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Abstract
This survey reviews algorithms that can render specular, i.e. mirror reflections, refractions, and caustics on the
GPU. We establish a taxonomy of methods based on the three main different ways of representing the scene and
computing ray intersections with the aid of the GPU, including ray tracing in the original geometry, ray tracing
in the sampled geometry, and geometry transformation. Having discussed the possibilities of implementing ray
tracing, we consider the generation of single reflections/refractions, inter-object multiple reflections/refractions,
and the general case which also includes self reflections or refractions. Moving the focus from the eye to the light
sources, caustic effect generation approaches are also examined.

Keywords: Ideal reflection/refraction, ray tracing, environ-
ment mapping, distance maps, geometry transformation,
photon mapping, caustics, GPU

ACM CCS: I.3.7 Three-Dimensional Graphics and Realism

1. Introduction

Mirrors, very shiny metallic objects, refracting transparent
surfaces, such as glass or water, significantly contribute to
the realism and the beauty of images (Figure 1). Thus, their
simulation in virtual environments has been an important
task since the early days of computer graphics [Whi80]. Un-
fortunately, such phenomena do not fit into the local illu-
mination model of computer graphics, which evaluates only
the direct illumination, i.e. light paths originating at a light
source and arriving at the eye via a single reflection. In a
mirror, however, we see the reflection of some other surface
illuminated by the light sources, thus rendering a mirror re-
quires the simulation of longer light paths responsible for the
indirect illumination. While in the local illumination model
a surface point can be shaded independently of other surface
points in the scene, indirect illumination introduces a cou-
pling between surfaces, so the shading of a point requires
information about the scene globally.

Before 2006, GPUs could only be controlled through
graphics APIs such as Direct3D or OpenGL. These APIs
are based on the concepts of the incremental rendering

Figure 1: Specular effects in a game, including reflectors,
refractors, and caustics (http://www.gametools.org).

pipeline and present the GPU to the application developer
as a pipeline of programmable vertex, geometry, and frag-
ment shaders, and also non-programmable but controllable
fixed function stages. One of these fixed function stages ex-
ecutes rasterization, which is equivalent to tracing a bundle
of rays sharing the same origin, and passing through the pix-
els of the viewport. The first hits of these rays are identified
by the z-buffer hardware. Since this architecture strongly re-
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flects the concepts of incremental rendering, and processes
a vertex and a fragment independently of other vertices and
fragments, the utilization of the GPU for other algorithms
requires their translation to a series of such rendering passes
[Bly06,OLG∗05]. The result of a pass can be stored in a tex-
ture that can be read by the shaders during the subsequent
passes.

The recently introduced CUDA [NVI07], on the other
hand, allows the programming of the GPU as a general data-
parallel computing device, and does not require the trans-
lation of the algorithm to the concepts of the incremental
rendering pipeline.

1.1. Specular surfaces

A light beam travels along a straight line in a homogeneous
material, i.e. where the index of refraction ν and extinction
coefficient κ are constant (note that in inhomogeneous ma-
terials the light does not follow a straight line but bends ac-
cording to the change of the refraction index [IZT∗07]). The
index of refraction is inversely proportional to the speed of
light and the extinction coefficient describes how quickly the
light diminishes inside the material. We shall assume that
these properties change only at surfaces separating different
objects of homogeneous materials.

According to the theory of electromagnetic waves, when a
light beam arrives at a surface it gets reflected into the ideal
reflection direction specified by the reflection law of the ge-
ometric optics, and gets refracted into the refraction direc-
tion according to the Snellius–Descartes law of refraction.
Incident radiance Lin coming from a direction that encloses
incident angle θ′ with the surface normal is broken down
to reflected radiance Lr and refracted radiance Lt according
to Fresnel function F(θ′), which depends both on the wave-
length and on the incident angle:

Lr = LinF(θ′), Lt = Lin(1−F(θ′)). (1)

The Fresnel function can be expressed from incident angle
θ′ and from material properties ν and κ. If the light is not
polarized, the Fresnel factor can be approximated in the fol-
lowing form [Sch93, LSK05]:

F(θ′) = F0 +(1−F0)(1− cosθ′)5,

where

F0 =
(ν−1)2 +κ2

(ν+1)2 +κ2 (2)

is the Fresnel function (i.e. the probability that the photon is
reflected) at perpendicular illumination. For polarized light
and crystals, more complicated models can be used [WTP01,
GS04, WW08].

The normal vector and consequently incident angle θ′
may change on the surface that is visible in a single pixel,
thus the pixel color will be the average of reflections or

refractions. Surfaces exhibiting strong normal vector vari-
ations on microstructure level are called optically rough.
Rough surfaces are characterized by their BRDFs that de-
pend not only on the Fresnel function but also on the prob-
abilistic properties of the microstructure geometry [CT81,
KSK01, HTSG91].

On the other hand, when the surface is smooth, the nor-
mal vector can be assumed to be constant in a small area
corresponding to a pixel, thus the laws of geometric op-
tics and equation 1 describe the reflected radiance even on
the scale of pixels (i.e. on human scale). Smooth surfaces
are often called specular surfaces, mirrors, or ideal reflec-
tors/refractors.

In this review we consider only ideal reflector and re-
fractor surfaces separating homogeneous regions. However,
we note that as rough surface reflection can be imagined
as the average of smooth surface reflections, the combina-
tion of the surveyed methods with integration or filtering
can render not perfect, so called glossy reflections as well
[KVHS00, KM00, RH01, HSC∗05].

1.2. Rendering specular surfaces

N

reflected point

reflection point

R

Figure 2: Specular effects require searching for complete
light paths in a single step.

Rendering specular surfaces can be regarded as a process
looking for light paths containing more than one scattering
point (Figure 2). For example, in the case of reflection we
may first find the point visible from the camera, which is the
place of reflection. Then from the reflection point we need
to find the reflected point, and reflect its radiance at the re-
flection point toward the camera.

Mathematically, the identification of the reflected point is
equivalent to tracing a ray of parametric equation

~r(d) =~x +~Rd, (3)

where ray origin~x is the reflection point, normalized ray di-
rection ~R is the reflection direction, and ray parameter d is
the distance along the ray. We have to calculate ray parame-
ter d∗ that corresponds to the first ray–surface intersection.

Real-time ray tracing and particularly real-time specular
effects have been targeted by both CPU and GPU approaches
and also by custom hardware [WSS05]. CPU approaches use
sophisticated data structures [Hav01, RSH05, WK06], han-
dle data in a cache efficient way, try to trace packets of rays
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simultaneously, and heavily exploit the SSE2 and 3DNow!
instruction sets of current CPUs [WKB∗02, WBS03]. With
these optimizations and exploiting the power of a cluster of
computers, these methods can provide real-time reflections,
refractions, and even caustics [GWS04,Wym05b]. However,
single CPU solutions are still not fast enough, especially
when the scene is dynamic.

Computing specular reflections and refractions involves
tracing a primary ray up to the reflective/refractive surface,
computing the reflected or refracted ray, and recursively trac-
ing the successive rays reflecting or refracting on specular
surfaces until a non-specular surface is reached. Most of the
GPU based techniques take advantage of the GPU rasteriz-
ing capabilities to compute the first intersection point with
the primary rays. In order to trace secondary rays on the
GPU, we should ensure that GPU processors have access
to the scene geometry. If the GPU is controlled by a graph-
ics API, vertex, geometry, and fragment shaders may access
global (i.e. uniform) parameters and textures, thus this re-
quirement can be met by storing the scene geometry in uni-
form parameters or in textures [SKSS08].

In this STAR report we are going to establish a taxon-
omy of methods to compute real-time specular effects on the
GPU, based on the different ways of representing the scene
and handling ray intersections with the aid of the GPU:

• Ray tracing in the original geometry where traditional,
object space accurate ray tracing algorithms are adapted
to work on the GPU, which is possible due to the high
parallelism inherent to these computations.

• Image based lighting and rendering where a part of the
scene is represented by images, which are looked up with
the parameters of the ray.

• Ray tracing in the sampled geometry where the scene is
sampled in such a way that it is feasible to store samples
in textures and compute the intersection of a ray with rea-
sonably few texture fetches.

• Geometry transformation where the geometry of the
scene is transformed to build the virtual scene that is seen
on the reflector.

We also provide a classification for caustic generating al-
gorithms, based on how the caustic hits are identified, how
the photon hits are stored, and how they are filtered and pro-
jected onto the receiver surfaces.

2. Ray tracing in the original geometry

Ray tracing is a classical image synthesis approach, which
offers accurate non-local lighting phenomena, including
specular effects. For a long time, it was synonymous to
high-quality off-line rendering as opposed to real-time incre-
mental graphics with an artificial appearance. With evolving
GPUs the gap has been closing, and both the need and the
possibility for high fidelity ray tracing algorithms in real-
time graphics emerged. Reformulating the wealth of earlier

results for parallel architectures has remained an important
direction of research.

Efficient implementations of ray tracing algorithms that
work with the original geometry need fast ray–object in-
tersection calculation and complex data structures parti-
tioning space to quickly exclude objects that are surely
not intersected by a ray. Many data structures and algo-
rithms have been developed having a CPU implementation
in mind [AW87,Arv91,AK87,FTK86,Gla89,OM87,Hav01,
WKB∗02, RSH05, HHS06]. GPU ray tracing have benefited
from the advancements in accelerating CPU ray tracing, but
not all techniques run equally well on both platforms. Most
ideas had to be adapted to account for the special nature of
GPUs.

Object precision ray tracing is a data parallel algorithm,
which is fundamentally different from the incremental ren-
dering pipeline. In order to leverage the GPU’s computa-
tional power for this task, one possibility is to view the incre-
mental rendering pipeline as a general purpose stream pro-
cessing device. This allows algorithms and data structures
originally proposed for CPU ray tracers to be ported to ver-
tex, geometry, and fragment shader programs. Still, peculiar-
ities of the rendering pipeline and features like the z-buffer
can be exploited. The other possibility is the application of
the CUDA environment, which departs from the incremental
pipeline and allows access to the widest range of stream pro-
cessor features. CUDA has been used in the latest successful
implementations, not only for actual ray tracing but also for
the construction of the acceleration hierarchy.

2.1. Ray tracing primitives

One of the striking advantages of the ray tracing approach
is that primitives more complex than triangles are easily
supported. To name a few recent examples, algorithms for
tracing piecewise quadratic [SGS06] and NURBS surfaces
[PSS∗06] have been proposed. These algorithms use the in-
cremental pipeline to splat enclosing objects onto the ren-
der target image and perform ray intersection in fragment
shaders. Therefore, they assume coherent eye rays are to
be traced, which makes these approaches not yet suitable to
trace reflection and refraction rays, which would be required
for specular effects.

In general, considering scenes of typical size in interac-
tive applications, surface points visible through pixels are
more effectively determined using incremental techniques
than ray tracing. Thus, it is often required that the same ge-
ometry is rendered incrementally, and ray traced for specular
effects. Therefore, ray tracing primitives can be assumed to
be triangles in practice.

2.1.1. Ray–triangle intersection

The fundamental operation of ray tracing is evaluating the
ray–triangle intersection test. Depending on the accelera-
tion scheme, a high number of intersection tests may have
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to be performed, making it a time-critical operation. Möller
and Trumbore [MT97] introduced a fast algorithm, which
does not require preprocessing and is fairly popular in GPU
programs. It solves the linear system of equations to obtain
the barycentric coordinates of the intersection point. Apply-
ing pre-computation and passing other information instead
of the triangle vertices, the test can be further speeded up
[Wal04, SKSS06, Ken07].

The 4-channel ALUs of GPUs can also be exploited
to compute intersections with four rays simultaneously
[SSK07]. These methods work best with ray packets
[WIK∗06, HSHH07].

2.2. The ray engine

The ray engine [CHH02] method uses the rasterization hard-
ware to initiate ray–triangle intersection tests, the fragment
shader to evaluate these tests, and the z-buffer to find the
nearest hit for a ray. It associates the set of rays with pix-
els and the objects with rasterization primitives. In order to
guarantee that every object is tested with every ray, the view-
port resolution is set to make the number of pixels equal
to the number of rays, and an object is rendered as a full-
viewport rectangle, i.e. a quadrilateral that covers all pixels
of the viewport.

rays texture

ray tracing
primitives

full viewport
quad

Fragment shader
ray-primitive
intersection

draw

fetch

z-test

hit records

Figure 3: Rendering pass implementing the ray engine.
The fragment shader computes the ray–primitive intersec-
tion and outputs the hit information as the color and the ray
parameter of the hit as the depth of the fragment. The z-test
executed in the z-buffer will keep the first intersections in the
resulting texture. Results are further processed by the CPU.

Figure 3 depicts the rendering pass of the ray engine al-
gorithm. Every pixel of the render target is associated with a
ray. The origin and direction of rays to be traced are stored
in textures that have the same dimensions as the render tar-
get. One after the other, a single primitive is taken, and it
is rendered as a full-viewport rectangle, with the primitive
data stored in the vertex records. Thus, pixel shaders for ev-
ery pixel will receive the primitive data, and can also access
the ray data via texture reads. The ray–primitive intersec-
tion calculation can be performed in the shader. Then, using

the distance of the intersection as a depth value, a depth test
is performed to verify that no closer intersection has been
found yet. If the result passes the z-test, it is written to the
render target and the depth buffer is updated. This way every
pixel will hold the information about the nearest intersection
between the scene primitives and the ray associated with the
pixel.

Sending every object as a full-viewport rectangle tests ev-
ery ray against every primitive, thus the CPU program is ex-
pected to provide only those sets of rays and objects which
may potentially intersect. In this sense the ray engine can be
imagined as a co-processor to CPU based ray tracing. The
CPU part of the implementation finds the potentially visible
objects, and the GPU tries to intersect these objects with the
set of specified primary, shadow, or secondary rays.

This concept of using the GPU as a co-processor for a
CPU based rendering algorithm is also exploited in final
rendering software Gelato. However, such approaches re-
quire frequent communication of results from the GPU to
the CPU.

2.2.1. Acceleration hierarchy built on rays

The CPU–GPU communication bottleneck can be avoided
if the GPU not only computes the ray–object intersections
but also takes the responsibility of the ray generation and
the construction of the acceleration scheme to decrease the
number of intersection tests. Acceleration schemes are usu-
ally spatial object hierarchies. The basic approach is that,
for a ray, we try to exclude as many objects as possible from
intersection testing. This cannot be done in the ray engine
architecture, as it follows a per primitive processing scheme
instead of the per ray philosophy. Therefore, it is also worth
building an acceleration hierarchy over the rays, not over the
objects [Sze06].

rays texture

Fragment shader
ray-primitive
intersection

z-test

secondary rays
point

primitives
covering the

viewport

ray tracing primitives

ray-enclosing cones

Vertex shader
cone-sphere
intersection

clipped away

draw

fetch

Figure 4: Point primitives are rendered instead of full view-
port quads, to decompose the array of rays into tiles. The
vertex shader tests the enclosing objects of rays and primi-
tives against each other, and discards tiles with no possible
intersections. Refracted or reflected secondary rays are gen-
erated at the hit points. These can be processed on the GPU
in a similar pass, without reading the data back to the CPU.
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Primary ray impact points are determined by rendering
the scene from either the eye or the light. As nearby rays
hit similar surfaces, it can be assumed that reflected or re-
fracted rays may also travel in similar directions, albeit with
more and more deviation on multiple iterations. If we com-
pute enclosing objects for groups of nearby rays, it becomes
possible to exclude all rays within a group based on a single
test against the primitive being processed. Whenever the data
of a primitive is processed, we do not render a rectangle cov-
ering the entire viewport, but invoke the pixel shaders only
where an intersection is possible. The solution (as illustrated
in Figure 4) is to split the render target into tiles, render a set
of tile quads instead of a full viewport one, but make a deci-
sion for every tile beforehand whether it should be rendered
at all. The enclosing objects for rays grouped in the same
tile are infinite cones [Ama84]. By testing them against the
enclosing sphere of each triangle, tiles not containing any in-
tersections are excluded. The computation of ray-enclosing
cones is also performed on the GPU.

Figure 5 shows a scene of multiple refractive objects in
a cube map environment. The rendering resolution is 512×
512, divided into 32×32 tiles, all rendered as 16×16 sized
DirectX point primitives at 40 FPS on an NV6800 GPU.

Figure 5: Images rendered using an acceleration hierarchy
of rays [Sze06].

Roger et al. [RAH07] extended the ray hierarchy approach
to a complete ray tracer and examined the exploitation of
the geometry shader of Shader Model 4 GPUs. As has been
pointed out in this paper, a particular advantage of the ray
hierarchy method is that the construction cost of the acceler-
ation scheme is low, thus the method is a primary candidate
for dynamic scenes.

2.3. Spatial acceleration schemes

As GPUs were advancing, the GPU implementation of
more and more complex acceleration schemes became pos-
sible. Additionally, parallel algorithms for the construction
of these data structures have also been proposed, making
them applicable for real-time rendering of dynamic scenes.
A detailed state-of-the-art analysis focusing on the construc-
tion and traversal of such hierarchies for dynamic scenes

(considering both CPU and GPU methods) has been given
in [WMG∗07].

Algorithms that further increase the performance of accel-
eration schemes by exploiting ray coherence, including ray
packets and frustum traversal, have also been adapted to the
GPU. Combined with the SIMD execution scheme of GPU
ALUs, these offer significant speedups. It has to be noted,
however, that specular effects require tracing secondary re-
flection and refraction rays, which exhibit far less coherence
than primary rays, so the gain in our context is likely to be
less significant.

In the following subsections, we summarize the research
results for all popular acceleration schemes from the basics
to most recent improvements on traversal and construction.

2.3.1. Uniform grid

The uniform grid partitions the bounding box of the scene
to equal size cells (Figure 6) independently of the distribu-
tion of the objects. The advantage of this scheme is that a
cell can be located in constant time and cells pierced by the
ray can be visited with an incremental 3D line drawing al-
gorithm. The disadvantage is that many cells may be empty,
and empty cells also cost storage space and processing time
during traversal.

Figure 6: A uniform grid [FTK86, AK89] that partitions the
bounding box of the scene into cells of uniform size. In each
cell objects whose bounding box overlaps with the cell are
registered.

To cope with the limited features of GPUs of that time,
Purcell et al. [PBMH02, PDC∗03] applied uniform grid par-
titioning and decomposed ray tracing into four separate GPU
kernels: traversal, intersection, shading, and spawning, and
associated each kernel with a separate rendering pass. This
decomposition resulted in simple shader programs having
no dynamic branching. The state information communicated
by the passes is stored in floating point textures. The input
stream and execution of all the fragment programs are ini-
tialized by rasterizing a viewport sized quadrilateral.

Even this early method revealed the fundamental chal-
lenge of GPU space partitioning: traversal coherence. For
different rays, the above kernel operations have to be per-
formed in varying number and order. It is often the case that
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processors that have already finished their tasks executing
one type of kernel have to wait for others before they can go
on to the next state.

The uniform 3D grid (Figure 6) partitioning of the scene
geometry is stored in a 3D texture, which is cache-coherent
and accessed in constant time. A grid cell is encoded by a
texel storing the the number of referenced objects in one
color channel, and a pointer to the first referenced object in
the list of objects. This pointer is in fact two floats interpreted
as a texture address. The list of referenced objects is stored
in another texture where each texel corresponds to a pointer
(i.e. texture address) to the actual object data, including ver-
tex position, normals, texture coordinates or other material
information.

Karlsson proposed the inclusion of the distance to the
nearest non-empty cell in the texel of the 3D grid. This infor-
mation can be used for skipping empty cells during travers-
ing the grid [KL04].

Figure 7: Reflective objects rendered by Purcell’s method
at 10 FPS on 512× 512 resolution using an NV6800 GPU
[Ral07].

Wald et al. [WIK∗06] have extended the grid traversal
scheme to handle ray packets, thus exploiting ray coherence.
Grid cells that cover the frustum of rays are found for slices
of voxels in the 3D grid, and rays in the packet are tested
against objects in those grid cells. The authors’ conjecture is
that the method is very appropriate for GPUs, but this is yet
to be proven. The dynamic, parallel construction of uniform
grid schemes has been addressed in [IWRP06]. This paper
targeted multi-core CPU systems, and a streaming GPU ver-
sion has not been published yet.

2.3.2. Octree

For octrees (Figure 8), the cells can be bigger than the mini-
mum cell, which saves empty space traversal time.

Ray tracing with octree has been transported to GPU by
Meseth et al. [MGK05]. The hierarchical data structure is
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Figure 8: A quadtree partitioning the plane, whose three-
dimensional version is the octree [Gla84, AK89]. The tree
is constructed by halving the cells along all coordinate axes
until a cell contains “just a few” objects, or the cell size gets
smaller than a threshold. Objects are registered in the leaves
of the tree.

mapped to a texture, where values are interpreted as point-
ers. Chasing those pointers is realized using dependent tex-
ture reads. During traversal, similarly to octrees managed by
CPUs, the next cell along a ray is identified by translating
the exit point from the current cell a little along the ray, and
performing a top-down containment test from the root of the
tree. In order to avoid processing lists of triangles in cells,
every cell only contains a single volumetric approximation
of visual properties within the cell. Thus, scene geometry
needs to be transformed into a volumetric representation.
Although the method makes use of spatial subdivision, it is
in fact a clever approximate ray tracing scheme over a dis-
cretely sampled scene representation.

2.3.3. Kd-tree

Kd-trees adaptively and recursively subdivide the cells con-
taining many objects. Unlike in octrees, the distribution of
the objects inside the cell is also considered when searching
for a subdividing plane (Figure 9).

a
b

c

1

3

1

3

b c

2 2

a c

Figure 9: A kd-tree. Cells containing “many” objects are
recursively subdivided to two cells with a plane that is per-
pendicular to one of the coordinate axes. Note that a triangle
may belong to more than one cell.

Foley and Sugerman [FS05] implemented the kd-tree ac-
celeration hierarchy on the GPU. Their algorithm was not
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optimal in algorithmic sense [Hav01, HP03, SKHBS02] but
eliminated the need of a stack, which is very limited on
Shader Model 1, 2, and 3 GPUs [EVG04, PGSS07]. While
this decomposition showed that GPU hierarchy traversal is
feasible, it achieved only 10% of the performance of compa-
rable CPU implementations. They implemented two varia-
tions on a stackless traversal of a kd-tree: kd-restart that iter-
ates down the kd-tree, and kd-backtrack that finds the parent
of the next traversal node by following parent pointers up the
tree and comparing current traversal progress with per-node
bounding boxes. The kd-tree had to be constructed on the
CPU.

Popov et al. [PGSS07] proposed a kd-tree structure aug-
mented with additional pointers, called ropes, connecting
neighboring cells to enable the identification of the next
cell along the ray without the use of a stack. They used the
CUDA architecture and achieved real-time ray tracing while
supporting specular effects.

In [HSHH07] Foley and Sugerman’s approach has been
extended and turned to a single pass algorithm using current
GPUs’ branching and looping abilities. This paper addition-
ally introduced three optimizations: a packeted formulation,
a technique for restarting partially down the tree instead of at
the root, and a small, fixed-size stack that is checked before
resorting to restart. We can say that the classical recursive
kd-tree traversal algorithm of CPUs has been essentially re-
produced on the GPU with the short-stack approach (for rea-
sonable scenes the stack can be long enough to support the
entire depth of the kd-tree), and packetization opened the
door to coherence-exploiting methods.

Classically, kd-tree construction is a recursive, depth-first
search type algorithm, where triangles in a cell must be
sorted according to one of their coordinates, then possible
splitting planes are evaluated by scanning the array. The sur-
face area heuristics (SAH) is the mostly used estimate for
the traversal cost [Hav01]. The splitting position with the
lowest cost is selected, and triangles are sorted into the child
cells, for which the same process is repeated. This method
requires expensive sorting and recursive execution, which
are not feasible in real time and on the GPU. In [PGSS06] an
approximate approach has been proposed that evaluates only
a fixed number of evenly distributed possible splitting po-
sitions without sorting. With that, kd-tree construction was
possible on the GPU in a depth-first search manner, but on
the lowest levels it has to fall back to the classical algorithm
to get acceptable traversal performance, and for complex
scenes the construction time was still too high.

In [ZHWG08] the kd-tree approach has been shown to
be applicable to dynamic scenes through a real-time paral-
lel construction algorithm implemented in CUDA. Further
rationalizing the idea of [PGSS06], on higher levels of the
tree only median splitting and cutting-off-empty-space (Fig-
ure 10) are considered. On lower levels with only a few
triangles, the extrema of triangles are the considered can-
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Figure 10: A kd-tree cutting away empty spaces. Note that
empty leaves are possible.

didates, which can be evaluated without sorting. That way,
the kd-tree structure is still close to optimal, but can be con-
structed in real-time. A photon mapping application is pre-
sented which is capable of running interactively for dynamic
scenes.

2.3.4. Bounding kd-tree variants

In conventional kd-trees a triangle may belong to both child
cells of a supercell, and the triangle lists for the two leaves
together may be longer than the original list, complicating
and slowing down the building process. Triangle bounding
boxes typically overlap, and it is neither always possible nor
desirable to find cutting planes that do not intersect any tri-
angles. During traversal, these triangles will be tested for in-
tersection more than once. Shared triangles either need to
be clipped, or extra tests are necessary to assure that a hit
actually happened within the cell we are processing.
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Figure 11: Structure of an skd-tree. A cell is cut into two
possibly overlapping cells by two planes. Every triangle be-
longs strictly to one cell that completely contains it.

All these problems, along with the rapid reconstruction
for dynamic scenes, are elegantly addressed by bounding in-
terval hierarchies [WMS06], which have been proposed for
ray tracing on a dedicated hardware architecture. In fact, the
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concept was first published as spatial kd-trees or skd-trees
in [OMSD87], and this (somewhat less descriptive) name
has been used more prominently in recent publications.

Similar to loose octrees [Tha00], skd-trees are in fact
loose kd-trees, where child cells may be overlapping, but
they completely contain the primitives sorted into them.
In skd-trees, instead of cutting the cell into two non-
overlapping cells sharing some triangles, we decompose it
to two possibly overlapping cells, where every triangle be-
longs strictly to one cell, namely the one that completely
contains it (Figure 11). The price is that we have to store the
position for two cutting planes: the maximum of the left cell
and the minimum of the right cell. Additionally, the min-
ima and the maxima of both cells can be stored, resulting in
tighter bounding volumes. In kd-tree construction parlance,
this amounts to cutting off empty space. During traversal, we
need to compute intersections with all planes, but on a GPU
with four-channel ALUs this comes for free if ray packeting
is not used.

In [SKSS06] the skd-tree traversal has been implemented
on general graphics hardware in a single pass, using a stack
traversal algorithm (Figure 12).

In [HHS06] several variants have been proposed to com-
bine skd-trees with bounding volume hierarchies, and fast
construction algorithms have been proposed. However, these
are not targeted at GPUs.

Figure 12: A scene rendered with textures and reflections
(15000 triangles, 10 FPS at 512× 512 resolution on an
NV8800 GPU) [SKSS06].

2.3.5. Hierarchical bounding boxes

Geometry images [GGH02] can be used for fast bounding
box hierarchy [TS05] construction as has been pointed out
in [CHCH06]. Here a threaded bounding box hierarchy was
used which does not rely on conditional execution (another
feature that is poorly supported by the GPU) to determine the
next node in a traversal. The method threads a bounding box

hierarchy with a pair of pointers per node, indicating the next
node to consider, given that the ray either intersects or misses
the node’s bounding box. These threads allow the GPU to
stream through the hierarchy without maintaining a stack.
As there are no conditional operations, the utilization of the
parallel GPU processors are high, but the resulting traversal
order might not be optimal, which decreases performance.

Other efficient hierarchical bounding box approaches
have been proposed in [Chr05, BWSF06]. Günther et al.
[GPSS07] exploited the CUDA programming environment
that is more appropriate for general purpose computation
like ray tracing in the original geometry than the incremental
rendering pipeline.

3. Environment mapping

Environment mapping [BN76] is an old approximation tech-
nique that substitutes ray tracing by looking up values from
a map. The steps of environment mapping are shown by Fig-
ure 13.

1. Finding the center 
of the object

2. Taking images
from the center

3. Illumination 
from the images

Figure 13: Steps of environment mapping

The environment of a reflective object is rendered from a
point, called reference point, that is in the vicinity of the re-
flector, defining the camera windows as six faces of a cube.
Then, during the rendering of the reflective object, the ra-
diance of the reflected ray is looked up from these images
using only the direction of the ray but ignoring its origin and
neglecting self reflections. In other words, environment map-
ping assumes that the reflected points are very (infinitely)
far, and thus the hit points of the rays become independent
of the reflection points, i.e. the ray origins.

Environment mapping has been originally proposed to
render ideal mirrors in local illumination frameworks, then
has been extended to approximate general secondary rays
without expensive ray-tracing [Gre84, RTJ94, Wil01]. The
idea can also be used for glossy and diffuse materials if
the map is pre-filtered, i.e. it is convolved with the angu-
lar variation of the product of the BRDF and the cosine of
the incident angle [KVHS00, KM00, RH01, HSC∗05]. Envi-
ronment mapping has also become a standard technique of
image based lighting [MH84, Deb98].

A fundamental problem of environment mapping is that
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the environment map is the correct representation of the di-
rection dependent illumination only at its reference point.
For other points, accurate results can only be expected if
the distance of the point of interest from the reference point
is negligible compared to the distance from the surround-
ing geometry (Figure 14). Classical environment mapping
cannot present correct parallax when the eye point moves,
which makes the user feel that the reflective object is not
properly embedded in its environment. However, if the ob-
ject moves, the environment map can be re-generated which
provides motion parallax.

Figure 14: Ray tracing (left) compared to environment map-
ping having the reference point in the middle of the room
(right). Note that environment mapping becomes very inac-
curate if the reflective surface is far from the reference point
and is close to the reflected environment.

In order to increase the accuracy of environment map-
ping, Cabral et al. [CON99] and Hakura et al. [HS01] used
multiple environment maps, and for each shaded point they
looked up that map where the shaded point is the closest to
the reference point of the environment map. However, the
transitions between different environment maps are difficult
to control and may lead to discontinuities. One elegant way
to solve the discontinuity problem is to approximate the hit
point by tracing the ray in a proxy geometry, to look up the
hit point from the environment maps having centers closest
to the hit point, and blending the colors based on the dis-
tances [ML03]. In this paper the proxy geometry was the
height map of an urban model.

3.1. Environment mapping on the GPU

GPUs can be effectively used in environment map genera-
tion and rendering reflective objects. Environment map gen-

eration is a conventional rendering pass where the rasteriza-
tion hardware and the z-buffer can easily identify points that
are visible from the reference point through the faces of a
cube.

When the reflective or refractive object is rendered, the
fragment shader computes the reflection or refraction direc-
tion from the view direction and the interpolated normal, and
looks up the prepared cube map texture with these direc-
tions to get the incident radiance. The incident radiance is
weighted with the Fresnel function according to equation 1.

3.2. Localized environment mapping

In order to provide more accurate environment reflections
and the missing parallax effect, the geometry of the scene
should be taken into account, and the ray tracing process
should be executed or at least approximated. A simple ap-
proximation is to use some proxy geometry [Bre02, Bjo04]
(e.g. a sphere, a billboard rectangle or a cube) of the en-
vironment, which is intersected by the reflection ray to ob-
tain a point, whose direction is used in the environment map
lookup (Figure 15). For a fixed and simple proxy geometry,
the ray intersection calculation can be executed by the pixel
shader of the GPU. However, the assumption of a simple
and constant environment geometry creates visible artifacts
that make the proxy geometry apparent during animation.
Hargreaves [Har04] applied further simplifications and as-
sumed that the environment is an infinite hemisphere, the
object is always at a fixed distance from the base plane of
the hemisphere, and reflection rays are always perpendicular
to the base plane. These assumptions make even ray tracing
unnecessary, but significantly limit the applicability of the
algorithm (the target application was a bike racing game).

x

o

proxy sphere

environment
surface

R
real hit

proxy hit

point whose
color is used

reference
point:

shaded point:

Figure 15: Application of a proxy sphere when tracing re-
flection ray of origin~x and direction ~R. The environment map
is looked up in the direction of the proxy hit.

Popescu et. al [PMDS06] proposed a method that used
displacement mapped rectangles as the proxy geometry.

We note that environment map localization efforts oc-
curred even in the area of CPU ray tracing. Reinhard [RTJ94]
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proposed the reflection rays to be traced only in the neigh-
borhood (i.e. inside a cube, which separates the surfaces han-
dled explicitly from those of replaced by the environment
map). In this method, environment mapping is only used if
ray tracing in the neighborhood reports no intersection.

3.3. Image based rendering

Classical environment mapping looks up the environment
map with the ray direction but ignoring the ray origin. Lo-
calization means the incorporation of the ray origin into this
process. Making images dependent on the viewer’s position
is also important in image based rendering [LH96]. Image
based rendering can be explained as combining and warp-
ing images taken from different camera positions in order to
get the image that could be seen from a new camera posi-
tion. The reconstruction may be based on coarse geometric
information [GGSC96, DBY98] or on per pixel depth val-
ues [PCD∗97b, SMS01, ESK03]. Lischinski and Rappoport
[LR98] used layered light fields to render fuzzy reflections
on glossy objects and layered depth images to ray trace sharp
reflections. Heidrich et al. [HLCS99] and Yu et al. [YYM05]
took two light fields to simulate accurate reflections, one for
the radiance of the environment, and another for mapping
viewing rays striking the object to outgoing reflection rays.

Pre-computing refractive paths is also strongly related to
image based rendering. Having these paths, real-time effects
can be generated easily [HLL07]. Refracted paths can be
stored in a compact form using, for example, spherical har-
monics [GLD06].

4. Ray tracing in the sampled geometry

Instead of storing the original geometry, the scene can also
be represented in a sampled form in textures. A conventional
texture map encodes a color (i.e. radiance) function over a
2D surface in the 3D space, thus a single texel represents a
point of a 2D surface, and the texture coordinate pair navi-
gates in this 2D subset. In order to allow the representation
of points of 3D point sets, we can either use 3D textures or
store additional coordinates in the texture data that comple-
ments the texture coordinate pair. One alternative is to store
all three coordinates in the texture data, which is the basic
idea of geometry images [GGH02]. On the other hand, if the
texture coordinate pair is also directly utilized to identify the
represented point, a single additional coordinate is enough.
This “third coordinate” can be a distance from a reference
surface, when it is called the “height”, or from a reference
point, when it is called the “depth”.

Adding a per-texel depth or height to smooth surfaces
is also essential in displacement mapping [PHL91, Don05,
HEGD04, SKU08] and in the realistic rendering of bill-
boards [Sch97, PMDS06, MJW07].

The oldest application of the idea of using distances from

a given point as a sampled representation of the scene is the
depth map of shadow algorithms [Wil78]. A shadow map
samples just that part of the geometry which is seen from
the light position through a window. To consider all direc-
tions, a cube map should be used instead of a single depth
image. Storing modeling space Euclidean distance in texels
instead of the screen space z coordinates [Pat95,SKALP05],
the cube map becomes similar to a sphere map, which has
the advantage that cube map boundaries need not be handled
in a special way when interpolating between two directions.
These cube maps are called distance maps.

The depth map generated from the camera — i.e. assum-
ing that the reference point is the eye — is also sufficient in
many applications if rays leaving the visible frustum can be
ignored [Wym05b, WD06b, SP07].

Sampling can be used simultaneously for color and ge-
ometry information. The computation of these maps is very
similar to that of classical environment maps. The only dif-
ference is that not only the color, but the distance is also
calculated and stored in additional maps.

A major limitation of single layer maps is that they rep-
resent just those surfaces in these maps which are directly
visible from the reference point, thus those ray hits which
are occluded from the reference point cannot be accurately
computed. If occluded surfaces are also needed, a texel
should store multiple distances or, alternatively, we should
use multiple layers as suggested by layered depth impos-
tors [DSSD99]. The set of layers representing the scene
could be obtained by depth peeling [Eve01, LWX06, Thi08]
in the general case. However, we may often apply an approx-
imation that limits the number of layers to two, representing
front faces and back faces, respectively.

Instead of using multiple or layered cube maps, another
solution of the occlusion problem is the application of multi-
perspective or non-pin-hole cameras [HWSG06,MPS05]. In
the extreme case, a multiperspective camera is assigned to
each object, which provides a dense sampling of the space
of rays intersecting this object. The ray space is five dimen-
sional, which can be reduced to four dimensions if rays start
far from the object. In this case the ray space can be pa-
rameterized by two points on a bounding sphere or on a
cube. Having the ray samples, the intersections are computed
during preprocessing and the results are stored in a high-
dimensional texture. In the GPU such a high-dimensional
texture should be “flattened”, i.e. stored as a tiled 2D tex-
ture. During real-time processing a ray is traced by find-
ing the closest sample rays and interpolating the hits, which
is equivalent to a texture lookup [LFY∗06]. The problems
are that high dimensional textures require a lot of storage
space and this approach works only for rigid objects. We
note that this idea was used first in displacement mapping
[WWT∗04].

submitted to COMPUTER GRAPHICS Forum (11/2008).



Szirmay-Kalos, Umenhoffer, Patow, Szécsi, Sbert / Specular Effects on the GPU 11

4.1. Ray tracing distance maps

In this section the ray tracing algorithm in a single distance
map layer is discussed, using the notations of Figure 16. Let
us assume that center~o of our coordinate system is the refer-
ence point and we are interested in the illumination of point
~x from direction ~R.

x

l

R

o

l’

d surface represented 
by the layer

distance map layer

distance stored is |l’|

hit of the ray

Figure 16: Tracing a ray from reflection point~x at direction
~R. When we have a hit point approximation~l on the ray, the
distance and the radiance of point~l′ will be fetched from the
cube map of reference point ~o.

The illuminating point is thus on the ray of equation
~x + ~Rd, where d is the ray parameter. The accuracy of an
arbitrary approximation d can be checked by reading the
distance of the environment surface stored with the direc-
tion of ~l = ~x + ~Rd in the cube map (|~l′|) and comparing it
with the distance of approximating point~l on the ray (|~l|). If
|~l| ≈ |~l′|, then we have found the intersection. If the point on
the ray is in front of the surface, that is |~l| < |~l′|, the current
approximation is an undershooting. On the other hand, the
case when point ~l is behind the surface (|~l| > |~l′|) is called
overshooting. Ray parameter d of the ray hit can be found
by a simple approximation or by an iterative process.

4.1.1. Parallax correction

r

x

Ro

perpendicular
surface

p

p’ environment
surface

R

Figure 17: Parallax correction assumes that the surface is
perpendicular to the ray and replaces approximation~r of the
environment mapping by the intersection of the ray of origin
~x and direction ~R with this perpendicular surface.

Classical environment mapping would look up the illu-
mination selected by direction ~R, that is, it would use the

radiance of point ~r (Figure 17). This can be considered as
the first guess for the ray hit. To find a better second guess,
we assume that the environment surface at~r is perpendicular
to ray direction ~R. In case of perpendicular surface, the ray
would hit point ~p with ray parameter dp:

dp = |~r|−~R ·~x. (4)

If we used the direction of point ~p to lookup the environment
map, we would obtain the radiance of point ~p′, which is in
the direction of ~p but is on the surface. If the accuracy is
not sufficient, the same step can be repeated, resulting in an
iterative process [Wym05b, WD06b, SP07].

4.1.2. Linear search

The possible intersection points are on the half-line of the
ray, thus the intersection can be found by marching on the
ray, i.e. checking points ~l = ~x + ~Rd generated with an in-
creasing sequence of parameter d and detecting the first pair
of subsequent points where one point is an overshooting
while the other is an undershooting [Pat95].

Linear search by rasterizing a line segment

The complete search can be implemented by drawing a
line and letting the fragment program check just one texel
[KBW06]. However, in this case it is problematic to find the
first intersection from the multiple intersections since frag-
ments are processed independently. In their implementation,
Krüger et al. solved this problem by rendering each ray into
a separate row of a texture, and found the first hits by addi-
tional texture processing passes, which complicates the al-
gorithm, reduces the flexibility, and prohibits early ray ter-
mination.

Linear search in a single fragment shader program

On GPUs supporting dynamic branching, the complete ray
marching process can also be executed by a single fragment
program [UPSK07]. This program can not only identify the
first pair of overshooting and undershooting samples, but can
also refine the hit point by a secant or a binary search.

The definition of the increments of ray parameter d needs
special consideration because now the geometry is sampled
and it is not worth checking the same sample many times
while ignoring other samples. Unfortunately, making uni-
form steps on the ray does not guarantee that the texture
space is uniformly sampled. As we get farther from the refer-
ence point, unit-length steps on the ray correspond to smaller
steps in texture space. This problem can be solved by march-
ing on line segment ~r′(t) =~s(1− t)+~et where ~s and ~e are
the projections of the start of the ray (~r(0)) and the end of
the ray (~r(∞)) onto a unit sphere, respectively.

The correspondence between ray parameter d and the pa-
rameter of the line segment t is:

d(t) =
|~x|
|~R|

t
1− t

.

submitted to COMPUTER GRAPHICS Forum (11/2008).



12 Szirmay-Kalos, Umenhoffer, Patow, Szécsi, Sbert / Specular Effects on the GPU

x
R

o

uniformly distributed 
samples in texture space

distance map layer

rayR

s

e

non-uniform samples 
on the ray

r’(t)

r(d)

Figure 18: Cube map texels that need to be visited when
marching on ray ~r(d) = ~x + ~Rd can be obtained either by
non-uniform marching on ray~r(d) or uniform marching on
line segment~r′(t) of projected points~s and~e.

4.1.3. Secant search

Secant search can be started when there are already two
guesses of the intersection point, provided, for example, by
a linear search [UPSK07], by taking the start and the end of
the ray [SKAL05], or by pairing the end of the ray with the
result of the parallax correction [SKALP05]. Let us denote
the ray parameters of the two guesses by dp and dl , respec-
tively. The corresponding two points on the ray are ~p and~l,
and the two points on the surface are ~p′ and~l′, respectively
(Figure 19).

px
l

R

o

l’

d

secant p

p’

p

new

d
newd

l

surface

ray

Figure 19: Refinement by a secant step. The new approxima-
tion ~pnew is the intersection of the ray and the line segment of
overshooting approximation ~p′ and undershooting approxi-
mation~l′.

Computing the ray parameter at the intersection of the ray
and line segment ~p′ and~l′, we obtain:

dnew = dl +(dp−dl)
1−|~l|/|~l′|

|~p|/|~p′|− |~l|/|~l′|
. (5)

The point specified by this new ray parameter gets closer
to the real intersection point. If a single secant step does not
provide accurate enough results, then dnew can replace one

of the previous approximations dl or dp, and we can proceed
with the same iteration step. If we keep always one over-
shooting and one undershooting approximations, the method
is equivalent to the false position root finding algorithm.

4.1.4. Binary search

Hu et al. [HQ07] and Oliveira et al. [OB07] used binary
search steps to refine the approximations obtained by a lin-
ear search similarly to popular displacement mapping algo-
rithms. Binary search simply halves the interval of the ray
parameter:

dnew =
dl +dp

2
.

Since it does not use as much information as the secant
search its convergence is slower.

Finally we note that two level search methods that start
with a linear search and continue with either a binary or a se-
cant search are also used in displacement mapping [POC05,
BT04, SKU08] and in volume ray casting [HSS∗05].

4.2. Single reflections or refractions using the sampled
geometry

In order to render a scene with an object specularly reflecting
its environment, we need to generate the depth or distance
map of the environment of the specular object. This requires
the rendering of all objects but the reflective object six times
from the reference point, which is put close to the center of
the reflective object. Then non-specular objects are rendered
from the camera position in a normal way. Finally, the spec-
ular object is sent through the pipeline, setting the fragment
shader to compute the reflected ray, and to approximate the
hit point as a cube map texel. Having identified the texel cor-
responding to the hit point, its radiance is read from the cube
map and is weighted by the Fresnel function.

Figure 20 compares images rendered by the distance map
based ray tracing with standard environment mapping and
classic ray tracing. Note that for such scenes where the en-
vironment is convex from the reference point of the environ-
ment map, and there are larger planar surfaces, the secant
search algorithm converges very quickly. In fact, even the
parallax correction is usually accurate enough, and iteration
is needed only close to edges and corners.

Figure 21 shows a difficult case where a small box of
chessboard pattern makes the environment surface concave
and of high variation. Note that the convergence is still pretty
fast, but the converged image is not exactly what we expect.
We can observe that the green edge of the small box is visible
in a larger portion of the reflection image. This phenomenon
is due to the fact that a part of the wall is not visible from
the reference point of the environment map, but is expected
to show up in the reflection. In such cases the algorithm can
go only to the edge of the box and substitutes the reflection
of the occluded points by the blurred image of the edge.
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environment mapping parallax correction +1 secant iteration ray traced reference
600 FPS 447 FPS 323 FPS

Figure 20: Comparison of environment map reflections with distance map based and classical ray tracing, placing the reference
point at the center of the room and moving a reflective sphere to the corner. The FPS values are measured with 700× 700
resolution on an NV6800GT.

parallax correction +1 secant iteration +8 secant iterations

Figure 21: A more difficult case when the room contains a box that makes the scene strongly concave and is responsible for
view dependent occlusions. Note that the green edge of the box with chessboard pattern is visible in a larger portion of the
reflection image, which replaces the reflection of the wall that is not visible from the reference point of the environment map,
but is expected to show up in the reflection.

The methods developed for reflections can also be used
to simulate refracted rays, just the direction computation
should be changed from the law of reflection to the Snellius-
Descartes law of refraction.

4.3. Inter-object multiple reflections and refractions

Cube map based methods computing single reflections can
straightforwardly be used to obtain multiple specular inter-
reflections of different objects if each of them has its own
cube map [NC02]. Suppose that the cube maps of specular
objects are generated one by one. When the cube map of a
particular object is generated, other objects are rendered with
their own shader programs. A diffuse object is rendered with
the reflected radiance of the direct light sources, and a spec-
ular object is processed by a fragment shader that looks up
its cube map in the direction of the hit point of the reflec-
tion (or refraction) ray. When the first object is processed
the cube maps of other objects are not yet initialized, so the

cube map of the first object will be valid only where diffuse
surfaces are visible. However, during the generation of the
cube map for the second reflective object, the color reflected
off the first object is already available, thus diffuse surface
– first reflective object – second reflective object paths are
correctly generated. At the end of the first round of the cube
map generation process a later generated cube map will con-
tain the reflection of other reflectors processed earlier, but
not vice versa. Repeating the cube map generation process
again, all cube maps will store double reflections and later
rendered cube maps also represent triple reflections of ear-
lier processed objects. Cube map generation cycles should
be repeated until the required reflection depth is reached.

If we have a dynamic scene when cube maps are peri-
odically re-generated anyway, the calculation of higher or-
der reflections is not more expensive computationally than
rendering single reflections. In each frame cube maps are
updated using other objects’ cube maps independently of
whether they have already been refreshed in this frame or
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only in the previous frame (Figure 22). The reflection of a
reflected image might come from the previous frame — i.e.
the latency for degree n inter-reflection will be n frames —
but this delay is not noticeable at interactive frame rates.

Figure 22: Inter-object reflections in a car game. Note the
reflection of the reflective car on the beer bottles, and vice
versa.

4.4. Self refractions

Light may get reflected or refracted on an ideal reflector or
refractor several times. If the hit point of a ray is again on
the specular surface, then reflected or refracted rays need to
be computed and ray tracing should be continued, repeating
the same algorithm recursively. Generally, the computation
of the reflected or refracted ray requires the normal vector
at the hit surface, the Fresnel function, and also the index of
refraction in case of refractions, thus the hit point identifi-
cation should also be associated with the indexing of these
parameters.

However, the special case of self refractions is a little eas-
ier since if objects do not intersect, then the light must meet
the surface of the same object again after entering it. It means
that for homogeneous material objects, the material data is
already available and the hit point should only be searched
on the given refractive object. Self refraction computations
can be further simplified by considering only double refrac-
tions, i.e. where the light enters and exits the object, and
ignoring total internal reflection where the light would be
unable to leave the inside of the object.

Wyman [Wym05a] proposed a front-face/back-face dou-
ble refraction algorithm. During pre-computation this
method calculates the distance of the back of the object at
the direction of the normal vector at each vertex. The on-line
part of rendering a refractive object consists of two passes.
In the first pass, normals and depths of back facing surfaces
are rendered into a texture. In the second pass front faces

are drawn. The fragment shader reads the pre-computed dis-
tance in the direction of the normal and obtains the distance
in the view direction from the texture, and linearly interpo-
lates these distances according to the angle between the view
and normal directions and the angle between the refracted
and the normal directions. Translating the processed point
by the distance obtained by this interpolation into the refrac-
tion direction, we get an approximation of the location of
the second refraction. Projecting this point into the texture
of rendered normal vectors, the normal vector of the second
refraction is fetched and is used to compute the refracted di-
rection of the second refraction.

To handle total internal reflection, Wyman’s original al-
gorithm has been improved by [DW07]. Recently Hu and
Qin [HQ07] have developed an algorithm that is similar to
Wyman’s approach and uses a binary search to determine
ray–object intersections with a depth map. Oliveira et al.
[OB07] used both linear and binary search steps to find the
intersection in a depth image.

distance map
of the refractor

distance map of
the environment

normal+
distance

refractor
color+distance

Figure 23: Computation of multiple refractions on a single
object storing the object’s normals in one distance map and
the color of the environment in another distance map.

The approximate ray tracing algorithm [SKALP05] gen-
erates a cube map for each refracting object during the pre-
processing phase. These refractor cube maps store the nor-
mal vector and the distance from the reference point. When
the refractor is rendered from the camera, the fragment
shader computes the refracted ray, finds its hit point with
the sampled geometry of the refractor surface searching the
cube map, and looks up the normal vector in the direction
of the hit point from that map (Figures 23, 24, and 25). This
method can also solve multiple reflections on the internal
side of the surface if the refractor is not strongly concave,
i.e. all surface points can be seen from its center point. Con-
sequently, this method is appropriate for simulating total in-
ternal reflections. When the ray exits the object, another ray
tracing phase is started that searches the distance cube map
of the environment geometry.

Krüger et al. used layered depth maps generated from the
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classical distance map distance map ray traced
environment map single refraction double refraction reference

804 FPS 695 FPS 508 FPS

Figure 24: Comparison of single and double refractions of a sphere having refraction index ν = 1.1, computed with environment
mapping, approximate ray tracing, and classical ray tracing. The FPS values are measured with 700× 700 resolution on an
NV6800GT.

Figure 25: Reflective and refractive glass skull (ν = 1.3) of
61000 triangles rendered at 130 FPS on an NV6800 GT.

camera to compute multiple refractions [KBW06], thus this
method could handle more general objects than other meth-
ods.

4.5. General multiple reflections and refractions

Unfortunately, the methods of self refractions cannot be eas-
ily adapted to self reflections since the depth image seen
from the surface of a concave reflective object may have a
large variation and self occlusions are also likely to happen.
Thus, distance map based methods may create artifacts. On
the other hand, reflections are easier to predict by human ob-
servers than refractions, making accuracy more important.
Finally, a ray refracting into a solid object surely hits the

surface of the same object, which simplifies the search for
this hit, but this is not the case for reflections.

Figure 26: Double reflections on a teapot.

For self reflections we need to solve the general case and
trace rays processing the sampled geometry multiple times
once on each level of reflection. We cannot decompose the
scene to the reflector and to its environment, but the com-
plete geometry must be stored in distance maps. On the other
hand, we cannot ignore those points that are occluded from
the reference point, which means that a distance map texel
should represent a set of points that are at the same direction
from the reference point.

The method proposed in [UPSK07] uses layered distance
maps and a combined linear and secant search to guarantee
both speed and robustness (Figures 26, 27, and 28). A single
layer of these layered distance maps is a cube map, where a
texel contains the material properties, the distance, and the
normal vector of the point that is in the texel’s direction. The
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Figure 27: Multiple reflections on a specular sphere and a
mirror, incrementing the maximum recursion from one up to
four.

material property is the reflected radiance for diffuse sur-
faces and the Fresnel factor at perpendicular illumination for
specular reflectors. For refractors, the index of refraction is
also stored. With these data a complete recursive ray tracing
algorithm can be implemented by a fragment shader, which
computes intersections with the sampled geometry stored in
cube maps.

5. Geometry Transformation

Searching the reflected point after finding the reflection point
(Figure 2) is not the only way to render reflections, but
searches can also be organized differently. For example, we
can start at the reflected points, i.e. at the vertices of the re-
flected environment, and search for the reflection points, i.e.
identify those points that reflect the input points. This means
searching on or projecting onto the reflector surface rather
than searching on the reflected environment surface.

The comparative advantages of searching on the reflected
environment surface or searching on the reflector depend on
the geometric properties of these surfaces. The algorithm
that looks for the reflected point on the environment surface
can handle arbitrary reflector surfaces and is particularly effi-
cient if the environment surface does not have large distance
variations. On the other hand, the algorithm that searches the
reflection point on the reflector surface can cope with envi-
ronment surfaces of large depth variations, but is limited to
simple reflectors that are either concave or convex.

The first attempts focused on planar reflectors. Multi-pass
rendering [DB97,MBGN00] used a modified projection ma-
trix to project a reflected object through the plane of each
reflector, and mapped its image onto the reflector plane. Re-
flections are implemented by first rendering the scene with-
out the mirrored surfaces. A second rendering pass is per-

Figure 28: Sampling artifacts caused by the low numbers
of linear and secant search steps (upper image) and their
elimination when they are increased (lower image). Thin ob-
jects shown in the green and red frames require fine linear
steps. The aliasing of the reflection shown in the blue frame
is caused by the limitation of distance map layers to three.
Since this area is not represented in the layers, not even the
secant search can compute accurate reflections.

formed for each reflected viewpoint, and the resulting image
is applied to the reflector. This process can be repeated recur-
sively in scenes with multiple reflectors. Stencil operations
are arranged so the reflected images are masked by the sten-
cil buffer. Pre-computed radiance maps [BHWL99] can be
used to avoid the projection step.

For curved reflectors, the situation is more complicated.
An interesting solution was proposed by Ofek and Rap-
poport [OR98]. Their method warps the surrounding scene
geometry such that it appears as a correct virtual image when
drawn on the reflector. For each vertex to be reflected, an
efficient data structure (the explosion map) accelerates the
search for a triangle which is used to perform the reflection.
Since this method transforms all scene geometry and usually
requires fine tessellation, it can be either computationally ex-
pensive or exhibit accuracy problems. An analytic approach
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has also been developed [CA00], using a preprocessing step
based on path perturbation theory. When objects move, the
preprocessing step needs to be repeated.

In the Master Thesis of Schmidt [Sch03] geometry trans-
formation was used for both planar and curved refractions.
He noted that multi-pass rendering developed for reflections
is only approximately correct for refractions, and also pro-
posed a method to handle refractions on curved surfaces.

Guy and Soler [GS04] used geometry transformation to
realistically render gem stones, which have planar faces. A
light path in a gem stone contains two refractions and arbi-
trary number of internal reflections in between. Planar reflec-
tion transforms triangles to triangles, thus triangles can be
exactly handled by geometry transformation, but refraction
distorts geometry. This method “linearized” the refraction
of the eye ray, i.e. approximated the refraction by a linear
transformation similar to reflections. On the other hand, the
refraction of the ray connecting the light source was com-
puted by the fragment shader with per pixel accuracy.

Vertex or the environment surface
processed as a point primitve

Reflector stored as
a geometry image 
(points+normals)

bisector
normal

Figure 29: Searching the geometry image of the refractor for
a sample point where the normal vector and the directions
toward the processed vertex and toward the eye meet the re-
flection law, i.e. where the angle enclosed by the normal and
the bisector of the two directions is minimal.

More recently, in [EMD∗05], the reflected vertices are
paired with reflection points by first localizing the reflec-
tion point on each reflector. The localization process finds
a point on the reflector surface where the normal vector and
the directions from this point toward the camera and the pro-
cessed point meet the reflection law of geometric optics (Fig-
ure 29). The reflector is represented by two floating point
textures, the first one stores the 3D coordinates of its sam-
ple points, the second represents the surface normals at the
sample points (this representation is also called the geom-
etry image [GGH02]). The vertices of the environment are
sent down the rendering pipeline as point primitives, which
generate a single fragment, and the fragment shader program
searches the geometry image and locates that sample point
where the length of optical path is minimal, i.e. where the

associated normal vector and the directions from the sample
point toward the camera and toward the processed vertex sat-
isfy the reflection law of geometric optics. Defining a bisec-
tor between the directions from the sample point toward the
camera and toward the processed vertex, the search where
the law of reflection is satisfied becomes equivalent to an
optimization that locates the minimum of the angle between
the bisector and the normal vector. Unfortunately, if the re-
flective surface is neither convex nor everywhere concave
there might be several minima, which limits the application
of such approaches to simple reflector geometry (Figure 5).

Figure 30: Reflections on a spherical bowl with geometry
transformation [EMD∗05].

Later, in [EMDT06], this technique has been improved by
rendering and blending a virtual object for every reflector
and for every other object reflected in the reflector. For each
vertex of each virtual object, a reflection point is found on
the reflector’s surface, and used to find the reflected virtual
vertex. In [RHS06] the same strategy is used, with a differ-
ent refinement criterion, keeping geometric bounds on the
reflected position for robustness.

6. Caustics

Caustics show up as beautiful patterns on diffuse surfaces,
formed by light paths originating at light sources and visiting
mirrors or refracting surfaces. Caustics are the concentration
of light, which can “burn”. The name caustic, in fact, comes
from the Latin “causticus” derived from Greek “kaustikos”,
which means “burning”. These indirect effects have a signif-
icant impact on the final image [Jen01, TS00, WS03].

Light paths starting at the light sources and visiting spec-
ular reflectors and refractors until they arrive at diffuse sur-
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faces need to be simulated to create caustic effects. Theo-
retically such paths can be built starting the path at the light
source and following the direction of the light (light or pho-
ton tracing), or starting at the receiver surfaces and going
opposite to the normal light (visibility ray tracing). If light
sources are small, then the probability that visibility ray trac-
ing finds them is negligible, thus visibility ray tracing is in-
efficient to render general caustics. Effective caustic gener-
ation algorithms have two phases [Arv86]. The first phase
identifies the terminal hits of light paths using photon trac-
ing, and the second renders an image for the camera also
taking into account the extra illumination of the photons.

6.1. Photon tracing phase

In the first phase photons are followed as they leave the light
source, get specularly reflected, and finally arrive at diffuse
surfaces generating caustic hits. In GPU based caustic gen-
eration algorithms, the simulation of these paths requires ray
tracing implemented on the GPU. Using the introduced tax-
onomy of GPU based ray tracing, this algorithm can process
either the original geometry or the sampled geometry.

Hybrid caustic generation algorithms also exist that ex-
ecute photon tracing on the CPU and filter photon hits
[LC04, CSKSN05] or splat photons [LP03] with the aid of
the GPU.

6.1.1. Photon tracing in the original geometry

In [PDC∗03], Purcell et. al presented a photon mapping al-
gorithm capable of running entirely on GPUs. In their im-
plementation photon tracing uses a breadth-first search algo-
rithm to distribute photons. They store the photons in a grid-
based photon map that is constructed directly on the graph-
ics hardware using one of two methods. In the first one, the
fragment shaders of a multipass technique directly sort the
photons into a compact grid. The second proposed method
uses a single rendering pass that combines a vertex program
and the stencil buffer to direct photons to their grid cells,
producing an approximate photon map.

As an application of their GPU based kd-tree construc-
tion in CUDA Zhou et al. also presented a photon map-
ping method that worked with the original triangle meshes
[ZHWG08].

6.1.2. Photon tracing in the sampled geometry

The rasterization hardware and GPU algorithms developed
for specular reflections and refractions can also be exploited
in caustic generation by exchanging the roles of the eye and
a light source.

In the first phase, called the light pass, the caustic gen-
erator object is rendered from the point of view of the
light source, and the terminal hits of caustic paths are de-
termined by a ray tracing algorithm that searches the sam-
pled geometry and is implemented by the fragment shader

Photon hit 
location image

Photon hits on 
diffuse caustic receiver

Caustic generator
specular object

Figure 31: The light pass renders into the photon hit loca-
tion image where each pixel stores the location of the termi-
nal hit of a photon trajectory that goes through this particu-
lar pixel.

[SKALP05, WD06b, SP07]. In this phase the view plane is
placed between the light and the caustic generator object
(Figure 31). Following the light path going through the pixel
of the image and visiting specular surfaces, the final location
of the caustic photon on a diffuse surface can be determined,
and this information is stored in the pixel. The resulting im-
age may be called as the photon hit location image. Note that
this step is very similar to the generation of depth images for
shadow maps [Wil78].

6.2. Storing photon hits

Since discrete photon hits should finally be combined to a
continuous caustic pattern, a photon hit should affect not
only a surface point, but also a surface neighborhood where
the power of the photon is distributed. The distribution of
photon power may result in light leaks, which can be reduced
— but not completely eliminated — if the neighborhood also
depends on whether its points are visible from the caustic
generator object. Finally, the computation of the reflection
of the caustic illumination requires the local BRDF, thus we
should find an easy way to reference the surface BRDF with
the location of the hit.

There are several alternatives to represent the location of
a photon hit (Figure 32):

3D grid [PDC∗03]: Similarly to classical photon mapping
photon hits can be stored independently of the surfaces
in a regular or adaptive 3D grid. When the irradiance of
a point is needed, hits that are close to the point are ob-
tained. If the surface normal is also stored with the photon
hits, and only those hits are taken into account which have
similar normal vectors as the considered surface point,
then light leaks can be minimized and photons arriving at
back faces can be ignored. Purcell et al. [PDC∗03] devel-
oped fragment programs for locating the nearest photons
in the grid, which makes it possible to compute an esti-
mate of the radiance at any surface location in the scene.
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hits

screen space
pixel coordinates

texture space
texel coordinates

cube map space
cube map texel directions

Figure 32: Three alternatives of storing photon hit loca-
tions. Screen space methods store pixel coordinates, texture
space methods texture coordinates. Cube map space meth-
ods store the direction of the photon hit with respect to the
center of a cube map associated with the caustic generator
(the bunny in the figure).

Texture space [GD01,SKALP05,CSKSN05]: Considering
that the reflected radiance caused by a photon hit is the
product of the BRDF and the power of the photon, the
representation of the photon hit should identify the sur-
face point and its BRDF. A natural identification is the
pair of texture coordinates of that surface point which is
hit by the ray. A pixel of the photon hit location image
stores two texture coordinates of the hit position and the
luminance of the power of the photon. The photon power
is computed from the power of the light source and the
solid angle subtended by the pixel of photon hit location
image. Since the texture space neighborhood of a point
visible from the caustic generator may also include oc-
cluded points, light leaks might show up.

Screen or image space [LC04, WD06b]: A point in the
three-dimensional space can be identified by the pixel co-
ordinates and the depth when rendered from the point of
view of the camera. This screen space location can also be
written into the photon hit location image. If photon hits
are represented in image space, photons can be splat di-
rectly onto the image of the diffuse caustic receivers with-
out additional transformations. However, the BRDF of the
surface point cannot be easily looked up with this repre-
sentation, and we should modulate the rendered color with
the caustic light, which is only an approximation. This
method is limited to cases when not only the caustics,
but also its generator object is visible from the camera,
and caustics that are seen through reflectors or refractions
might be missing. This method is also prone to creating
light leaks.

Ray space [IDN02, EAMJ05, KBW06]: Instead of the hit
point, the ray after the last specular reflection or refrac-
tion can also be stored. When caustic patterns are pro-
jected onto the receiver surfaces, the first hit of this ray
needs to be found to finalize the location of the hit, which
is complicated. Thus these methods either ignore visibil-
ity [IDN02, EAMJ05] or do not apply filtering [KBW06].
Methods working without filtering require many photons

to be traced, but provide per-pixel accuracy and do not
create light leak artifacts.

Shadow map space [SP07]: In the coordinate system of
the shadow map, where the light source is in the origin,
a point is identified by the direction in which it is visi-
ble from the light source and the computed depth. An ad-
vantage of this approach is that rendering from the light’s
point of view is needed by shadow mapping anyway. The
drawbacks are the possibility of light leaks and that caus-
tics coming from the outside of the light’s frustum are
omitted. Shah and Pattanaik [SP07] estimated the inter-
section point between a single refracted light ray and a
receiver using the undistorted image of the receiver as
seen from the light source, much in the way shadow map
generation works. Then, starting from an initial guess
for the intersection point, its position is corrected by it-
eratively moving this point along the refracted ray in
light-screen-space. As a consequence, the quality of this
method strongly depends on the initial guess as well as on
the size and the shape of the receiver.

Cube map space [UPSK08]: The coordinate system of the
distance map used to trace rays leaving the caustic gener-
ator automatically provides an appropriate representation.
A point is identified by the direction in which it is visible
from the reference point, i.e. the texel of the cube map,
and also by the distance from the reference point. An ap-
propriate neighborhood for filtering is defined by those
points that are projected onto neighboring texels taking
the reference point as the center of projection, and having
similar distances from the reference point as stored in the
distance map. Note that this approach is similar to classi-
cal shadow tests and successfully reduces light leaks.

6.3. Photon hit filtering and projection

The photon hit location image contains finite photon hits,
from which a continuous signal needs to be reconstructed on
the receiver surfaces.

A =   r∆ π 2

sphere containing k photon hits

surface

intersection of the surface and the sphere

Figure 33: The adaptive reconstruction scheme of the orig-
inal photon mapping algorithm.

The original photon mapping algorithm [Jen96] executed
this filtering step during the rendering from the camera (final
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Figure 34: The problems of splatting. The left image was rendered with too small splatting filter, the right one with too large.
To obtain the middle image, the splatting size was manually optimized.

gathering) and used an adaptive kernel size for reconstruc-
tion, which is small where the photon density is high and
big where the photon density is small. Actually, the origi-
nal photon mapping method expanded a sphere until it con-
tained k photons (Figure 33), and approximated the surface
area where the average of photon reflections is computed as
the area of the main circle of this sphere.

Purcell at al. [PDC∗03] used a variation of this adaptive
strategy, which is called the k nearest neighbor grid or the
kNN-grid, and is based on Elias’s algorithm to locate the
nearest neighbors [Cle79]. A recent method [ZHWG08] im-
plemented a more advanced neighborhood search as well as
all other steps of photon mapping in CUDA.

On the other hand, it is simpler to execute the filtering
step in the same coordinate system where the photon hits are
stored and not directly in camera space. Thus, GPU algo-
rithms often introduce a separate filtering pass between pho-
ton tracing and final gathering. The filtering pass creates a
texture, called caustic intensity map, which is projected onto
the surfaces during final gathering. There are two methods to
find the area affected by a photon hit: photon splatting and
caustic triangles.

6.3.1. Photon splatting

Photon splatting draws a textured semi-transparent quad
around the photon hit, and is very popular in GPU based
caustic algorithms [SKALP05,SP07,WD06b]. Photon splat-
ting is equivalent to always using the same radius for the fil-
ter, but averaging more photons at high density regions. To
find a uniformly good splat size is not always possible due to
the very uneven distribution of the photon hits (Figure 34).
On the other hand, splatting does not take into account the
orientation of the receiver surface, which results in unreal-
istically strong caustics when the surface is lit from grazing
angles. The reconstruction problems of splatting can be re-
duced by adaptive size control [WD06a] or by hierarchical
methods [Wym08], but these approaches either always work
with the largest splat size or with multiple hierarchical lev-
els, which reduces their rendering speed.

photon hit 
location image

Vertex
shader

Real
billboard
positions

filter

fragment
shader

Lit texture or
Light map

Billboards
with dummy
positions

Texture atlas

GPU

Figure 35: Photon hit filtering pass assuming that the pho-
ton hit location image stores texture coordinates.

To execute spatting on the GPU, as many small quadri-
laterals or point sprites are sent down the pipeline as pho-
tons the photon hit location image has (Figure 35). The size
of these quadrilaterals controls the support of the blurring
filter. We can avoid the expensive GPU to CPU transfer of
the photon hit location image, if the vertex shader modulates
the location of points by the content of the photon hit loca-
tion image. This operation requires at least Shader Model 3
GPUs that allow the vertex shader to access textures.

Rectangles with the corrected position are rasterized, and
their fragments are processed by the fragment shader. In or-
der to splat the photon on the render target, a splatting filter
texture is associated with the rectangle and additive alpha
blending is turned on to compute the total contribution of
different photon hits (Figure 36).

Splatting can work directly in screen space or in other
spaces where the photon hits are stored. Figure 35 shows the
case when splatting is executed in texture space, resulting in
a light map or a modified texture. These can be mapped onto
the surfaces by an additional pass.

We note that photon splatting is also popular in render-

submitted to COMPUTER GRAPHICS Forum (11/2008).



Szirmay-Kalos, Umenhoffer, Patow, Szécsi, Sbert / Specular Effects on the GPU 21

Figure 36: A low resolution photon hit location image (left), a room with photon hits but without blending (middle), and a room
with blending enabled (right).

ing diffuse and glossy indirect illumination [LP03, DS06,
HHK∗07].

6.3.2. Caustic triangles

Neighboring rays emitted by the light source form a beam.
Beam tracing [Wat90] computes the reflection or refraction
of these beams defined by corner rays. A beam represents a
3D volume where points may be affected by caustics, thus
to find caustic receivers, these volumes are intersected by
the surfaces [IDN02,EAMJ05]. If a beam is defined by three
rays, an intersection can be approximated by a triangle.

Photon hit 
location image

Vertex
shader

Pixel
shader

Triangles with
vertex coords
of the photon hit 
location image

Triangle with vertices 
in cube map space

Cube map face

Figure 37: Rendering a caustic triangle into the light cube
map.

Thus, for caustic reconstruction we can take three neigh-
boring photon hits and assume that they form a caustic trian-
gle [UPSK08]. These triangles are additively blended. Fig-
ure 37 shows the case when the reconstruction results in a
light cube map (Figure 38). Unlike splatting-based methods
the caustic triangles algorithm does not exhibit problems de-
pending on the splatting filter since it provides continuous
patterns without overblurring even at moderate resolutions.
However, sharp triangle boundaries may be disturbing so we
should filter the caustic pattern before projection.

light cube map

blurred
photon 
hits

caustic
receiver

Figure 38: Light projection pass assuming that the photon
hit location image stores cube map texel directions. When a
point visible from the camera is illuminated, its distance to
the reference point of the light cube map is computed and
compared to the distance stored at the texel corresponding
to the direction of this point. If the two distances are similar,
then lighting from caustics affects this point, and the inten-
sity is read from the texel, which was computed by photon hit
filtering in the previous pass.

6.3.3. Projection of caustic patterns

If photon hits are stored and filtering is executed in a space
other than the screen space, in the camera pass the illumina-
tion caused by caustics should be projected onto the surfaces
visible from the real camera (Figure 38). This requires one
additional pass but it becomes straightforward to compute
also the reflections and refractions of caustic patterns (Fig-
ures 39 and 40).

If photon hits are stored in texture space and filtering
is executed there, then the final projection is automati-
cally executed by a normal texturing or light mapping step
[SKALP05].

If photon hits are defined and filtered in cube map
space (Figure 38) or in shadow map space [SP07, WD06b,
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Figure 39: Real-time caustics caused by glass objects (ν =
1.3). A 64× 64 resolution photon hit location image is ob-
tained in each frame, which is fed back to the vertex shader.
The method runs at 182 FPS on an NV6800GT [SKALP05].

Figure 40: Caustics seen through the refractor object.

UPSK08], then the projection gets very similar to shadow
mapping algorithms. The point processed during camera
pass is transformed into the coordinate system of the cube
map and the direction from the cube map center to the pro-
cessed point is obtained. The cube map texels store distance
values. The distance associated with the direction is fetched
and is compared to the distance of the processed point. If
these values are similar, then the processed point is visible
from the point of view of the caustic generator, so no object
prohibits the processed point to receive the extra illumina-
tion of the caustics, that is stored in the cube map texel. Al-
though this approach requires one additional texture lookup
in the shader, it reduces light leaks caused by splatting.

If photon hits are stored in ray space, the three neigh-
bors form a caustic beam or illumination volume [NN94],
and this beam is intersected with the caustic receiver sur-
faces [IDN02, EAMJ05]. Caustic patterns are displayed by
drawing the intersection areas between all of the illumina-
tion volumes and the receiver surfaces, and by accumulating
the intensities of light reaching the intersection area. Unfor-
tunately, this method treated neither shadows nor the case
of warped volumes which can occur in beam tracing. Ernst
et al. [EAMJ05] solved these situations and also presented
a caustic intensity interpolation scheme to reduce aliasing,
which resulted in smoother caustics. However, this algorithm
also ignored occlusions, so was unable to obtain shadows.

Krüger et al. [KBW06] presented a photon tracing algo-
rithm that stored dense hits in ray space. These dense hits
are not filtered but are projected onto the surfaces one by
one providing per pixel accuracy and eliminating light leaks
that might be caused by filtering. The projection is executed
by rendering a line in image space for each photon, and let-
ting the fragment program check whether the point of the
line is similar to the point represented by the current pixel,
which indicates an intersection. To find the first intersection
each ray is rendered into a separate row of a texture, and the
first hit is selected by additional texture processing passes.

6.4. Simplified and pre-computation aided caustic
algorithms

Underwater caustic generation has received significant at-
tention. The early work by Jos Stam [Sta96] pre-computed
underwater caustic textures and mapped them onto objects
in the scene. Although this technique is extremely fast, the
caustics produced are not correct given the shape of the wa-
ter surface and the receiver geometry. Later, Trendall and
Stewart [TS00] computed refractive caustics by performing
numerical integration for the caustic intensities on a flat re-
ceiver surface. Their method cannot support arbitrary re-
ceiver geometry and cannot be easily extended to handle
shadows.

The algorithm presented by Daniel Sanchez-Crespo in
[SC03] applied aggressive assumptions on good candidates
for caustic paths and computed them with visibility ray trac-
ing. The method has very low computational cost, and pro-
duces something that, while being totally incorrect from a
physical standpoint, very closely resembles a caustic look
and behavior. The first assumption is that caustics are caused
by the sun that is directly above the refractive water surface.
The second assumption is that the ocean floor is located at
a constant, shallow depth. Then, their three-pass algorithm
works as follows. The first pass renders the ocean floor as a
regular textured quad. Then, in a second pass, the same floor
is painted again using a fine mesh, which is lit per-vertex us-
ing their caustic generator. For each vertex in the fine mesh,
a ray is shot vertically. The ray ocean surface intersection
is obtained, the bent ray is computed with the Snellius law,
and the “sky/sun” texture is read with the direction of the
bent ray. The third and final pass renders the ocean waves
using environment mapping to get a sky reflection on them.

Wand and Straßer [WS03] developed an interactive caus-
tic rendering technique by explicitly sampling points on the
caustic-forming object. The receiver geometry is rendered
by considering the caustic intensity contribution from each
of the sample points without visibility tests. The intensity
of a sample point is obtained by looking up a cube map
representing the direct light sources in the reflection direc-
tion. The authors presented results using reflective caustic-
forming objects, but refractive caustics can also be achieved
with this technique. However, the explicit sampling hinders
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the scalability of the algorithm since the amount of computa-
tion is directly proportional to the number of sample points.

6.5. Specular effects in varying materials

Methods surveyed so far assumed that the materials are ho-
mogeneous, i.e. the refraction index inside an object is con-
stant, so is the refraction index of the air. This assumption
allows to replace light paths by line segments between sur-
faces. However, in inhomogeneous materials the light fol-
lows a curved path [Gro95], which makes refraction and
caustic computation more complicated [IZT∗07]. Such non-
linear ray tracing [WSE04] methods can also visualize rela-
tivistic effects.

7. Conclusions

In this STAR we reviewed different approaches aiming at
rendering specular effects on the GPU. We can conclude that
although GPUs originally did not aim at tracing incoherent
secondary rays needed for such effects, they are versatile
enough for this purpose as well. If the GPU is controlled
by a graphics API, it may access textures while processing a
vertex or a fragment, thus these approaches require the rep-
resentation of the scene radiance and geometry in textures.
There are many different possibilities to encode geometry
in textures, which lead to a large selection of algorithms of
GPU based specular effects.

We established several main categories, depending on
whether the original or the sampled geometry is intersected
by the rays, and on whether reflection or reflected points are
identified (Table 1):

• The simplest methods for computing reflections have
been the environment map based approaches, but, due to
the parallax approximations involved, they are only suit-
able for small specular objects put in large, distant en-
vironment, or when accuracy is not important. If a sep-
arate environment map is maintained for every reflector,
then this method can even be used for recursive reflec-
tions/refractions.

• Proxy geometries can mimic the missing parallax effects
in an approximate form, with no tradeoff between pre-
cision and speed. Although the application of proxy ge-
ometries might generate reflections that are very different
from the real phenomena, the results are pleasing to the
human eye since there are no significant sampling arti-
facts.

• Image based rendering methods also offer solutions for
reflections and refractions, but they do not fit well to usual
game and scene graph management software.

• Methods working with the sampled geometry of the envi-
ronment are usually very fast and just a little more diffi-
cult to implement than environment mapping. Since they
are based on the concept of processing an object and its

dynamic texture, these algorithms can be seamlessly inte-
grated into game engines and scene graph management
software, and can benefit from the fast visibility algo-
rithms developed for static [BWW01] and dynamic scenes
[WB05]. For example, a distance map is like an environ-
ment map, while a caustic cube map is like a shadow map.
If a game engine supports environment maps and shadow
maps, then it can also support distance map based reflec-
tion/refraction and caustic rendering (Figures 1, 41–43).
Inter-object multiple reflections are obtained easily if ev-
ery specular object has its own distance map, and it is also
possible to extend the method for self refractions using
an additional map of normals per refractor. An algorithm
searching on the environment surface is useful for han-
dling arbitrary reflector surfaces and is particularly effi-
cient if the environment surface does not have large dis-
tance variations. However, sampling problems may occur
if the environment includes thin objects that are close to
the reflector surface, or the environment surface exhibits
view dependent occlusions when seen from the point of
view of the specular objects. The accuracy of the methods
can be tuned by increasing the resolution of the cube map
and the number of search steps used to find the intersec-
tion. However, the precision is limited by the occlusion
problem.

• Multi-layer maps storing the sampled geometry can han-
dle view dependent occlusions and even self reflections
and refractions. In theory, these methods offer per-pixel
accuracy if the number of layers, the resolution of the
maps, and the number of search steps are high enough.
In practice, however, less accurate results are traded for
high frame rates.

• Reflection mapping algorithms for planar reflectors have
been around to simulate recursive planar reflections for
a long time. They transform the scene from the reflected
viewpoint, which has been the dominant way of simulat-
ing polished floors in games. These methods are exact, but
are limited to planar reflectors. The application of similar
techniques to refractions in just an approximation, since
refraction even on planar surfaces is a non-linear geome-
try transformation, unlike reflection.

• Geometry transformation to handle reflection on curved
reflectors has been a more difficult task, as a search on
the reflector surface is needed to find the correct reflec-
tion point for every scene vertex. Algorithms searching
on the reflector surface can cope with reflected surfaces
of large depth variations, but are limited to simple reflec-
tors that are either concave or convex. Geometry trans-
formation methods are more complicated to implement
than environment mapping, and their extension to multi-
ple reflections is not as straightforward. The accuracy and
the speed of geometry transformation methods can also
be controlled by modifying the tessellation level of the
environment surfaces and the resolution of the geometry
images representing the reflectors.

• Methods working with the original geometry are close to
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CPU based ray tracing algorithms and inherit their flexi-
bility, generality, and accuracy. These methods are “exact”
i.e. can provide results with floating point accuracy. How-
ever, the performance of GPU implementations is not very
appealing. Despite the fact that the floating point process-
ing power of GPUs is more than one order of magnitude
higher than that of a CPU, only recent GPU solutions can
outperform CPU ray tracers in speed. The reason is that
these algorithms utilize GPU resources in a fundamentally
different way than the incremental rendering pipeline, for
which GPUs are not optimized to. It is likely that the
performance of such algorithms would further improve
on newer hardware and APIs that are optimized also for
GPGPU computations. The introduction of CUDA is an
important step forward. We can conclude that, until GPUs
evolve as mentioned, GPU ray tracers should be kept for
very accurate rendering simulations or when the number
of specular objects gets high in the scene.

All methods belonging to the discussed categories are
able to render single reflections, but just a few of them
are good for self reflections or refractions. With respect to
self refractions, depending on the degree of desired accu-
racy, the implementor can choose from approximate meth-
ods [Wym05a, DW07] or use algorithms that search in a
distance map or height-map representation of the object
[SKALP05,HQ07,OB07]. Approximate ray tracing in multi-
layer sampled geometry [KBW06,UPSK07], and ray tracing
of the original geometry are appropriate for both self refrac-
tions and reflections.

Speed can be considered from two different aspects. We
can take specific scenes and measure the frame rates on a
specific GPU (such results are shown by the captions of
figures in this paper), which gives a feeling how fast these
approaches are. Considering current hardware and scenes
of complexity shown by these figures, algorithms using the
sampled geometry are at least an order of magnitude faster
than ray tracing in the original geometry.

On the other hand, we can study the complexity of these
methods, which indicates the asymptotic behavior when the
scene complexity grows. Ray tracing in the original geom-
etry is algorithmically equivalent to classic ray tracing al-
gorithms. Denoting the number of triangles by N, naive
ray tracing requires O(N) time to trace a ray. Paying the
super-linear cost of building a space partitioning scheme, the
tracing cost can be sub-linear [SKM98, Hav01, SKHBS02,
HP03]. Examining average case behavior and assuming that
objects are uniformly distributed, in the optimal case these
schemes can be constructed in O(N logN) time, and a ray
can be shot in O(1) time if its origin is already located. The
location of the origin needs O(logN) time in hierarchical
structures. We have to emphasize that these formulae apply
for the average case, in the worst case, the presented algo-
rithms are not better than the naive implementation. Tracing
a specular path of length R needs R rays and thus O(R) time.

Ray tracing in the sampled geometry requires the creation
and look up of environment and distance maps, which are
obtained by rasterization. Rasterization based image syn-
thesis runs in O(N) time without preprocessing. However,
taking advantage of the latest scene graph management ap-
proaches and visibility algorithms ( [BWW01] and [WB05]
are just two examples from the long list of such methods),
these methods can also be speeded up similarly to ray trac-
ing after super-linear preprocessing. If inter-object specular
effects are also demanded, we need an environment or dis-
tance map for each reflector/refractor. Thus, the construction
cost of these maps is proportional to the number of specu-
lar objects (S in Table 1) and to the cost of the rasterization
of all non-specular objects (D). However, when the map is
available, the intersection point is obtained in constant time,
independently of the geometric complexity of the scene.

A single multi-layer map can represent the whole scene,
independently of the number of specular and non-specular
objects. Multi-layer maps are constructed by depth peeling,
which rasterizes scene objects several times, depending on
the depth complexity (L) of the scene. The depth complexity
equals to the number of intersection points a ray may pro-
duce. Searching a map of L layers has complexity O(L).

Reflection mapping used for planar specular reflectors
doubles the number of view points with each reflector, but
similarly to multiple environment maps, the cost of addi-
tional reflections can be traded for increased latency in an
animation sequence. Geometry transformation, which can
render curved reflections, use a map for each reflector, so its
construction cost is proportional to the number of reflectors.
During rendering, the reflection point of each vertex belong-
ing to a non-specular surface (D) is searched in each map,
which results in O(S ·D) complexity.

Summarizing the complexity observations, we can state
that ray tracing in the original geometry and multi-layer
maps are the winners if the scene consists of many specular
objects and inter-object or self reflections are also needed.
Environment map or distance map based techniques are
good if there are only a few specular objects. Geometry
transformation also has this limitation in addition to the dis-
advantage that the cost of tracing a reflection ray is propor-
tional to the scene complexity.

In this paper we also reviewed GPU based caustic algo-
rithms. These methods begin with the photon tracing phase,
where photons are followed from the sources up to diffuse
surfaces. This pass may exploit the GPU ray tracing ap-
proaches developed for reflections or refractions. Photon hits
should be stored, filtered, and finally projected onto the vis-
ible surfaces. The coordinate system where the photon hits
are stored and the additional information used during filter-
ing may affect the scale of potential light leaks caused by
filtering. For this, there are basically four options: nearest
neighbors search, which is the most versatile, but also the
most complex and expensive solution; splatting, where the
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Accuracy Reflection/refraction Complexity Greatest limitation

Environment mapping
with one map [BN76]

approximate single O(D), O(1) no view parallax

Environment mapping with one
map per specular object [NC02]

approximate
single and
inter-object multiple
reflection/refraction

O(S ·D), O(1) no view parallax

Proxy geometry with one map
per specular object [Bre02, Bjo04]

approximate
single and
inter-object multiple
reflection/refraction

O(S ·D), O(1) accuracy

One single layer distance map
per specular object [SKALP05]

tradeoff
single and
inter-object multiple
reflection/refraction

O(S ·D), O(1) occlusion artifacts

One single layer distance map
and refractor map
per refractor object
[Wym05a, SKALP05, HQ07]

tradeoff

multiple (double)
self refractions and
inter-object multiple
reflection/refraction

O(S + S ·D), O(1) occlusion artifacts

Sampled geometry
with one multi layer map
[KBW06, UPSK07]

tradeoff all O(N ·L), O(L) sampling artifacts

Reflection mapping
on planar reflectors
[DB97, MBGN00]

exact multiple reflections O(1), O(S ·2R ·N) planar reflector

Geometry transformation
on curved reflectors
[EMDT06, RHS06]

tradeoff single reflections O(S), O(N) high tessellation

Ray tracing in original geometry
with regular grid [PBMH02]

exact all O(N2), O(R) speed, storage

Ray tracing in original geometry
with hierarchical space partitioning
[HSHH07, PGSS07, GPSS07]
[ZHWG08]

exact all O(N logN), O(R · logN) speed, storage

Ray tracing in original geometry
with ray hierarchy [Sze06, RAH07]

exact all O(1), O(R ·N) speed

Table 1: Comparison of algorithms computing specular reflections and refractions. In the Accuracy column “approximate”
means that the method has some deterministic error that cannot be controlled. “Tradeoff”, on the other hand, means that
there is the possibility to find a tradeoff between accuracy and speed. The column entitled Complexity contains the costs of
preprocessing and of computing the color where a specular object is visible, respectively. Preprocessing should be repeated if
the scene changes. The notations are as follows: N is the number of triangles, S is the number of specular objects, D is the
number of triangles of non-specular objects. L is the depth complexity of the scene, (i.e. the maximum number of hits a ray may
produce), R is the recursion depth. These formulae correspond to average case complexity in case of ray tracing in the original
geometry. The worst case complexity of tracing a ray would be at least O(N ·R).

size of the splats must be manually tuned; beam-based ap-
proaches, which ignore occlusions and thus they are unable
to produce shadows; and the projection of caustic triangles.
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