012; Nakamura and Fisher, 2009; Valverde et al., 2015b), leading to

2213-1582/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the development of different preprocessing strategies to fill lesion re-
gions with signal intensities similar to WM before tissue segmentation
(Battaglini et al., 2012; Chard et al., 2010; Valverde et al., 2014). So far,
in all the lesion filling approaches, MS lesions have to be delineated
first, usually by their manual annotation, which is a tedious, challenging
and time-consuming task (Sanfilipo et al., 2005). This fact and the ne-
cessity to analyze quantitatively focal MS lesions in individual
(Cabezas et al., 2014) and temporal (Ganiler et al.,, 2014) studies have
been driving in recent years the development of automated new lesion
segmentation techniques (Garcia-Lorenzo et al., 2013; Guizard et al.,
2015; Lladé et al., 2012).

Although lesion filling techniques have already been applied to as-
sess the progression of GM atrophy of MS patients (Ceccarelli et al.,
2012; Nakamura et al., 2014; Popescu et al., 2014), still an extensive
analysis of the effect of fully automated pipelines, incorporating both
automated MS lesion segmentation and posterior lesion filling on tissue
segmentation methods has not yet been performed. In this study, we
analyze the effect of two publicly available automated pipelines, Salem
Lesion Segmentation (SLS) (Roura et al,, 2015) and Lesion Segmentation
Toolbox (LST) (Schmidt et al., 2012), on the accuracy of the GM and WM
volume estimations of a cohort of 70 clinically isolated syndrome (CIS)
patients. For each automated pipeline, we evaluate the deviation in GM
and WM volume between images where manual expert annotations
have been used to refill lesions before tissue segmentation with SPM8
(Ashburner and Friston, 2005), and the same images where lesions
have been automatically segmented and either masked or lesion filled
before tissue segmentation.

2. Materials and methods
2.1. Image acquisition

Seventy CIS patients from the same center (Hospital Vall D'Hebron,
Barcelona (Spain)) in which the clinical presentation was clearly sug-
gestive of multiple sclerosis underwent MR imaging on the same 3 T Sie-
mens with 12-channel phased-array head coil (Trio Tim, Siemens,
Germany). The following pulse sequences were obtained: 1) transverse
proton density and T2-weighted fast spin-echo (TR = 2500 ms, TE =
16-91 ms, voxel size = 0.78 x 0.78 x 3 mm?); 2) transverse fast T2-
FLAIR (TR = 9000 ms, TE = 93 ms, TI = 2500 ms, flip angle = 120°,
voxel size = 0.49 x 0.49 x 3 mm?>); and 3) sagittal 3D T1 magnetization
prepared rapid gradient-echo (MPRAGE) (TR = 2300 ms, TE = 2 ms;
flip angle = 9°; voxel size = 1 x 1 x 1.2 mm?). White matter lesion
masks were semi-automatically delineated from either PD-w (46 pa-
tients) or FLAIR (24 patients) images using JIM software (Xinapse Sys-
tems, http://www.xinapse.com/home.php) by an expert radiologist of
the same hospital center with more than 10 years of experience. Mean
lesion volume was 4.1 + 4.7 ml (range 0.2-18.3 ml), and 3.65 +
3.94 ml (range 0.1-18.3 ml) on PD-w and FLAIR images, respectively.

2.2. Automated lesion segmentation and filling

Automated lesion segmentation and filling was performed using the
T1-w and FLAIR image modalities on two publicly available toolkits im-
plemented for the SPM (http://www.fil.ion.ucl.ac.uk/spm) software
package:

2.2.1. SLS toolbox

The SLS pipeline (http://atc.udg.edu/salem/slsToolbox/index.html)
was composed of the following automated steps: T1-w and FLAIR im-
ages were first skull-stripped and intensity corrected using the Brain Ex-
traction Tool (BET) (Smith, 2002) with optimized parameter choice as
described in Popescu et al. (2012), and the N3 method (Sled et al.,
1998), respectively. Corrected T1-w and FLAIR images were then linear-
ly co-registered (12-parameter affine) using internal SPM routines, with
normalized mutual information as objective function and trilinear

interpolation with no wrapping. Lesion segmentation was performed
by an initial tissue segmentation of the T1-w image to separate lesions
from tissue, followed by a thresholding step and a regionwise refine-
ment of the FLAIR image (Roura et al.,, 2015). The initial parameter
used to adjust the detected candidate lesions was set to o = 2, while
the percentage of lesion candidate regions to belong to WM and GM
over cerebro spinal fluid (CSF), percentage of neighbor voxels belonging
to WM, and candidate size was set to \_ts = 0.7, \_nb = 0.6, and size =
3 mm’. Estimated lesion masks were then automatically filled using the
method (Valverde et al., 2014), where candidate region voxels were re-
placed by random values of a normal distribution generated from the
mean normal-appearing WM signal intensity of each two-dimensional
T1-w slice. The SLF method was run with default parameters.

2.2.2. LST toolbox

The LST pipeline (www.applied-statistics.de/Ist) was composed of
the following automated steps: T1-w and FLAIR images were skull-
stripped and intensity-corrected using the VBM8 toolbox included
also as part of the SPM package. Afterwards, corrected T1-w and FLAIR
images were linearly (12-parameter affine) and non-linearly co-
registered using also internal SPM8 routines. Lesion segmentation was
performed by computing an initial tissue segmentation of the T1-w
image to compute a lesion belief map based on the FLAIR and T1-w im-
ages (Schmidt et al.,, 2012). This map was refined iteratively weighting
the likelihood of belonging to WM or GM against the likelihood of be-
longing to lesions until no further voxels were assigned to lesions. The
required initial threshold kappa was set to k = 0.15, while the lesion be-
lief map was set to Ibm = GM. Estimated lesion masks were then auto-
matically filled using an internal filling method inspired by a previous
technique proposed in Chard et al. (2010), where candidate region
voxels where replaced by random intensities from a Gaussian distribu-
tion generated from the normal-appearing WM intensities and then fil-
tered to reintroduce the original spatial variation in WM.

2.3. Tissue volume analysis

All images were processed with both toolboxes and compared inde-
pendently in order to preserve the differences in the internal routines of
each toolbox. First, T1-w images processed by the SLS toolbox (see
Table 1(a)) were segmented into GM, WM and CSF volumes using
SPM8 after following five different pipeline configurations that differed
in the level of manual intervention: 1) Original images were segmented
including WM lesions (Original pipeline); 2) Expert manual lesion an-
notations were masked before tissue segmentation and relabeled as
WM after (Expert masked pipeline); 3) Estimated lesion masks provided
by the SLS method were masked before tissue segmentation and
relabeled as WM after (SLS masked pipeline); 4) Estimated lesion
masks provided by the SLS method were filled with the SLF method be-
fore tissue segmentation (SLS filled); and 5) Expert manual lesion anno-
tations were filled before tissue segmentation and used as ground-truth
images (Expert filled pipeline). In the case of the pipelines where lesions
voxels were masked, either with automatic or manual annotations, le-
sion masks were used to remove lesion voxels in the T1-w image. There-
fore, those voxels were not considered during tissue segmentation and
were added to the WM class after it to maintain the actual brain volume
of each patient. In contrast, in the lesion filling pipelines, automatic or
manual lesion annotations were used to refill the correspondent T1-w
image voxels with signal intensities similar to the WM, and lesion
voxels were considered as normal-appearing WM in tissue
segmentation.

All resultant tissue probability maps were binarized into GM, WM
and CSF masks by extracting the maximum probability for each partic-
ular tissue. GM and WM tissue volume was computed by multiplying
the number of voxels in binary masks by the voxel size
(1 x 1 x 1.2 mm?). Volume measures were normalized to correct the
differences between subjects by dividing the GM and WM volume by
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Table 1

Evaluation pipelines followed in the present study. The set of T1-w images is processed independently for either the SLS (a) and LST (b) toolboxes. First, T1-w images are preprocessed
(skull stripped and intensity corrected) using the routines indicated by each toolbox. Then, the preprocessed images are segmented into CSF, GM and WM tissue using SPM8 after following
five different pipelines that differ in the level of manual intervention: 1) images are segmented including WM lesions (Original pipeline), 2) Expert manual lesion annotations are masked
before tissue segmentation (Expert masked pipeline), 3) Estimated lesion masks returned by the same toolbox are masked before tissue segmentation (SLS/LST masked pipeline), 4) Esti-
mated lesion masks returned by the same toolbox are filled with the lesion-filling method incorporated by each pipeline (SLS/LST filled pipeline), and 5) Expert manual lesion annotations

are filled before tissue segmentation and used as ground-truth images (Expert filled pipeline).

(a)

Pipeline Preprocessing Lesion segmentation Lesion filling Tissue segmentation
1. Original BET + N3 - - SPM8
2. Expert masked BET + N3 Manual Expert annotations are masked SPM8
3. SLS masked BET + N3 SLS SLS lesion masks are masked SPM8
4. SLS filled BET + N3 SLS SLS lesion masks are filled by SLF SPM8
5. Expert filled (GT) BET + N3 Manual Expert annotations are filled by SLF SPM8

(b)

Pipeline Preprocessing Lesion segmentation Lesion filling Tissue segmentation
1. Original SPM8 - - SPM8
2. Expert masked SPM8 Manual Expert annotations are masked SPM8
3. LST masked SPM8 LST LST lesion masks are masked SPM8
4. LST filled SPM8 LST LST lesion masks are filled by LST SPM8
5. Expert filled (GT) SPM8 Manual Expert annotations are filled by LST SPM8

the whole brain volume. Then, the percent (%) absolute error in total
and normal-appearing GM and WM volume was computed between
pipelines: Original versus Expert filled images, Expert masked versus Ex-
pert filled, SLS masked versus Expert filled, and SLS filled versus Expert
filled. The absolute error in total and normal-appearing GM and WM
volume for each automated pipeline were computed using the follow-
ing equations:

_ |NGMV .4y —NGMV|

GM{l..A}vsS = NGMVs % 100
INWMV (1._4) —NWMVs|
WM1..4pvs5 = NWMVs x 100

where NGMVy; . 43 and NWMV{; __ 4 refer to the normalized GM and
WM tissue volume, and the sub-indexes indicate the pipeline used:
(1) Original, (2) Expert masked, (3) SLS masked, (4) SLS filled and (5) Ex-
pert filled pipeline used as ground-truth. Normal-appearing GM and
WM volume was computed similarly, but lesion voxels were not consid-
ered in normalized GM and WM volume estimations. The procedure
was then repeated identically for the LST toolbox (see Table 1(b)).

24. Statistical analysis

Statistical analysis was performed using the Matlab software pack-
age (http://es.mathworks.com/products/matlab). Differences in GM
and WM volume of each evaluated pipeline were analyzed using a re-
peated measures ANOVA model with 3 degrees of freedom for the
time variable and 207° for the error, followed by a series of post-hoc
pairwise significant t-tests with Bonferroni correction between
methods. Moreover, the Pearson's linear correlation coefficient was
used to compute the correlation between % differences in GM and
WM and lesion volume, and between % differences in GM and WM
and the error produced by the automated lesion segmentation methods
(Error I type: number of false positive outcomes, and Error I type: false
negative outcomes). In all the analysis, we considered data significant at
p-values < 0.05.

3. Results
3.1. Differences in tissue volume

First, we analyzed the differences in total tissue volume between the
images processed following each of the SLS pipelines and the images

where expert lesion masks had been filled with the SLF method before
tissue segmentation. Automated lesion segmentation and filling re-
duced significantly the % of error in total GM (p < 0.032) on the images
processed with the fully automated SLS filled pipeline when compared
with the same images segmented including lesions (Original pipeline)
(see Fig. 1A). Similarly, the % differences in total WM were also signifi-
cantly lower on the Expert masked (p < 0.040) and SLS filled (p <
0.002) pipelines when compared with the Original images (see
Fig. 1B). Differences in total GM and WM between the SLS masked and
SLS filled pipelines were not statistically different.

Regarding the LST toolbox, the mean % of error in GM volume was
<0.12% in all the evaluated pipelines and similar to the values reported
previously by the SLS, but was significantly higher in the Original images
(p<0.003) (see Fig. 1C). In WM, the effect of hypo-intense lesions was
also significantly higher in the Original images (p < 0.001) when com-
pared with the rest of the pipelines (see Fig. 1D). As in the SLS, the dif-
ferences in total GM and WM between LST masked and LST filled were
not significant.

The observed % of error in total GM and WM volume was not only
distributed in lesion regions but also in normal-appearing tissue (see
Fig. 2). In all the evaluated pipelines but the Expert masked, normal-
appearing WM was overestimated by the effect of hypo-intense lesion
voxels that were still present before tissue segmentation, either because
they were not processed intentionally (Original pipeline), or as the re-
sult of misclassified lesion voxels. Lesion voxels that were classified as
WM shifted down the signal intensity threshold between GM and
WM and caused the actual GM voxels presenting an intensity profile
similar to that of the lesions to be reassigned to WM. Identically;
normal-appearing GM was underestimated by the opposite effect of le-
sion voxels in GM tissue volume. More importantly, in the images proc-
essed with the Original, SLS masked, and SLS filled pipelines, the actual %
of error in total GM and WM volume was partly canceled between the
opposite directions of the errors produced in normal-appearing tissue
and the number of remaining lesion voxels that were incorrectly classi-
fied as GM (see Fig. 2).

As expected, images where expert lesion masks were masked before
segmentation (Expert masked pipeline) returned the lowest % of error in
normal-appearing GM (see Fig. 2A) and WM (see Fig. 2B) when com-
pared not only with Original images (p < 0.001), but also with images
processed with the SLS masked pipeline (p < 0.018). The % differences
in normal-appearing WM of the images where estimated lesions using
SLS were filled were significantly lower than in the same images
where lesions were masked (p < 0.024). In contrast, differences were
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Fig. 1. % of absolute error in total GM and WM volume between segmented images where the annotated lesion masks were refilled before tissue segmentation (Expert filled) and the same
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between evaluated pipelines with *p < 0.05, **p < 0.01, ***p < 0.001.

similar for both tissues between the fully automated SLS filled and the incorrectly classified as GM. As expected, the % differences in normal-
Expert masked pipelines, showing that refilled voxels reduced the effect appearing GM (see Fig. 2C) and WM (see Fig. 2D) were lower in the Ex-
of hypo-intense lesions in normal-appearing tissue. pert masked pipeline (p < 0.024), due to the null effect of hypo-intense

Similarly, in LST pipelines part of the % differences in total GM and lesions in tissue segmentation. As in SLS, the effect of masking expert le-
WM was also partly canceled by the opposite direction of the errors in sion masks on the errors in tissue segmentation was similar to that in
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Fig. 2. Mean % of absolute error in tissue volume between segmented images where the annotated lesion masks were refilled before tissue segmentation (Expert filled) and the same images
processed following each of the evaluated pipelines. Results for the SLS toolbox are shown in the top row for GM (A) and WM (B), and for the LST toolbox in the bottom row for GM (C) and
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appearance volume between evaluated pipelines with *p < 0.05, **p < 0.01, ***p < 0.001.
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normal-appearing WM of the images where estimated lesions using LST
were filled were also significantly lower than in the same images where
lesions were masked (p < 0.048).

Fig. 3 depicts for a single patient image, the differences in the overlap
of the tissue segmentation classes for each evaluated pipeline and the
pertinent Expert filled image used as a ground-truth. As expected, the
error in normal-appearing tissue (shown in red) was the lowest in the
masked pipelines (images F and ]), while the number of misclassified le-
sion voxels (shown in green) was remarkably higher in the Original
pipelines (images E and I). This fact showed that the inclusion of
hypo-intense lesion voxels into the tissue distributions has a clear effect
in the misclassification of the normal-appearing tissue between bound-
aries, and also produces changes in the segmentation of brain structures
such as the putamen. In contrast, when compared to these pipelines, the
number of misclassified voxels in the automated pipelines incorporat-
ing lesion filling (panels H and L) was remarkably lower, although
some false negatives were still present in the segmentation due to er-
rors in the automatic lesion segmentation. The number of misclassified
voxels was moderately lower in the automated pipelines incorporating
lesion filling, when compared with automated pipelines where lesion
masks were masked before segmentation (images G an K), although
those differences were hardly appreciated in the picture.

When analyzing the % differences in tissue volume between LST and
SLS pipelines, we observed that differences in GM between the

evaluated pipelines were not significant. In contrast, the % differences
between masked and filled pipelines were found significant for total
WM between LST filled and SLS masked (p < 0.191), normal-appearing
WM between LST masked and SLS filled (p = 0.007), and normal-
appearing WM between Lst filled and SLS masked (p < 0.002).

Finally, we studied the effect of the image modality used to annotate
the expert lesion masks in the overall result. We recomputed the differ-
ences in total and normal-appearing GM and WM volume for the two
subsets of images where expert masks were annotated using PD-w or
FLAIR images. The differences in GM and WM volume between subsets
were not statistically different for any of the SLS or LST evaluated pipe-
lines (p > 0.42).

3.2. Correlation with lesion volume

We also analyzed the extent to which lesion volume affected the
normal-appearing GM and WM volume measurements of each of the
evaluated pipelines. Lesion volume strongly correlated with the report-
ed % of error in GM and WM in the Original, Expert masked and SLS filled
pipelines (r > 0.77, p < 0.001), and moderately in the SLS masked
(r>0.41, p<0.001). However, the effect of lesion volume was different
for each evaluated pipeline (Fig. 4A).

As expected, the deviation in normal-appearing GM and WM vol-
ume was remarkably higher in the images segmented with lesions,

Fig. 3. For a single patient image of the dataset, we show the differences in the overlap of the tissue segmentation classes for each evaluated pipeline and the pertinent Expert filled image
used as a ground-truth. Differences for any tissue class with respect to Expert filled are represented in green for lesion voxels, and in red for normal-appearing voxels. First row: input T1-w
(A), input FLAIR (B), T1-w with expert annotations highlighted in blue (C), and T1-w output segmentation for the Expert filled image with CSF, GM and WM voxels depicted in black, gray,
and white, respectively. Second row: for the images processed with the SLS toolkit, differences in any tissue classes for the Original (E), Masked (F), SLS masked (G), and SLS filled
(H) pipelines. Third row: for the images processed with the LST toolkit, differences in any tissue class for the Original (I), Masked (]), LST masked (K), and LST filled (L) pipelines.
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Fig. 4. Mean % of absolute error in normal-appearing GM and WM volume split by image groups with lesion size in the range (<3 ml, 3-6 ml, 6-9 ml, and >9 ml). Values for each group
represent the mean % error between the images processed with the Expert filled and each of the evaluated pipelines (Original (%), Expert masked (O), SLS/LST masked (%), and SLS/LST filled
(%)). Results for the SLS toolbox are shown in the top row for GM (A) and WM (B), and for the LST toolbox in the bottom row for GM (C) and WM (D).

where the % of error in WM was up to 1.46% on images with >9 ml lesion
load (see Fig. 4B). The error in WM increased with lesion volume on im-
ages where lesions were automatically segmented, but this was remark-
ably lower on the SLS filled images than those that were masked before
segmentation (SLS masked). On the subset of images with >9 ml, the
performance of the SLS filled was similar to that of the Expert masked
pipeline.

Lesion volume also strongly correlated with the observed differences
in normal-appearing GM and and WM for the Original (r > 0.78, p <
0.001) and LST masked (r > 0.78, p < 0.001) pipelines, and moderately
for the Expert masked (r > 0.36, p < 0.001) and LST filled (r > 0.40, p =
0.001). As in the SLS, the error in GM and WM increased with lesion
size on images where lesions were automatically segmented or inten-
tionally left, and also increased remarkably in images where automatic
lesion masks were masked instead of filled (see Fig. 4D). The % error
in normal-appearing GM and WM of the LST filled pipeline was similar
to that of the Expert masked.

3.3. Effect of lesion segmentation and filling

The lesion detection accuracy rate (true positives) of the SLS method
was 0.43 £ 0.21, while the Dice similarity coefficient (Dice, 1945) be-
tween the estimated and manual annotated masks was 0.32 4 0.17.
The number of false positive lesion voxels (number of voxels
misclassified as lesion), and false negative lesion voxels (number of
missed lesion voxels) correlated with the % of error in total GM and
WM volume of the SLS filled (r > 0.60, p < 0.001), and LST filled pipeline
images (r > 0.42, p < 0.001). This suggested that in these pipelines, the
observed error in tissue segmentation was mostly caused by the addi-
tion of false positive lesion voxels pertaining to GM that were filled
with typical WM signal intensity, and also by the effect of missed
hypo-intense WM lesion voxels into tissue distributions. In contrast,
the % error in normal-appearing GM and WM in the images processed
with the SLS filled and LST filled pipelines only correlated weakly with
the number of false positives. Even some actual GM false positive voxels
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were reassigned to WM, still WM voxels that were misclassified as le-
sion voxels were again reassigned to WM reducing the effect of false
positives on the observed errors in normal-appearing tissue volume.
Similarly, the detection accuracy rate of the LST method was 0.41 +
0.20, with Dice similarity coefficient of 0.35 + 0.21. the number of false
positives and false negatives correlated with the % of errors in total GM
and WM of the LST masked pipeline (r > 0.30, p = 0.01), and only with
the error in total GM of the SLS masked pipeline (r > 0.52, p < 0.001).
Moreover, the number of false negative lesion voxels correlated weakly
with the % of errors in GM and WM (r > 0.40, p = 0.001) of both pipe-
lines. Contrary to filled images, actual GM voxels that were incorrectly
classified as WM were not considered in tissue volume, reducing the lin-
ear correlation between the errors in lesion and tissue segmentation.
We also interchanged the lesion filling methods between the SLS
and LST toolboxes and segmented again each set of images with the
aim of evaluating the effect of each lesion filling process on the observed
% differences in tissue volume. Differences were not statistically differ-
ent with respect to the original pipelines for both GM and WM volume.

4. Discussion

The effect of lesions on total tissue volume was partly limited due to
the canceling effect between the errors produced in normal-appearing
tissue and the number of lesion voxels that were segmented as GM
(Valverde et al., 2015b). This aspect is relevant because it explains
why the observed % of error in total tissue volume was small or not sig-
nificant between the evaluated pipelines of our study, even within the
Original images intentionally segmented containing lesions. Further-
more, the % of error in total and normal-appearing WM volume
in the images automatically segmented with either the SLS or LST
was significantly lower when lesions voxels were filled than
when they were masked before segmentation. As also reported in
previous studies (Battaglini et al., 2012; Chard et al., 2010; Valverde
et al,, 2014), our results highlight the necessity to refill WM lesions be-
fore tissue segmentation for accurate cross-sectional tissue volume
measurements.

However, the accuracy of automated lesion segmentation tech-
niques is still low (Roura et al., 2015; Schmidt et al.,, 2012). Both
automated pipelines overestimated normal-appearing WM (and
underestimated GM) mostly by the effect of misclassified lesion voxels.
Our results showed a significant but moderate correlation between
underestimated total WM and the number of false positives of the SLS
filled and LST filled pipelines. In contrast, the number of false positives
correlated weakly with the differences in normal-appearing GM and
WM, which might indicate that part of the false positive voxels that
were actually WM were correctly reclassified after being filled. The %
of error in the SLS filled and LST filled pipelines also correlated with the
number of missed lesion voxels, which in addition to the clear correla-
tion between the errors in tissue segmentation and lesion size, suggests
that most of the differences observed in normal-appearing tissue vol-
ume were produced by the amount of missed lesion voxels that altered
the tissue signal intensity distributions. This aspect suggests that the ac-
curacy of new automatic tissue segmentation pipelines may be in-
creased specially by reducing the number of missed lesion voxels, and
in particular when those are hypo-intense in T1-w and should be filled
before tissue segmentation. However, this study did not evaluate the
methods with RRMS or SPSS image data, because the clinical focus of
the study was on the initial CIS phenotype of MS, where paraclinical in-
formation is more relevant. In this regard, a further analysis of the accu-
racy of the evaluated pipelines on images with larger lesion load should
be performed.

As expected, the Expert masked pipeline reported the lowest error in
total and normal-appearing volume, although our results confirmed
that masking out lesion voxels before tissue segmentation might not
be optimal, as the error in tissue segmentation tends to increase with le-
sion size (Valverde et al., 2014). More interestingly, the performance of

the fully automated SLS filled and LST filled pipelines was similar to that
of the Expert masked, which seems to indicate that upon a certain lesion
load, the errors produced by misclassified lesion voxels in the fully auto-
mated pipelines were comparable to the masking out error produced by
not filling the expert annotations before tissue segmentation.

Within our data, the maximum differences in tissue volume pro-
duced by the SLS filled and LST filled might be lower than the own repro-
ducibility of the SPM method, as stated in previous studies (De Boer
et al,, 2010; Nakamura et al., 2014). However, a direct comparison be-
tween studies has to be contemplated with care, because we did not
perform a scan-reposition-rescan analysis of the evaluated pipelines,
and consequently the differences in tissue volume produced by
automated methods should be added to the inner reproducibility of
the tissue segmentation method. Additionally, differences in the pre-
processing pipelines between studies should be also contemplated, as
shown in previous studies (Boyes et al., 2008; Zheng et al., 2009). The
maximum differences in tissue volume produced by the fully automated
pipelines also raises the question if the observed differences could be
considered negligible when compared with the loss in tissue volume
observed in follow-up scans. In this aspect, the differences in tissue vol-
ume shown by both the SLS filled and LST filled are remarkably lower
than yearly tissue loss reported in recent clinical studies (Filippi et al.,
2013; Sastre-Garriga et al., 2014; Uher et al., 2014). Hence, given the
small error introduced by these methods, we recommend the use of ei-
ther the SLS or LST toolkit.

There are a number of limitations in this work that have to be con-
sidered. This study was conducted using single-center data, and hence
the applicability in a multi-center study was not determined here. The
lack of manual tissue annotations does not allow us to analyze the tissue
segmentation accuracy of each of the evaluated pipelines. Gold-
standard annotations are time-consuming and have to be delineated
by trained experts, a task which unfortunately is not always possible, es-
pecially when the number of subjects grows. In this aspect, the results of
this study have to be understood under the premise that we are not
evaluating the accuracy of the tissue segmentation methods, but the dif-
ferences with respect to the manual expert pipeline that introduces the
lowest error in tissue volume in images containing WM lesions
(Battaglini et al., 2012; Valverde et al,, 2014). The % of error in GM and
WM volume introduced by the evaluated pipelines was small, and it
was difficult to scale our findings with previous studies, given the differ-
ences in preprocessing and internal routines of each pipeline. Further-
more, in spite of the small error observed, our claims about the
effectiveness of the fully automated pipelines have to be prudent,
given the lesion load of the cohort of CIS patients of our study. As a fu-
ture work, we will investigate the effect of images with higher lesion
load on automated lesion segmentation, the posterior lesion filling pro-
cess, and the impact of these automated processes in tissue segmenta-
tion methods.

In summary, this study shows that the automated lesion segmenta-
tion and filling methods included in the LST and SLS toolboxes reduce
significantly the impact of T1-w hypo-intense lesions on the SPMS tis-
sue segmentation method. Our results show that compared with the
evaluated pipelines that require manual expert intervention, the accu-
racy in tissue segmentation is not affected remarkably on images proc-
essed with the fully automated pipelines. This is relevant and suggests
that LST and SLS toolboxes allow for performing accurate brain tissue
volume measurements without any kind of manual intervention. The
possibility of filling MS white matter lesions without manual delinea-
tion of lesions is pertinent not only in terms of time and economic
costs, but also to avoid the inherent intra/inter variability between man-
ual annotations.

Acknowledgments

S. Valverde holds a FI-DGR2013 grant from the Generalitat de Cata-
lunya. E. Roura holds a BR-UdG2013 grant. This work has been partially



S. Valverde et al. / Neurolmage: Clinical 9 (2015) 640-647 647

supported by “La Fundaci6 la Marat6 de TV3” and by Retos de
Investigacién TIN2014-55710-R.

References

Ashburner, J., Friston, K., 2005. Unified segmentation. Neurolmage 26, 839-851.

Battaglini, M., Jenkinson, M., De Stefano, N., 2012. Evaluating and reducing the impact of
white matter lesions on brain volume measurements. Hum. Brain Mapp. 33 (9),
2062-2071.

Boyes, R, Gunter, J.L., Frost, C., Janke, A.L, Yeatman, T., Hill, D., Bernstein, M.A,, et al., 2008.
Intensity non-uniformity correction using N3 on 3-T scanners with multichannel
phased array coils. Neurolmage 39, 1752-1762.

Cabezas, M., Oliver, A., Roura, E., Freixenet, J., Vilanova, J.C., Ramié-Torrenta, L., Rovira, A.,
Lladé, X., 2014. Automatic multiple sclerosis lesion detection in brain MRI by FLAIR
thresholding. Comput. Methods Prog. Biomed. 115 (3), 147-161.

Ceccarelli, A., Jackson, J.S., Tauhid, S., Arora, A., Gorky, J., Dell'Oglio, E., Bakshi, A, et al.,
2012. The impact of lesion in-painting and registration methods on voxel-based mor-
phometry in detecting regional cerebral gray matter atrophy in multiple sclerosis.
Am. ]. Neuroradiol. 33 (8), 1579-1585.

Chard, D.T,, Jackson, ].S., Miller, D.H., Wheeler-Kingshott, C.A., 2010. Reducing the impact
of white matter lesions on automated measures of brain gray and white matter vol-
umes. J. Magn. Reson. Imaging 32, 223-228.

Clark, K.A., Woods, R.P., Rottenberg, D.A., Toga, A.W., Mazziotta, ].C., 2006. Impact of acqui-
sition protocols and processing streams on tissue segmentation of T1-w weighted MR
images. Neurolmage 29, 185-202.

De Boer, R., Vrooman, H., Ikram, M., Vernooij, M., Breteler, M., Van der Lugt, A., Niessen,
W.,, 2010. Accuracy and reproducibility study of automatic MRI brain tissue segmen-
tation methods. Neurolmage 51 (3), 1047-1056.

De Bresser, J., Portegies, M.P., Leemans, A., Biessels, G.J., Kappelle, LJ., Viergever, M.A.,
2011. A comparison of MR based segmentation methods for measuring brain atrophy
progression. Neurolmage 54 (2), 760-768.

Dice, LR., 1945. Measures of the amount of ecologic association between species. Ecology
26 (3), 297-302.

Filippi, M., Preziosa, P., Copetti, M., Riccitelli, G., Horsfield, M.A., Martinelli, V., Comi, G.,
Rocca, M.A,, 2013. Gray matter damage predicts the accumulation of disability
13 years later in MS. Neurology 81 (20), 1759-1967.

Ganiler, O., Oliver, A, Diez, Y., Freixenet, J., Vilanova, ].C., Beltran, B., Ramié-Torrenta, L.,
Rovira, A., Lladé, X., 2014. A subtraction pipeline for automatic detection of new
appearing multiple sclerosis lesions in longitudinal studies. Neuroradiology 56 (5),
363-374.

Garcia-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins, D.L., 2013. Review of au-
tomatic segmentation methods of multiple sclerosis white matter lesions on conven-
tional magnetic resonance imaging. Med. Image Anal. 17 (1), 1-18.

Guizard, N., Coupé, P., Fonov, V., Manjén, J., Arnold, D.L., Collins, D.L., 2015. Rotation-
invariant multi-contrast non-local means for MS lesion segmentation. Neurolmage
Clin. 8, 376-389.

Lladé, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A., Valls, L., Rami6-
Torrentd, L., Rovira, A., 2012. Segmentation of multiple sclerosis lesions in brain
MRI: a review of automated approaches. Inf. Sci. 186 (1), 164-185.

Nakamura, K., Fisher, E., 2009. Segmentation of brain magnetic resonance images for
measurement of gray matter atrophy in multiple sclerosis patients. Neurolmage 44
(3), 769-776.

Nakamura, K., Guizard, N., Fonov, V.S., Narayanan, S., Collins, D.L., Arnold, D.L., 2014. Jaco-
bian integration method increases the statistical power to measure gray matter atro-
phy in multiple sclerosis. Neurolmage Clin. 4, 10-17.

Pérez-Miralles, F., Sastre-Garriga, ], Tintoré, M., Arrambide, G., Nos, C., Perkal, H., Rio, J., et
al,, 2013. Clinical impact of early brain atrophy in clinically isolated syndromes. Mult.
Scler. 19 (14), 1878-1886.

Popescu, V., Battaglini, M., Hoogstrate, W.S,, et al., 2012. Optimizing parameter choice for
FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis. Neurolmage
61 (4), 1484-1494.

Popescu, V., Ran, N.C.G., Barkhof, F., Chard, D.T., Wheeler-Kingshott, C.A., Vrenken, H.,
2014. Accurate GM atrophy quantification in MS using lesion filling with co-
registered 2D lesion masks. Neurolmage Clin. 4 (January), 366-373.

Roura, E., Oliver, A,, Cabezas, M., Valverde, S., Pareto, D., Vilanova, ].C., Ramié-Torrenta, L.,
Rovira, A,, Lladé, X., 2015. A toolbox for multiple sclerosis lesion segmentation. Neu-
roradiology http://dx.doi.org/10.1007/s00234-015-1552-2.

Sanfilipo, M.P., Benedict, R.B., Sharma, J., Weinstock-Guttman, B., Bakshi, R., 2005. The re-
lationship between whole brain volume and disability in multiple sclerosis: a com-
parison of normalized gray vs. white matter with misclassification correction.
Neurolmage 26 (4), 1068-1077.

Sastre-Garriga, J., Tur, C., Pareto, D., Vidal-Jordana, A., Auger, C,, Rio, J., Huerga, E., Tintoré,
M., Rovira, A, Montalban, X., 2014. Brain atrophy in natalizumab-treated patients: a
3-year follow-up. Mult. Scler. http://dx.doi.org/10.1177/1352458514556300.

Schmidt, P., Gaser, C., Arsic, M., Buck, D., Férschler, A., Berthele, A., Hoshi, M., et al., 2012.
An automated tool for detection of FLAIR-hyperintense white-matter lesions in mul-
tiple sclerosis. Neurolmage 59 (4), 3774-3783.

Sled, ].G., Zijdenbos, P., Evans, C., 1998. A nonparametric method for automatic correction
of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17 (1), 87-97.
Smith, S.M., 2002. Fast robust automated brain extraction. Hum. Brain Mapp. 17,

143-155.

Smith, S.M.,, Zhang, Y., Jenkinson, M., Chen, J., Matthews, P.M., Federico, A., De Stefano, N.,
2002. Accurate, robust, and automated longitudinal and cross-sectional brain change
analysis. Neurolmage 17 (1), 479-489.

Uher, T., Horakova, D., Bergsland, N., Tyblova, M., Ramasamy, D.P., Seidl, Z., Vaneckova, M.,
Krasensky, ], Havrdova, E., Zivadinov, R., 2014. MRI correlates of disability progres-
sion in patients with CIS over 48 months. Neurolmage: Clinical 6 (January). Elsevier
B.V, pp.312-319.

Valverde, S., Oliver, A., Lladd, X., 2014. A white matter lesion filling approach to improve
brain tissue volume measurements. Neurolmage Clin. 6 (January), 86-92.

Valverde, S., Oliver, A., Cabezas, M., Roura, E., Lladé, X., 2015a. Comparison of 10 brain tis-
sue segmentation methods using revisited IBSR annotations. ]. Magn. Reson. Imaging
41 (1), 93-101.

Valverde, S., Oliver, A, Diez, Y., Cabezas, M., Vilanova, J.C., Rami6-Torrenta, L., Rovira, A.,
Lladé, X., 2015b. Evaluating the effects of white matter multiple sclerosis lesions on
the volume estimation of 6 brain tissue segmentation methods. Am. ]. Neuroradiol.
http://dx.doi.org/10.3174/ajnr.A4262.

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain MR images through a hidden
Markov random field model and the expectation-maximization algorithm. IEEE
Trans. Med. Imaging 20, 45-57.

Zheng, W., Chee, M.W., Zagorodnov, V., 2009. Improvement of brain segmentation accu-
racy by optimizing non-uniformity correction using N3. Neurolmage 48, 73-83.






Chapter 6

Automated tissue segmentation of
MR brain images in the presence
of white matter lesions

In this chapter, we propose a novel, automated pipeline for tissue segmentation of MS
patient images containing lesions. The accuracy of the method is evaluated using
both the challenge MRBrainS13 database! and a 3T MS database of MS patient
images. We validate the accuracy of the proposed method with other state-of-the-
art techniques. A public version of this method has been released for public use.
The proposed pipeline has been described in detail in the next paper and submitted
to the Medical Imaging Journal:
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Currenly in revision.
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Abstract

Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings has led to
the development of a wide number of automated tissue segmentation methods. However, white matter lesions are
known to reduce the accuracy of automated tissue segmentation methods. This requires manual annotation of the
lesions and refilling them before segmentation, which is tedious and time-consuming. Here, we propose a new,
fully automated T1-w/FLAIR tissue segmentation approach designed to deal with images in the presence of WM
lesions. This approach integrates a robust partial volume tissue segmentation with WM outlier rejection and filling,
combining intensity and probabilistic and morphological prior maps. We evaluate the accuracy of this method on the
MRBrainS13 tissue segmentation challenge database, and also on a set of Multiple Sclerosis (MS) patient images. On
both databases, we validate the performance of our method with other state-of-the-art techniques. On the MRBrainS13
data, the presented approach was the best ranked method relying in unsupervised intensity models of the challenge
(7th position) and clearly outperformed the other unsupervised pipelines such as FAST and SPM12. On MS data, the
differences in tissue segmentation between the images segmented with our method and the same images where manual
expert annotations were used to refill lesions on T1-w images before segmentation were lower or similar to the best
state-of-the-art pipeline incorporating automated lesion segmentation and filling. Our results show that the proposed
pipeline quantitatively improved the accuracy of tissue segmentation while it achieved very competitive results on MS
images. A public version of this approach is available to download for the neuro-imaging community.

Keywords: Brain, MRI, multiple sclerosis, automatic tissue segmentation, white matter lesions

1. Introduction eases such as Multiple Sclerosis (MS) (Giorgio and De
Stefano, 2013). In MS, several studies have analyzed
the histopathological changes in patients with respect to
the progress of the disease, showing that the percent-
age of change in brain volume tends to correlate with
worsening conditions (Pérez-Miralles et al., 2013; Sor-
mani et al., 2014). However, manual segmentation of
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Brain tissue volume based on Magnetic Resonance
Imaging (MR]) is increasingly being used in clinical set-
tings to assess brain volume in different neurological dis-
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Chapter 7

Main results and discussion

MRI tissue segmentation techniques are being used increasingly as standard tools
to assess brain tissue volume. However, automated tissue segmentation is still a
challenging task in MS, due to the tissue abnormalities found in MS patient images
such as WM lesions that are known to reduce the accuracy of tissue segmentation
methods. When expert manual annotations of WM lesions are available, lesion fill-
ing has shown to be an effective method to reduce the effects of those lesions on
tissue segmentation. However, manual annotations are time-consuming and prone
to variability among experts, which in combination with the need to analyze focal
MS lesions quantitatively in individual and temporal studies, has led to the develop-
ment of a wide number of automated lesion segmentation of MS lesions. Therefore,
a solid understanding of the effects of MS lesions on automated pipelines that con-
catenate processes such as lesion segmentation, lesion filling and tissue segmentation
is important.

As stated in section 1.3, each of these processes covers a part of the necessary
knowledge needed to accomplish the goal of this thesis. This chapter provides a
comprehensive discussion of the main results shown in previous chapters, analyzing
each of these necessary processes for the development of a fully automated tissue
segmentation method for MS images.

7.1 Effect of WM lesions on tissue segmentation

A wide number of automated tissue segmentation methods have been proposed in
the literature so far. In Chapter 2, we evaluated the accuracy of ten approaches
using the two available public databases of healthy subjects, IBSR18 and IBSR20.
With the aim of including a wide set of different segmentation approaches and avail-
able tools, the analysis included well-known implementations of image segmentation
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algorithms such as ANN, FCM, and KNN;, as well as available public toolboxes such
as FAST, SPM5, SPMS, PVC, GAMIXTURE, SVPASEG, and FANTASM. Results
were presented before and after correcting the CSF masks, as we saw that available
annotations ignored sulcal CSF tissue in the original masks. When sulcal CSF was
corrected, the SVPASEG, SPM8 and FAST yielded the highest accuracy with both
databases. However, the performance of the methods varied when segmenting dif-
ferent manual annotated GM brain structures such as the left and right putamen
and ventral diencephalon, due to the lack of contrast and the similar intensity profile
of those structures with respect to the WM. These differences in combination with
the fact that most of the methods were not robust against changes in acquisition
sequences, intensity inhomogeneities and special attributes of the two databases,
highlights that brain tissue segmentation was still an open problem, since there was
not a single method that achieved a significantly higher accuracy with all tissues.

Afterwards, six of these methods (ANN, FCM, FANTASM, FAST, SPM5 and
SPMS8) were evaluated on MS data from different hospital centers and scanners
in order to analyze the extent to which tissue volume estimations were affected
by changes in the WM lesion volume and intensity. Our results showed that the
SPMS had the lowest differences in total volume, while the FANTASM and again,
the SPM8 were the methods where the incidence of WM lesions was the lowest on
normal-appearing tissue. In general, the differences in tissue volume were lower for
methods combining morphological prior information, namely the SPM5 and SPMS,
or spatial constraints, like the FANTASM and FAST. In contrast, these differences
were higher on simpler intensity based algorithms such as FCM and ANN, that
lacked spatial correction. This fact and the higher performance on healthy data of
former methods, stressed the necessity of adding morphological prior information
and/or spatial constraints to the automated brain tissue segmentation, not only to
overcome inherent MRI bias field artifacts but also as an important component to
deal with WM lesions.

The main factor in the differences in tissue volume across the methods was caused
by lesion volume. Furthermore, WM lesion voxels tended to be classified as GM in
images where the variation between the lesion signal intensity and the mean signal
intensity of normal-appearing WM was higher, which indicated a direct relationship
between the differences in the brain tissue volume and the changes in the lesion
load and WM lesion intensity. However, the lesion voxels also had a direct effect
on the differences in GM and WM outside the lesion regions. As already mentioned
in Chapter 3, these differences are especially important because they highlight the
bias introduced by WM lesions on the estimation of tissue volume that is not patho-
logically affected. Our analysis showed that if lesion voxels were not considered in
the computation of the brain volume, methods would still tend to overestimate GM,
especially in images with a higher lesion load. The observed differences in normal-
appearing tissue volume were important. Although lesion voxels could be reassigned
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to WM after segmentation, part of the bias was still present if these lesions were
present in image segmentation.

Furthermore, differences in the total tissue volume may be canceled between the
errors produced in the same lesion regions as well as the effect of these voxels on
normal-appearing tissue. This fact clearly shows the necessity of either processing
WM lesions before segmentation or modeling them as part of the tissue segmentation
formulation.

7.2 Effect of lesion filling in tissue segmentation

Over the last few years, different techniques have been proposed to reduce the bias
introduced by WM lesions on the brain tissue volume measurements in MS images,
mostly by in-painting WM lesions on T1-w with signal intensities similar to normal-
appearing WM. After reviewing the available related literature in Chapter 4, we
classified the existing methods into groups, those that filled WM lesions using the
local intensities from the surrounding neighboring lesion voxels, and those that used
global WM intensities from the whole brain to fill WM lesions. Although all these
methods had already been validated separately, we performed a general comparison
of all the available techniques in order to analyze their accuracy with the same
1.5T and 3T data and also to investigate their performance with different tissue
segmentation techniques such as the FAST and SPMS.

This analysis served as a basis for a new technique to refill WM lesions that
was a compromise between global and local methods. Our proposed method filled
lesion voxel intensities with random values of a normal distribution generated from
the mean WM signal intensity of each two-dimensional slice. Contrary to local
methods, where lesions were refilled with signal intensities coming from surrounding
WM voxels, our approach was capable to reproduce better the original WM tissue
distribution on images with high lesion load, because lesion voxels were refilled using
random signal intensities from all the WM voxels of the slice. Although on our
approach the probability of each tissue was first estimated using a clustering three-
dimensional segmentation, we found that filling lesions with signal intensities from
the same slice was more appropriate, as this approach reproduced better the intensity
distribution of WM tissue at each slice than using the global three-dimensional
intensity profile.

Our results showed that when compared to other methods, our approach yielded
the lowest deviation in GM and WM volumes with 1.5T and 3T data when the
FAST tissue segmentation was used. When the SPMS8 tissue segmentation method
was used, the performance of our lesion filling method was also very competitive,
yielding the lowest differences or similar to those of the best method in GM and
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WM. In contrast to the rest of the pipelines, differences in tissue volume between
the same images filled with our method and afterwards segmented with either the
FAST or SPM8 were very low (< 0.1%), which indicates that the proposed strategy
was equally efficient independently of the tissue segmentation chosen.

The proposed algorithm performed significantly better than local methods on
images with higher lesion loads. In contrast to global methods, local methods may
be limited by the range of similar intensities coming from neighboring voxels, which
on images with large lesions may introduce a bias on GM and WM tissue distri-
butions by the addition of a considerable number of voxels with similar intensities.
Furthermore, the performance of our approach was also better on images with high
lesion loads when compared with local methods, specially on images with lower res-
olution such as 1.5T data, most probably because our method estimated the mean
global normal-appearing WM intensity for each slice independently, being sensitive
enough to reproduce possible changes in the intensities between slices.

7.3 Effect of automating lesion segmentation and
filling on tissue segmentation

As already mentioned earlier, lesion filling has proven to be an effective method to
reduce the effects of these lesions on tissue segmentation. However, in all the lesion-
filling approaches, including ours, MS lesions have to be known a priori, which
requires delineating lesions manually. This is a clear limitation in terms of fully au-
tomatizing brain tissue in the presence of MS lesions, which motivated the evaluation
of the effect of automated lesion segmentation on tissue segmentation. Although dif-
ferent automated tissue segmentation methods have been proposed, most are based
on supervised learning, which requires explicit training, usually with a large amount
of labeled data. Labeled data may be not available, which increased the interest of
the community in unsupervised methods that can operate without prior data. As
shown in Chapter 5, we compared two pipelines that combined automated lesion
segmentation and filling as a first step to understand the effect of fully processed
images on tissue segmentation.

Given the performance shown in our previous studies and its wide use in clinical
studies, the SPM8 was used as a reference tissue segmentation method to measure
tissue volume on a set of 70 3T images from CIS patients. On these images, available
manual expert annotations were employed to refill WM lesions before segmentation
using the pipeline’s filling method, and were considered as the ground-truth. Af-
terwards, we evaluated the differences in the GM and WM volumes between the
set of filled images using manual annotations and the same images processed using
different variations of the SLS and LST toolkits that differed in the level of manual
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intervention. Evaluating different pipelines with distinct levels of automation per-
mitted us to analyze the effect of each of the automated processes involved in the
differences in the total and normal-appearing tissue volumes.

As already stated in Chapter 3, this new analysis showed that the effect of le-
sions on the total tissue volume was limited due to a canceling effect between the
errors produced in the same lesion regions, and the effect of these voxels on normal-
appearing tissue. In all the pipelines that incorporated automated lesion segmen-
tation, most of the differences observed in normal-appearing tissue were produced
by the effect of false positive lesion voxels that were already segmented and had not
been refilled. In contrast, there was no relevant correlation between the number
of false positive lesion voxels and the differences observed in normal-appearing GM
and WM, which suggested that most of these misclassified voxels were actually WM
before refilling. The relationship between errors in automated lesion and tissue seg-
mentation also suggest the importance of not only continuously reducing the number
of missed lesions, but also stressing the necessity of contextual spatial information
of lesion regions in order to confine them in the WM and, hence, reduce the effect
of misclassified voxels on the tissue segmentation.

As shown in the results presented in Chapter 4, masking-out lesion voxels before
tissue segmentation might not be optimal, as leaving lesion voxels out of the tissue
distributions appears to increase the differences in tissue volume with respect to
lesion filled images, even if these voxels are re-assigned to WM afterwards. However,
although not optimal, masking lesions before segmentation has proven to be a valid
alternative to reduce the effects of WM lesions on research and clinical settings, and
as a result in recent years, lesion filling techniques have already been applied on
research and clinical studies. Regarding this, our results show that at least with
the evaluated data, the differences in tissue volume between images where expert
lesion masks have been masked-out and the same images where lesions have been
automatically segmented and filled, are similar to images with a low lesion load
(< 10ml). In contrast, from our experiments we observed that differences in tissue
volumes tend to increase with the lesion load on masked-out images, while the
increase of the error is more moderate in fully-automated images. However, given
the data available and the maximum lesion load considered in our analysis (< 20ml),
these findings should be considered with care.

In any case, our analysis pointed out the fact that automated lesion segmenta-
tion and filling methods significantly reduced the impact of WM lesions on tissue
segmentation, and had a similar performance to the pipelines that required manual
expert intervention. These results were relevant and demonstrated that each of these
automated processes could be useful not only in terms of time and economic costs,
but also as active processes in fully automated tissue segmentation in the presence
of WM lesions.
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7.4 Fully automated tissue segmentation of im-
ages containing WM lesions

Previous sections of this thesis have stressed the advantages of dealing with MS
lesions before the tissue segmentation, showing several general insights that can be
useful for automated tissue segmentation of images containing lesions. The results
obtained for the different methods evaluated in Chapters 2 and 3 have pointed out
the superiority of methods that benefited from morphological prior information or
spatial constraints in automated brain tissue segmentation. More importantly, the
results obtained in Chapter 3 have evidenced the effect of WM lesion on tissue seg-
mentation and the necessity of dealing with MS lesions in order to reduce not only
the bias produced by the same lesions but also the effect of these lesion voxels on
normal-appearing tissue. In this scenario, we have proposed a new lesion filling
technique that is very competitive with different databases and tissue segmentation
methods, as shown in Chapter 4. Finally, we showed in Chapter 5 that the addition
of unsupervised lesion segmentation and filling to already existing tissue segmenta-
tion pipelines significantly reduced the error in tissue volume when compared with
other pipelines where lesions were segmented as normal tissue.

Following these insights, we have developed a new, multi-channel method de-
signed to segment brain tissues in MRI images of MS patients. As explained in
Chapter 6, this approach makes use of a combination of intensity, anatomical and
morphological prior maps to guide the tissue segmentation. Tissue segmentation
has been tackled based on a robust partial volume segmentation where WM out-
liers have been estimated and refilled before segmentation using a multi-channel
post-processing algorithm integrating partial volume segmentation, spatial context,
and prior anatomical and morphological atlases. Furthermore, the proposed method
takes advantage of new affordable processors, such as GPUs, that reduce up to four
times the execution time to register and segment tissue when compared to general
purpose CPUs. This property makes this method useful for studies containing a
large number of subjects to analyze.

The proposed method has been quantitatively and qualitatively evaluated using
different databases of images containing WM lesions. In order to analyze the ex-
tent to which the T1-w and FLAIR modalities intervened in the accuracy obtained,
the proposed method was run in all the experiments using only the T1-w or using
both the T1-w and FLAIR image sequences. As shown by the results, the proposed
technique yielded competitive and consistent results in both general and MS specific
databases without parameter tweaking. In the MRBrainS tissue segmentation chal-
lenge!, our method, combining both T1-w and FLAIR, was the best non-supervised

Thttp://mrbrains13.isi.uu.nl/
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technique in the challenge, being ranked in 7th position out of 31 participant meth-
ods. When only the T1-w modality was used, the accuracy of the proposed method
was still clearly superior to methods such as FAST (ranked 21th) and SPM12 (best
ranked 17th), even when they used both image modalities. With MS data, the per-
formance of our method, combining the T1-w and FLAIR sequences, was similar
to or better than the best evaluated pipeline incorporating lesion segmentation and
filling. Differences in tissue volume between images processed with the proposed
algorithm and the same images where lesions were filled using expert lesion anno-
tations were lower than 0.15% on all tissues, validating the overall capability of the
proposed method reducing the effects of WM lesions on tissue segmentation.

In general, our results showed that the percentages of error in tissue volume of
our approach were low or similar with both databases. The percentages of error
were lowest when the FLAIR modality was used, which evidences that this image
sequence has a direct effect on the efficiency of the algorithm, and, consequently, it
should be used when available. However, the accuracy of the method using only the
T1-w modality was also superior to other strategies not designed to deal with MS
lesions, which also evidences that the improvement in tissue segmentation was not
only generated by the addition of the FLAIR modality, but also by the combination
of intensity, anatomical and morphological priors, and the use of a specific outlier
algorithm with integrated lesion filling.






Chapter 8

Conclusions

This thesis synthesizes our work done over the last three years. Following the same
objectives defined in the Introduction, in what follows we summarize the main con-
clusions and contributions of this thesis:

e We analyzed and evaluated the state of the art in brain tissue segmentation
methods. This first sub-objective aimed to quantitatively review and evaluate
different proposed tissue segmentation techniques in order to understand their
advantages and drawbacks. As part of the resulting analysis published in
the Journal of Magnetic Resonance Imaging in January of 2015, our results
showed a higher accuracy with several methods that incorporated
morphological prior information and/or spatial constraints such as
the FAST, SPVASEG or SPMS8. These methods were also less prone
to changes in acquisition sequences and intensity inhomogeneities.

e We studied the effect of WM lesions on tissue segmentation of MS patient im-
ages. The second sub-objective to cover focused on the analysis of the effects of
WM lesions on the tissue distributions. Six of the analyzed methods in Chap-
ter 2 were evaluated with multi-center 1.5T MS data from different scanners.
Related to the previous sub-objective, our results stressed the necessity of
adding morphological prior information and/or spatial constraints to
the automated brain tissue segmentation, not only to overcome in-
herent MRI artifacts but also as an important component of dealing
with WM lesions. Furthermore, our analysis of the effects of WM lesions on
tissue volume showed that the inclusion of WM lesions in tissue segmen-
tation not only biased the total tissue volume measurements by the
addition of misclassified lesion voxels, but also by the effect of these
lesions on differences observed in normal-appearing tissue volume.
The entire analysis was published in the American Journal of Neuroradiology
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in February 2015.

e We proposed a new technique to reduce the effects of WM lesions on tissue
segmentation of MS patient images. The third sub-objective first required
comparing the accuracy of different lesion filling techniques proposed in the
literature with the aim of then proposing a new technique to reduce the effects
of WM lesions on tissue segmentation. The lesion filling method proposed
in this thesis was shown to be effective with different data and in-
dependent of the tissue segmentation method used afterwards. Our
approach outperformed the rest of methods with both 1.5T and 3T
data when the FAST was used, while its performance was similar
to or lower than the best available strategy when the SPM8 was
used. The proposed lesion filling method was published in the Neurolmage:
Clinical journal in August of 2014. Furthermore, we released a public
version of the proposed method that can be downloaded for free
from our research team web page!. This software is already being used
in the collaborating hospitals.

e We analyzed and evaluated the effect of automated WM lesion segmentation
and filling on the tissue segmentation. In the fourth sub-objective, we quan-
titatively evaluated the accuracy of two state-of-the-art automated pipelines
that incorporate unsupervised lesion segmentation, lesion filling and tissue seg-
mentation with MS data. As shown in the paper published in the Neurolm-
age: Clinical journal in October of 2015, our analysis showed that pipelines
that incorporated automated lesion segmentation and filling were
capable of significantly reducing the impact of WM lesions on tissue
segmentation, performing similarly to pipelines that required expert
manual intervention.

e Finally, we proposed a new fully automated tissue segmentation method for
MS patient images containing lesions. The main goal of this thesis was to pro-
pose a fully automated tissue segmentation method capable of dealing with
images from MS patients. As shown in Chapter 6, the proposed method incor-
porates all the major insights obtained from previous sub-objectives with the
aim of providing a robust, fully automated tissue approach for accurate brain
volume measurements. Our results showed that when compared with ex-
isting tissue segmentation methods, the presented approach yielded
a higher accuracy in tissue segmentation while the influence of MS
lesions on tissue segmentation was lower or similar to the best state-
of-the-art pipeline incorporating automated lesion segmentation and

'The latest version of the proposed lesion filling method can be downloaded from
http://atc.udg.edu/nic/s1lfToolbox
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filling. This work has been submitted for publication in the Medical Image
Analysis journal in January 2016. As part of this work, we also released
a public version of the proposed method that can be downloaded for
free from our research team web page?.

Throughout this PhD thesis, various collaborations have taken place with other
researchers of the VICOROB group. First, we evaluated the effect of MS lesions
on longitudinal registration in the published study of Diez et al. [23]|, where we
contributed several processing steps, including lesion filling. More recently, we were
also involved in the development of several automated lesion segmentation pipelines
that allowed us to gain knowledge on this topic. In this regard, we helped to im-
plement two different lesion segmentation pipelines for MS, which were published in
the papers of Cabezas et al. [10] and Roura et al. [55], respectively. Furthermore,
we also collaborated on a new pipeline for automated lesion segmentation of lupus
lesions proposed by Roura et al., which was submitted for publication recently.

8.1 Future work

Unfortunately, there are several aspects that have not been investigated during this
thesis. One of the main limitations in several sub-objectives has been the lack of
3T images with high lesion loads. As pointed out in Chapters 5 and 6, the low
mean lesion load of the cohorts analyzed, which indeed has been the major interest
for medical experts, has not allowed us to better investigate the performance of
the analyzed pipelines in the presence of images with higher lesion loads. In the
case of our tissue segmentation method, we believe that an additional analysis of
the performance with images with higher lesion loads would be helpful not only to
analyze the robustness of the proposed algorithm, but also to investigate the benefits
of adding other image sequences such as T2-w or PD-w.

Although the proposed tissue segmentation method has been designed for cross-
sectional data, there is an increasing clinical interest in the measuring of longitudinal
changes in tissue volume. We believe that the proposed method could be extended to
longitudinal changes by re-adapting the pipeline with prior registering of time point
images before the tissue segmentation. This is in fact one of the goals that our team
has in mind to tackle first within the research framework of the BiomarkEM.cat
project, in order to release suitable tools that can be used in clinical settings.

The ultimate goal should be to provide state-of-the-art tools for the collaborating
hospitals involved in these research projects that may be useful not only to diagnose
and monitor the progression of this disease, but also to evaluate new treatments for

2A public version of the method can be downloaded from http://atc.udg.edu/nic/msseg
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MS patients. Related to that, the tools developed in this thesis should be integrated
with other tools developed in our group in order to implement this complete system
capable of providing robust and useful biomarkers in MS such as the number of
lesions, lesion volume, brain tissue volume or brain atrophy.
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