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ABSTRACT 

The incorporation of arylated amino acids into peptide sequences results in an 

increase of the conformational flexibility restriction and, therefore, in peptides with 

improved biological properties. In this context, considering the significance of 

4(5)-arylimidazoles in many functional biomolecules, the preparation of peptides 

containing a 5-arylhistidines has received much attention in recent years. However, due to 

the difficulty of arylating the 4(5)-position of the imidazole ring, the formation of 

5-arylhistidines is scarcely reported. The palladium-catalyzed Suzuki-Miyaura reaction is 

one of the most advantageous and often used cross-couplings for biaryl formation. 

This thesis focuses on the preparation of linear and cyclic peptides containing a 

5-arylhistidine, a 4-arylphenylalanine or a 3-aryltyrosine residue through catalytic inter- 

or intramolecular arylation of halopeptides on solid support. In particular, in Chapter 3, 

5-arylhistidine-containing linear peptides are synthesized based on the structure of lead 

antimicrobial undecapeptides previously described in our group. These biaryl peptides 

have been designed by replacing a phenylalanine residue located at the 1- or 4-position in 

the lead undecapeptides by a 5-arylhistidine. The resulting biaryl linear peptides are less 

hemolytic than the corresponding parent peptide. In the following Chapters 4 and 5, our 

methodology is extended to the preparation of biaryl cyclic peptides incorporating a 

His-Phe or a His-Tyr biaryl linkage. The microwave-assisted intramolecular 

Suzuki-Miyaura reaction has allowed the synthesis of biaryl macrocycles of different ring 

sizes containing a histidine residue at the N- or C-terminus. Next, in Chapter 6 we 

describe the total solid-phase synthesis of biaryl cyclic lipopeptides derived from 

arylomycins, containing a Phe-Tyr, a Tyr-Tyr, a His-Tyr or a phenylglycine (Phg)-Tyr 

linkage in their structure. The key steps of our solid-phase methodology are a Miyaura 

borylation reaction, the cyclization via an intramolecular Suzuki-Miyaura arylation, a 

Mitsunobu N-methylation and the N-terminus acylation. Finally, based on our interest in 

aciculitins, in Chapters 7 and 8, we investigate the synthesis of analogues of the northern 

and the southern hemispheres of these marine bicyclic peptides, as well as the preparation 

of biaryl bicyclic peptide analogues containing a Phe-Phe, a Phe-Tyr, a His-Tyr or a 

Tyr-Tyr linkage. Several Suzuki-Miyaura conditions have been tested to enable the biaryl 

bond formation. Interestingly, the macroarylation step should preceed the 

macrolactamization for the formation of the bicyclic analogues. 
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RESUM 

La incorporació d’aminoàcids arilats en seqüències peptídiques suposa un 

augment de la restricció de la flexibilitat conformacional i, per tant, dóna lloc a pèptids 

amb millors propietats biològiques. En aquest context, tenint en compte la importància de 

l’anell de 4(5)-arilimidazole en moltes biomolècules funcionals, la preparació de pèptids 

que continguin un residu de 5-arilhistidina ha rebut molta atenció en els darrers anys. No 

obstant això, degut a la dificultat d’arilar la posició 4(5) de l’anell d’imidazole, la 

formació de 5-arilhistidines pràcticament no s’ha publicat. La reacció de Suzuki-Miyaura 

catalitzada per pal·ladi és una de les reaccions d’acoblament creuat més avantatjoses i 

més utilitzades. 

Aquesta tesi es centra en la preparació de pèptids lineals i cíclics que contenen un 

residu de 5-arilhistidina, un de 4-arilfenilalanina o un de 3-ariltirosina a través d’una 

arilació inter- o intramolecular d’halopèptids units a un suport sòlid. Concretament, en el 

capítol 3, es sintetizen pèptids lineals contenint un residu de 5-arilhistidina, els quals es 

basen en l’estructura d’undecapèptids antimicrobians lead prèviament descrits en el 

nostre grup. Aquests pèptids biarílics s’han dissenyat per substitució del residu de 

fenilalanina present a la posició 1 o 4 dels undecapèptids lead per una 5-arilhistidina. Els 

pèptids biarílics lineals resultants són menys hemolítics que el corresponent pèptid lead. 

En els següents capítols 4 i 5, la nostra metodologia s’aplica a la preparació de pèptids 

biarílics cíclics que incorporen un enllaç His-Phe o His-Tyr. La reacció intramolecular de 

Suzuki-Miyaura sota irradiació de microones ha permès la síntesi de macrocicles biarílics 

de diferents mides d’anell que contenen un residu d’histidina a la posició N- o C-terminal. 

Seguidament, en el capítol 6 es descriu la síntesi total en fase sòlida de lipopèptids 

biarílics cíclics derivats de les arilomicines, contenint en la seva estructura una enllaç 

Phe-Tyr, Tyr-Tyr, His-Tyr o fenilglicina (Phg)-Tyr. Les etapes clau de la nostra 

metodologia en fase sòlida són una reacció de borilació de Miyaura, la ciclació a través 

d’una arilació de Suzuki-Miyaura intramolecular, una reacció de Mitsunobu 

d’N-metilació i l’acilació de l’extrem N-terminal. Finalment, basant-nos en el nostre 

interès en les aciculitines, en els capítols 7 i 8, s’investiga la síntesi d’anàlegs dels 

hemisferis nord i del sud d’aquests pèptids bicíclics marins, així com la preparació de 

pèptids biarílics bicíclics anàlegs contenint un pont Phe-Phe, Phe-Tyr, His-Tyr o Tyr-Tyr. 

S’han assajat diverses condicions de la reacció de Suzuki-Miyaura per a la formació de 
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l’enllaç biarílic. Cal destacar que l’etapa de macroarilació ha de precedir a l’etapa de 

macrolactamització per a la formació dels anàlegs bicíclics. 
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RESUMEN 

La incorporación de aminoacidos arilados en secuencias peptídicas supone un 

aumento de la restricción de la flexibilidad conformacional y, por lo tanto, da lugar a 

peptidos con mejores propiedades biológicas. En este contexto, considerando la 

importancia del anillo de 4(5)-arilimidazol en muchas biomoléculas funcionales, la 

preparación de péptidos que contengan un residuo de 5-arilhistidinas ha despertado un 

gran interés en los últimos años. Sin embargo, la formación de 5-arilhistidinas apenas se 

ha publicado debido a la dificultad para arilar la posición 4(5) del anillo de imidazol. La 

reacción de Suzuki-Miyaura catalizada por paladio es una de las reacciones de 

acoplamiento cruzado más útiles y ventajosas. 

Esta tesis doctoral se centra en la preparación de péptidos lineales y cíclicos que 

contienen un residuo de 5-arilhistidina, uno de 4-arilfenilalanina o uno de 3-ariltirosina 

mediante una arilación inter- o intramolecular de halopéptidos unidos a un soporte sólido. 

Concretamente, en el capítulo 3, se sintetizan péptidos lineales que contienen un residuo 

de 5-arilhistidina, los cuales se basan estructuralmente en undecapéptidos antimicrobianos 

lead previamente descritos en nuestro grupo. Estos péptidos lineales han sido diseñados 

por sustitución de un residuo de fenilalanina presente en la posición 1 o 4 de los 

undecapéptidos lead por una 5-arilhistidina. Los péptidos biarílicos lineales resultantes 

son menos hemolíticos que el correspondiente péptido lead. En los siguientes capítulos 4 

y 5, extendemos nuestra metodología se aplica a la preparación de péptidos biarílicos 

cíclicos que incorporan un enlace His-Phe o His-Tyr. La reacción intramolecular de 

Suzuki-Miyaura bajo irradiación de microondas ha permitido la síntesis de macrociclos 

biarílicos de diferentes tamaños de anillo que contienen un residuo de histidina en la 

posición N- o C-terminal. A continuación, en el capítulo 6 se describe la síntesis total en 

fase sólida de lipopéptidos biarílicos cíclicos derivados de las arilomicinas, conteniendo 

en su estructura un enlace Phe-Tyr, Tyr-Tyr, His-Tyr o fenilglicina (Phg)-Tyr. Las etapas 

clave de nuestra metodología en fase sólida son una reacción de borilación de Miyaura, la 

ciclación a través de una arilación de Suzuki-Miyaura intramolecular, una reacción de 

Mitsunobu de N-metilación y la acilación del extremo N-terminal. Finalmente, teniendo 

en cuenta nuestro interés en las aciculitinas, en los capítulos 7 y 8, se investiga la síntesis 

de análogos de los hemisferios norte y sur de estos péptidos marinos, así como la 

preparación de péptidos biarílicos bicíclicos análogos conteniendo un puente Phe-Phe, 
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Phe-Tyr, His-Tyr o Tyr-Tyr. Se han ensayado varias condiciones de la reacción de 

Suzuki-Miyaura para la formación del enlace biarílico. Es de destacar que la etapa de 

macroarilación debe preceder a la etapa de macrolactamización para la formación de los 

análogos bicíclicos. 
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CHAPTER 1 

1.1. BIARYL NATURAL PRODUCTS 

1.1.1. Importance of biaryl compounds 

Biaryl compounds contain two aromatic rings joined through a sigma 

carbon-carbon bond. This biaryl motif has been of great interest over the last century, 

because it has been proven to be the key structural feature responsible for the activity of 

many biologically active molecules, including natural products, pharmaceuticals, fine 

chemicals, agrochemical compounds, and chiral catalysts (Torborg and Beller, 2009; 

Magano and Dunetz, 2011; Burke and Marques, 2015). 

For instance, the biaryl moiety is present in many pharmaceutical drugs currently 

in the market, such as losartan (antihypertensive, Merck), valsartan (antihypertensive, 

Novartis), felbinac (antiinflammatory, Pfizer), imatinib (antitumor, Novartis), crizotinib 

(antitumor, Pfizer), and zolpidem (hypnotic, Sandoz) (Figure 1.1) (Johansson et al., 2012; 

Burke and Marques, 2015). 

NN

N
N
H

N
N

Cl
HO

Losartan

OEt

O

Felbinac

N

N

N
H
N

HN

O

Imatinib

N
N

N NH

N CO2H

O

Valsartan

N

N

N

HN

NH2

O

Cl

F

Cl

Crizotinib

N

N

O

N

Zolpidem

N

N

 

Figure 1.1. Chemical structures of some biologically active biaryl-containing drugs. 

Furthermore, several biaryl natural products have been isolated and identified 

from a large number of marine and terrestrial sources (Lewis, 2000; Jin, 2006; Morris, 
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2013). Sponges, soft coral and ascidians are some of the most widespread sources found 

in the marine environment, which are able of producing a variety of bioactive compounds 

(Figure 1.2). Topsentins A-C are bis(indolyl)imidazoles isolated from the marine sponge 

Topsentia genitrix, being antitumor and antiviral agents. Nortopsentins A-B are cytotoxic 

and antifungal bis(indolyl)imidazoles isolated from the marine sponge Spongosorites 

ruetzleri. Dictyodendrin A is a marine substituted pyrrolocarbazole alkaloid from the 

sponge Dictyodendrilla verongiformis that displays inhibitory activity against telomerase. 

Polycarpine is a marine imidazole-type alkaloid from the ascidian Polycarpa aurata, 

which exhibits antitumor and cytotoxic activities. Diazonamide A is a heteroaromatic 

biaryl macrocycle with an indole bis-oxazole core, isolated from the marine ascidian 

Diazona angulata, and that it is a cytotoxic agent. Rigidin is a marine pyrrolopyrimidine 

alkaloid from the tunicate Eudistoma cf. rigida, which possesses calmodulin antagonistic 

activity, and cinnamide dimer is an antibacterial and antifungal ortho-hydroxylated 

biphenyl alkaloid from the marine soft coral Sinularia flexibilis.  
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Figure 1.2. Examples of biaryl natural products from marine sources. 
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Biaryl compounds isolated from terrestrial sources have also been described to 

exhibit high biological activity, ranging from antimicrobial, antiviral, cytotoxic, 

antiplasmodial, antioxidant or enzyme inhibitory. Some of these natural products are the 

anti-human immunodeficiency virus (HIV) alkaloid michellamine B and the antimalarial 

alkaloid korupensamine A, both from the tropical plant Ancistrocladus korupensis; 

knipholone, an antiplasmodial anthraquinone derivative isolated from the roots of 

Kniphofia foliosa; gossypol, a polyphenolic pigment from the cotton plant Gossypium, 

being an antifertility agent; schizandrin, an antioxidant lignin from the fruit of Schisandra 

chinensis; and acerogenin E, a diarylheptanoid with inhibitory activity on nitric oxide 

production, isolated from Acer nikoense (Figure 1.3) (Kozlowski et al., 2009).  
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Figure 1.3. Examples of biaryl natural products from terrestrial sources. 
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1.1.2. Natural biaryl cyclic peptides 

Unsymmetrical biaryl systems are also found in a great diversity of bioactive 

naturally occurring cyclic peptides from relatively simple to complex macrocycles (Feliu 

and Planas, 2005). These aryl-aryl moieties are commonly formed through the linkage 

between the side-chains of two aromatic amino acids, including histidines, tyrosines, 

phenylalanines, and tryptophans. These natural peptides are monocyclic or bicyclic. Some 

of the earliest reported biaryl-containing monocyclic peptides are himastatin, 

TMC-95A-D, biphenomycins A-B, and arylomycins A-B (Figure 1.4). Himastatin is a 

dimeric peptide containing two cyclohexadepsipeptide units joined through a biphenyl 

linkage between the aromatic side chains of two oxidized tryptophan derivatives. It was 

isolated from the cultured broth of Streptomyces hygroscopus, and displays antitumor 

activity against localized P388 leukemia and B16 melanoma (Leet et al., 1996). 

TMC-95A-D are cyclic tripeptides incorporating a phenol-oxindole biaryl system 

resulting from the linkage of the side chains of a tyrosine residue and a tryptophan. These 

proteasome inhibitors, isolated from the fermentation broth of Apiospora montagnei, are 

useful therapeutic agents for the treatment of cancer, inflammatory disorders, and 

immune diseases (Kohno et al., 2000). Biphenomycins A-B are biaryl cyclic tripeptides 

with a biphenyl system formed by cross-linking the aromatic side chains of 

2-hydroxyphenylalanine residues. They were isolated from the culture broth Streptomyces 

griseorubiginosus and are potent antibacterial agents against strains of gram-positive 

bacteria, such as Staphylococcus aureus 2508 and 2485 (Ezaki et al., 1985). Arylomycins 

A-B are unique biaryl-bridged lipohexapeptides bearing a lipotripeptide tail attached to a 

biaryl cyclic tripeptide. The biaryl motif results from the linkage between a 

4-hydroxyphenylglycine and a tyrosine residue. Arylomycins, which were isolated from 

the fermentation broth of a Streptomyces strain, display moderate antibacterial activity 

against a variety of gram-positive bacteria, and also exhibit weak antifungal activity 

against Mucor hiemalis Tü 179/180 (Schimana et al., 2002). 
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Figure 1.4. Natural biaryl monocyclic peptides. 

 

Among the naturally occurring bicyclic peptides, vancomycin, RP-66453, neo-RA-V, and 

aciculitins A-C are some of the reported bioactive peptides that contain a biaryl and/or a 

biaryl ether bridge (Figure 1.5). Vancomycin belongs to a class of clinically important 

glycopeptide antibiotics that contain both biaryl and biaryl ether linkages in their 

structures. It was isolated from the fermentation broth of the actinomycete Amicolatopsis 

orientalis. Due to its effectiveness in the treatment of serious gram-positive bacterial 

infections, vancomycin is currently used in hospitals as antibiotic of last resort (Van 

Bambeke et al., 2004; Pace and Yang, 2006). RP-66453, a bicyclic tetrapeptide 

possessing a biaryl and a biaryl ether bridge formed by the linkage between the phenol 

groups of three tyrosine residues, was isolated from an Astinomycetes strain and it is a 

potent neurotensin receptor antagonist, useful for the treatment of depression, 

schizophrenia as well as Alzheimer’s and Parkinson’s diseases (Helynck et al., 1998). 

Neo-RA-V is an antitumor bicyclic hexapeptide that is characterized by the presence of a 

linkage between the 3-position of the phenol ring of two tyrosine residues. It was isolated 

from the roots of Rubia cordifolia L (Galium cordifolium) (Hitotsuyanagi et al., 2012). 

Aciculitins A-C were the first described bioactive natural glycopeptidolipids and they 
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were isolated from the marine sponge Aciculites orientalis. Structurally, they are bicyclic 

peptides that contain an unusual histidine-tyrosine bridge, which is formed from the 

linkage between the 5-position of the imidazole ring of a histidine and the 3-position of 

the phenol ring of a tyrosine. This uncommon bridge plays an important role in the 

biological activity of these compounds, being cytotoxic to the human-colon tumor cell 

line HCT-116 and antifungal against Candida albicans (Bewley et al., 1996). 
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Figure 1.5. Natural biaryl bicyclic peptides. 
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1.2. METHODS FOR BIARYL BOND FORMATION 

The difficulty to isolate biaryl natural products in enough quantities from 

terrestrial and especially from marine sources has encouraged organic chemists to 

develop efficient methods for the total synthesis of these compounds. The preparation of 

large amounts of these biologically active products and even of new analogues would 

allow further accurate studies related to their structural complexity as well as to other 

biological applications of such biaryl-containing products. Nowadays, cross-coupling 

reactions and direct arylation catalyzed by palladium are reported to be the most common 

and efficient methods for the formation of biaryl bonds. 

Palladium-catalyzed cross-coupling reactions, such as the Negishi, Stille and 

Suzuki-Miyaura reactions, involve the use of an aryl electrophile (Ar
1
-X), e.g. an 

arylhalide or an aryltriflate, and an arylmetal reagent (Ar
2
-M) (Scheme 1.1). In particular, 

in the Negishi reactions, the organometallic reagent is an arylzinc, while the Stille and the 

Suzuki-Miyaura cross-couplings require the use of an aryltin and an arylboron derivative, 

respectively. Professors Ei-ichi Negishi, Akira Suzuki and Richard Fred Heck were 

awarded the Nobel Prize in Chemistry 2010 for their important contribution in the 

development of palladium-catalyzed cross-coupling reactions, which play an essential 

role in organic synthesis, both in research laboratories and industrial processes (Nicolaou 

et al., 2005; Johansson et al., 2012; Burke and Marques, 2015). The palladium-catalyzed 

direct C-H arylation of an aryl electrophile with a simple arene has also proven to be a 

useful method for the preparation of small biaryl molecules (Scheme 1.1). The main 

advantage of this arylation is that it avoids the preparation of the organometallic 

derivative. However, it has some limitations, because most organic compounds usually 

contain multiple C-H bonds and, in some cases, most of them are kinetically inert. 

Ar1-X + Ar2-Y Ar1-Ar2Pd0  cat.

 

Reaction X Y  

Negishi Br, I, OTf, OTs ZnBr, ZnCl, ZnI  

Stille Br, Cl, I, OAc, OTf SnR3 (R = alkyl) 

Suzuki-Miyaura Br, Cl, I, OAc, OTs, OTf B(OR)2 (R = H, alkyl) 

Direct arylation Br, Cl, I, OTf H  

Scheme 1.1. Common palladium-catalyzed reactions for biaryl bond formation. 
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1.2.1. Suzuki-Miyaura cross-coupling reaction  

The Suzuki-Miyaura reaction, first published in 1979, was discovered by Akira 

Suzuki and Norio Miyaura, and it is one of the most popular methods to selectively 

generate new carbon-carbon bonds. This transition metal-catalyzed process involves the 

cross-coupling of an organoboron compound with an organic electrophile, such as an aryl 

halide or triflate, in the presence of a base and catalyzed by a Pd(0) active complex 

(Suzuki, 1999). The first example of this reaction described the formation of biphenyls 

via the palladium-mediated cross-coupling of phenylboronic acid with several 

halobenzenes using benzene as solvent and Pd(PPh3)4 as catalyst (Miyaura et al., 1981) 

(Scheme 1.2). 

B(OH)2 + Br

R

Pd(PPh3)4
aq. Na2CO3

Benzene, reflux R  

Scheme 1.2. Suzuki-Miyaura reaction. 

 

This reaction has received much attention by researchers due to the wide range of 

advantages that it provides over the other palladium-catalyzed cross-coupling reactions 

(Corbet and Mignani, 2006; Suzuki, 2011), including the high stability of the starting 

materials, the high different functional group tolerance, the commercial availability of a 

wide range of boronic acid reagents, the use of small amounts of palladium catalyst, the 

insignificant effect of steric hindrance, the high regio- and stereoselectivity of the 

reaction, the mild reaction conditions, and the high possibility of using a wide variety of 

water soluble reagents because water can be used as solvent or co-solvent. Moreover, 

boron containing byproducts are non-toxic and can be easily removed by work-up, 

leading to high product purities and yields, and allowing its application in one-pot 

synthesis. 

 

The general mechanism of the Suzuki-Miyaura cross-coupling reaction is shown 

in Scheme 1.3. The main steps of this catalytic cycle are a catalyst pre-activation, an 

oxidative addition, a Pd(II) complex activation, a transmetallation and a reductive 
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elimination (Martin and Yang, 1993; Miyaura and Suzuki, 1995; Corbet and Mignani, 

2006; Alonso et al., 2008; García-Melchor et al., 2013). In particular, the Pd-catalyst 

pre-activation occurs when two ligands are dissociated from the pre-catalyst to generate a 

highly active 14-electron Pd(0) complex A. After the oxidative addition of the aryl halide 

Ar
1
-X (B) into the active Pd(0) catalyst A, whose insertion is commonly known as the 

rate-determining step of this catalytic cycle, the resulting 16-electron Pd(II) complex C is 

activated by an inorganic base by replacing the halide of the coordination sphere of Pd to 

give the arylpalladium intermediate D, which incorporates an active bond. Then, the 

negatively charged base coordinates to the boron atom of the arylboron compound 

Ar
2
-B(OH)2 (E) generating a more nucleophilic complex F, which accelerates the 

transmetallation rate. In this step, the aryl group (Ar
2
) of F is transferred to the palladium 

complex D to give the diarylpalladium complex G. Finally, the biaryl compound Ar
1
-Ar

2
 

(H) is released from the diarylpalladium complex G during the reductive elimination step, 

and consequently the active Pd(0) complex A is regenerated, closing the catalytic cycle. 

A

C

D

B

F

G

H

Oxidative

addition

Reductive

elimination

Transmetallation

OH

B

OH

Nu Nu

M+

L

Pd

L

Ar1 Nu

M+ Nu-

L

Pd

L

Ar1 X

OH

B

OH

Ar2 Nu

M+

L

Pd

Ar2

Ar1 L

Ar1 Ar2
Ar1 X

Pd L2
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L

Pd

X

Ar1 L

MX

Pd(0) or Pd(II)

Pre-catalyst

M+ Nu-

Ar2B(OH)2

E

L

Pd

L

Ar1 Ar2

Pd(II) complex
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X = I, Br, Cl, OTf, OTs

Nu- = -OH, -OR, CO3
2-, PO4

3-, F-

M+ = Na+, K+, Ag+, Tl+, Ba2+ 

L = ligand  

Scheme 1.3. Proposed mechanism of the Suzuki-Miyaura cross-coupling reaction. 
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The use of appropriate starting materials and reagents plays an important role in 

the Suzuki-Miyaura reaction. The most important issues of the catalyst, the ligand, the 

base, the arylboronic derivative, and the aryl halide are highlighted below (Miyaura and 

Suzuki, 1995; Martin and Yang, 1993; Kotha et al., 2002; Miyaura, 2002; Suzuki, 2011).  

Due to their high thermal stability, the most frequently employed catalysts are 

phosphine-based Pd(II) or Pd(0) complexes. Among them, Pd(PPh3)4 is the most 

common. PdCl2(PPh3)2, Pd(OAc)2, PdCl2(dppf) and Pd2(dba)3 are also efficient.  

The addition of a convenient ligand has attracted particular interest, since it can 

accelerate the activation of the palladium pre-catalyst. Moreover, bulky and electron-rich 

ligands are able to stabilize the palladium intermediates. Phosphines, such as PPh3, 

tri(ortho-tolyl)phosphine (P(o-tolyl)3) and tricyclohexylphosphine (PCy3), are commonly 

used, being the former the most popular. However, nowadays, several monodentate, 

bulky and electron-rich dialkylbiaryl phosphines, such as 2-dicyclohexylphosphino-2’,6’-

dimethoxybiphenyl (SPhos) and 2-dicyclohexylphosphino-2’,4’,6’-triisopropylbiphenyl 

(XPhos), have gained considerable attention and have been successfully applied to a wide 

variety of Pd-catalyzed cross-coupling reactions (Barder et al., 2005; Martin and 

Buchwald, 2008; Prieto et al., 2009).  

The nature of the aryl halide or aryl triflate (Ar
1
-X) can directly affect the 

activation energy of the catalytic process, specifically of the oxidative addition step.  

Generally, the rate of reactivity of Ar
1
-X decreases as follows: Ar

1
-I > Ar

1
-OTf > Ar

1
-Br 

>> Ar
1
-Cl. Aryl halides incorporating an electron-withdrawing group are more active 

than those with an electron-donating group. 

The presence of a negatively charged base has a remarkable effect on the 

acceleration of the cross-coupling of boronic acids. It has been assumed that the addition 

of a suitable inorganic base, such as Na2CO3, Cs2CO3, K2CO3, Ba(OH)2, K3PO4, NaOH 

or the mild bases KF or CsF, is essential to increase the nucleophilicity of the 

organoboron compound, facilitating the formation of the diarylpalladium complex in the 

transmetallation step. Moreover, it can also activate the arylpalladium complex resulting 

from the oxidative addition step by replacing the halide group, forming a palladium 

complex which easily reacts with the nucleophilic organoboron compound. 
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The organoboron compound, which is typically an arylboronic ester 

(Ar
2
-B(OR)2) or arylboronic acid (Ar

2
-B(OH)2), is the most important reagent in the 

Suzuki-Miyaura coupling reaction. Nowadays, these compounds are commercially 

available or several functionalized derivatives can be easily prepared (Hall, 2005; Lennox 

and Lloyd-Jones, 2014). The general approaches to the synthesis of arylboronic acids are 

detailed in the next section. 

 

1.2.2. Synthesis of arylboronic acids and esters 

The traditional and most economical way to prepare arylboronic acids on large 

scale involves the reaction of an organometallic reagent, such as an aryllithium or an 

arylmagnesium, with a trialkylborate (Scheme 1.4a and b). The resulting arylboronic ester 

is then hydrolyzed to the arylboronic acid by addition of aqueous acid. The 

organometallic reagent can be generated by a metal-halogen exchange reaction of an aryl 

halide (Scheme 1.4a) or by a direct ortho-metallation of a functionalized arene (Scheme 

1.4b). Another method for synthesizing arylboronic acids involves the transmetallation of 

an arylsilane or an arylstannane with boron tribromide followed by final acidolytic 

hydrolysis under mild conditions (Scheme 1.4c) (Hall, 2005).  

However, these methods possess some important limitations, including the 

toxicity of the organostannane reagents, and the low functional group tolerance associated 

with the use of organometallic reagents of silane, lithium or magnesium (Miyaura, 2002; 

Lennox and Lloyd-Jones, 2014). Alternatively, the palladium-catalyzed Miyaura 

borylation reaction has been developed as a more efficient strategy for the borylation of 

aryl halides without using organolithium, organomagnesium, organosilane or 

organostannane reagents.  
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Scheme 1.4. Classical methods for the synthesis of aylboronic acids from a) aryl halides, b) 

arenes with an ortho-directing group, c) arylsilanes and arylstannanes.  

 

1.2.2.1. Miyaura borylation reaction 

In 1995, Ishiyama et al. reported an one-step approach for the preparation of 

arylboronic esters by the palladium(0)-catalyzed cross-coupling of bis(pinacolato)diboron 

(B2Pin2) with an aryl halide. The most suitable conditions for this so-called Miyaura 

borylation reaction were PdCl2(dppf) and KOAc in dimethyl sulfoxide (DMSO) at 80 ºC 

(Scheme 1.5) (Ishiyama et al., 1995).  

O
B

O

B
O

O
+ Ar-X
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KOAc, DMSO
B

O

O
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Scheme 1.5. Synthesis of arylboronic esters through the Miyaura borylation reaction. 
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The general catalytic cycle for the Miyaura borylation reaction is depicted in 

Scheme 1.6. The reaction proceeds through an oxidative addition step, the activation of a 

Pd(II) complex, a transmetallation, and a reductive elimination (Ishiyama et al., 1995). In 

particular, the oxidative addition involves the addition of the aryl halide Ar
2
-X (B) to the 

Pd(0) complex A to generate the arylpalladium(II) complex C. This complex is then 

activated by replacement of the halide from the coordination sphere of Pd with acetate to 

give the (acetoxo)palladium(II) intermediate D, the reactivity of which is attributed to the 

presence of an active Pd-O bond. Next, the transmetallation occurs when the boron group 

from B2Pin2 (E) is transferred to the (acetoxo)palladium(II) intermediate D to provide the 

palladium complex F. Finally, the desired arylboronic ester Ar
2
-BPin (G) is obtained 

from the Pd(II) complex F during the reductive elimination, leading to the regeneration of 

the Pd(0) complex A. 
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Scheme 1.6. Mechanism for the Miyaura borylation of aryl halides. 

 

Many examples of preparation of boronophenylalanines and boronotyrosines have 

been reported. Malan and Morin described the first synthesis of 4-borono-L-phenylalanine 

in solution by direct C-B bond formation through a palladium-catalyzed Miyaura 

borylation of N

-tert-butyloxycarbonyl (Boc)-protected 4-iodo-L-phenylalanine with 

B2Pin2, followed by removal of the Boc group and hydrolysis of the boronate (Scheme 

1.7) (Malan and Morin, 1998). 
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Scheme 1.7. Synthesis of 4-borono-L-phenylalanine. 

 

One example of preparation of 3-borono-L-tyrosines in solution was published by 

Hutton and Skaff. It involves the conversion of N

-carboxybenzyl (Cbz)-protected 

3-iodo-L-tyrosine derivatives to the corresponding boronotyrosine under standard 

Miyaura borylation conditions (Scheme 1.8) (Hutton and Skaff, 2003). 

R = H, Me, Bn

(82-85 %)

OBn

O

CbzHN

OR

I

PdCl2(dppf),  

KOAc, DMSO, 80 ºC
OBn

O

CbzHN

OR

B
O O

O
B

O
B

O

O

R = H, Me, Bn
 

Scheme 1.8. Synthesis of N

-Cbz-protected 3-borono-L-tyrosines. 

 

Despite the Suzuki-Miyaura cross-coupling reaction has been adapted to the solid 

phase synthesis of biaryl compounds, the solid-phase borylation of haloamino acids has 

not been reported prior to the publication of Afonso and coworkers (Afonso et al., 2010). 

These authors developed for the first time an efficient strategy for the formation of a 

polymer-bound amino acid bearing a boronic ester. In particular, a N

-Boc-protected 

4-iodo-L-phenylalanine-containing tripeptidyl resin was treated with B2Pin2, PdCl2(dppf), 

and KOAc in DMSO at 80 ºC (Scheme 1.9). 
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Scheme 1.9. Solid-phase synthesis of a 4-borono-L-phenylalanine-containing tripeptide. 

 

1.2.3. Common side products from arylboronic acids in the Suzuki-

Miyaura reaction 

The synthesis and application of arylboronic acids (Ar-B(OH)2) have risen in 

popularity since many of them are air and water stable. However, some arylboronic acids 

are reported to undergo slow protodeboronation (C-B bond cleavage), oxidation, and 

biaryl homocoupling (coupling of two identical molecules) during the Suzuki-Miyaura 

cross-coupling reaction (Miyaura, 2002; Hall, 2005; Lennox and Lloyd-Jones, 2014). The 

protodeboronated (Ar-H), the oxidized (Ar-OH), and the homocoupling (Ar-Ar) side 

products are often generated when the reaction mixture is exposed to air and the solvent is 

incompletely degassed. Moreover, the use of an inappropriate base as well as a prolonged 

heating may also prompt these side reactions. 

The proposed mechanism for the protodeboronation of arylboronic acids is 

depicted in Scheme 1.10. The C-B bond is cleaved in the presence of aqueous base 

conditions to form the protodeboronated product (Ar-H) (Lennox and Lloyd-Jones, 2014). 

-OH
H2O

B(OH)3

-OH

+

Ar-B(OH)3
- Ar

HOH

B(OH)3

Ar-HAr-B(OH)2

 

Scheme 1.10. Proposed base catalyzed protodeboronation of arylboronic acids. 
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The proposed mechanism for the palladium catalyzed homocoupling of 

arylboronic acids occurs in the presence of an oxygenated atmosphere, which is generated 

when air enters through the system. If the work atmosphere is not inert, the Pd(0) 

complex A reacts with oxygen to form the Pd(II) peroxo complex B, which consumes an 

arylboronic acid to generate the Pd(II) complex C, as illustrated in Scheme 1.11. The 

hydrolysis of the latter complex produces the Pd(II) complex D, together with a perboric 

acid (B(OH)2OOH). A second molecule of arylboronic acid is added to the Pd(II) 

complex D to give the diarylpalladium complex E, from which the homocoupled product 

(Ar-Ar) is released to regenerate the active Pd(0) complex A. In addition, when the 

perboric acid co-product reacts with a third molecule of the arylboronic acid, the oxidized 

product (Ar-OH) is generated (Lennox and Lloyd-Jones, 2014).  

Pd(0) Pd
O

O
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Scheme 1.11. Proposed mechanism of the oxidative homocoupling of arylboronic acids. 

 

These side reactions can be suppressed by optimizing the base, solvent, and 

temperature. Therefore, the application of arylboronic acids in organic synthesis is 

nowadays of great interest for scientific research. 
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1.3. SYNTHESIS OF BIARYL PEPTIDES VIA A SUZUKI-

MIYAURA REACTION IN SOLUTION 

In view of the great importance of peptides in biological processes and also of the 

diversity and broad range of applications of the naturally occurring biaryl peptides, many 

researchers are recently interested in the preparation of new analogues incorporating 

biaryl amino acids in their sequence. This modification also overcomes the problems 

associated with the high conformational flexibility, and low bioavailability and enzymatic 

stability of natural peptides (Haug 2007; Le Quement et al., 2011; Kotha et al., 2013). Up 

to now, many examples on the synthesis of biaryl systems are well described in the 

literature, ranging from aryl-heteroaryl compounds (e.g. arylazoles, arylindoles, 

arylpyrimidines) to simple arylphenyl or arylphenol derivatives (Burke and Marques, 

2015). Some of the conditions used to obtain these biaryl systems have been applied to 

the preparation of biaryl amino acids and biaryl peptides as described below. 

1.3.1. Synthesis of biaryl amino acids  

1.3.1.1. 5-Arylhistidines  

The synthesis of 5-arylhistidines has been scarcely reported. However, 

considering the significance of 4(5)-arylimidazoles in biologically and pharmacologically 

active compounds, e.g. topsentins, nortopsentins, polycarpine and aciculitins, much 

attention has been recently paid to the preparation of these biaryl systems (Bellina et al., 

2007). The arylation of the imidazole ring at the 4(5)-position has been accomplished 

through palladium-catalyzed direct C-H arylation, or via the Negishi, Stille or 

Suzuki-Miyaura cross-coupling reactions (Li and Gribble, 2000; Schnürch et al., 2006; 

Katritzky et al., 2008; Bellina and Rossi, 2010). Few recent examples of arylation of 

N-protected imidazoles are shown in Scheme 1.12. Baghbanzadeh et al. described a 

microwave-assisted procedure for the direct C-H arylation of N-methylimidazoles with 

different aryl bromides (Scheme 1.12a) (Baghbanzadeh et al., 2011). Dobler reported a 

three-step Negishi cross-coupling C-4 arylation of 4-iodo-5-(4-methoxyphenyl)-N-

methylimidazole with 2-bromopyridine (Scheme 1.12b) (Dobler, 2003). Reversz et al. 

published a Stille-type cross-coupling reaction between a 2-(trimethylsilyl)ethoxymethyl 

(SEM)-protected 4,5-dibromoimidazole and several aryl bromides (Scheme 1.12c) 
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(Revesz et al., 1998). Cerezo et al. reported the Suzuki-Miyaura cross-coupling reaction 

between a regioisomeric mixture of benzyl (Bn)-protected 5(4)-bromo-4(5)-

methylimidazole and phenylboronic acid to yield 4(5)-methyl-5(4)-phenylimidazole 

(Scheme 1.12d) (Cerezo et al., 2007). 
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Scheme 1.12. Synthesis of 4(5)-arylimidazoles in solution. a) Direct C-H arylation; b) Negishi 

arylation; c) Stille arylation; d) Suzuki-Miyaura arylation.  
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Due to the difficulty of arylating the 4(5)-position of the imidazole ring, up to now 

only two reports on the preparation of 5-aryl-L-histidines have been published. In 

particular, Cerezo et al. developed the first efficient approach for the synthesis of these 

biaryl amino acids through a microwave-assisted Suzuki-Miyaura cross-coupling reaction 

of a conveniently protected 5-bromo-L-histidine with various arylboronic acids (Cerezo et 

al., 2007). The SEM group was selected as imidazole protection and it was removed 

under acidolytic conditions after the arylation step. The reaction conditions were 

optimized for the preparation of 5-phenyl-L-histidines, and the best results were obtained 

using Pd2(dba)3 and KF under microwave irradiation at 110 ºC for 10 min. (Scheme 1.13). 

These conditions were extended to the synthesis of histidines bearing at position 5 a 

substituted phenyl, a piridyl or a thienyl ring.  
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Scheme 1.13. Synthesis of 5-aryl-L-histidines via a palladium-catalyzed Suzuki-Miyaura cross-

coupling reaction in solution. 

 

Later, Mahindra and coworkers reported the regioselective direct C-5 arylation of 

a conveniently protected L-histidine with various aryl iodides under microwave 

irradiation. The best result was obtained when this reaction was carried out in the 

presence of Pd(MeCN)2-PCy3 as catalytic system, K2CO3 as base, and pivalic acid 

(PivOH) as additive in N,N-dimethylformamide (DMF) under microwave irradiation at 

140 ºC for 45 to 60 min, depending on the aryl iodide used. (Scheme 1.14) (Mahindra et 

al., 2013).  
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Scheme 1.14. Synthesis of 5-aryl-L-histidines via palladium-catalyzed direct C-H arylation in 

solution. 

 

1.3.1.2. 4-Arylphenylalanines 

 The Suzuki-Miyaura cross-coupling is one of the most applied reactions for the 

arylation of the C-4 position of a phenylalanine (Kotha et al., 2002). The synthesis of 

4-arylphenylalanines has been carried out by arylating a 4-halophenylalanine with an 

arylboronic acid or, by contrast, by arylating a 4-boronophenylalanine with an aryl halide. 

In 1994, Burk et al. reported the cross-coupling of an acyl-protected 2-, 3- or 

4-bromo-D-phenylalanine with various arylboronic acids in presence of Pd(OAc)2 and 

P(o-tolyl)3 under conventional heating at 80 ºC (Scheme 1.15) (Burk et al., 1994).  
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Scheme 1.15. Synthesis of 2-, 3- and 4-aryl-D-phenylalanines under conventional heating starting 

from a bromo-D-phenylalanine. 
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This methodology was later used by Kotha and Lahiri to synthesize Boc-protected 

4-aryl-L-phenylalanines from Boc-protected-4-iodo-L-phenylalanines using Pd(PPh3)4 

under conventional heating at 80 ºC (Scheme 1.16) (Kotha and Lahiri, 2001; Kotha and 

Lahiri, 2003).  
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I Ar

Ar =

Me OMe Ac
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Scheme 1.16. Synthesis of 4-aryl-L-phenylalanines under conventional heating starting from a 

4-iodo-L-phenylalanine. 

 

The preparation of 4-arylphenylalanines through a Suzuki-Miyaura cross-coupling 

of a 4-boronophenylalanine and an aryl halide or triflate was investigated by Firooznia 

and coworkers. They described the enantioselective synthesis of Boc-protected 4-aryl-L-

phenylalanines from a 4-pinacolylborono-L-phenylalanine derivative and several aryl 

halides or triflates using PdCl2(dppf) and K2CO3 in 1,2-dimethoxyethane (DME) under 

conventional heating at 80 ºC (Scheme 1.17) (Firooznia et al., 1999).  
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Scheme 1.17. Synthesis of 4-aryl-L-phenylalanines under conventional heating starting from a 

4-borono-L-phenylalanine. 

 

Similarly, Gong and He successfully described in 2002 the synthesis of racemic 

4-arylphenylalanines through a Suzuki-Miyaura cross-coupling reaction of unprotected 

4-boronophenylalanine with aryl halides in presence of Pd(PPh3)2Cl2 under microwave 

heating at 150 ºC (Scheme 1.18) (Gong and He, 2002). 
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Scheme 1.18. Synthesis of 4-arylphenylalanines under microwave irradiation starting from 

4-boronophenylalanine. 
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1.3.1.3. 3-Aryltyrosines 

Over the years, many strategies have been developed for the synthesis of 3-aryl-L-

tyrosines in solution based on the Suzuki-Miyaura cross-coupling. These biaryl amino 

acids are important motifs in a large number of natural products, such as the proteasome 

inhibitors TMC-95, the antimicrobial arylomycins, the antibiotic vancomycin, the 

neurotensin antagonist RP-66453, the antitumoral neo-RA-V, or the antifungal aciculitins, 

as previously mentioned in this thesis. Similarly to 4-arylphenylalanines, 3-aryl-L-

tyrosines can be prepared either starting from a 3-halo-L-tyrosine or from a 3-borono-L-

tyrosine. 

As an example, 3-aryl-L-tyrosines were obtained by Knör and coworkers via a 

Suzuki-Miyaura cross-coupling of a Boc-protected 3-iodo-L-tyrosine derivative with 

several arylboronic acids using Pd(OAc)2 and P(o-tolyl)3 under conventional heating at 

80 ºC (Scheme 1.19) (Knör et al., 2006).  
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Scheme 1.19. Synthesis of 3-aryl-L-tyrosines under conventional heating starting from a 

3-iodo-L-tyrosine. 

 

Interestingly, Hutton and Skaff developed an efficient strategy for the preparation 

of dityrosines through the Suzuki-Miyaura cross-coupling between a Cbz-protected 

3-iodo-L-tyrosine and a Cbz-protected 3-borono-L-tyrosine (Scheme 1.20a). In addition, 

they also described the direct conversion of 3-iodo-L-tyrosine derivatives to dityrosines in 

a one-pot borylation-arylation strategy (Scheme 1.20b) (Hutton and Skaff, 2003).  
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Scheme 1.20. Synthesis of dityrosines in solution. a) Suzuki-Miyaura cross-coupling between a 

3-iodo-L-tyrosine and a 3-borono-L-tyrosine; b) one-pot borylation-arylation. 

 

1.3.2. Synthesis of biaryl linear peptides 

The Suzuki-Miyaura cross-coupling has been used as the key step in the 

preparation of biaryl linear peptides. For instance, Kotha and Lahiri designed and 

synthesized a set of 4-aryl-L-phenylalanine-containing linear tripeptides and 

pentapeptides through the arylation of a 4-iodo-L-phenylalanine residue with different 

arylboronic acids by applying the same conditions depicted in Scheme 1.16 for the 

obtention of 4-aryl-L-phenylalanines (Scheme 1.21) (Kotha and Lahiri, 2001; Kotha and 

Lahiri, 2003). 
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Scheme 1.21. Synthesis of 4-aryl-L-phenylalanine-containing tripeptides and pentapeptides in 

solution. 

 

Vilaró and coworkers reported the preparation of biaryl linear peptides of different 

chain length containing a 4-aryl-L-phenylalanine or a 3,5-diaryl-L-tyrosine residue 

through a Suzuki-Miyaura cross-coupling of the corresponding unprotected iodopeptide 

with two different aryltrifluoroborates (Scheme 1.22 and Scheme 1.23) (Vilaró et al., 

2008). The reaction was carried out at 50 ºC in aqueous media using Pd(OAc)2 as 

catalyst. 
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Scheme 1.22. Synthesis of 4-aryl-L-phenylalanine-containing peptides in solution. 
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Scheme 1.23. Synthesis of  3,5-diaryl-L-tyrosine-containing peptides in solution. 

 

1.3.3. Synthesis of natural biaryl cyclic peptides  

In recent years, the aforementioned synthetic protocols have been successfully 

extended to the preparation of naturally occurring biaryl cyclic and bicyclic peptides and 

of some analogues (Feliu and Planas, 2005). The key step of the synthesis of these 

compounds is the macrocyclization, which can be performed either by standard 

macrolactamization (route A) or by macroarylation (route B) (Scheme 1.24). In particular, 

route A involves the formation of a biaryl linear precursor through an intermolecular 

Suzuki-Miyaura reaction between the corresponding aromatic amino acid derivatives 

prior to the macrolactamization. Otherwise, route B implies the synthesis of the linear 

sequence incorporating both the haloamino acid and the boronoamino acid derivatives, 

followed by an intramolecular Suzuki-Miyaura cross-coupling reaction (Heravi and 

Hashemi, 2012). The latter approach resulted to be the most versatile.  
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Scheme 1.24. Retrosynthetic analysis of biaryl cyclic peptides. 

 

Inoue et al. reported in 2003 the total synthesis of the macrocyclic core of 

TMC-95A following route A (Inoue et al., 2003). In this case, the biaryl bond was formed 

by treatment of an oxidized iodotryptophan derivative with a dipeptide bearing a 

3-borono-L-tyrosine in presence of Pd(PPh3)4 and Na2CO3 in aqueous DME at 95 ºC 

(Scheme 1.25). Then, subsequent hydrolysis of the methyl ester, coupling of L-asparagine 

benzyl ester, and hydrogenolysis to remove the Cbz and Bn protecting groups was 

followed by the final macrolactamization step.  
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Scheme 1.25. Synthesis of the macrocyclic core of TMC-95A following route A. 

 

More recently, Coste and coworkers developed a synthetic approach to the 

macrocyclic core of TMC-95A based on route B (Scheme 1.26) (Coste et al., 2014). 

Accordingly, they prepared a linear precursor containing the required iodotryptophan and 

3-borono-L-tyrosine derivatives. The final macroarylation step using PdCl2(dppf) and 

K2CO3 in aqueous DME at 80 ºC successfully generated the desired macrocyclic core of 

TMC-95A.  
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Scheme 1.26. Synthesis of the macrocyclic core of TMC-95A following route B. 
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In 2007, Roberts and coworkers described the total synthesis of arylomycin A2 

following both routes A and B (Roberts et al., 2007). In route A, the linear precursor was 

obtained through a Suzuki-Miyaura arylation of a dipeptide containing a 3-iodo-L-

phenylglycine with a conveniently protected 3-borono-L-tyrosine derivative in presence 

of PdCl2(dppf) and K2CO3 in DMSO at 80 ºC. Then, simultaneous hydrogenolysis of the 

Cbz and Bn groups followed by macrolactamization afforded the macrocyclic core of 

arylomycin A2 (Scheme 1.27a). In route B, the intramolecular Suzuki-Miyaura 

macrocyclization of the linear precursor incorporating both the 3-iodo-L-phenylglycine 

and the 3-borono-L-tyrosine residues was tested. The desired biaryl macrocyclic core was 

obtained in good yields using PdCl2(dppf), K2CO3 in MeCN at 80 ºC (Scheme 1.27b). 
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Scheme 1.27. Synthesis of the macrocyclic core of arylomycin A2. a) Route A; b) route B. 

 

The total synthesis of the lipohexapeptide arylomycin A2 was accomplished by 

subsequent N-methylation of the biaryl macrocyclic tripeptide, coupling of Boc-protected 

glycine, incorporation of a previously prepared lipodipeptide at the N-terminus via amide 

bond formation, and final removal of the protecting groups (Scheme 1.28). 
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Scheme 1.28. Total synthesis of arylomycin A2. 

 

The biaryl antibiotic biphenomycin B has been efficiently synthesized either via 

route A or B (Scheme 1.29). Waldmann et al. published a strategy based on route A that 

included a cross-coupling reaction to give a biaryl linear intermediate, which was then 

coupled to a protected hydroxyornithine derivative. The macrolactamization of the 

resulting biaryl linear tripeptide followed by removal of the protecting groups provided 

the natural product (Scheme 1.29a) (Waldmann et al., 2008). Following route B, Lépine 

and Zhu employed a microwave-assisted intramolecular macroarylation of the 

conveniently functionalized linear tripeptide for the ring-closure step (Scheme 1.29b) 

(Lépine and Zhu, 2005).  
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Scheme 1.29. Total synthesis of biphenomycin B. a) Route A; b) route B. 
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1.4. SOLID-PHASE SYNTHESIS OF BIARYL PEPTIDES 

VIA A SUZUKI-MIYAURA REACTION 

Since conventional solution-phase synthesis generally requires very long and 

tedious work-up procedures as well as troublesome purifications after each reaction step, 

a powerful method for accelerating such process was established. Hence, the solid-phase 

organic synthesis has become the method of choice for an increased production of many 

chemical compounds, including peptides and small molecules. Moreover, much attention 

has also been paid to the application of the palladium-catalyzed Suzuki-Miyaura 

cross-coupling reaction on solid-phase for the incorporation of biaryl amino acids into 

peptide sequences (Scott, 2012; Zaragoza, 2000; Bräse et al., 2003). The immobilization 

of the desired product allows the facile elimination of the soluble palladium catalyst as 

well as the excess of soluble reagents and non-toxic byproducts. This powerful synthetic 

methodology has been recently used for the preparation of biaryl linear and cyclic 

peptides. 

 

1.4.1. Solid-phase peptide synthesis (SPPS)  

The solid-phase peptide synthesis (SPPS) is considered the most efficient method 

for the preparation of peptides. It was first developed by Robert Bruce Merrifield (1963), 

which was awarded in the Nobel Prize in Chemistry 1984 for the development of this 

methodology for chemical synthesis on a solid matrix (Merrifield, 1963; Merrifield, 1968; 

Merrifield, 1985). The SPPS is based on the peptide chain elongation on an insoluble 

polymeric support by sequential amide bond formation, generally, in the C  N direction 

(Grant, 2002; Zaragoza, 2000; Palomo, 2014; Pires et al., 2014). The solid support is a 

polymeric support which consists of particles that must be mechanically stable, 

chemically inert to the reaction conditions, chemically functionalized, and completely 

insoluble in the reaction solvents. Moreover, this polymeric support must swell 

extensively in the solvents that are used. There are several types of solid support, which 

are generally classified according to their composition, such as polystyrene (PS), 

polyacrylamide, poly(ethylene glycol) (PEG) and PEG-PS-based resins (Lloyd-Williams 

et al., 1997; Zaragoza, 2000; Palomo, 2014). Among them, the most widely used 
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PS-divinylbenzene (DVB) support, the 4-methylbenzhydrylamine (MBHA) resin (Sarin 

et al., 1980; Santini et al., 1998; Lee et al., 2008), and the aminomethyl ChemMatrix 

(CM) resin, a totally PEG-based support (García-Martin et al., 2006; García-Ramos et al., 

2010), are the two solid supports used in this thesis. These resins are well swollen by the 

typical solvents employed in solid-phase synthesis, such as CH2Cl2, DMF and 

N-methyl-2-pyrrolidone (NMP) (Figure 1.6).  

NH3

Cl H2N O
O

O NH2

H2N O
O

O NH2

H2N O
O

O NH2

n

n

n

MBHA resin ChemMatrix resin  

Figure 1.6. MBHA and ChemMatrix resin. 

 

The solid support of choice must be initially derivatized with a bifunctional linker 

before the attachment to the polymeric support of the first amino acid of the peptide to be 

synthesized. The linker would allow the final peptide release from the resin once the 

sequence is complete (James, 1999; Guillier et al., 2000; Zaragoza, 2000; 

Góngora-Benítez et al., 2013). The linker-resin bond must be stable and inert under both 

peptide chain elongation and cleavage conditions, while the peptide-linker bond must be 

labile to the cleavage conditions, leading to the release of the desired C-terminal 

functionalized peptide from the resin (James, 1999; Guillier et al., 2000). The correct 

choice of an adequate linker depends on the nature of the C-terminal functional group of 

the peptide of interest and also on the cleavage conditions. The 

9-fluorenylmethoxycarbonyl (Fmoc)-Rink amide linker is one of the most common acid-

labile linkers used in Fmoc chemistry to yield peptide amides (Figure 1.7). In this case, 

trifluoroacetic acid (TFA) is required to cleave the peptide from the resin.  
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O
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Figure 1.7. Fmoc-Rink amide linker. 

 

In order to prevent possible side reactions during the solid-phase peptide 

synthesis, N

-amino group and the side-chain function (if necessary) or even the 

C

-carboxyl group of the amino acids to be attached must be masked by using orthogonal 

protecting groups. A standard orthogonal protection includes at least two different types 

of protecting groups, each one of which can be selectively removed by different cleavage 

mechanisms, in any order and in the presence of the others (Isidro-Llobet et al., 2009; 

Palomo, 2014; Pires et al., 2014).  

The Fmoc/tert-butyl (tBu) strategy is the most common solid-phase peptide 

synthesis strategy based on the use of orthogonal protecting groups. In this case, the Fmoc 

group is employed as base-labile temporary N

-amino protecting group, which is 

removed from each coupled amino acid to allow the peptide chain elongation. By 

contrast, acid-labile groups, including tBu, Boc or trityl (Tr) groups, are used as 

permanent side-chain protecting groups. These permanent groups remain during all the 

peptide synthesis and they are simultaneously removed during the cleavage, the last step 

of the synthesis. Moreover, when cyclic peptides must be synthesized, the C

-carboxyl 

group is usually protected with a semipermanent protecting group that may be selectively 

removed without deprotecting the other functional groups (Lloyd-Williams et al., 1997; 

Greene, 1999; Isidro-Llobet et al., 2009). The following table summarizes the cleavage 

conditions of all the protecting groups used in this thesis (Table 1.1). 
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 Table 1.1. Amino acid protecting groups used in this thesis. 

Protecting group Abbreviation Structure Cleavage conditions 

tert-Butyloxycarbonyl Boc 
O

O

 

25-50% TFA in CH2Cl2 

TIS (scavenger) 

tert-Butyl tBu 

 

90% TFA in CH2Cl2 

TIS (scavenger) 

9-Fluorenylmethoxycarbonyl Fmoc 
O

O

 

20% Piperidine in DMF 

ortho-Nitrobenzenesulfonyl oNBS 
S

O

O
NO2  

-Mercarptoethanol 

and DBU 

para-Nitrobenzyl pNB 
O2N  

SnCl2 in DMF 

2,4,6-Trimethoxybenzyl Tmob MeO

OMe

OMe  

95% TFA 

TIS (scavenger) 

2-(Trimethylsilyl)ethoxymethyl SEM Si
O

 
TFA/CH2Cl2 (2:1) 

Trityl Tr 

 

1% TFA in CH2Cl2 

TIS (scavenger) 
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In particular, the steps involved in this peptide synthesis process are shown in 

Scheme 1.30, and include (i) the coupling of the first protected amino acid, by reaction of 

its C

-carboxyl group with the free functional group of the linker, (ii) the selective 

removal of the N

-amino protecting group from the previously attached amino acid, 

without affecting the side-chain protecting group, (iii) the coupling of the next protected 

amino acid, (iv) sequential N

-deprotection and amino acid coupling steps for the peptide 

chain elongation, and finally, (v) the N

-deprotection (if necessary) and the cleavage of 

the covalent peptide-linker bond to release the peptide from the resin, and to 

simultaneously remove the side-chain protecting groups (Lloyd-Williams et al., 1997; 

Grant, 2002; Palomo, 2014). 
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Scheme 1.30. General steps of the standard solid-phase peptide synthesis (SPPS). 
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The coupling of amino acids requires the activation of the C

-carboxyl group by 

reaction with a suitable coupling reagent which leads to an active-ester intermediate that 

can easily react with the free N

-amino group of the peptidyl resin. Until now, several 

coupling reagents, such as carbodiimides (e.g. DIPCDI, DCC, EDC), aminium salts (e.g. 

HBTU, HATU, HCTU), phosphonium salts (e.g. PyBOP), and new uronium salts (e.g. 

COMU, PyOxim) have been used. These reagents are often employed in the presence of a 

nucleophilic additive (e.g. HOBt, Oxyma) to suppress racemization and other undesired 

side reactions (Table 1.2) (Palomo, 2014; Pires et al., 2014). Carbodiimide aminium and 

phosphonium reagents are usually used in combination with HOBt. Apart from this 

additive, the two latter reagents also require the presence of a base, such as 

N,N-diisopropylethylamine (DIEA) (Palomo, 2014). However, the potentially explosive 

character of the benzotriazole-based additives (Wehrstedt et al., 2005) as well as its 

potential to cause allergic reactions, including skin irritation and respiratory problems, 

has limited its application in organic chemistry. Otherwise, the use of carbodiimides in 

combination with the new ethyl 2-cyano-2-(hydroxyimino)acetate (Oxyma) additive has 

attracted much attention in peptide synthesis (Subirós-Funosas et al., 2009a). Moreover, 

1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)-dimethylamino-

morpholinomethylene)] methanaminium hexafluorophosphate  (COMU), a new coupling 

reagent based on the Oxyma structure, has been reported to be a safer and more efficient 

coupling reagent in comparison to the classic benzotriazole-based reagents (El-Faham et 

al., 2009; Subiros-Funosas et al., 2009b; El-Faham and Albericio, 2010). 
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Table 1.2. Coupling reagents and additives. 

Coupling reagents / 

Additives 
Structure 

Carbodiimides N C N

DCC

N C N

DIPCDI

N C N

EDC

N

 

Aminium salts 
N

N
N

O

N
N

PF6

HBTU

N N
N

N

O

N
N

PF6

HATU

N
N

N

O

N
N

PF6

HCTU

Cl

 

Phosphonium salts 

N
N

N

O P N
N

N

PF6

PyBOP  

Uronium salts 

O

N N

O

N

COOEtNC

PF6
O

N

COOEtNC

PF6

P NN

N

COMU PyOxim  

Additives 
N

N
N

OH

HOBt

N

NC COOEt

OH

Oxyma  
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1.4.2. Solid-phase synthesis of biaryl linear peptides 

Despite the advantages of the solid-phase synthesis, up to now, only few examples 

of peptide modification through a Suzuki-Miyaura arylation on solid support are found in 

the literature. The most common approach for the formation of biaryl amino acids 

involves the previous attachment of the corresponding haloamino acid on the solid 

support and its subsequent arylation with an arylboronic acid in solution. In 2007, Haug 

and coworkers reported the first solid-phase synthesis of biaryl linear peptides following 

this approach. In particular, they prepared a library of biaryl tripeptides using a Rink 

amide NovaGel resin (Haug et al., 2007). The biaryl bond was formed via a 

Suzuki-Miyaura reaction between a 4-iodo-L-phenylalanine-containing tripeptidyl resin 

and several commercially available arylboronic acids (Scheme 1.31). This reaction was 

carried out by using Pd(OAc)2 as catalyst, P(o-tolyl)3 as ligand and Na2CO3 as base, 

under conventional heating at 80 ºC. 

N
H

O
H
N

O

N
H

O

BocHN

HN

NHHN

HN

NHHN

PbfPbf

I

NH2

O
H
N

O

N
H

O

H2N

HN

NH2HN

HN

NH2HN

Ar

Rink-NovaGel

i. Ar-B(OH)2, Pd(OAc)2, 

   P(o-tolyl)3, Na2CO3, 

   H2O/DME, 80 ºC

ii. TFA/H2O/TIS

Ar =

 

Scheme 1.31. Solid-phase synthesis of 4-aryl-L-phenylalanine-containing tripeptides. 
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Doan et al. described a library of biaryl octapeptides which were prepared on a 

Wang resin. The key step of the synthesis was the arylation of a 4-iodo-L-phenylalanine-

containing octapeptidyl resin with various arylboronic acids. Pd(PPh3)4 was used as 

catalyst and K3PO4 as base, and the reaction was performed under conventional heating at 

80 ºC (Scheme 1.32) (Doan et al., 2008). 

O

Gly-Gly-Phe-Leu-Wang

H
N

Boc-Ala-Ala-Ala

I

O

Gly-Gly-Phe-Leu-OH

H
N

H-Ala-Ala-Ala

Ar

N

O

O

OH OMe SH COOMe

NH2

S

N

NO2

COOH

i. Ar-B(OH)2, Pd(PPh3)4, 

   K3PO4, DMF, 80 ºC

ii. TFA/H2O

Ar =

 

Scheme 1.32. Solid-phase synthesis of 4-aryl-L-phenylalanine-containing octapeptides. 

 

A similar procedure was recently reported by Le Quement and coworkers. They 

examined the Suzuki-Miyaura cross-coupling reaction between a 3- or 4-iodo-L-

phenylalanine-containing tetrapeptidyl resin and a set of arylboronic acids. A PEGA800 

resin was used as solid support and, after extensive optimization, the best results were 

achieved with PdCl2(dppf) and K3PO4 in tert-butyl alcohol (tBuOH)/toluene/H2O at room 

temperature (Scheme 1.33) (Le Quement et al., 2011). 
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Scheme 1.33. Solid-phase synthesis of 3- and 4-aryl-L-phenylalanine-containing tetrapeptides. 

 

Cerezo and coworkers described in 2008 the preparation of short linear peptides 

containing a 5-aryl-L-histidine by means of a microwave-assisted Suzuki-Miyaura 

cross-coupling of a 5-bromohistidine-containing tripeptidyl resin with several 

commercially available arylboronic acids (Scheme 1.34) (Cerezo et al., 2008). This was 

the first example of a solid-phase Suzuki-Miyaura cross-coupling involving the imidazole 

ring of a histidine residue. The synthesis was carried out on a MBHA resin in presence of 

Pd2(dba)3, P(o-tolyl)3 and KF in DME/EtOH/H2O under microwave irradiation at 170 ºC. 

These conditions, but at 140 ºC, allowed the cross-coupling of the bromotripeptidyl resin 

with a Boc-protected 3-borono-L-tyrosine derivative leading to a biaryl linear tetrapeptide 

containing a His-Tyr linkage (Scheme 1.34).  
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Scheme 1.34. Solid-phase synthesis of 5-aryl-L-histidine-containing tri- and tetrapeptides. 

 

As an alternative to the preparation of biaryl peptides through the arylation of an 

halopeptidyl resin with an arylboronic acid, Afonso and coworkers investigated a more 

flexible approach, which involved the Suzuki-Miyaura arylation of a boronopeptidyl resin 

with an aryl halide in solution. The main advantages of Afonso’s approach over the 

previous mentioned one are the higher commercial availability of aryl halides compared 

to arylboronic acids, and that all the synthetic steps are performed on solid support, 

including the formation of the boronic acid derivative. Thus, this approach does not 

require the preparation in solution of non-commercially available arylboronic acids and, 

therefore, it avoids the tedious work-up of solution reactions and the subsequent 
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purification step. Using this approach, Afonso and coworkers reported the preparation of 

a set of 4-aryl-L-phenylalanine-containing linear peptides through: (i) solid-phase 

Miyaura borylation of a 4-iodo-L-phenylalanine-containing tripeptidyl resin following the 

same procedure described in Scheme 1.9, and (ii) subsequent Suzuki-Miyaura 

cross-coupling of the resulting 4-boronopeptidyl resin Boc-Phe(4-BPin)-Leu-Leu-Rink-

MBHA with several aryl halides using Pd2(dba)3, P(o-tolyl)3 and KF under microwave 

irradiation at 120 ºC for 30 min (Scheme 1.35a) (Afonso et al., 2010). Moreover, the 

arylation of the resin Boc-Phe(4-BPin)-Leu-Leu-Rink-MBHA with halogenated aromatic 

amino acids afforded biaryl linear tetrapeptides incorporating a Phe-Phe, a Tyr-Phe or a 

His-Phe linkage (Scheme 1.35b) (Afonso et al., 2011).  
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Scheme 1.35. Synthesis of biaryl linear tri- and tetrapeptides via a microwave-assisted 

Suzuki-Miyaura arylation of: a) a resin-bound phenylalanine boronic ester with various aryl 

halides; b) a resin-bound phenylalanine boronic ester with halogenated aromatic amino acids.  

 

Afterwards, the previous strategy was extended to the preparation of a 3-phenyl-L-

tyrosine-containing linear tripeptide (Scheme 1.36a), and biaryl linear tetrapeptides 

incorporating a Phe-Tyr or a Tyr-Tyr linkage (Scheme 1.36b) (Afonso et al., 2012). In 

both cases, the solid-phase Miyaura borylation of a 3-iodo-L-tyrosine-containing 

tripeptidyl resin was achieved as described in Scheme 1.9, being the reaction time of 8 h, 
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while the Suzuki-Miyaura arylation was performed under the same reaction conditions 

described in Scheme 1.35 for phenylalanine.  

BocHN
Leu-Leu-Rink-MBHA

O

OR

a)

CO2MeBocHN

I

CO2MeBocHN

OSEM

I

BocHN
Leu-Leu-Rink-MBHA

O

i.   Ar-X, Pd2(dba)3, 
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Scheme 1.36. Synthesis of biaryl linear tri- or tetrapeptides via microwave-assisted 

Suzuki-Miyaura arylation of: a) a resin-bound tyrosine boronic ester with iodobenzene and; b) a 

resin-bound tyrosine boronic ester with halogenated aromatic amino acids. 

 

1.4.3. Solid-phase synthesis of biaryl cyclic peptides 

In the last years, two examples on the solid-phase synthesis of biaryl cyclic 

peptides have been reported. Peptide macrocyclization has been accomplished via an 

intramolecular Suzuki-Miyaura cross-coupling. 

 

Afonso and coworkers extended the previous methodology developed for the 

preparation of biaryl linear peptides (Scheme 1.35 andScheme 1.36) to the synthesis of 

biaryl cyclic peptides of different ring sizes incorporating a Phe-Phe, Phe-Tyr, Tyr-Phe or 
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Tyr-Tyr biaryl linkage (Afonso et al., 2011; Afonso et al., 2012) (Figure 1.8). The key 

steps of this approach were the synthesis of a linear peptidyl resin containing both the 

borono and the halogenated amino acid derivatives, and its cyclization via a 

microwave-assisted Suzuki-Miyaura reaction. The linear precursors were obtained by 

Miyaura borylation of a trityl-protected iodopeptidyl resin, followed by subsequent trityl 

group removal and coupling of the halogenated amino acid. This methodology is depicted 

in Scheme 1.37 for the preparation of biaryl cyclic peptides containing a Phe-Phe linkage 

(Figure 1.8a) (Afonso et al., 2011). It was then extended to the synthesis of sequences 

containing a biaryl bond between the side-chains of a Phe and a Tyr, or between two Tyr 

residues (Figure 1.1b-d) (Afonso et al., 2011; Alonso et al., 2012). Interestingly, the 

intramolecular Suzuki-Miyaura arylation of the linear peptidyl resins incorporating the 

3-borono-L-tyrosine residue at the C-terminus was accomplished by using SPhos instead 

of P(o-tolyl)3 as ligand. 
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Figure 1.8. Biaryl cyclic peptides containing: a) a Phe-Phe; b) a Tyr-Phe; c) a Phe-Tyr; or d) a 

Tyr-Tyr linkage. 
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Scheme 1.37. Solid-phase synthesis of biaryl cyclic peptides incorporating a Phe-Phe linkage. 

 

Following a similar methodology, in 2012, Meyer and coworkers prepared a 

library of m,m-, m,o- and o,m-biaryl-bridged macrocyclic peptides (Figure 1.9). They 

synthesized linear peptidyl resins containing a m- or o-boronophenylalanine at the 

N-terminus and a m- or o-halogenated phenylalanine at the C-terminus, which were then 

cyclized via an intramolecular Suzuki-Miyaura reaction (Meyer et al., 2012). In this case, 

the borono amino acid was prepared in solution and coupled to the N-terminus of the 

corresponding peptidyl resin. The intramolecular arylation for the synthesis of the 

m,m-biaryl-bridged macrocyclic peptide (Figure 1.9a) was initially tested and was 

achieved using Pd(OAc)2, dppf and CsF in dioxane and H2O at 90 ºC, as detailed in 

Scheme 1.38. This methodology was then applied to the preparation of m,o- and 

o,m-biaryl-bridged macrocyclic peptides with general structure depicted in Figure 1.9b-c, 

respectively. The formation of the latter o,m-system required the use of Pd(PPh3)4 and 

K2CO3 in DME at 140 ºC in the cyclization step. 
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Figure 1.9. Biaryl-bridged macrocyclic peptides incorporating: a) a m,m-system; b) a m,o-system; 

and c) a o,m-system. 
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Scheme 1.38. Solid-phase synthesis of m,m-biaryl-bridged macrocyclic peptide. 

 

Thus, the above examples constitute the first solid-phase synthesis of biaryl cyclic 

compounds bearing a biaryl linkage involving a phenylalanine or a tyrosine residue. 

However, despite the importance of 5-arylhistidines in the biological activity of naturally 

occurring biaryl cyclic peptides, and due to the difficulty of arylating the 4(5)-position of 

the imidazole ring, the formation of biaryl-bridged cyclic peptides involving the arylation 

of the imidazole ring of a histidine residue has not still been reported. 
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CHAPTER 2: General objectives 

This thesis deals with the development of a solid-phase synthetic approach for the 

preparation of biaryl linear and cyclic peptides incorporating a 5-arylhistidine residue 

through a microwave-assisted Suzuki-Miyaura cross-coupling reaction. In particular, the 

main objectives were: 

 The investigation of an efficient methodology for the solid-phase synthesis of linear 

undecapeptides incorporating a 5-arylhistidine residue at the 1- or 4-position, and 

their biological evaluation (Chapter 3). 

R= H, OH, NO2
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 The extension of the above methodology to the solid-phase synthesis of biaryl cyclic 

peptides of different ring sizes containing a His-Phe linkage, and the evaluation of 

the influence of the peptide length, the presence of a C-terminus spacer and the 

position of the histidine residue at the N- or C-terminus (Chapter 4). 
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 The application of the previous methodology to the preparation of biaryl cyclic 

peptides containing a 3- or 5-amino acid ring with a His-Tyr linkage (Chapter 5). 
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 The study of the total solid-phase synthesis of biaryl cyclic lipopeptide derivatives of 

arylomycins containing a Phe-Tyr, a Tyr-Tyr, a His-Tyr, or a phenylglycine 

(Phg)-Tyr biaryl linkage (Chapter 6). 
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 The synthesis of biaryl cyclic peptide analogues of the northern and the southern 

hemispheres of aciculitins. 
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 The development of a solid-phase methodology for the preparation of biaryl bicyclic 

peptide analogues of aciculitins containing a Phe-Phe, a Phe-Tyr, a His-Tyr and a 

Tyr-Tyr linkage. 
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Solid-Phase Synthesis of 5-Arylhistidine-Containing 

Peptides with Antimicrobial Activity Through a 

Microwave-Assisted Suzuki-Miyaura Cross-Coupling 

 

 

 

 

 

 

 

 

 

*This chapter corresponds to the following publication: 

Ng-Choi, I.; Soler, M.; Cerezo, V.; Badosa, E.; Montesinos, E.; Planas, M.; Feliu, L. 

Solid-phase synthesis of 5-arylhistidine-containing peptides with antimicrobial activity 

through a microwave-assisted Suzuki-Miyaura cross-coupling. Eur. J. Org. Chem. 2012, 

4321-4332.  
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CHAPTER 3 

A microwave-assisted solid-phase Suzuki-Miyaura reaction has been employed 

for the synthesis of 5-arylhistidine-containing peptides. In particular, sequences 

containing a 5-arylhistidine at the 1- or 4-positions have been designed based on lead 

antimicrobial peptides. The cross-coupling involved the arylation of a resin-bound 

5-bromohistidine with an arylboronic acid in solution under microwave irradiation. This 

protocol is compatible with common protecting groups used in peptide chemistry. The 

resulting biaryl linear undecapeptides were screened for their antibacterial, antifungal and 

hemolytic activities. The results showed that the presence of an imidazole ring 

significantly decreases the cytotoxicity. 

3.1. INTRODUCTION 

Antimicrobial peptides have attracted considerable attention as an alternative to 

traditional antibiotics for human, veterinary and plant disease control owing to their broad 

spectrum of activity, low intrinsic cytotoxicity and novel mode of action (Bulet et al., 

2004; Huang, 2006; Jenssen et al., 2006; Montesinos, 2007; Marcos and Gandía, 2009). 

Unlike conventional antibiotics, it has been postulated that most of these peptides 

selectively disrupt cell membranes. The cationic nature of antimicrobial peptides and the 

ability to assume an amphipathic structure are responsible for this distinct mode of action. 

Moreover, several models have been proposed to account for the morphological changes 

in the membrane induced by antimicrobial peptides, such us pore formation, lysis or 

peptide translocation into the cytoplasm (Yeaman and Yount, 2003; Brogden, 2005; 

Bechinger and Lohner, 2006; Hancock and Sahl, 2006; Nicolas, 2009; Marcos and 

Gandía, 2009). On the basis of this mode of action, these peptides are unlikely to cause 

rapid emergence of resistance because it would require significant alteration of membrane 

composition, which would be difficult (Brogden, 2005; Yount and Yeaman, 2005; 

Peschel and Sahl, 2006). 
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Several methodologies have been described for the modification of peptides either 

in solution or in solid-phase (Kotha and Lahiri, 2001; Kotha et al., 2002; Kotha and 

Lahiri, 2003; Kotha and Lahiri, 2005; Nielsen et al., 2005; Haug et al., 2007; Doan et al., 

2008; Kazmaier and Deska, 2008; Afonso et al., 2011). In particular, one strategy that has 

been used to improve the biological profile of antimicrobial peptides is the introduction in 

their sequence of biaryl amino acids, which may lead to peptidomimetics with restricted 

conformational flexibility, increased proteolytic stability, and enhanced selectivity and 

biological activity (Perdih and Dolenc, 2007; Haldar, 2008). In fact, biaryl amino acids 

are present in a wide variety of naturally occurring biaryl peptides that display important 

biological properties (Feliu and Planas, 2005). Among them, 5-arylhistidines have been 

described to be the central structures of cytotoxic and antifungal marine peptides, with the 

imidazole ring being the key element to its activity (Faulkner et al., 1993; Bewley et al., 

1996; Tomson et al., 2002). 

Despite their interest, a general strategy for the solid-phase synthesis of biaryl 

peptides containing 5-arylhistidines has not been reported. In fact, arylation of the 

4(5)-position of an imidazole ring has proven challenging. Such strategy would benefit 

from the advantages inherent to solid-phase synthesis. It would represent a convergent 

and versatile approach for the preparation of biaryl linear compounds, because it would 

allow the preparation of a large diversity of biaryl peptides from a single 

5-bromohistidine-containing peptide intermediate. Toward this end, we have recently 

established suitable conditions for the solid-phase arylation of a 5-bromohistidine residue 

through a microwave-assisted Suzuki-Miyaura cross-coupling with an arylboronic acid 

(Cerezo et al., 2008). This strategy allowed the preparation of biaryl peptides containing 

three and four residues with good purity. 

During our current research into the development of new antimicrobial agents, we 

identified linear undecapeptides with high activity against the gram-negative bacteria 

Erwinia amylovora, Xanthomonas axonopodis pv. vesicatoria, and Pseudomonas 

syringae pv. syringae, and the fungi Fusarium oxysporum and Penicillium expansum 

(Ferre et al., 2006; Badosa et al., 2007; Badosa et al., 2009). The most active peptides 

also showed minimal cytotoxicity. In the present study, we decided to incorporate a 

5-arylhistidine residue in the peptide sequence of the best analogues and study its 

influence on their biological activity profile. With this aim, we investigated whether our 

previous methodology for the preparation of short peptides bearing a 5-arylhistidine 
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residue is compatible with common protecting groups used in solid-phase peptide 

synthesis and whether it could be extended to the synthesis of longer peptide sequences. 

Herein, we report the feasibility of this methodology for the solid-phase synthesis of 

5-arylhistidine-containing undecapeptides. We also describe the evaluation of their 

antimicrobial and hemolytic activities. 

 

3.2. RESULTS AND DISCUSSION 

3.2.1. Design of the 5-arylhistidine-containing undecapeptides 

We designed undecapeptides containing a 5-arylhistidine residue at the 1- or 

4-positions (Figure 3.1). Their structure was based on lead peptides selected from a 

125-member library (Badosa et al., 2007; Badosa et al. 2009). In particular, 

FKLFKKILKFL-NH2 (BP66) was chosen for its high antibacterial activity and served as 

a model for the synthesis of biaryl peptide analogues BP281-BP283 bearing a 

5-arylhistidine at the 1-position. These analogues differ at the aryl substituent on the 

histidine residue between a phenyl (BP281), a 3-hydroxyphenyl (BP282) or a 

3-nitrophenyl (BP283) group. 

 

  BP281      R= H

  BP282      R= OH

  BP283      R= NO2

R
N
H

N

H2N
Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2

O

BP276      R= H  

BP277      R= Ac      

BP279      R= Ac      

BP280      R= Ts

N
H

N

H
N

Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2

O

R-Aa1-Lys-Leu

Aa1 = Lys

Aa1 = Leu

Aa1 = Phe

Aa1 = Phe  

Figure 3.1. Structures of 5-arylhistidine-containing peptides. 
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The biaryl undecapeptides BP276, BP277, BP279 and BP280, which incorporate 

a 5-arylhistidine at the 4-position, were designed from the sequence of the antifungal 

peptides KKLFKKILKVL-NH2 (BP15), Ac-FKLFKKILKVL-NH2 (BP21), 

Ts-FKLFKKILKVL-NH2 (BP22), and Ac-LKLFKKILKVL-NH2 (BP34). In these cases, 

the phenylalanine residue at the 4-position was replaced by a 5-phenylhistidine. 

For comparison purposes, and based on the above lead undecapeptides, analogues 

BP270-BP275, BP284, BP285, BP305, and BP306, bearing a histidine residue at the 1-, 

4- and/or 10-positions, were also designed (Table 3.1). 

 

Table 3.1. Structures of the histidine-containing peptides. 

Peptide Sequence 
tR 
(min)

[a]
 

Purity 
(%)

[b]
 

ESI-MS 
[M+H]

+
 

BP270 KKLHKKILKVL-NH2 5.87
[c]

 92 1346.7 

BP271 Ac-LKLHKKILKVL-NH2 6.32
[c]

 85 1373.7 

BP272 Ac-HKLHKKILKVL-NH2 5.98
[c]

 91 1397.8 

BP273 Ac-FKLHKKILKVL-NH2 6.46
[c]

 87 1407.6 

BP274 Ts-HKLHKKILKVL-NH2 6.17
[c]

 80 1509.7 

BP275 Ts-FKLHKKILKVL-NH2 6.78
[c]

 85 1519.7 

BP284 HKLFKKILKFL-NH2 17.16
[d]

 76 1413.6 

BP285 FKLFKKILKHL-NH2 17.03
[d]

 82 1413.7 

BP305 HKLFKKILKHL-NH2 6.02
[c]

 91 1404.1 

BP306 HKLHKKILKHL-NH2 5.63
[c]

 94 1394.1 

[a] HPLC retention time. [b] Percentage determined by HPLC at 220 nm. [c] Conditions A (Experimental section).            
[d] Conditions B (Experimental section) 
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3.2.2. Synthesis of H-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2 (1) 

Firstly, we investigated the compatibility of our methodology for the solid-phase 

synthesis of 5-arylhistidines with common protecting groups used in peptide chemistry. 

This strategy involves the microwave-assisted Suzuki-Miyaura reaction between a 

resin-bound 5-bromohistidine residue and an arylboronic acid. For this purpose, we chose 

the synthesis of the octapeptide H-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2 (1) as a 

model system (Scheme 3.1). Starting from a 9-fluorenylmethyloxycarbonyl-protected 

(Fmoc)-Rink-MBHA resin, we prepared the heptapeptidyl resin Fmoc-Lys(Boc)-

Lys(Boc)-Ile-Leu-Lys(Boc)-Tyr(tBu)-Leu-Rink-MBHA (2) following a Fmoc/tBu 

strategy by sequential coupling and deprotection steps under standard conditions. After 

Fmoc removal, the regioisomeric mixture Boc-His(5-Br,1-SEM)-OH (3a) and 

Boc-His(5-Br,3-SEM)-OH (3b), obtained as previously reported (Cerezo et al., 2008), 

was coupled to the resulting resin affording the bromooctapeptidyl resin 4 as a mixture of 

two regioisomers (4a and 4b). An aliquot of 4 was treated with trifluoroacetic acid 

(TFA)/CH2Cl2 and stirred for 3 h, providing H-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-

NH2 (5), with HPLC purity of 99%. 

The Suzuki-Miyaura reaction was initially attempted by treating 4 with PhB(OH)2 

(4 equiv.), Pd2(dba)3 (0.2 equiv.), KF (4 equiv.) and P(o-tolyl)3 (0.4 equiv.) in 

1,2-dimethoxyethane (DME)/EtOH/H2O (9:9:2) under microwave irradiation at 140 ºC 

for 15 min (Scheme 3.1). After acidolytic cleavage, these conditions led to H-His(5-Ph)-

Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2 (1; 56% purity) together with brominated peptide 5 

(22% purity) and dehalogenated derivative H-His-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2 (6; 

22% purity). The latter compound derives from the reductive dehalogenation of the 

bromohistidine residue of 4 which is reported to be a common side-reaction of 

Suzuki-Miyaura cross-couplings. When increasing the reaction time to 30 min, 6 was still 

detected (20%) but the purity of the expected biaryl peptide 1 was improved to 72%. 
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Boc-HN
Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Tyr(tBu)-Leu-Rink-MBHA

O

Fmoc-Rink-MBHA

i. 

ii.

Fmoc-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Tyr(tBu)-Leu-Rink-MBHA

i. 

ii.

Br

+   4b

4a

i. 

   

ii.a

N
H

N

H2N
Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2

O

Ph 1

2

Piperidine/DMF

Fmoc-Aa-OH

HBTU, HOBt, DIEA

Piperidine/DMF

Boc-His(5-Br,1-SEM)-OH (3a) and

Boc-His(5-Br,3-SEM)-OH (3b) 

HBTU, DIEA

PhB(OH)2, KF, Pd2(dba)3, P(o-tolyl)3
DME/EtOH/H2O, MW, 140 ºC, 30 min

TFA/CH2Cl2, 3 h, r.t., stirring

 

Scheme 3.1. Synthesis of the 5-phenylhistidine octapeptide 1. 

 

3.2.3. Synthesis of undecapeptides containing a 5-arylhistidine at the 

1-position 

We extended the above methodology to the synthesis of biaryl peptides 

BP281-BP283 derived from the lead antibacterial peptide BP66 (Scheme 3.2). Following 

a similar strategy to that described for 4, we prepared the regioisomeric bromopeptidyl 

resins 7a and 7b. An aliquot of 7 was subjected to TFA/CH2Cl2 and stirred for 3 h to give 

H-His(5-Br)-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 (8) with a purity of 82%. 

The arylation of 7 with PhB(OH)2 was first carried out under the conditions that 

gave the best result for the preparation of 1. Microwave irradiation at 140 ºC for 30 min 

and subsequent acidolytic treatment resulted in H-His(5-Ph)-Lys-Leu-Phe-Lys-Lys-Ile-

Leu-Lys-Phe-Leu-NH2 (BP281) with a purity of only 9%. A decrease of the reaction time 

to 15 min did not significantly improve the results, and BP281 was obtained with a purity 

of 12%. The use of SPhos instead of P(o-tolyl)3 improved the purity of BP281 to 37%. 

However, when the reaction was performed at 110 ºC for 30 min with P(o-tolyl)3, the 
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purity of BP281 increased to 72%. These conditions were applied to the arylation of 7 

with 3-hydroxyphenylboronic acid and with 3-nitrophenylboronic acid. The 

cross-coupling reaction with 3-hydroxyphenylboronic acid led to the biaryl peptide 

BP282 with a purity of 81%. In contrast, the reaction with 3-nitrophenylboronic acid was 

more difficult, and the corresponding biaryl peptide BP283 was obtained with a purity of 

only 35%. The crude reaction mixture also proved to contain a 15-33% of the 

dehalogenated derivative H-His-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 

(BP284). Thus, according to our results, the presence of an electron-withdrawing group 

such as NO2 hinders the cross-coupling. However, other studies showed that the 

electronic properties of the aromatic ring do not correlate with the reactivity of the 

boronic acid derivative (Doan et al., 2008; Cerezo et al., 2008). 

N
SEM

N

Boc-HN
Lys(Boc)-Leu-Phe-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-Leu-Rink-MBHA

O

Br

+  7b

7a

i.  ArB(OH)2, KF, Pd2(dba)3, P(o-tolyl)3

    DME/EtOH/H2O, MW, 110 ºC, 30 min

ii. TFA/CH2Cl2, 3 h, r.t., stirring

N
H

N

H2N
Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2

O

Ar

BP281        Ar= C6H5

BP282        Ar= 3-(OH)-C6H4

BP283        Ar= 3-(NO2)-C6H4  

Scheme 3.2. Synthesis of BP281, BP282, and BP283. 

 

3.2.4. Synthesis of undecapeptides containing a 5-phenylhistidine at the 

4-position 

Next, we studied the synthesis of the biaryl peptides BP276, BP277, BP279, and 

BP280 that all contained a 5-phenylhistidine at the 4-position. The preparation of the 

corresponding bromopeptidyl resins following a Fmoc/tBu strategy required the use of a 

5-bromohistidine derivative protected with a Fmoc group at the N-terminus and with a 

2-(trimethylsilyl)ethoxymethyl (SEM) group on the imidazole ring. The regioisomeric 

mixture Fmoc-His(5-Br,1-SEM)-OH (9a) and Fmoc-His(5-Br,3-SEM)-OH (9b) was 

prepared from commercially available Boc-His-OMe through bromination, introduction 
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of the SEM group, selective removal of the Boc group, methyl ester hydrolysis, and 

protection with the Fmoc group (Scheme 3.3). All reactions proceeded smoothly and the 

protected histidines 9 were fully characterized by NMR and mass spectrometry. 

N
H

N

BocHN

O

OMe

i.   NBS, MeCN, 0 ºC, 30 min

ii.  DBU, DMF, 0 ºC, 1.5 h

iii. SEMCl, 0 ºC to r.t., 3 h

N
SEM

N

BocHN

O

OMe

Br

+

N

NSEM

BocHN

O

OMe

Br

i.   TMSOTf, 2,6-lutidine, CH2Cl2, r.t., 2 h

ii.  LiOH·H2O, MeOH/THF, r.t., 1.5 h

iii. Fmoc-OSu, Na2CO3, dioxane, r.t., 24 h

N
SEM

N

FmocHN

O

OH

Br

+

N

NSEM

FmocHN

O

OH

Br

9a 9b  

Scheme 3.3. Synthesis of Fmoc-His(5-Br,1-SEM)-OH (9a) and Fmoc-His(5-Br,3-SEM)-OH (9b). 

 

We first attempted the synthesis of BP276 starting from a Fmoc-Rink-MBHA 

resin. The regioisomeric peptidyl resins Fmoc-Lys(Boc)-Lys(Boc)-Leu-His(5-Br,1-

SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-MBHA and Fmoc-Lys(Boc)-

Lys(Boc)-Leu-His(5-Br,3-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-

MBHA were prepared by sequential Fmoc group removal and amino acid coupling steps. 

The Fmoc group was removed by treatment with piperidine/N,N-dimethylformamide 

(DMF), and the amino acid couplings were mediated by N,N’-diisopropylcarbodiimide 

(DIPCDI) and ethyl 2-cyano-2-(hydroxyimino)acetate (Oxyma), except for the 

bromohistidines 9 that were incorporated with 1-[(1-(cyano-2-ethoxy-2-

oxoethylideneaminooxy)-dimethylamino-morpholinomethylene)]methanaminium 

hexafluorophosphate (COMU), Oxyma and N,N-diisopropylethylamine (DIEA). An 

aliquot of these resins was subjected to TFA/H2O/triisopropylsilane (TIS) and stirred for 

3 h, yielding Fmoc-Lys-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 with a 

purity of 78%. Next, we investigated replacing the Fmoc group for a trityl to overcome its 

instability under the conditions of the Suzuki-Miyaura cross-coupling. The Fmoc group 

was removed and the resulting resin was treated with trityl chloride (TrCl; 10 equiv.) and 

DIEA (10 equiv.) in N-methyl-2-pyrrolidone (NMP) for 4 h. This reaction proved 

difficult and eight treatments were required for a negative Kaiser test (Kaiser et al., 1970). 
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Cleavage of the final resin afforded H-Lys-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-

Leu-NH2 with a purity of 73%. 

This result was improved using a ChemMatrix resin (Scheme 3.4). Following a 

similar strategy, the regioisomeric peptidyl resins 10 were prepared and an aliquot was 

cleaved providing Fmoc-Lys-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 with 

a purity of 90%. Next, the N-terminal Fmoc group of 10 was replaced by a trityl group. 

The incorporation of this group was easier than when MBHA resin was used, only three 

treatments with TrCl (10 equiv.) and DIEA (10 equiv.) in NMP for 4 h were required. An 

aliquot of the resulting resins 11 were treated with TFA/H2O/TIS under stirring for 3 h, 

and H-Lys-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 was obtained with a 

purity of 82%. 

 

Fmoc-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-CM

Piperidine/DMF

Fmoc-His(5-Br,1-SEM)-OH (9a) and 

Fmoc-His(5-Br,3-SEM)-OH (9b)
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DIPCDI, Oxyma
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iii.
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N
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N
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O
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+  11,14-16b

11,14-16a
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11      R= Tr      
14      R= Ac       
15      R= Ac       
16      R= Ts

10      Aa1 = Lys(Boc)
12      Aa1 = Leu
13      Aa1 = Phe

Aa1 = Lys(Boc)
Aa1 = Leu
Aa1 = Phe
Aa1 = Phe

CM = ChemMatrix resin

 

Scheme 3.4. Synthesis of 5-bromopeptidyl resins 11 and 14-16. 

 

Given the good results obtained, bromopeptidyl resins 12 and 13 were prepared 

following the same protocol. Fmoc removal of resins 12 followed by acetylation with 
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Ac2O/pyridine/CH2Cl2, afforded resins 14, which after cleavage of an aliquot, led to 

Ac-Leu-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 with a purity of 77%. 

Resins 13 were deprotected and then either acetylated, providing resins 15, or tosylated 

with para-toluenesulfonyl chloride (TsCl) and DIEA to give resins 16. Acidolytic 

cleavage of aliquots of 15 and 16 furnished the bromopeptides Ac-Phe-Lys-Leu-His(5-

Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 and Ts-Phe-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-

Lys-Val-Leu-NH2 with purities of 77 and 86%, respectively. 

Resins 11 were arylated with PhB(OH)2 (4 equiv.), Pd2(dba)3 (0.2 equiv.), KF (4 

equiv.) and P(o-tolyl)3 (0.4 equiv.) in DME/EtOH/H2O (9:9:2) under microwave 

irradiation at 110 ºC for 30 min (Scheme 3.5). The resulting resin was cleaved and HPLC 

and ESI-MS analysis of the crude reaction mixture revealed the presence of starting 

material. When the arylation was carried out with SPhos, HPLC analysis showed one 

broad peak. Analysis by ESI-MS revealed the formation of the expected biaryl peptide 

BP276 together with the dehalogenated peptide H-Lys-Lys-Leu-His-Lys-Lys-Ile-Leu-

Lys-Val-Leu-NH2 (BP270) in a 4:3 ratio, and other compounds that could not be 

identified. Performing the arylation at higher temperature, 140 ºC for 30 min, slightly 

improved the results. Two major peaks were observed by HPLC and BP276 and BP270 

were detected by ESI-MS in a 4:3 ratio. BP276 was isolated by reverse-phase column 

chromatography and obtained with a purity of 95%. 
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Scheme 3.5. Synthesis of BP276, BP277, and BP279. 
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These reaction conditions were applied to the arylation of resins 14 and 15. After 

cleavage, ESI-MS analysis showed the presence of the expected biaryl peptides BP277 

and BP279, respectively. In both cases, these biaryl peptides were also obtained along 

with the corresponding dehalogenated compound Ac-Leu-Lys-Leu-His-Lys-Lys-Ile-Leu-

Lys-Val-Leu-NH2 (BP271) or Ac-Phe-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 

(BP273) in a 4:3 ratio. BP277 was isolated by reverse-phase column chromatography and 

obtained with a purity of 95%. 

In contrast, arylation of resins 16 did not afford the biaryl peptide BP280. In this 

case, the dehalogenated peptide Ts-Phe-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 

(BP275) was the major product. This result was attributed to the N-terminal tosyl group 

of the bromopeptidyl resins 16. Thus, we decided to carry out the arylation step before the 

tosylation step. For this reason, bromopeptidyl resins 13 were transformed into the 

N-terminal tritylated bromopeptidyl resins 17, which were subjected to arylation with 

PhB(OH)2 (Scheme 3.6). The crude reaction mixture proved to contain biaryl peptide 

H-Phe-Lys-Leu-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 and the dehalogenated 

compound H-Phe-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 in a 4:3 ratio. 

Selective trityl group removal of 17 with TFA/H2O/CH2Cl2 (0.2:1:98.8), followed by 

tosylation and cleavage afforded BP280 and Ts-Phe-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-

Val-Leu-NH2 (BP275) in a 4:3 ratio. 

Relative to the arylation of peptides containing a 5-bromohistidine residue at the 

1-position, the synthesis of BP276, BP277 and BP279 revealed that arylation at the 

4-position is more difficult, as shown by the formation of the dehalogenated byproduct. 

This result could be attributed to the fact that the 5-bromohistidine residue in peptidyl 

resins 11, 14, and 15 is located at a less accessible position than in 7. 
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Scheme 3.6. Synthesis of BP280. 

 

3.2.5. Synthesis of peptides containing histidine residues 

For comparison purposes, histidine-containing peptides BP270-BP275, BP284, 

BP285, BP305 and BP306 were prepared by the solid-phase method using Fmoc-type 

chemistry on a Fmoc-Rink-MBHA resin (Table 3.1). Coupling of the Fmoc-amino acids 

were mediated by DIPCDI and Oxyma in DMF. The Fmoc group was removed by 

treating the resin with a mixture of piperidine/DMF. Once the chain assembly was 

completed, the N-terminal Fmoc group was removed and the resulting resin was cleaved 

with TFA/H2O/TIS for 2 h or subjected to N-terminus derivatization. Acetylation was 

performed by treatment with Ac2O/pyridine/CH2Cl2, and tosylation was carried out by 

treatment with TsCl and DIEA. Following the derivatization step, peptides were released 

from the resin. All compounds synthesized were obtained in good purities, 74-99% as 

determined by HPLC. ESI-MS was used to confirm peptide identity. 
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3.2.6. Biological activity 

Peptides synthesized were screened for their antimicrobial activity against E. 

amylovora, X. axonopodis pv. vesicatoria, P. syringae pv. syringae, F. oxysporum and P. 

expansum. In general, E. amylovora and P. expansum were the least sensitive pathogens 

to these peptides. Against X. axonopodis pv. vesicatoria, P. syringae pv. syringae, and F. 

oxysporum, most peptides exhibited an antimicrobial activity ranging from 3.1 to 25 M 

(Table 3.2). Moreover, BP281, BP284, and BP305 showed a MIC <3.1 M against F. 

oxysporum, being more active than the parent peptide BP66. Among the peptides bearing 

a histidine residue, BP275 was the most active, with MIC values of 3.1 to 6.2 M against 

F. oxysporum, X. axonopodis pv. vesicatoria, and P. syringae pv. syringae, with the 

activity against the latter higher than that of the parent peptide BP22. Results showed that 

the arylation of the histidine residue do not significantly influence the antimicrobial 

activity and both arylated and non-arylated peptides displayed similar activity. Moreover, 

we did not observe differences between the antimicrobial activity of the purified and non-

purified samples of peptides BP276 and BP277. Therefore, we decided to test BP279 and 

BP280 as mixtures. These samples together with BP281 and BP282 were the 

5-arylhistidine-containing peptides that displayed the highest antimicrobial activity. 

Interestingly, substitution of a phenylalanine by a histidine or a 5-arylhistidine 

resulted in a significant decrease in hemolytic activity. These results are in good 

agreement with previous studies on antimicrobial peptides reporting that an increase of 

the peptide hydrophilicity is related to a decrease of the cytotoxicity (Blondelle and 

Lohner, 2000; Oh et al., 2000; Ferre et al., 2006; Badosa et al., 2007; Badosa et al., 2009). 

Thus, peptides incorporating a histidine residue were low hemolytic, 0-26% at 150 M. 

Notably, the most active peptide BP275 only showed a hemolysis of 4% at this 

concentration, being much lower than that of the parent peptide BP22 (73%). Even 

though the arylation of the imidazole ring increased the cytotoxicity, the 

5-arylhistidine-containing peptides were less hemolytic (25-55%) than the corresponding 

phenylalanine analogues (16-85%), except for BP276 that showed similar hemolysis than 

BP15. These results suggest that the imidazole ring of histidine confers to peptides a 

higher hydrophilicity than the benzene ring of phenylalanine. Therefore, despite the 

introduction of a histidine or a 5-arylhistidine does not improve the antimicrobial activity, 

this modification leads to significantly less cytotoxic peptides. 
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Table 3.2. Antimicrobial activity (MIC) and cytotoxicity of histidine- and 5-arylhistidine-

containing peptides, and of the corresponding parent peptides 

Peptide 
MIC (M) 

Hemolysis
[a]

 
(%) 

Ea
[b]

 Pss
[b]

 Xav
[b]

  Fo
[b]

 Pe
[b]

 150 M 

BP15 (KKLFKKILKVL-NH2) 3.1-6.2 3.1-6.2 12.5-25  <3.1 12.5-25 16 ± 2.9 

BP270 >50 12.5-25 >50  6.2-12.5 >50 0 ± 1.1 

BP276 25-50 6.2-12.5 12.5-25  6.2-12.5 >50 19 ± 2.4 

BP21 (Ac-FKLFKKILKVL-NH2) 6.2-12.5 6.2-12.5 3.1-6.2  3.1-6.2 <6.2 85 ± 1.4 

BP272 >50 12.5-25 >50  6.2-12.5 >50 0 ± 0.1 

BP273 >50 12.5-25 25-50  6.2-12.5 >50 0 ± 0.5 

BP279 12.5-25 12.5-25 3.1-6.2  3.1-6.2 >50 25 ± 0.2 

BP22 (Ts-FKLFKKILKVL-NH2) 6.2-12.5 6.2-12.5 3.1-6.2  3.1-6.2 6.2-12.5 73 ± 1.5 

BP274 25-50 6.2-12.5 6.2-12.5  3.1-6.2 >50 0 ± 0.1 

BP275 12.5-25 3.1-6.2 3.1-6.2  3.1-6.2 >50 4 ± 1.3 

BP280 12.5-25 12.5-25 3.1-6.2  6.2-12.5 >50 43 ± 2.1 

BP34 (Ac-LKLFKKILKVL-NH2) 6.2-12.5 6.2-12.5 3.1-6.2  3.1-6.2 <6.2 45 ± 2.8 

BP271 >50 12.5-25 >50  12.5-25 >50 0 ± 0.3 

BP277 >25 >25 >25  6.2-12.5 >50 0 ± 0.1 

BP66 (FKLFKKILKFL-NH2) 6.2-12.5 3.1-6.2 3.1-6.2  3.1-6.2 25-50 63 ± 5.9 

BP284 6.2-12.5 6.2-12.5 6.2-12.5  <3.1 25-50 16 ± 5.4 

BP285 >25 >25 >50  3.1-6.2 >50 26 ± 0.8 

BP305 >25 12.5-25 12.5-25  <3.1 >50 0 ± 0.2 

BP306 >25 >25 >50  6.2-12.5 >50 0 ± 0.3 

BP281 6.2-12.5 6.2-12.5 3.1-6.2  <3.1 25-50 54 ± 8.5 

BP282 6.2-12.5 6.2-12.5 3.1-6.2  3.1-6.2 >50 55 ± 4.6 

[a] Percentage hemolysis plus confidence interval. [b] Ea, Erwinia amylovora; Pss, Pseudomonas syringae pv. syringae; 

Xav, Xanthomonas axonopodis pv. vesicatoria; Fo, Fusarium oxysporum; Pe, Penicillium expansum. 
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3.3. CONCLUSIONS 

In summary, we have established the viability of the solid-phase Suzuki-Miyaura 

reaction for the synthesis of 5-arylhistidine undecapeptides. This work shows that the 

Suzuki-Miyaura reaction can be applied to the cross-coupling of a resin bound 

5-bromohistidine residue, either at the 1- or 4-position, with an arylboronic acid. 

Moreover, this work constitutes the first example of a solid-phase Suzuki-Miyaura 

cross-coupling for the formation of long biaryl linear peptides containing a 

5-arylhistidine. These biaryl peptides displayed antibacterial and antifungal activity and 

were low hemolytic. This low cytotoxicity has been attributed to the presence of the 

imidazole ring of histidine. We expect that this methodology could be useful for the 

development of new antimicrobial agents. 

 

3.4. EXPERIMENTAL SECTION 

3.4.1. General methods  

Manual peptide synthesis was performed in polypropylene syringes fitted with a 

polyethylene porous disk. Solvents and soluble reagents were removed in vacuo. Most 

chemicals were purchased from commercial suppliers Sigma–Aldrich, Fluka, 

NovaBiochem (Schwalbach, Germany), Iris Biotech GmbH (Marktredwitz, Germany), 

Scharlab (Sentmenat, Spain), Merck (Mollet del Vallès, Spain) or Panreac (Castellar del 

Vallès, Spain) and used without further purification. 

Peptides were analyzed under standard analytical HPLC conditions with a Dionex 

liquid chromatography instrument composed of an UV/Vis Dionex UVD170U detector, a 

P680 Dionex bomb, an ASI-100 Dionex automatic injector, and CHROMELEON 6.60 

software. Detection was performed at 220 nm. Solvent A was 0.1% aq. TFA and solvent 

B was 0.1% TFA in MeCN. Conditions A: Analysis was carried out with a Kromasil 100 

C18 (4.6 mm  40 mm, 3.5 m) column with a 2–100% B over 7 min at a flow rate of 1 

mL/min. Conditions B: Analysis was carried out with a Kromasil 100 C18 (4.6 mm × 250 

mm, 3.5 m) column with a 2–100% B over 30 min at a flow rate of 1 mL/min. 
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Flash chromatography purifications were performed on C18-reversed phase silica 

gel 100 not endcapped (230-400 mesh, Fluka). 

ESI-MS analyses were performed with an Esquire 6000 ESI ion Trap LC/MS 

(Bruker Daltonics) instrument equipped with an electrospray ion source. The instrument 

was operated in the positive ESI(+) ion mode. Samples (5 μL) were introduced into the 

mass spectrometer ion source directly through an HPLC autosampler. The mobile phase 

(80:20 MeCN/H2O at a flow rate of 100 L/min) was delivered by a 1100 Series HPLC 

pump (Agilent). Nitrogen was employed as both the drying and nebulising gas. HRMS 

were recorded under conditions of ESI with a Bruker MicroTof-Q instrument with a 

hybrid quadrupole time-of-flight mass spectrometer (University of Zaragoza). Samples 

were introduced into the mass spectrometer ion source directly through a 1100 Series 

Agilent HPLC autosampler and were externally calibrated using sodium formate. The 

instrument was operated in the positive ESI(+) ion mode. 

1
H and 

13
C NMR spectra were measured with a Bruker 300 or 400 MHz NMR 

spectrometer. Chemical shifts were reported as δ values (ppm) directly referenced to the 

solvent signal. 

Microwave-assisted reactions were performed with an Ethos SEL labstation 

microwave (Milestone) equipped with a dual magnetron (1600 W). The time, 

temperature, and power were controlled with the EasyControl software. The temperature 

was monitored through the ATC-400FO Automatic Fiber Optic Temperature Control 

System immersed in a standard Milestone reference vessel. This equipment regulates the 

power to achieve and maintain the selected temperature. 
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3.4.2. Synthesis of amino acids 

Methyl 5-bromo-N()-[2-(trimethylsilyl)ethoxymethyl]-L-histidinate and methyl 

5-bromo-N()-[2-(trimethylsilyl)ethoxymethyl]-L-histidinate: Trimethylsilyl 

trifluoromethanesulfonate (TMSOTf) (2.27 mL, 12.54 mmol) and 2,6-lutidine (1.95 mL, 

16.72 mmol) were added to a solution of Boc-His(5-Br,1-SEM)-OMe and Boc-His(5-

Br,3-SEM)-OMe (Cerezo et al., 2008) (2.0 g, 4.18 mmol) in CH2Cl2 (48 mL). The 

reaction mixture was stirred at room temperature for 2 h. Then, citric acid (10%, 50 mL) 

was added and the product was extracted with CH2Cl2 (3×50 mL). The organic layers 

were combined, washed with brine (50 mL), and dried over anhydrous magnesium 

sulphate. Removal of the solvent yielded H-His(5-Br,1-SEM)-OMe and H-His(5-Br,3-

SEM)-OMe as a colorless oil (1.36 g, 86% yield). tR 7.22 and 7.52 min (conditions A). 
1
H 

NMR (400 MHz, [D6]DMSO): δ = 0.07 [s, 9 H, (CH3)3Si], 0.92-0.96 (m, 2 H, CH2Si), 

3.08 (dd, J = 6.8 and 15.4 Hz, 1 H, CH2-β), 3.14 (dd, J = 5.8 and 15.4 Hz, 1 H, CH2-β), 

3.56-3.60 (m, 2 H, OCH2), 3.73 (s, 0.75 H, OCH3), 3.76 (s, 2.25 H, OCH3), 4.37 (t, J = 

6.4 Hz, 1 H, CH-), 5.40 (s, 1.5 H, NCH2O), 5.49 (s, 0.5 H, NCH2O), 7.99 (s, 0.25 H, 

CH-2imid), 8.15 (s, 0.75 H, CH-2imid), 8.64 (br. s, 3 H, NH2) ppm. MS (ESI): m/z = 378.0, 

380.0 [M + H]
+
. 

 

5-Bromo-N()-[2-(trimethylsilyl)ethoxymethyl]-L-histidine and 5-bromo-N()-[2-

(trimethylsilyl)ethoxymethyl]-L-histidine: An aqueous solution of LiOH (6.5 mL, 10.31 

mmol) was added to a solution of H-His(5-Br,1-SEM)-OMe and H-His(5-Br,3-SEM)-

OMe (1.3 g, 3.44 mmol) in MeOH/THF (1:1, 13 mL). The reaction mixture was stirred at 

room temperature for 1.5 h. After this time, the organic solvents were evaporated under 

reduced pressure and water (25 mL) was added to the resulting residue. The solution was 

adjusted to pH 6 by addition of glacial AcOH and lyophilized to afford H-His(5-Br,1-

SEM)-OH and H-His(5-Br,3-SEM)-OH as a white solid (0.93 g, 75% yield). tR 6.50 and 

6.67 min (conditions A). 
1
H NMR (400 MHz, [D6]DMSO): δ = 0.06 [s, 9 H, (CH3)3Si], 

0.91-0.96 (m, 2 H, CH2Si), 3.06 (dd, J = 3.2 and 14.8 Hz, 1 H, CH2-), 3.12 (dd, J = 4.8 

and 14.8 Hz, 1 H, CH2-), 3.59-3.61 (m, 2 H, OCH2), 5.38 (s, 2 H, NCH2O), 7.81 (s, 0.25 

H, CH-2imid), 8.08 (s, 0.75 H, CH-2imid) ppm. MS (ESI): m/z 364.1, 366.1 [M + H]
+
, 

370.1, 372.1 [M + Li]
+
. 
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5-Bromo-N()-(9-fluorenylmethyloxycarbonyl)-N()-[2-

(trimethylsilyl)ethoxymethyl]-L-histidine (9a) and 5-bromo-N()-(9-

fluorenylmethyloxycarbonyl)-N()-[2-(trimethylsilyl)ethoxymethyl]-L-histidine (9b): 

A solution of H-His(5-Br,1-SEM)-OH and H-His(5-Br,3-SEM)-OH (0.89 g, 2.44 mmol) 

in dioxane (9 mL) was neutralized to pH 7-8 by addition of Na2CO3 (10%). The reaction 

mixture was stirred at room temperature for 30 min. After this time, Fmoc-OSu (0.87 g, 

2.57 mmol) was added and the mixture was stirred for 24 h at room temperature. The 

reaction mixture was then concentrated in vacuo, water (30 mL) was added, and the 

product was extracted with EtOAc (330 mL). The organic layers were combined, 

washed with brine (30 mL), and dried over anhydrous magnesium sulfate. Removal of the 

solvent followed by digestion of the resulting precipitate in pentane (20 mL) for 3 h 

afforded a white solid, which was purified by column chromatography. Elution with 

CH2Cl2/MeOH (98:2) gave Fmoc-His(5-Br,1-SEM)-OH (9a) and Fmoc-His(5-Br,3-

SEM)-OH (9b) as a white solid (0.87 g, 61% yield). tR 8.52 and 8.81 min (conditions A). 

1
H NMR (400 MHz, CDCl3): δ = -0.01 (s, 9 H, (CH3)3Si), 0.88-0.93 (m, 2 H, CH2Si), 

3.17-3.30 (m, 2H, CH2-), 3.49-3.55 (m, 2 H, OCH2), 4.22 (t, J = 6.8 Hz, 1 H, 

CH-Fmoc), 4.42-4.46 (m, 2H, CH2-Fmoc), 4.60-4.61 (m, 1H, CH-), 5.24-5.28 (m, 2 H, 

NCH2O), 5.77 (br. s, 1 H, CONH), 7.31 (t, J = 7.2 Hz, 2 H, CH-2arom, CH-7arom), 7.40 (t, J 

= 7.2 Hz, 2 H, CH-3arom and CH-6arom), 7.62 (d, J = 7.2 Hz, 2 H, CH-1arom, CH-8arom), 

7.77 (d, J = 7.2 Hz, 2 H, CH-4arom, CH-5arom), 7.86 (s, 1 H, CH-2imid) ppm. MS (ESI): m/z 

= 586.1, 588.1 [M + H]
+
. 

 

3.4.3. Synthesis of peptides containing a 5-arylhistidine at the 1-position 

Boc-His(5-Br,1-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Tyr(tBu)-Leu-Rink-

MBHA (4a) and Boc-His(5-Br,3-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-

Tyr(tBu)-Leu-Rink-MBHA (4b): The bromopeptidyl resins 4a and 4b were synthesized 

manually by the solid-phase method by using standard Fmoc chemistry. Fmoc-Rink-

MBHA resin (0.64 mmol/g) was used as solid support. Couplings of Fmoc amino acids 

were carried out as follows: Fmoc-Aa-OH (4 equiv.) was dissolved in DMF and 

preactivated for 5 min with O-(benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium 

hexafluorophosphate (HBTU) (3.8 equiv.), N-hydroxybenzotriazole (HOBt) (4 equiv.) 
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and DIEA (7.8 equiv.). The mixture was added to the resin and shaken for 1 h at room 

temperature. Coupling of Boc-His(5-Br,1-SEM)-OH (3a) and Boc-His(5-Br,3-SEM)-OH 

(3b) (Cerezo et al., 2008) (3 equiv.) was performed with HBTU (3 equiv.) and DIEA (3 

equiv.) in DMF whilst stirring for 3 h at room temperature. The completion of the 

reaction was checked by the Kaiser test (Kaiser et al., 1970). The Fmoc group was 

removed by treating the resin with a mixture of piperidine/DMF (3:7, 13 and 17 min). 

After each coupling and deprotection step, the resin was washed with DMF (31 min), 

MeOH (11 min) and CH2Cl2 (31 min), and air dried. An aliquot of the resulting resins 

4a and 4b was cleaved with TFA/H2O/TIS (95:2.5:2.5) whilst stirring for 3 h at room 

temperature. Following TFA evaporation and diethyl ether extraction, the crude peptide 

was dissolved in H2O and lyophilized to afford H-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Tyr-

Leu-NH2 (5) (99% purity). tR 5.89 min (conditions A); MS (ESI): m/z = 560.3, 561.4 [M 

+ 2H]
2+

, 1119.6, 1121.6 [M + H]
+
, 1141.5, 1143.4 [M+Na]

+
. 

 

Boc-His(5-Br,1-SEM)-Lys(Boc)-Leu-Phe-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-

Leu-Rink-MBHA (7a) and Boc-His(5-Br,3-SEM)-Lys(Boc)-Leu-Phe-Lys(Boc)-

Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-Leu-Rink-MBHA (7b): The 5-bromoundecapeptidyl 

resins 7a and 7b were prepared following the same procedure described for 4a and 4b. 

Cleavage of an aliquot of the resulting bromoundecapeptidyl resins 7 by using 

TFA/H2O/TIS (95:2.5:2.5) whilst stirring for 3 h at room temperature, followed by TFA 

evaporation and diethyl ether extraction afforded H-His(5-Br)-Lys-Leu-Phe-Lys-Lys-Ile-

Leu-Lys-Phe-Leu-NH2 (8, 82% purity). tR 6.63 min (conditions A). MS (ESI): m/z = 

746.3, 747.3 [M + 2H]
2+

, 1491.6, 1493.6 [M + H]
+
. 
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General method for the arylation of bromopeptidyl resins 4 and 7 by using a 

microwave-assisted solid-phase Suzuki-Miyaura reaction 

A 10 mL reaction vessel containing a magnetic stir bar was charged with the 

corresponding bromopeptidyl resins (50 mg), which was first swelled in a degassed 

mixture of DME/EtOH/H2O (9:9:2, 1.2 mL) for 15 min under nitrogen. Then, Pd2(dba)3 

(0.2 equiv.), P(o-tolyl)3 (0.4 equiv.), KF (4 equiv.) and the corresponding boronic acid (4 

equiv.) were added. The sealed vial was heated under nitrogen in the microwave 

labstation. A microwave ramp (600 W maximum) was applied for 5 min to reach the 

reaction temperature. The reaction mixture was irradiated at this temperature for 30 min. 

After the reaction time, upon cooling, the solvent was removed and the resin was washed 

with DMF (31 min), EtOH (31 min), CH2Cl2 (31 min) and diethyl ether (31 min). 

The biaryl peptides were released from the solid support by treatment with TFA/CH2Cl2 

(95:5) whilst stirring for 3 h at room temperature. Following TFA evaporation and diethyl 

ether extraction, the crude peptides were dissolved in H2O and lyophilized. 

 

H-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2 (1): Starting from resin Boc-His(5-

Br,1-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Tyr(tBu)-Leu-Rink-MBHA (4a) and 

Boc-His(5-Br,3-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Tyr(tBu)-Leu-Rink-MBHA 

(4b), Suzuki-Miyaura reaction with phenylboronic acid at 140 ºC, followed by acidolytic 

cleavage afforded the biaryl linear peptide 1 (72% purity). tR 16.09 min (conditions B); 

MS (ESI): m/z = 559.34 [M + 2H]
2+

, 1041.61 [M  C6H5 + H]
+
, 1117.62 [M + H]

+
. 

 

H-His(5-Ph)-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 (BP281): Starting from 

resin Boc-His(5-Br,1-SEM)-Lys(Boc)-Leu-Phe-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-

Phe-Leu-Rink-MBHA (7a) and Boc-His(5-Br,3-SEM)-Lys(Boc)-Leu-Phe-Lys(Boc)-

Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-Leu-Rink-MBHA (7b), Suzuki-Miyaura reaction with 

phenylboronic acid at 110 ºC, followed by acidolytic cleavage afforded the biaryl linear 

peptide BP281 (72% purity). tR 17.70 min (conditions B). MS (ESI): m/z = 745.9 [M + 

2H]
2+

, 1490.2 [M + H]
+
, 1512.2 [M + Na]

+
. 
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Biaryl peptide BP282: Starting from resin Boc-His(5-Br,1-SEM)-Lys(Boc)-Leu-Phe-

Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-Leu-Rink-MBHA (7a) and Boc-His(5-Br,3-

SEM)-Lys(Boc)-Leu-Phe-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-Leu-Rink-MBHA 

(7b), Suzuki-Miyaura reaction with 3-hydroxyphenylboronic acid at 110 ºC, followed by 

acidolytic cleavage afforded the biaryl linear peptide BP282 (81% purity). tR 17.44 min 

(conditions B). MS (ESI): m/z = 753.4 [M + 2H]
2+

, 1505.8 [M + H]
+
, 1527.8 [M + Na]

+
. 

 

Biaryl peptide BP283: Starting from resin Boc-His(5-Br,1-SEM)-Lys(Boc)-Leu-Phe-

Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-Leu-Rink-MBHA (7a) and Boc-His(5-Br,3-

SEM)-Lys(Boc)-Leu-Phe-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-Leu-Rink-MBHA 

(7b), Suzuki-Miyaura reaction with 3-nitrophenylboronic acid at 110 ºC, followed by 

acidolytic cleavage afforded the biaryl linear peptide BP283 (35% purity). tR 17.98 min 

(conditions B). MS (ESI): m/z = 767.9 [M + 2H]
2+

, 1535.8 [M + H]
+
, 1556.7 [M + Na]

+
. 

 

3.4.4. Synthesis of peptides containing a 5-phenylhistidine at the 

4-position 

Tr-Lys(Boc)-Lys(Boc)-Leu-His(5-Br,1-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-

Val-Leu-Rink-ChemMatrix (11a) and Tr-Lys(Boc)-Lys(Boc)-Leu-His(5-Br,3-SEM)-

Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-ChemMatrix (11b): The 

bromotripeptidyl resins 11 were synthesized manually by the solid-phase method using 

standard Fmoc chemistry. Aminomethyl ChemMatrix resin (0.66 mmol/g) was used as 

solid support and it was washed before its use with MeOH (21 min), DMF (21 min), 

CH2Cl2 (31 min), TFA/CH2Cl2 (1:99, 31 min), DIEA/CH2Cl2 (1:19, 31 min) and 

CH2Cl2 (31 min). Coupling of Fmoc-Rink (4 equiv.) was mediated by DIPCDI (4 

equiv.) and Oxyma (4 equiv.) in DMF or NMP at room temperature overnight. Couplings 

of the Fmoc-amino acids (4 equiv.) were performed using DIPCDI (4 equiv.) and Oxyma 

(4 equiv.) in DMF at room temperature for 1 h, except for coupling of 

Fmoc-His(5-Br,1-SEM)-OH (9a) and Fmoc-His(5-Br,3-SEM)-OH (9b) (2 equiv.) which 

was carried out using COMU (2 equiv.), Oxyma (2 equiv.) and DIEA (4 equiv.) in NMP 

at room temperature overnight. The completion of the reactions was monitored by the 
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Kaiser test (Kaiser et al., 1970). Fmoc group removal was achieved with a mixture of 

piperidine/DMF (3:7, 12 and 110 min). After each coupling and deprotection step, the 

resulting resins 10 were washed with DMF or NMP (61 min). 

An aliquot of resins 10 was cleaved with TFA/H2O/TIS (95:2.5:2.5) whilst stirring 

for 3 h at room temperature. Following TFA evaporation and diethyl ether extraction, the 

crude peptide was dissolved in H2O and lyophilized, affording Fmoc-Lys-Lys-Leu-His(5-

Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (90% purity). tR 7.10 min (conditions A). 

The rest of resins 10 was subjected to Fmoc removal and washes, followed by 

three treatments with TrCl (10 equiv.) and DIEA (10 equiv.) in NMP at room temperature 

for 4 h. Then, the resulting resins 11 were washed with NMP (61 min). The completion 

of this reaction was monitored by the Kaiser test (Kaiser et al., 1970). An aliquot of resins 

11 was cleaved with TFA/H2O/TIS (95:2.5:2.5) under the conditions described above, 

affording H-Lys-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (82% purity). tR 

15.70 min (conditions B). MS (ESI): m/z = 712.8, 713.8 [M + 2H]
2+

, 1424.5, 1426.5 [M + 

H]
+
. 

 

Ac-Leu-Lys(Boc)-Leu-His(5-Br,1-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-

Leu-Rink-ChemMatrix (14a) and Ac-Leu-Lys(Boc)-Leu-His(5-Br,3-SEM)-Lys(Boc)-

Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-ChemMatrix (14b): The Fmoc-

undecapeptidyl resins 12 were prepared following the procedure described for resins 10. 

Once the peptide sequence was completed, resins 12 were subjected to Fmoc removal and 

washes, followed by treatment with Ac2O/pyridine/CH2Cl2 (1:1:1) at room temperature 

for 1 h. After this time, the resulting resins 14 were washed with CH2Cl2 (61 min). The 

completion of this reaction was monitored by the Kaiser test (Kaiser et al., 1970). An 

aliquot of resins 14 was cleaved with TFA/H2O/TIS (95:2.5:2.5) under the conditions 

described above, affording Ac-Leu-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-

NH2 (77% purity). tR 6.70 min (conditions A). MS (ESI): m/z = 1451.4, 1453.4 [M + H]
+
, 

1473.4, 1475.4 [M + Na]
+
. 
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Ac-Phe-Lys(Boc)-Leu-His(5-Br,1-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-

Leu-Rink-ChemMatrix (15a) and Ac-Phe-Lys(Boc)-Leu-His(5-Br,3-SEM)-Lys(Boc)-

Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-ChemMatrix (15b): The Fmoc-

undecapeptidyl resins 13 were prepared following the procedure described for resins 10. 

Once the peptide sequence was completed, resins 13 were subjected to Fmoc removal and 

washes, followed by treatment with Ac2O/pyridine/CH2Cl2 (1:1:1) at room temperature 

for 1 h. After this time, the resulting resins 15 were washed with CH2Cl2 (61 min). The 

completion of this reaction was monitored by the Kaiser test (Kaiser et al., 1970). An 

aliquot of resins 15 was cleaved with TFA/H2O/TIS (95:2.5:2.5) under the conditions 

described above, affording Ac-Phe-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-

NH2 (77% purity). tR 6.73 min (conditions A). MS (ESI): m/z = 1485.4, 1487.4 [M + H]
+
, 

1507.4, 1509.4 [M + Na]
+
. 

 

Ts-Phe-Lys(Boc)-Leu-His(5-Br,1-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-

Leu-Rink-ChemMatrix (16a) and Ts-Phe-Lys(Boc)-Leu-His(5-Br,3-SEM)-Lys(Boc)-

Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-ChemMatrix (16b): Resins 13 were 

subjected to Fmoc removal and washes, followed by treatment with TsCl (40 equiv.) and 

DIEA (80 equiv.) in a mixture of CH2Cl2/NMP (9:1) at room temperature for 1 h. After 

this time, the resulting resins 16 were washed with CH2Cl2 (61 min) and NMP (31 

min). The completion of this reaction was monitored by the Kaiser test (Kaiser et al., 

1970). An aliquot of resins 16 was cleaved with TFA/H2O/TIS (95:2.5:2.5) under the 

conditions described above, affording Ts-Phe-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-

Val-Leu-NH2 (86% purity). tR 6.96 min (conditions A). MS (ESI): m/z = 799.4, 800.4 [M 

+ 2H]
2+

, 1597.4, 1599.4 [M + H]
+
. 

 

Tr-Phe-Lys(Boc)-Leu-His(5-Br,1-SEM)-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-

Leu-Rink-ChemMatrix (17a) and Tr-Phe-Lys(Boc)-Leu-His(5-Br,3-SEM)-Lys(Boc)-

Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-ChemMatrix (17b): Resins 13 were 

subjected to Fmoc removal and washes, followed by treatment with TrCl (10 equiv.) and 

DIEA (10 equiv.) in NMP at room temperature for 4 h. Then, the resulting resins 17 were 

washed with NMP (61 min). The completion of this reaction was monitored by the 
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Kaiser test (Kaiser et al., 1970). An aliquot of resins 17 was cleaved with TFA/H2O/TIS 

(95:2.5:2.5) under the conditions described above, affording H-Phe-Lys-Leu-His(5-Br)-

Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (82% purity). tR 6.68 min (conditions A). MS (ESI): 

m/z = 722.5, 723.5 [M + 2H]
2+

, 1444.0, 1446.0 [M + H]
+
, 1465.9, 1467.9 [M + Na]

+
. 

 

General method for the arylation of bromopeptidyl resins 11, 14, 15 and 17 by using 

a microwave-assisted solid-phase Suzuki-Miyaura reaction 

A 5 mL quartz vial was charged with the corresponding bromopeptidyl resins (50 

mg), which were first swelled in a degassed mixture of DME/EtOH/H2O (9:9:2, 0.84 mL) 

for 20 min under nitrogen. Then, Pd2(dba)3 (0.2 equiv.), SPhos (0.4 equiv.), KF (4 equiv.) 

and phenylboronic acid (4 equiv.) were added. The reaction mixture was heated at 140 ºC 

under microwave irradiation for 30 min. After this time, the resins were washed with 

DMF (31 min), H2O (31 min), EtOH (31 min), CH2Cl2 (31 min) and diethyl ether 

(31 min). The resulting biaryl linear peptidyl resins were cleaved with TFA/H2O/TIS 

(95:2.5:2.5) whilst stirring for 3 h at room temperature. Following TFA evaporation and 

diethyl ether extraction, the crude peptide was dissolved in H2O/MeCN and lyophilized. 

 

H-Lys-Lys-Leu-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP276): Starting from 

resins 11, Suzuki-Miyaura reaction followed by acidolytic cleavage afforded the biaryl 

linear peptide BP276 and H-Lys-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 

(BP270) [4:3 ratio by MS (ESI)]. BP276 was purified by reverse-phase column 

chromatography (95% purity). tR 6.41 min (conditions A). MS (ESI): m/z = 711.9 [M + 

2H]
2+

, 1422.6 [M + H]
+
, 1444.6 [M + Na]

+
. HRMS (ESI): calcd for C71H130N19O11 [M + 

3H]
3+

 475.0060; found 475.0043; calcd for C71H129N19O11 [M + 2H]
2+

 712.0054; found 

712.0012. 

 

Ac-Leu-Lys-Leu-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP277): Starting 

from resins 14, Suzuki-Miyaura reaction followed by acidolytic cleavage afforded the 

biaryl linear peptide BP277 and Ac-Leu-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 

(BP271) [4:3 ratio by MS (ESI)]. BP277 was purified by reverse-phase column 
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chromatography (95% purity). tR 6.61 min (conditions A). MS (ESI): m/z = 725.5 [M + 

2H]
2+

, 1449.6 [M + H]
+
, 1471.6 [M + Na]

+
. HRMS (ESI): calcd for C73H131N18O12 [M + 

3H]
3+

 484.0059; found 484.0049; calcd for C73H130N18O12 [M + 2H]
2+

 725.5052; found 

725.4994. 

 

Ac-Phe-Lys-Leu-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP279): Starting 

from resins 15, Suzuki-Miyaura reaction followed by acidolytic cleavage afforded the 

biaryl linear peptide BP279 and Ac-Phe-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 

(BP273) [4:3 ratio by MS (ESI)]. MS (ESI): m/z = 705.0 [M + 2H]
2+

, 742.5 [M + 2H]
2+

, 

1407.6 [M + H]
+
, 1483.6 [M + H]

+
. HRMS (ESI): calcd for C76H129N18O12 [M + 3H]

3+
 

495.3340; found 495.3326; calcd for C76H128N18O12 [M + 2H]
2+

 742.4974; found 

742.4936. 

 

Ts-Phe-Lys-Leu-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP280): Resins 17 

were subjected to Suzuki-Miyaura reaction. The resulting resins were treated with 

TFA/H2O/CH2Cl2 (0.2:1:98.8, 21 min and 120 min), and then washed with DMF (31 

min), DIEA/CH2Cl2 (1:19, 31 min) and DMF (31 min). Then, the resins were treated 

with TsCl (40 equiv.) and DIEA (80 equiv.) in a mixture of CH2Cl2/NMP (9:1) at room 

temperature for 1 h. After this time, the resins were washed with CH2Cl2 (61 min) and 

NMP (31 min). Acidolytic cleavage afforded BP280 and Ts-Phe-Lys-Leu-His-Lys-Lys-

Ile-Leu-Lys-Val-Leu-NH2 (BP275) [4:3 ratio by MS (ESI)]. MS (ESI): m/z = 760.9 [M + 

2H]
2+

, 798.4 [M + 2H]
2+

, 1519.4 [M + H]
+
, 1595.4 [M + H]

+
. HRMS (ESI): calcd for 

C81H133N18O13S [M + 3H]
3+

 532.6668; found 532.6692; calcd for C81H132N18O13S [M + 

2H]
2+

 798.4965; found 798.4981. 

 

  



Chapter 3: Biaryl linear peptides 

132 

3.4.5. Synthesis of peptides containing histidine residues 

General method for the solid-phase synthesis of histidine-containing peptides 

BP270-BP275, BP284, BP285, BP305, and BP306 

Peptides were synthesized manually by the solid-phase method using standard 

Fmoc chemistry. Fmoc-Rink-MBHA resin (0.56 mmol/g) was used as solid support and it 

was swelled before its use with CH2Cl2 (120 min) and DMF (120 min). Fmoc removal 

steps were achieved by treatment with piperidine/DMF (3:7, 12 and 110 min). 

Couplings of Fmoc-amino acids were carried out as follows: Fmoc-Aa-OH (4 equiv.) and 

Oxyma (4 equiv.) were dissolved in DMF, DIPCDI (4 equiv.) was added, and the 

resulting mixture was added to the resin and shaken for 1 h at room temperature. After 

each deprotection and coupling step, the resin was washed with DMF (61 min). The 

completion of the reaction was monitored by the Kaiser test (Kaiser et al., 1970). Once 

the peptide sequence was completed, the Fmoc group was removed. Then, acidolytic 

cleavage was performed by treatment of the resin with TFA/H2O/TIS (95:2.5:2.5) for 2 h 

at room temperature. Following TFA evaporation and diethyl ether extraction, the crude 

peptides were dissolved in H2O and lyophilized. 

 

H-Lys-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP270): Following the 

general procedure described above, BP270 was obtained in 92% purity. tR 5.87 min 

(conditions A). MS (ESI): m/z = 673.9 [M + 2H]
2+

, 1346.8 [M + H]
+
, 1368.7 [M + Na]

+
. 

HRMS (ESI): calcd for C65H126N19O11 [M + 3H]
3+

 449.6623; found 449.6592; calcd for 

C65H125N19O11 [M + 2H]
2+

 673.9897; found 673.9861. 

 

Ac-Leu-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP271): Following the 

general procedure described above, BP271 was obtained in 85% purity. tR 6.32 min 

(conditions A). MS (ESI): m/z = 687.4 [M + 2H]
2+

, 1373.7 [M+H]
+
, 1395.7 [M+Na]

+
. 

HRMS (ESI): calcd for C67H127N18O12 [M + 3H]
3+

 458.6621; found 458.6598; calcd for 

C67H126N18O12 [M + 2H]
2+

 687.4896; found 687.4861. 
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Ac-His-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP272): Following the 

general procedure described above, BP272 was obtained in 91% purity. tR 5.98 min 

(conditions A). MS (ESI): m/z 699.4 [M + 2H]
2+

, 1397.8 [M + H]
+
. 

 

Ac-Phe-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP273): Following the 

general procedure described above, BP273 was obtained in 87% purity. tR 6.46 min 

(conditions A). MS (ESI): m/z = 704.5 [M + 2H]
2+

, 1407.6 [M + H]
+
, 1429.5 [M + Na]

+
. 

HRMS (ESI): calcd for C70H125N18O12 [M + 3H]
3+

 469.9903; found 469.9880; calcd for 

C70H124N18O12 [M + 2H]
2+

 704.4818; found 704.4818. 

 

Ts-His-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP274): Following the 

general procedure described above, BP274 was obtained in 80% purity. tR 6.17 min 

(conditions A). MS (ESI): m/z = 1509.7 [M + H]
+
, 1531.6 [M + Na]

+
. 

 

Ts-Phe-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP275): Following the 

general procedure described above, BP275 was obtained in 85% purity. tR 6.78 min 

(conditions A). MS (ESI): m/z = 760.0 [M + 2H]
2+

, 1519.7 [M + H]
+
. HRMS (ESI): calcd 

for C75H129N18O13S [M + 3H]
3+

 507.3230; found 507.3201; calcd for C75H128N18O13S [M 

+ 2H]
2+

 760.4809; found 760.4778. 

 

H-His-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 (BP284): Following the 

general procedure described above, BP284 was obtained in 76% purity. tR 17.16 min 

(conditions B). MS (ESI): m/z = 707.5 [M + 2H]
2+

, 1414.0 [M + H]
+
, 1436.1 [M + Na]

+
. 

 

H-Phe-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-His-Leu-NH2 (BP285): Following the 

general procedure described above, BP285 was obtained in 82% purity. tR 17.03 min 

(conditions B). MS (ESI): m/z 707.4 [M + 2H]
2+

, 1413.7 [M + H]
+
. 
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H-His-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-His-Leu-NH2 (BP305): Following the 

general procedure described above, BP305 was obtained in 91% purity. tR 6.02 min 

(conditions A). MS (ESI): m/z 1404.1 [M + H]
+
. 

 

H-His-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-His-Leu-NH2 (BP306): Following the 

general procedure described above, BP306 was obtained in 94% purity. tR 5.63 min 

(conditions A). MS (ESI): m/z 1394.1 [M + H]
+
. 

 

3.4.6. Biological assays 

3.4.6.1. Bacterial and fungal strains and growth conditions 

The following plant pathogenic bacterial strains were used: Erwinia 

amylovora PMV6076 (Institut National de la Recherche Agronomique, Angers, France), 

Pseudomonas syringae pv. syringae EPS94 (Institut de Tecnologia Agroalimentària, 

Universitat de Girona, Spain) and Xanthomonas axonopodis pv. vesicatoria 2133-2 

(Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain). All bacteria were 

stored in Luria Bertani (LB) broth supplemented with glycerol (20%) and maintained 

at -80 ºC. E. amylovora and Pss were scrapped from LB agar after growing for 24 h and 

Xav after growing for 48 h at 25 ºC. The cell material was suspended in sterile water to 

obtain a suspension of 10
8
 CFU ml

-1
. 

The following plant pathogenic fungal strains were used: Penicillium 

expansum EPS 26 (INTEA, University of Girona), Fusarium oxysporum f. sp. lycopersici 

FOL 3 race 2 (ATCC 201829, American Type Culture Collection). Strains were cultured 

on potato dextrose agar (PDA) plates (Difco) using aseptic procedures to avoid 

contamination. Conidia from fungal mycelium for P. expansum were obtained from 

5-day-old PDA cultures of the fungus incubated at 25 ºC. Inoculum was prepared by 

scraping spore material from the culture surfaces with a wet cotton swab and 

resuspending it in distilled water containing 0.5‰ of Tween 80. Microconidia of F. 

oxysporum were obtained from 1-week-old potato dextrose broth (PDB) cultures (Oxoid) 

of the fungus incubated at 25 ºC in the dark in a rotary shaker at 125 rpm. After 
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incubation, the culture was filtered through several layers of sterile cheesecloth to 

eliminate macroconidia and mycelial growth of the fungus. Then, the effluent was 

centrifuged at 8000  g for 20 min at 4 ºC, and the pellet was resuspended in sterile water. 

The concentration of conidia was determined by using a hemacytometer and adjusted to 

10
4
 conidia ml

-1
 for F. oxysporum, and 10

3
 conidia ml

-1
 for P. expansum. 

 

3.4.6.2. Antibacterial and antifungal activity 

Lyophilized compounds were solubilized in sterile Milli-Q water to a final 

concentration of 1000 M and filter sterilized through a 0.22-m pore filter. For 

minimum inhibitory concentration (MIC) assessment, dilutions of the compounds were 

made to obtain a stock concentration of 500, 250, 125, 62.5 and 31.125 M. For 

antibacterial activity 20 L of each dilution were mixed in a microtiter plate well with 20 

L of the corresponding suspension of the bacterial indicator, 160 L of Trypticase Soy 

Broth (TSB) (BioMèrieux, France) to a total volume of 200 L. For antifungal activity 20 

L of each stock solution were mixed in a microtiter plate well with 80 L of the 

corresponding suspension of the fungal pathogen and 100 L of double concentrated 

PDB to a total volume of 200 L containing 0.003% w/v of choramphenicol. 

Three replicates for each strain, compound and concentration were used. Positive 

controls contained water instead of compound and negative controls contained 

compounds without bacterial suspension. Microbial growth was automatically determined 

by optical density measurement at 600 nm (Bioscreen C, Labsystem, Helsinki, Finland). 

For antibacterial activity microplates were incubated at 25 ºC with 20 s shaking before 

hourly absorbance measurements for 48 h. For antifungal activity microplates were 

incubated at 20 ºC with 1 min shaking before absorbance measurements that were 

recorded every two hours for seven days. The experiment was repeated twice. The MIC 

was taken as the lowest compound concentration with no growth at the end of the 

experiment. 

 

  



Chapter 3: Biaryl linear peptides 

136 

3.4.6.3. Hemolytic activity 

The hemolytic activity of the compounds was evaluated by determining 

hemoglobin release from erythrocyte suspensions of fresh human blood (5% vol/vol). 

Blood was aseptically collected with a BD vacutainer K2E System with EDTA (Belliver 

Industrial State, Plymouth, U.K.) and stored for less than 2 hours at 4 ºC. Blood was 

centrifuged at 6000  g, for 5 min, washed three times with TRIS buffer (10 mM TRIS, 

150 mM NaCl, pH 7.2) and diluted. Compounds were solubilized in TRIS buffer to a 

stock concentration of 500, 300 and 100 M (final concentrations tested were 250, 150 

and 50 M). 65 L of human red blood cells were mixed with 65 L of the compound 

solution and incubated under continuous shaking for 1 h at 37 ºC. Then, the tubes were 

centrifuged at 3500  g for 10 min. 80 L aliquots of the supernatant were transferred to 

100-well microplates (Bioscreen) and diluted with 80 L of Milli-Q water. Hemolysis 

was measured as the absorbance at 540 nm with a Bioscreen plate reader. Complete 

hemolysis was determined in TRIS buffer plus melittin at 100 M final concentration 

(Sigma-Aldrich Corporation, Madrid, Spain) as a positive control. The percentage of 

hemolysis (H) was calculated using the equation: H = 100[(Op−Ob)/(Om−Ob)], where 

Op was the density for a given compound concentration, Ob for the buffer, and Om for 

the melittin positive control. 
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CHAPTER 4 

The feasibility of the solid-phase intramolecular 4(5)-arylation of a histidine 

residue was established. Biaryl cyclic peptides of different ring sizes and bearing a 

His-Phe linkage was prepared. These structures contained the His residue at either the 

N- or the C-terminus. The synthetic strategy involved the preparation of a linear peptidyl 

resin incorporating a 5-bromohistidine and a 4-boronophenylalanine. The formation of 

the biaryl bond between the imidazole of His and the phenyl group of Phe was 

accomplished via a microwave-assisted Suzuki-Miyaura cross-coupling. Following this 

methodology, the synthesis of biaryl cyclic peptides consisting of a 3- or 5-residue ring, 

and containing the His at the N-terminus and a Leu-Leu spacer at the C-terminus was the 

most favorable.  

4.1. INTRODUCTION 

Unsymmetrical biaryl systems are present in many naturally occurring cyclic 

peptides that show a variety of important biological activities such as antimicrobial or 

cytotoxic (Feliu and Planas, 2005). In recent years, much attention has been turned to the 

incorporation of biaryl amino acids into biologically active peptides (Haug et al., 2007; 

Le Quement et al., 2011; Ng-Choi et al., 2014). It has been reported that the biaryl motif 

restricts the conformational flexibility of peptides, enhances their proteolytic stability, 

increases their selectivity, and improves their bioavailability (Perdih and Dolenc, 2007; 

Haldar, 2008). In particular, 5-arylhistidines are present in cytotoxic and antifungal 

marine peptides, and the imidazole ring has been described to be crucial for their activity 

(Bewley et al., 1996). Moreover, we have shown that the incorporation of a 

5-arylhistidine in a linear antimicrobial peptide renders sequences with antibacterial and 

antifungal activity, and low hemolysis. This low cytotoxicity has been attributed to the 

presence of the imidazole ring of histidine (Ng-Choi et al., 2012). 
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CHAPTER 5 

A solid-phase strategy for the synthesis of biaryl cyclic peptides containing a 

His-Tyr linkage was developed. The macrocyclization step was performed through the 

formation of a biaryl bond between a 5-bromohistidine and a 3-boronotyrosine present in 

the corresponding linear peptidyl resin via a microwave-assisted Suzuki-Miyaura 

cross-coupling. This method allowed for direct access to biaryl cyclic peptides containing 

a 3- or 5-amino acid ring and bearing the histidine residue at the N- or the C-terminus, 

being especially conducive for analogues in which this amino acid is located at the 

C-terminus. 

5.1. INTRODUCTION 

Over the last decades, much attention has been focused on the modification of 

peptides by selective arylation of aromatic amino acids (Knör et al., 2006; Vilaró et al., 

2008; Prieto et al, 2009; Meyer et al., 2012; Coste et al., 2014). On the one hand, the 

incorporation of arylated amino acids into a peptide sequence results in a higher 

selectivity and stability against proteolytic degradation due to an increase of the 

conformational flexibility restriction (Haug et al., 2007; Ng-Choi et al., 2014). On the 

other hand, biaryl moieties have been reported to play an important role in the biological 

activity of many naturally occurring molecules (Feliu and Planas, 2005). In particular, 

aryltyrosines are an important structural motif found in simple peptides as well as in 

complex macrocycles, such as the antimicrobial peptides arylomycins (Holtzel et al., 

2002; Schimana et al., 2002), the proteasome inhibitor TMC-95 (Kohno et al., 2000; 

Koguchi et al., 2000; Inoue et al., 2003; Coste et al., 2014), the neurotensin antagonist 

RP-66453 (Helynck et al., 1998; Krenitsky and Boger, 2003), or the antibiotic 

vancomycin (Van Bambeke et al., 2004; Pace and Yang, 2006). Similarly, arylhistidines 

are present in the active site of heme-copper oxidases, and in cytotoxic and antifungal 

marine peptides, such as aciculitins (Faulkner et al., 1993; Bewley et al., 1996; Tomson et 

al., 2002). 
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CHAPTER 6 

An efficient approach for the solid-phase synthesis of N-methylated tailed biaryl 

cyclic lipopeptides based on the structure of arylomycins was established. Each of these 

analogues incorporates an N-terminal linear lipopeptide attached to a biaryl cyclic 

tripeptide containing a Phe-Tyr, a Tyr-Tyr, a His-Tyr or a phenylglycine-Tyr linkage. 

This methodology first involved an intramolecular Suzuki-Miyaura arylation of a linear 

peptidyl resin incorporating the corresponding halogenated amino acid at the N-terminus 

and a boronotyrosine at the C-terminus. After N-methylation of the resulting biaryl cyclic 

peptidyl resin, the N-methylated lipopeptidyl tail was then assembled. The biaryl cyclic 

lipopeptides were purified and characterized. 

6.1. INTRODUCTION 

Unsymmetrical biaryl moieties are found in a great diversity of naturally occurring 

bioactive cyclic peptides from relatively simple to complex macrocycles (Feliu and 

Planas, 2005). The aryl-aryl bonds in these compounds are commonly formed through the 

linkage between the side-chains of two aromatic amino acids. Among natural biaryl 

cyclic peptides, arylomycins A and B are a class of biaryl-containing peptide antibiotics 

that contain a lipopeptidyl tail attached to a biaryl cyclic tripeptide core. The peptidyl tail 

is a tripeptide with the N-terminus methylated and acylated with a fatty acid of 12-16 

carbon atoms. The cyclic core contains a N-methylated residue and incorporates a biaryl 

linkage between the phenol groups of a 4-hydroxy-L-phenylglycine derivative and a 

tyrosine residue (Schimana et al., 2002; Feliu and Planas, 2005; Roberts et al., 2007; 

Roberts et al., 2011a; Liu et al., 2011) (Figure 6.1). In particular, the A series of 

arylomycins possess an unmodified core, while the compounds of the B series have a 

nitro substituent on the phenol ring of tyrosine. Arylomycins were isolated from the 

fermentation broth of Streptomyces sp. Tü 6075 and display moderate antibacterial 

activity against a variety of gram-positive bacteria (Smith et al., 2010), such as 

Staphylococcus epidermidis (Roberts et al., 2007) and Streptococcus agalactiae (Roberts 

et al., 2011a), and also weak antifungal activity against Mucor hiemalis Tü 179/180 

(Schimana et al., 2002). 
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CHAPTER 7 

Aciculitins A-C, bicyclic natural peptides incorporating a His-Tyr biaryl linkage 

in their structure, were isolated from the marine sponge Aciculites orientalis and display 

potent cytotoxic and antifungal activities. Herein, we describe the synthesis of two 

northern hemisphere analogues and of one southern hemisphere derivative. We devised a 

solid-phase strategy that involved as key step a microwave-assisted Suzuki-Miyaura 

macrocyclization of a linear sequence incorporating a 5-bromohistidine and a 

3-boronotyrosine. These analogues were purified and obtained in good purities. This 

study constitutes the first approach towards the synthesis of the naturally occurring biaryl 

cyclic peptides aciculitins.  

7.1. INTRODUCTION 

Naturally occurring biaryl cyclic peptides possess interesting biological activities 

which have been generally attributed to the presence of the biaryl moiety (Feliu and 

Planas, 2005). Among them, aciculitins A-C, isolated from the marine sponge Aciculites 

orientalis, were the first bioactive natural glycopeptidolipids obtained from a marine 

source (Bewley et al., 1996) (Figure 7.1). They are cytotoxic to the human-colon tumor 

cell line HCT-116 and also inhibit the growth of Candida albicans. Structurally, 

aciculitins are bicyclic peptides that contain an unusual His-Tyr biaryl bridge, in which 

the 5’-position of the imidazole ring of the histidine is linked to the 3’-position of the 

phenol ring of the tyrosine. In these bicyclic peptides, the northern hemisphere is a 

macrocycle of 6 amino acids, while the southern one consists of a 4-amino acid ring 

attached to a glycopeptidolipid tail.  
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CHAPTER 8 

The solid-phase synthesis of biaryl bicyclic peptides analogues of aciculitins 

bearing a Phe-Phe, a Phe-Tyr, a His-Tyr or a Tyr-Tyr linkage has been accomplished. The 

first key step is the microwave-assisted Suzuki-Miyaura cyclization of a linear peptidyl 

resin containing the corresponding halo- and boronoamino acids. The macrolactamization 

of the resulting biaryl monocyclic peptidyl resins led to the formation of the expected 

biaryl bicyclic peptides. This is the first report on the solid-phase synthesis of this type of 

compounds being suitable to obtain other synthetic or naturally occurring biaryl bicyclic 

peptides. 

8.1. INTRODUCTION 

Aciculitins A-C are a unique class of biaryl bicyclic glycolipopeptides isolated by 

Faulkner and coworkers from the lithistid marine sponge Aciculites orientalis (Bewley et 

al., 1996) (Figure 8.1). They are cytotoxic against the human-colon tumor cell line 

HCT-116 and they also inhibit the growth of Candida albicans. The main structural 

feature of aciculitins is the biaryl bond between the side-chains of a histidine and a 

tyrosine residue. In particular, this biaryl bond links the 5’-position of the imidazole ring 

of histidine and the 3’-position of the phenol ring of tyrosine. Moreover, it has been 

reported that this uncommon biaryl linkage plays an important role in their biological 

activity. In addition, these bicyclic peptides contain non-natural amino acids and a 

glycolipid tail consisting of a D-lyxose attached to the 3-hydroxy group of a 

2,3-dihydroxy-4,6-dienoic acid unit. Aciculitins A-C differ only in the length of this 

unsaturated acid moiety. 
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CHAPTER 9: General discussion 

Naturally occurring biaryl peptides have been isolated from several natural 

sources and have attracted considerable interest due to the significant biological activities 

that most of them exhibit (Feliu and Planas, 2005). Interestingly, the biaryl system has 

been proven to be crucial for their activity. Moreover, the incorporation of biaryl amino 

acids in peptide sequences is considered a useful approach to overcome the problems 

associated with the high conformation flexibility and low bioavailability of peptides as 

well as to improve their biological activity. 

Nowadays, in view of both the difficulty to isolate biaryl peptides from natural 

sources and the great importance of biaryl systems, many chemists are interested in the 

development of strategies for the preparation of a plethora of biaryl linear and cyclic 

peptides. Among the several synthetic strategies that have been devised for the synthesis 

of biaryl peptides, the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of an 

aryl halide with an arylboronic acid has proven to be one of the most reliable reactions for 

the formation of the biaryl bond (Kotha and Lahiri, 2001; Kotha and Lahiri, 2003; Inoue et 

al., 2003; Roberts et al., 2007; Waldmann et al., 2008; Vilaró et al., 2008; Coste et al., 2014). 

This reaction has been efficiently applied for the preparation of biaryl peptides in 

solution, but it has been scarcely used for the solid-phase synthesis of this type of 

compounds (Haug et al., 2007; Cerezo et al., 2008; Doan et al., 2008; Afonso et al., 2010; 

Afonso et al., 2011; Le Quement et al., 2011; Afonso et al., 2012; Meyer, et al., 2012). In 

particular, the preparation of 5-arylhistidine-containing peptides has proven to be difficult 

and there is a need for a general method for their synthesis.  

This thesis focused on the development of solid-phase strategies for the 

preparation of linear, cyclic and bicyclic biaryl peptides based on the structure of 

synthetic lead antimicrobial peptides and of naturally occurring biaryl peptides. In 

particular, in Chapter 3 we studied the incorporation of a 5-arylhistidine residue into the 

sequence of lead linear undecapeptides previously identified in our group with 

antibacterial and antifungal activity (Badosa et al., 2007; Badosa et al., 2009). The 

influence of this biaryl moiety in the biological activity profile was also evaluated. In 

Chapters 4 and 5 a suitable solid-phase methodology for the synthesis of biaryl cyclic 

peptides of different ring sizes and bearing a His-Phe or a His-Tyr linkage was 



Chapter 9: General Discussion 

314 

established. This methodology was extended in Chapter 6 to the synthesis of biaryl cyclic 

lipopeptides derived from arylomycins. Finally, in Chapters 7 and 8 the synthesis of 

biaryl analogues of the northern and the southern hemisphere as well as of the bicyclic 

structure of aciculitins was studied.  

 

9.1. SYNTHESIS OF BIARYL LINEAR UNDECAPEPTIDES 

Biaryl linear undecapeptides were designed by incorporating a 5-arylhistidine into 

the structure of lead antimicrobial undecapeptides from the 125-member CECMEL11 

peptide library (Badosa et al., 2007; Badosa et al., 2009). On the one hand, peptides 

BP281, BP282 and BP283 derived from the antibacterial peptide FKLFKKILKFL-NH2 

(BP66) and contained at position 1 a 5-phenylhistidine, a 5-(3-hydroxyphenyl)histidine 

and a 5-(3-nitrophenyl)histidine, respectively (Scheme 9.1). On the other hand, peptides 

BP276, BP277, BP279 and BP280 were designed from the antifungal peptides 

KKLFKKILKVL-NH2 (BP15), Ac-FKLFKKILKVL-NH2 (BP21), 

Ts-FKLFKKILKVL-NH2 (BP22) and Ac-LKLFKKILKVL-NH2 (BP34), respectively, by 

replacing Phe
4
 by a 5-phenylhistidine (Scheme 9.2).  

These peptides were synthesized on solid-phase being the key step a microwave-

assisted Suzuki-Miyaura reaction between a 5-bromohistidine-containing peptidyl resin 

and the corresponding arylboronic acid. For peptides BP281, BP282 and BP283 the 

synthesis was carried out using a Fmoc-Rink-MBHA resin and the Suzuki-Miyaura 

reaction was performed using Pd2(dba)3, P(o-tolyl)3 and KF at 110 ºC (Scheme 9.1). The 

expected biaryl undecapeptides were obtained in HPLC purities ranging from 35-81%. 

The lowest percentage corresponded to the arylation using 3-nitrophenylboronic acid 

which showed that the electron-withdrawing nitro group hindered the cross-coupling. 
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Fmoc-Rink-MBHA

1) Suzuki-Miyaura reaction

       Ar-B(OH)2, Pd2(dba)3, P(o-tolyl)3, 

       KF, MW, 110 ºC, 30 min

Lys(Boc)-Leu-Phe-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-Leu-Rink-MBHA

O

BocHN

N
SEM

N

Br

Sequential Fmoc removal

and amino acid coupling steps

Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2

O

H2N

N
H

N

R

Lys(Boc)-Leu-Phe-Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Phe-Leu-Rink-MBHA

O

BocHN

N

SEM
N

Br

+

BP281         R = H       

BP282         R = OH       

BP283         R = NO2

2) Cleavage

 

Scheme 9.1. Synthesis of biaryl linear undecapeptides BP281, BP282 and BP283. 

 

For the synthesis of peptides BP276, BP277, BP279 and BP280 incorporating a 

5-phenylhistidine at position 4 the use of a ChemMatrix resin gave better results than 

when starting with a Fmoc-Rink-MBHA resin (Scheme 9.2). Once the N-terminal 

Fmoc-protected 5-bromohistidine peptidyl resins were synthesized, the Fmoc group was 

removed and the resulting free amine was either tritylated or acetylated. The resulting 

resins were then subjected to microwave-assisted Suzuki-Miyaura arylation with 

phenylboronic acid using Pd2(dba)3, SPhos and KF at 140 ºC. The preparation of 

tosylated peptide BP280 required the selective trityl group removal and a subsequent 

tosylation step. This tosyl group was introduced after the cross-coupling because it was 

observed that the arylation of the tosylated peptidyl resin led to the formation of a 

dehalogenated byproduct.  
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Fmoc-Rink-ChemMatrix

1) Fmoc-removal

2) Tritylation or acetylation

3) Suzuki-Miyaura reaction

       Pd2(dba)3, SPhos, KF,

       MW, 140 ºC, 30 min

Sequential Fmoc removal

and coupling steps

Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-ChemMatrix

O
H
N

N
SEM

N

Br

Fmoc-Lys(Boc)-Leu

Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2

O
H
N

N
H

N

R-X1-Lys-Leu

Lys(Boc)-Lys(Boc)-Ile-Leu-Lys(Boc)-Val-Leu-Rink-ChemMatrix

O
H
N

N
SEM

N

Br

Fmoc-Lys(Boc)-Leu

+

1) Fmoc-removal

2) Tritylation

3) Suzuki-Miyaura reaction

       Pd2(dba)3, SPhos, KF,

       MW, 140 ºC, 30 min

Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2

O
H
N

N
H

N

R-X1-Lys-Leu

BP276         R = H        X1 = Lys

BP277         R = Ac       X1 = Leu

BP279         R = Ac       X1 = Phe

BP280         R = Ts       X1 = Phe

4) Cleavage

4) Trityl group removal
5) Tosylation
6) Cleavage

 

Scheme 9.2. Synthesis of biaryl linear undecapeptides BP276, BP277, BP279 and BP280. 

 

For comparison purposes, derivatives of the lead peptides BP15, BP21, BP22, 

BP34 and BP66 designed by replacing the phenylalanine residue at position 1, 4 and/or 

10 were also synthesized and included in the study.  

Biological assays demonstrated that the replacement of the phenylalanine with a 

5-arylhistidine or a histidine did not improve the antimicrobial activity but, interestingly, 

it resulted in a significant decrease of the hemolysis. This reduction of the hemolysis 

could be attributed to the presence of the imidazole ring of histidine, which suggests that 

this heterocycle confers to peptides a lower hydrophobicity than the benzene ring of 

phenylalanine. These results are in agreement with previous reports on antimicrobial 
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peptides in which a high hydrophobic character is related to a high cytotoxicity 

(Blondelle and Lohner, 2000; Oh et al., 2000; Ferre et al., 2006; Badosa et al., 2007; 

Badosa et al., 2009).  

 

9.2. SYNTHESIS OF BIARYL CYCLIC PEPTIDES 

CONTAINING A HIS-PHE OR A HIS-TYR LINKAGE 

The second part of this thesis was focused on the synthesis of biaryl cyclic 

peptides of different ring sizes containing a His-Phe or a His-Tyr linkage (Figure 9.1). We 

evaluated the influence of the peptide length (3, 5, 7 or 8 amino acids), the position of the 

histidine residue (N- or C-terminus), the presence of a spacer at the C-terminus (a 2 or a 

5-amino acid spacer) and the protecting group of the imidazole ring of histidine (SEM or 

Me). 
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BPC758              n= 3    R' = H    X= Leu-Leu-NH2       

BPC760              n= 1    R' = H    X= Leu-Leu-NH2    

55                        n= 5    R' = H    X= Leu-Leu-NH2    

56                        n= 6    R' = H    X= Leu-Leu-NH2    

BPC750              n= 3    R' = H    X= NH2  

BPC752              n= 1    R' = H    X= NH2  

BPC754              n= 5    R' = H    X= NH2  

57a-b                   n= 3    R' = Me    X= NH2  

BPC772a-b         n= 3    R' = Me    X= Leu-Leu-NH2

BPC766              n= 3    R' = H    X= Lys-Lys-Leu-Lys-Lys-NH2  

BPC768              n= 1    R' = H    X= Lys-Lys-Leu-Lys-Lys-NH2

BPC776              n= 1    X= NH2  

BPC778              n= 3    X= Leu-Leu-NH2  

BPC780              n= 1    X= Leu-Leu-NH2  

69                        n= 3    X= NH2

H
N

NH X

O

O
RO

H2N

HN

N
MeO

H
N

NH X

O

O
R

O

H2N

MeO
N

NH

n n

BPC782              n= 3    X= NH2  

BPC784              n= 1    X= NH2   

BPC786              n= 3    X= Leu-Leu-NH2

BPC788              n= 3    X= NH2  

BPC790              n= 1    X= NH2   

BPC792              n= 3    X= Leu-Leu-NH2  

Figure 9.1. General structures of biaryl cyclic peptides containing a His-Phe or a His-Tyr linkage. 

 

Biaryl cyclic peptides incorporating a histidine residue at the N-terminus were 

synthesized from linear peptidyl resins that contain a 5-bromohistidine residue at the 

N-terminus and a 4-boronophenylalanine or a 3-boronotyrosine at the C-terminus via an 

intramolecular Suzuki-Miyaura cross-coupling reaction. The general synthetic strategy is 

depicted in Scheme 9.3 for the derivatives bearing a His-Phe linkage. These linear 

peptidyl resins were obtained starting from an Fmoc-Rink-MBHA resin and following a 

standard Fmoc/tBu strategy for peptide elongation. The borylation step was performed on 

solid-phase using B2Pin2, PdCl2(dppf), dppf, and KOAc in anhydrous DMSO at 80 ºC. 

The reaction time was 24 h for the 4-iodophenylalanine peptidyl resins while it was of 8 h 

in the case of the 3-iodotyrosine peptidyl resins, because it was observed that longer 

reaction times promote the protodeborylation and oxidation of the resulting 

3-boronotyrosine moiety. Prior to the borylation, the N-terminal Fmoc group was 
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replaced with a trityl due to instability of the former to basic reaction conditions. 

Moreover, the borylation was performed just before the coupling of the N-terminal 

5-bromohistidine residue because the borono functionality is not stable to several Fmoc 

removal and amino acid coupling steps (Afonso et al., 2011). The best reaction conditions 

for the formation of the His-Phe linkage via a Suzuki-Miyaura reaction involved the use 

of Pd2(dba)3, P(o-tolyl)3 and KF at 140 ºC for 30 min. Similar conditions were employed 

to obtain biaryl cyclic peptides containing a His-Tyr bond but, in this case, SPhos gave 

better results than P(o-tolyl)3.  
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Scheme 9.3. Solid-phase synthesis of biaryl cyclic peptides containing a His-Phe linkage and 

bearing the histidine residue at the N-terminus. 
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The synthesis of biaryl cyclic peptides containing the histidine residue at the 

C-terminus involved the preparation of a linear peptidyl resin incorporating a 

4-boronophenylalanine or a 3-boronotyrosine at the N-terminus and a 5-bromohistidine at 

the C-terminus. Scheme 9.4 exemplifies the general synthetic strategy for the biaryl cyclic 

peptides containing a His-Phe linkage. These linear peptidyl resins were synthesized 

following a standard Fmoc/tBu strategy. The required Boc-protected 

4-boronophenylalanine and 3-boronotyrosine residues were prepared in solution and 

coupled to the N-terminus of the corresponding peptidyl resin. Cyclization of the linear 

peptidyl resins was carried out under the same conditions described above for the biaryl 

cyclic peptides containing a histidine at the N-terminus. 
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Scheme 9.4. Solid-phase synthesis of biaryl cyclic peptides containing a His-Phe linkage and 

bearing a histidine residue at the C-terminus. 
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Analysis of the results obtained revealed that the formation of the biaryl cyclic 

peptides containing a His-Phe linkage was more favoured when the histidine residue was 

located at the N-terminus.  

For derivatives with the histidine residue at the N-terminus, BPC760 and BPC758 

incorporating 3 or 5 amino acid residues in their ring, respectively, and a Leu-Leu spacer 

led to the best results, being the formation of BPC760 the most favourable. Thus, biaryl 

cyclic peptides with a 7- or 8-amino acid ring (55 and 56) and those with 3 and 5 amino 

acids that do not contain the C-terminal Leu-Leu spacer (BPC750 and BPC752) were 

obtained in lower purities. The latter result could be attributed to the steric hindrance 

posed by the resin. However, the cyclization was not improved by increasing the length of 

the spacer from 2 to 5 amino acids (BPC758 and BPC760 vs BPC766 and BPC768). In 

addition, it was observed that the cyclization of the SEM-protected linear peptidyl resins 

gave similar results than the Me-protected ones (BPC750 and BPC758 vs BPC772 and 

57) which pointed out that the presence of the bulkier SEM group at the imidazole ring 

did not hinder this intramolecular arylation.  

Concerning the biaryl cyclic peptides with a His-Phe linkage bearing the histidine 

residue at the C-terminus, the preparation of BPC776 and BPC780 incorporating 3-amino 

acids in their ring gave the best results, being the formation of their 5-amino acid ring 

analogues 69 and BPC778 unsuccessful. Similarly to the derivatives with the histidine at 

the N-terminus, the presence of a Leu-Leu spacer at the C-terminus improved the 

intramolecular Suzuki-Miyaura reaction. Accordingly, BPC780 was obtained in higher 

purity than BPC776.  

On the other hand, the biaryl cyclic peptides bearing a His-Tyr linkage were more 

easily formed than those with a His-Phe bond. However, in this case the macrocyclization 

leading to a His-Tyr linkage was more favoured when the histidine residue was located at 

the C-terminus. The synthesis of biaryl cyclic peptides of either 3 or 5 amino acids was 

accomplished in similar purities irrespective of the position of the histidine residue. 

Moreover, unlike the His-Phe peptides, the presence of the Leu-Leu spacer did not 

influence the intramolecular arylation step. 
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9.3. SYNTHESIS OF ARYLOMYCIN DERIVATIVES 

Based on the structural and biological interest arisen from arylomycins (Figure 

9.2), and taken into account that their solid-phase synthesis has not yet been reported, we 

decided to extend our previous methodology to the preparation of biaryl cyclic 

lipopeptides derived from arylomycins, containing a Phe-Tyr, a Tyr-Tyr, a His-Tyr or a 

phenylglycine (Phg)-Tyr linkage (Figure 9.3a). Four of these derivatives incorporating an 

extra lysine residue at the N-terminus of the lipopeptidyl tail were also prepared (Figure 

9.3b). 
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Figure 9.2. Structure of arylomycins A and B. 
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Figure 9.3. Structure of biaryl cyclic lipopeptides derived from arylomycins. 
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The general strategy for the solid-phase synthesis of the arylomycin analogues is 

represented in Scheme 9.5 for the biaryl cyclic lipohexapeptides. The first steps included 

the preparation of the corresponding linear peptidyl resin containing both an haloamino 

acid and a 3-boronotyrosine residue. These linear resins were obtained by Miyaura 

borylation of a trityl-protected 3-iodotyrosine dipeptidyl resin and subsequent coupling of 

the corresponding haloamino acid. The cyclization through the formation of a Phe-Tyr, a 

Tyr-Tyr or a Phg-Tyr linkage was performed via an intramolecular Suzuki-Miyaura 

reaction using Pd2(dba)3, SPhos and KF under microwave irradiation at 120 ºC for 30 

min. The formation of the His-Tyr bond required a temperature of 140 ºC. The biaryl 

cyclic tripeptide cores were obtained in 65-92% HPLC purity and purified by 

reverse-phase column chromatography (99% purity). In agreement with previous studies, 

the cyclization involving the histidine residue was the most difficult.  

After Boc group removal, the lipotripeptidyl or lipotetrapeptidyl tail was 

assembled to the biaryl cyclic core through subsequent steps of N-methylation, peptide 

elongation, N-methylation and acylation (Scheme 9.5). Biaryl cyclic lipopeptides lacking 

the Lys residue were difficult to analyse and characterize due to their high lipophilicity 

and their low propensity to ionize during the mass spectrometry analysis. Thus, no 

consistent data on the formation and purity of these compounds was obtained. In contrast, 

as expected, the sequences incorporating the extra lysine residue could be easily analysed 

and characterized by mass spectrometry, and they were obtained in purities ranging from 

34-71%.  
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Scheme 9.5. Solid-phase synthesis of biaryl cyclic lipohexapeptides derived from arylomycins. 
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9.4. SOLID-PHASE SYNTHESIS OF BIARYL PEPTIDE 

ANALOGUES OF ACICULITINS 

In the last part of this PhD thesis biaryl cyclic peptide analogues of aciculitins 

(Figure 9.4) containing commercially available amino acids were prepared. On the one 

hand, a strategy for the synthesis of analogues of the northern and the southern 

hemisphere of aciculitins was established (Figure 9.5a,b). This approach was then 

extended to the preparation of biaryl bicyclic derivatives incorporating a Phe-Phe, a 

Phe-Tyr, a His-Tyr or a Tyr-Tyr linkage (Figure 9.5c). 
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Figure 9.4. Structure of aciculitins A-C. 
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Figure 9.5. Structure of aciculitin derivatives. a) Northern and b) southern hemisphere analogues, 

c) biaryl bicyclic analogues 
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The synthesis of the northern analogues started by anchoring Fmoc-Ala-OH to a 

Fmoc-Rink-MBHA resin and it was followed by peptide elongation to yield the 

corresponding regioisomeric linear peptidyl resins incorporating a 5-bromohistidine at the 

C-terminus and a 3-boronotyrosine at the N-terminus (Scheme 9.6). The required 

Boc-protected 3-boronotyrosine residue was prepared in solution and coupled to the 

peptidyl resins. After optimizing the cyclization of these linear peptidyl resins by 

analyzing the influence of the reagent concentration, the catalyst, the ligand, the base, the 

temperature and the solvent, the best results were achieved using Pd2(dba)3, SPhos and 

KF under microwave irradiation at 140 ºC for 30 min in degassed DME/EtOH/H
2
O 

(9:9:2). Moreover, we observed that the side-chain protecting group greatly influenced 

this cyclization step. Thus, when the bulky trityl group was used, this reaction was 

unsuccessful while the less sterically hindered Tmob group resulted to be more 

convenient. Following this procedure and after reverse-phase column chromatography 

purification, the northern analogues were obtained in 71-73% purity.  
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Scheme 9.6. Solid-phase synthesis of the northern hemisphere analogues of aciculitins. 

 

Regarding the southern hemisphere analogue, its synthesis involved coupling of 

the C-terminal glutamine residue to a Rink-MBHA resin and followed the approach 
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described in section 9.2 for the biaryl cyclic peptides containing a His-Tyr linkage with 

the histidine at the N-terminus (Scheme 9.7). Thus, a linear peptidyl resin incorporating a 

5-bromohistidine at the N-terminus and a 3-boronotyrosine at the C-terminus was 

prepared. With this aim, borylation of the corresponding trityl-protected 3-iodotyrosine 

peptidyl resin was performed prior to the coupling of the N-terminal 5-bromohistidine. 

Cyclization of this linear peptidyl resin was carried out under the Suzuki-Miyaura 

conditions described for the northern hemisphere analogues. Reverse-phase column 

chromatography provided the expected biaryl cyclic peptide in 84% HPLC purity. 
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Scheme 9.7. Solid-phase synthesis of the southern hemisphere analogue of aciculitins. 

 

The biaryl bicyclic peptides derived from aciculitins were synthesized following a 

methodology in which the key steps were the macroarylation and the macrolactamization 

(Scheme 9.8). In particular, this strategy involved: (i) the coupling of the glutamine 

residue of the southern hemisphere to a Fmoc-Rink-MBHA resin, (ii) the preparation of 

the corresponding linear peptidyl resin containing both the haloamino acid and the 

boronoamino acid, and protected at the N- and C-terminus with a Boc and a pNB group, 

respectively, (iii) the cyclization of this linear peptidyl resin through an intramolecular 

Suzuki-Miyaura cross-coupling reaction, and (iv) the macrolactamization of the resulting 

biaryl monocyclic peptide (Scheme 9.8).  
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Based on our previous results, the Suzuki-Miyaura macroarylation was performed 

with P(o-tolyl)3 or SPhos as ligand depending on whether a 4-boronophenylalanine or a 

3-boronotyrosine was involved in the formation of the biaryl bond. Moreover, this 

reaction was carried out at 120 ºC except for the preparation of the biaryl monocyclic 

peptide containing a His-Tyr bond which required 140 ºC. In addition, it was observed 

that these arylation conditions generally promoted the removal of the pNB protecting 

group of the carboxylic acid of the C-terminal glutamine residue. The formation of the 

expected biaryl bicyclic peptides was demonstrated by mass spectrometry. The spectra 

showed a peak at [M  18 + H]
+
 which was attributed to fragmentation during the 

analysis, as confirmed by tandem mass spectrometry. 
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Scheme 9.8. General strategy for the solid-phase synthesis of biaryl bicyclic peptides derived 

from aciculitins. 
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To summarize, in this PhD thesis, we developed solid-phase synthetic 

methodologies for the preparation of biaryl linear, cyclic and bicyclic peptides through a 

microwave-assisted Suzuki-Miyaura cross-coupling reaction. The application of such 

methodologies allowed the formation of a wide range of biaryl peptides containing a 

Phe-Phe, a Phe-Tyr, a Tyr-Tyr, a His-Phe, a His-Tyr or a Phg-Tyr linkage.  
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CHAPTER 10: General conclusions 

 Biaryl linear antimicrobial undecapeptides 

 A suitable solid-phase strategy for the synthesis of 5-arylhistidine-containing linear 

undecapeptides was established. The arylation of a peptidyl resin incorporating a 

5-bromohistidine at position 1 with a commercially available arylboronic acid was 

accomplished using Pd2(dba)3, P(o-tolyl)3 and KF under microwave irradiation at 110 

ºC for 30 min, whereas the use of SPhos as ligand at 140 ºC was more effective when 

the 5-bromohistidine was at position 4. 

 

 The replacement of  a phenylalanine residue of the lead antimicrobial peptides BP15, 

BP21, BP22, BP34 and BP66 with a histidine or a 5-arylhistidine slightly decreased 

the antibacterial activity against Erwinia amylovora, Pseudomonas syringae and 

Xanthomonas vesicatoria as well as the antifungal activity against Fusarium 

oxysporum. Interestingly, the presence of the more hydrophilic histidine derivatives 

compared to phenylalanine led to less hemolytic peptides. The histidine-containing 

peptide BP275 showed a better biological profile than its parent peptide BP22. 

Moreover, BP281 and BP282 were the most active 5-arylhistidine-containing 

undecapeptides with MIC values against these pathogens similar to those of their 

parent peptide BP66, being also less hemolytic.  

 

 Biaryl cyclic peptides incorporating a His-Phe or a His-Tyr linkage 

 It was developed a convenient solid-phase method for the preparation of biaryl cyclic 

peptides of different ring sizes incorporating a His-Phe or a His-Tyr linkage and 

bearing the histidine at the N- or C-terminus. The cyclization was achieved through a 

microwave-assisted intramolecular Suzuki-Miyaura cross-coupling of a linear peptidyl 

resin incorporating a 5-bromohistidine and a 4-boronophenylalanine or a 

3-boronotyrosine. For the derivatives with the histidine at the N-terminus, the 

borylation step was carried out on solid-phase just before the coupling of the 

N-terminal 5-bromohistidine residue. In the case of the sequences with the histidine at 
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the C-terminus, the borono amino acid was prepared in solution and coupled to the 

N-terminus of the peptidyl resin. 

 Formation of the His-Phe linkage required the use of Pd2(dba)3, P(o-tolyl)3 and KF at 

140 ºC for 30 min. This reaction was favoured when the His residue was located at the 

N-terminus. For these derivatives, the best results were obtained for the biaryl cyclic 

peptides with a 3- or 5-amino acid ring and bearing a C-terminal Leu-Leu spacer. The 

imidazole protection did not influence the intramolecular arylation. Analogues with the 

histidine at the C-terminus followed a similar trend. However, in this case, the 

formation of the 5-amino acid ring derivatives failed.  

 

 The His-Tyr linkage was more easily formed than the His-Phe bond. Its formation was 

accomplished under the same reaction conditions than those for the preparation of the 

His-Phe derivatives, but using SPhos as ligand. In this case, the highest purities were 

obtained for those derivatives with the His at the C-terminus and it was observed that 

the presence of the Leu-Leu spacer did not influence the cyclization. Biaryl cyclic 

peptides of 3 or 5 amino acids were prepared incorporating the His at either the N- or 

the C-terminus. 

 

 Arylomycin derivatives 

 The extension of the above methodology allowed the preparation of arylomycin 

derivatives containing a Phe-Tyr, a Tyr-Tyr, a His-Tyr or a Phg-Tyr linkage. The key 

steps of this approach included the synthesis of a linear peptidyl resin incorporating a 

haloamino acid and a 3-boronotyrosine residue, its cyclization via an intramolecular 

Suzuki-Miyaura reaction, and the elongation of the lipopeptidyl tail. This work 

constituted the first report on the total solid-phase synthesis of arylomycin analogues. 

 

 The Suzuki-Miyaura reaction was performed using Pd2(dba)3, SPhos and KF under 

microwave irradiation at 120 ºC for 30 min, except for the formation of the His-Tyr 

linkage that required 140 ºC. Thus, the preparation of the arylomycin analogues 

incorporating this linkage was the most troublesome. 
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 Due to the hydrophobicity of these biaryl cyclic lipopeptides and the absence of 

ionisable groups, the presence of a lysine residue in the lipopeptidyl tail facilitated 

their HPLC analysis and their mass spectrometry characterization.  

 

 Biaryl peptide analogues of aciculitins 

 Biaryl cyclic peptide analogues of the northern and the southern hemispheres of 

aciculitins have been successfully prepared. The procedure described above for the 

synthesis of biaryl cyclic peptides containing a His-Tyr linkage was followed. Thus, 

the cyclization was accomplished through the intramolecular arylation of the 

corresponding regioisomeric linear peptidyl resins incorporating a 5-bromohistidine 

residue and a 3-boronotyrosine residue by using Pd2(dba)3, SPhos and KF under 

microwave irradiation at 140 ºC for 30 min. 

 

 The use of a trityl as protecting group of the side-chain glutamine residues difficulted 

the solid-phase cyclization of the linear peptidyl resins. The less bulky 

2,4,6-trimethoxybenzyl (Tmob) protecting group was required. 

 

 The two northern hemisphere analogues where obtained in 71 and 73% purity and the 

southern hemisphere analogue in 84% purity after chromatographic purification. 

 

 Four biaryl bicyclic peptides derived from aciculitins were synthesized via an 

intramolecular Suzuki-Miyaura arylation of the corresponding linear peptidyl resins 

incorporating a 4-iodophenylalanine, a 5-bromohistidine or a 3-iodotyrosine residue at 

the C-terminus and a 4-boronophenylalanine or 3-boronotyrosine residue at the 

N-terminus, and subsequent macrolactamization of the resulting biaryl monocyclic 

peptidyl resin. 

 

 The formation of the biaryl bond involving a 4-boronophenylalanine was performed 

using P(o-tolyl)3, whereas SPhos was employed for the cyclization of sequences 

containing a 3-boronotyrosine. The reaction temperature was of 120 ºC except for the 

formation of the His-Tyr linkage which was accomplished at 140 ºC. 
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 Biaryl bicyclic peptides were characterized by mass spectrometry. This work 

constituted the first synthetic approach to aciculitins which could be extended to the 

preparation of other synthetic or naturally occurring biaryl bicyclic peptides. 
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Copies of HPLC, MS and NMR spectra 
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ESI-MS m/z (%) 
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2. H-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2 (1) and H-His(5-Ar)-

Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 (BP281, BP282, and 

BP283) 

 

H-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2 (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N
H

H
N

N
H

H
N

O

NH2

O

O

O

O
H
N

O

N
H

O
H
N

O

H2N

OH

NH2

NH2

NH2

N

H
NBr

HPLC (λ = 220 nm) 

 



Annex Chapter 3 

S12 

ESI-MS m/z (%) 

 

 



Annex Chapter 3 

S13 

H-His(5-Br)-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 (8) 
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H-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2 (1) 
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ESI-MS m/z (%) 

 

H-His(5-Ph)-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 (BP281) 
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H-His(5-(3-(OH)-C6H4))-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 (BP282) 
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ESI-MS m/z (%) 
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H-His(5-(3-(NO2)-C6H4))-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 (BP283) 
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ESI-MS m/z (%) 
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3. 5-Phenylhistidine-containing peptides BP276, BP277, BP279, and 

BP280 

Fmoc-Lys-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 
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ESI-MS m/z (%) 

 

H-Lys-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 
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ESI-MS m/z (%) 

 

Ac-Leu-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 
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ESI-MS m/z (%) 

 

Ac-Phe-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

Ts-Phe-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 
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HPLC (λ = 220 nm) 

 

H-Phe-Lys-Leu-His(5-Br)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 
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ESI-MS m/z (%) 
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HPLC (λ = 220 nm) 

 

H-Lys-Lys-Leu-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP276) 
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ESI-MS m/z (%) 

 

HRMS m/z (%) 
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HPLC (λ = 220 nm) 

 

Ac-Leu-Lys-Leu-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP277) 
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ESI-MS m/z (%) 

 

HRMS m/z (%) 
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ESI-MS m/z (%) 

 

HRMS m/z (%) 
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Ac-Phe-Lys-Leu-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP279) 
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ESI-MS m/z (%) 

 

HRMS m/z (%) 
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Ts-Phe-Lys-Leu-His(5-Ph)-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP280) 
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HPLC (λ = 220 nm) 

 

4. Histidine-containing peptides BP270-BP275, BP284, BP285, BP305, 

and BP306 

 

H-Lys-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP270) 
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ESI-MS m/z (%) 

 

HRMS m/z (%) 
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HPLC (λ = 220 nm) 

 

Ac-Leu-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP271) 
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ESI-MS m/z (%) 

 

HRMS m/z (%) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

Ac-His-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP272) 
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HPLC (λ = 220 nm) 

 

Ac-Phe-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP273) 
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ESI-MS m/z (%) 

 

HRMS m/z (%) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

Ts-His-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP274) 
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HPLC (λ = 220 nm) 

 

Ts-Phe-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-Val-Leu-NH2 (BP275) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N
H

H
N

N
H

H
N

O

NH2

O

O

O

O
H
N

O

N
H

O
H
N

O

N
H

NH2

NH2

NH2

O
H
N

O

N
H

NH2

O

TsHN

N

H
N



Annex Chapter 3 

S44 

ESI-MS m/z (%) 

 

HRMS m/z (%) 
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HPLC (λ = 220 nm) 

 

H-His-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Phe-Leu-NH2 (BP284) 
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ESI-MS m/z (%) 
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HPLC (λ = 220 nm) 

 

H-Phe-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-His-Leu-NH2 (BP285) 
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ESI-MS m/z (%) 
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HPLC (λ = 220 nm) 

 

H-His-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-His-Leu-NH2 (BP305) 
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ESI-MS m/z (%) 
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HPLC (λ = 220 nm) 

 

H-His-Lys-Leu-His-Lys-Lys-Ile-Leu-Lys-His-Leu-NH2 (BP306) 
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ESI-MS m/z (%) 
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HPLC (λ = 220 nm) 
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1H-NMR (400 MHz, DMSO-d6) δ (ppm) 
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13C-NMR (75 MHz, DMSO-d6) δ (ppm) 
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HPLC (λ = 220 nm) 
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ESI-MS m/z (%) 

 

1H-NMR (400 MHz, CDCl3) δ (ppm) 
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HPLC (λ = 220 nm) 
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1H-NMR (300 MHz, DMSO-d6) δ (ppm) 

 

13C-NMR (75 MHz, DMSO-d6) δ (ppm) 
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HPLC (λ = 220 nm) 
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1H-NMR (400 MHz, CDCl3) δ (ppm) 

 

13C-NMR (75 MHz, CDCl3) δ (ppm) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 
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1H-NMR (400 MHz, CDCl3) δ (ppm) 

 

13C-NMR (75 MHz, CDCl3) δ (ppm) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

OH

O

BocHN

B
O

O

Boc-Phe(4-BPin)-OH (64) 

 



Annex Chapter 4 

S67 

13C-NMR (75 MHz, CDCl3) δ (ppm) 

 

1H-NMR (400 MHz, CDCl3) δ (ppm) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

2. Linear peptides containing a 5-bromohistidine at the N-terminus 

 Iodopeptides  

H-Lys-Lys-Leu-Phe(4-I)-Leu-Leu-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Lys-Phe-Lys-Lys-Leu-Phe(4-I)-Leu-Leu-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

HPLC (λ = 220 nm) 
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ESI-MS m/z (%) 

 

HPLC (λ = 220 nm) 

 

H-Lys-Lys-Leu-Phe(4-I)-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Leu-Phe(4-I)-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Lys-Phe-Lys-Lys-Leu-Phe(4-I)-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Lys-Lys-Leu-Phe(4-I)-Lys-Lys-Leu-Lys-Lys-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Leu-Phe(4-I)-Lys-Lys-Leu-Lys-Lys-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

 Boronopeptides 31-39  

H-Lys-Lys-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 (31) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 (32) 
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ESI-MS m/z (%) 

 

HPLC (λ = 220 nm) 

 

H-Lys-Phe-Lys-Lys-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 (33) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Lys-Lys-Phe-Lys-Lys-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 (34) 
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ESI-MS m/z (%) 

 

HPLC (λ = 220 nm) 

 

H-Lys-Lys-Leu-Phe(4-B(OH)2)-NH2 (35) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Leu-Phe(4-B(OH)2)-NH2 (36) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Lys-Phe-Lys-Lys-Leu-Phe(4-B(OH)2)-NH2 (37) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Lys-Lys-Leu-Phe(4-B(OH)2)-Lys-Lys-Leu-Lys-Lys-NH2 (38) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Leu-Phe(4-B(OH)2)-Lys-Lys-Leu-Lys-Lys-NH2 (39) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

Linear peptides 42-52 

H-His(5-Br)-Lys-Lys-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 (42) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br)-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 (43) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br)-Lys-Phe-Lys-Lys-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 (44) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br)-Lys-Lys-Phe-Lys-Lys-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 (45) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br)-Lys-Lys-Leu-Phe(4-B(OH)2)-NH2 (46) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br)-Leu-Phe(4-B(OH)2)-NH2 (47) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br)-Lys-Phe-Lys-Lys-Leu-Phe(4-B(OH)2)-NH2 (48) 

 

 

 
 

 

 



Annex Chapter 4 

S93 

HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br)-Lys-Lys-Leu-Phe(4-B(OH)2)-Lys-Lys-Leu-Lys-Lys-NH2 (49) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br)-Leu-Phe(4-B(OH)2)-Lys-Lys-Leu-Lys-Lys-NH2 (50) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br,1-Me)-Lys-Lys-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 and H-His(5-Br,3-Me)-Lys-

Lys-Leu-Phe(4-B(OH)2)-Leu-Leu-NH2 (51) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-His(5-Br,1-Me)-Lys-Lys-Leu-Phe(4-B(OH)2)-NH2 and H-His(5-Br,3-Me)-Lys-Lys-Leu-

Phe(4-B(OH)2)-NH2 (52) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

3. Linear peptides containing a 5-bromohistidine at the C-terminus 

 Linear peptides 65-68 

H-Phe(4-B(OH)2)-Leu-His(5-Br)-Leu-Leu-NH2 (65) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Phe(4-B(OH)2)-Lys-Lys-Leu-His(5-Br)-Leu-Leu-NH2 (66) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Phe(4-B(OH)2)-Leu-His(5-Br)-NH2 (67) 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z (%) 

 

H-Phe(4-B(OH)2)-Lys-Lys-Leu-His(5-Br)-NH2 (68) 
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HPLC-MS 

 

4. Biaryl cyclic peptides 
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HPLC (λ = 220 nm) 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 
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HRMS (ESI) m/z 
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HPLC-MS 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide BPC758 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 
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HRMS (ESI) m/z 
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HPLC (λ = 220 nm) 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 
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HRMS (ESI) m/z 
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HPLC-MS 
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 
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HPLC-MS 
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HPLC (λ = 220 nm) 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 
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HPLC-MS 
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HPLC-MS 
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Copies of HPLC, MS and NMR spectra 

1. Synthesis of amino acids 
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1H-NMR (400 MHz, CDCl3) δ (ppm) 

 

13C-NMR (75 MHz, DMSO-d6) δ (ppm) 
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HPLC (λ = 220 nm) 
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1H-NMR (300 MHz, DMSO-d6) δ (ppm) 

 

13C-NMR (75 MHz, DMSO-d6) δ (ppm) 
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 Fmoc-Tyr(3-I,Me)-OH (2) 
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1H-NMR (300 MHz, DMSO-d6) δ (ppm) 

 

13C-NMR (75 MHz, DMSO-d6) δ (ppm) 
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Boc-Tyr(3-B(OH)2,Me)-OMe  
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1H-NMR (400 MHz, CDCl3) δ (ppm) 

 

13C-NMR (75 MHz, CDCl3) δ (ppm) 
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Boc-Tyr(3-B(OH)2,Me)-OH (14) 
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1H-NMR (400 MHz, CDCl3) δ (ppm) 

 

13C-NMR (75 MHz, CDCl3) δ (ppm) 
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ESI-MS m/z 

 

2. Linear peptides containing a 5-bromohistidine at the N-terminus 

 Iodopeptides 

H-Lys-Lys-Leu-Tyr(3-I,Me)-Leu-Leu-NH2  

 

 

HPLC (λ = 220 nm) 
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ESI-MS m/z 

 

H-Lys-Lys-Leu-Tyr(3-I,Me)-NH2  
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-Leu-Tyr(3-I,Me)-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

 Boronopeptides 

H-Lys-Lys-Leu-Tyr(3-B(OH)2,Me)-Leu-Leu-NH2  
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-Lys-Lys-Leu-Tyr(3-B(OH)2,Me)-NH2  
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-Leu-Tyr(3-B(OH)2,Me)-NH2  
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

Linear peptides 6, 11 and 12 

H-His(5-Br)-Lys-Lys-Leu-Tyr(3-B(OH)2,Me)-Leu-Leu-NH2 (6)  
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HPLC (λ = 220 nm) 
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H-His(5-Br)-Lys-Lys-Leu-Tyr(3-B(OH)2,Me)-NH2 (11)  
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HPLC (λ = 220 nm) 
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H-His(5-Br)-Leu-Tyr(3-B(OH)2,Me)-NH2 (12)  
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

3. Linear peptides containing a 5-bromohistidine at the C-terminus  

 Linear peptides 15, 18 and 19 

H-Tyr(3-B(OH)2,Me)-Lys-Lys-Leu-His(5-Br)-Leu-Leu-NH2 (15)  
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HPLC (λ = 220 nm) 
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H-Tyr(3-B(OH)2,Me)-Lys-Lys-Leu-His(5-Br)-NH2 (18)  
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-Tyr(3-B(OH)2,Me)-Leu-His(5-Br)-NH2 (19)  
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HPLC (λ = 220 nm) 

 

4. Biaryl cyclic peptides 

Biaryl cyclic peptide  BPC782  
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 
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HRMS (ESI) m/z 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide BPC784  
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HPLC (λ = 220 nm) 
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Annex Chapter 5 

S173 

HRMS (ESI) m/z 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide BPC786  
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide BPC788  
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide BPC790  
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HPLC (λ = 220 nm) 
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Annex Chapter 5 

S187 

1H-NMR (400 MHz, CD3OD) δ (ppm) 
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COSY (400 MHz, CD3OD) δ (ppm) 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide BPC792 
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HPLC (λ = 220 nm) 
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Copies of HPLC, MS and NMR spectra 

1. Synthesis of amino acids 
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Boc-Phg(3-I,4-OH)-OH 
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1H-NMR (300 MHz, CDCl3) δ (ppm) 

 

13C-NMR (75 MHz, CDCl3) δ (ppm) 
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ESI-MS m/z 

 

Boc-Phg(3-I,4-OMe)-OH 
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1H-NMR (300 MHz, CDCl3) δ (ppm) 
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2. Synthesis of linear dipeptides 

Fmoc-Ala-Tyr(3-I,Me)-NH2 

 

 

 

 
 

 

 

 

HPLC (λ = 220 nm) 

 



Annex Chapter 6 

S204 

HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-Ala-Tyr(3-I,Me)-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-Ala-Tyr(3-B(OH)2,Me)-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

3. Synthesis of linear tripeptides 

H-Phe(4-I)-Ala-Tyr(3-B(OH)2,Me)-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-Tyr(3-I,Me)-Ala-Tyr(3-B(OH)2,Me)-NH2 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-His(5-Br)-Ala-Tyr(3-B(OH)2,Me)-NH2 
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HPLC (λ = 220 nm) 

 

H-Phg(3-I,4-OMe)-Ala-Tyr(3-B(OH)2,Me)-NH2 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

4. Synthesis of biaryl cyclic tripeptides 

Biaryl cyclic peptide incorporating a Phe-Tyr linkage 17 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

Purified peptide 17 
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HRMS (ESI) m/z 
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1H-NMR (400 MHz, CD3OD) δ (ppm) 
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COSY (400 MHz, CD3OD) δ (ppm) 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide incorporating a Tyr-Tyr linkage 23 
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O H
N

H2N
NH

O

O

NH2

OMeMeO23



Annex Chapter 6 

S219 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

Purified peptide 23 
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1H-NMR (400 MHz, CD3OD) δ (ppm) 
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COSY (400 MHz, CD3OD) δ (ppm) 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide incorporating a His-Tyr linkage 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

Purified peptide 
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1H-NMR (400 MHz, CD3OD) δ (ppm) 
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COSY (400 MHz, CD3OD) δ (ppm) 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide incorporating a Phg-Tyr linkage 32 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

Purified peptide 32 
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HRMS (ESI) m/z 
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HPLC (λ = 220 nm) 

 

5. Synthesis of N-methylated biaryl cyclic tripeptides 

N-Methylated biaryl cyclic tripeptide incorporating a Phe-Tyr linkage 19 
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 

 

N-Methylated biaryl cyclic tripeptide incorporating a Tyr-Tyr linkage 
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HPLC (λ = 220 nm) 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

N-Methylated biaryl cyclic tripeptide incorporating a His-Tyr linkage 
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HPLC (λ = 220 nm) 

 

 

 

 

 

 

 

 
 

 

 

S
O

O

O2N

O H
N

N NH

O

O

NH2

MeO

HN

N



Annex Chapter 6 

S249 

ESI-MS m/z 
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HPLC (λ = 220 nm) 
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ESI-MS m/z 

 

 



Annex Chapter 6 

S252 

HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

Synthesis of tailed biaryl cyclic hexapeptides 

Tailed biaryl cyclic hexapeptide 

resulting from the cleavage of resin 

20 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

Tailed biaryl cyclic hexapeptide 

resulting from the cleavage of resin 25 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

Tailed biaryl cyclic hexapeptide 

resulting 

from the cleavage of resins 29 

 

 

 

 

 

O H
N

H
N

NH

O

O

MeO

HN
N

O
NH

O

NH

O
H2N

OH

NH2



Annex Chapter 6 

S261 

ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

Tailed biaryl cyclic hexapeptide 

resulting from the cleavage of resin 34 
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7. Synthesis of N-methylated tailed biaryl cyclic hexapeptides 21, 26, 30, 

35 

N-Methylated tailed biaryl cyclic hexapeptide incorporating a Phe-Tyr linkage 21 
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 

 

 

 

 

 

 

 

 

Crude peptide 21 

 

 

 

 

 

O
NH

N NH

O

O

MeO

NH2

N
H

O

O
H
N

O

HN

OH

21



Annex Chapter 6 

S269 

ESI-MS m/z 
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HPLC (λ = 220 nm) 
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Purified peptide 21 
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HRMS (ESI) m/z 
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1H-NMR (400 MHz, CD3OD) δ (ppm) 
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COSY (400 MHz, CD3OD) δ (ppm) 
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HPLC (λ = 220 nm) 

 

N-Methylated tailed biaryl cyclic hexapeptide incorporating a Tyr-Tyr linkage 26 
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 
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Purified peptide 26 
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HRMS (ESI) m/z 
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HPLC (λ = 220 nm) 

 

N-Methylated tailed biaryl cyclic hexapeptide incorporating a His-Tyr linkage 30 
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 

 

N-Methylated tailed biaryl cyclic hexapeptide incorporating a Phg-Tyr linkage 35 

 

 

 

 

 

 

 

 

 

 
 

O H
N

N
NH

O

O

MeO
MeO

NH2

O
N
H

O
H
N

O
N
H

OH

SO
O

O2N



Annex Chapter 6 

S293 

ESI-MS m/z 

 

 

 



Annex Chapter 6 

S294 

HPLC (λ = 220 nm) 
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8. Synthesis of tailed biaryl cyclic lipohexapeptides 

Tailed biaryl cyclic lipopeptide incorporating a Phe-Tyr linkage 1 
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Tailed biaryl cyclic lipopeptide incorporating a His-Tyr linkage 3 
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Tailed biaryl cyclic lipopeptide incorporating a Phg-Tyr linkage 4 
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HPLC (λ = 220 nm) 

 

9. Synthesis of tailed biaryl cyclic lipoheptapeptides 

Tailed biaryl cyclic lipopeptide incorporating a Phe-Tyr linkage 40 
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HPLC (λ = 220 nm) 

 

 

 

 

 

 

 

 

Crude peptide 40 
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HPLC (λ = 220 nm) 

 

 

 

Purified peptide 40 
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1H-NMR (400 MHz, CD3OD) δ (ppm) 
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HPLC (λ = 220 nm) 
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Tailed biaryl cyclic lipopeptide incorporating a Tyr-Tyr linkage 41 
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HPLC (λ = 220 nm) 

 

 

 

 

 

 

Purified peptide 41 
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Tailed biaryl cyclic lipopeptide incorporating a His-Tyr linkage 42 
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HPLC (λ = 220 nm) 

 

 

 

 

 

 

 

 

Crude peptide 42 

 

 

O
HN

N

NH

O
O

OMe

N
NH

NH2
OH

N

O

N
H

O
N

OH

O

N
H

NH2

O

42



Annex Chapter 6 

S318 

HRMS (ESI) m/z 

 

ESI-MS m/z 

 

 

 

 

 



Annex Chapter 6 

S319 

 



Annex Chapter 6 

S320 

HPLC (λ = 220 nm) 

 

Purified peptide 42 
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Tailed biaryl cyclic lipopeptide incorporating a Phg-Tyr linkage 43 
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HPLC (λ = 220 nm) 

 

Copies of HPLC, MS and NMR spectra 

1. Synthesis of amino acids 

Boc-Tyr(3-B(OH)2,Me)-OMe  
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1H-NMR (400 MHz, CDCl3) δ (ppm) 

 

13C-NMR (75 MHz, CDCl3) δ (ppm) 
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 Boc-Tyr(3-B(OH)2,Me)-OH 
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1H-NMR (400 MHz, CDCl3) δ (ppm) 

 

13C-NMR (75 MHz, CDCl3) δ (ppm) 
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ESI-MS m/z 

 

2. Linear peptides containing a 5-bromohistidine at the C-terminus 

 H-Tyr(3-B(OH)2,Me)-Ala-Gln-Gly-Gln-His(5-Br)-Ala-NH2 (5) from resin 4 
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ESI-MS m/z 

 

H-Tyr(3-B(OH)2,Me)-Ala-Gln-Gly-Gln-His(5-Br)-Ala-NH2 (5) from resin 7 
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ESI-MS m/z 

 

H-Tyr(3-B(OH)2,Me)-Ala-D-Glu-Gly-D-Glu-His(5-Br)-Ala-NH2 from resin 9 
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3. Linear peptides containing a 5-bromohistidine at the N-terminus 

Fmoc-Ala-Thr-Tyr(3-I,Me)-Ala-Gln-NH2 

 

 

 

 
 

HPLC (λ = 220 nm) 
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H-Ala-Thr-Tyr(3-I,Me)-Ala-Gln-NH2 from resin 11 
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ESI-MS m/z 

 

H-Ala-Thr-Tyr(3-B(OH)2,Me)-Ala-Gln-NH2 from resin 12 
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H-His(5-Br)-Ala-Thr-Tyr(3-B(OH)2,Me)-Ala-Gln-NH2 from resin 10 
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4. Biaryl cyclic peptides 

Biaryl cyclic peptide 1 
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T = 25 ºC 
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T = 40 ºC 
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T = 60 ºC 
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HPLC (λ = 220 nm) 

 

Monomode CEM microwave 
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HPLC (λ = 220 nm) 
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Purified peptide 1  
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide 2 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 
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Purified peptide 2  
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptide 3 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

Purified peptide 3  
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Copies of HPLC, MS and NMR spectra 

1.Synthesis of Fmoc-Glu-OpNB 

Fmoc-Glu(OtBu)-OpNB 
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1H-NMR (400 MHz, CDCl3) δ (ppm) 
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HPLC (λ = 220 nm) 

 

O

OpNB
FmocHN

OHO

7



Annex Chapter 8 

S362 

1H-NMR (400 MHz, CDCl3) δ (ppm) 
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2. Linear peptides 

H-Ala-Gln-Leu-Gln-Phe(4-I)-Ala-Gln-OpNB 

 

 

 

 

HPLC (λ = 220 nm) 
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ESI-MS m/z 

 

H-Phe(4-B(OH)2)-Ala-Gln-Leu-Gln-Phe(4-I)-Ala-Gln-OpNB 
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HPLC (λ = 220 nm) 

 

H-Ala-Gln-Gly-Gln-Phe(4-I)-Ala-Gln-OpNB 
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ESI-MS m/z 

 

HPLC (λ = 220 nm) 

 

H-Tyr(3-B(OH)2,Me)-Ala-Gln-Gly-Gln-Phe(4-I)-Ala-Gln-OpNB 
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HPLC (λ = 220 nm) 

 

H-Ala-Gln-Leu-Gln-His(5-Br)-Ala-Gln-OpNB 
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HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-Tyr(3-B(OH)2,Me)-Ala-Gln-Leu-Gln-His(5-Br)-Ala-Gln-OpNB 
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HPLC (λ = 220 nm) 

 

H-Ala-Gln-Leu-Gln-Tyr(3-I,Me)-Ala-Gln-OpNB 

 

 

 
 

 



Annex Chapter 8 

S370 

HPLC (λ = 220 nm) 

 

ESI-MS m/z 

 

H-Tyr(3-B(OH)2,Me)-Ala-Gln-Leu-Gln-Tyr(3-I,Me)-Ala-Gln-OpNB 
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HPLC (λ = 220 nm) 

 

3. Biaryl monocyclic peptides 7, 10, 14 and 15, 18 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

Biaryl cyclic peptides 14 and 15 
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ESI-MS m/z 

 

 

 

 

 

 



Annex Chapter 8 

S377 

HPLC (λ = 220 nm) 

 

Biaryl monocyclic peptide  18 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 

 

4. Biaryl bicyclic peptides 1-4 

Biaryl bicyclic peptide  1 
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ESI-MS m/z 
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HPLC (λ = 220 nm) 
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HPLC (λ = 220 nm) 

 

Biaryl bicyclic peptide  3 
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HPLC (λ = 220 nm) 

 

Biaryl bicyclic peptide  4 
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