<table>
<thead>
<tr>
<th>Projecte - Treball final de carrera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estudi: Enginyeria Industrial. Pla 2002</td>
</tr>
<tr>
<td>Títol: PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT</td>
</tr>
<tr>
<td>Document: 1. MEMÒRIA</td>
</tr>
<tr>
<td>Alumne: NORBERT FURTIÀ ROMERO</td>
</tr>
<tr>
<td>Tutor: DAVID GRABAŁOSA MARTÍN</td>
</tr>
<tr>
<td>Departament: Eng. Mecànica i de la Construcció Industrial</td>
</tr>
<tr>
<td>Àrea: ENGINYERIA DE LA CONSTRUCCIÓ</td>
</tr>
<tr>
<td>Convocatòria (mes/any): SETEMBRE/2015</td>
</tr>
</tbody>
</table>
SUMARI DOCUMENT Nº1. MEMÒRIA

1. INTRODUCCIÓ ..3
 1.1. Antecedents ..3
 1.2. Objecte ..4
 1.3. Especificacions i abast ..4
2. PROMOTOR ..6
3. SITUACIÓ I EMPLAÇAMENT ...7
4. INFORMACIÓ URBANÍSTICA DEL BÉ INMOBLE I DE LA PARCEL·LA8
5. DESCRIPCIÓ GENERAL DE L’ESTABLIMENT INDUSTRIAL9
 5.1. Orientació de la fàbrica i denominació de les façanes ..10
 5.2. Descripció general de la nau industrial ..11
 5.3. Descripció general de l’edifici 1 ..12
 5.4. Descripció general de l’edifici 2 ..13
 5.5. Descripció general de l’edifici 3 ..13
6. DESCRIPCIÓ GENERAL DE LA NOVA ACTIVITAT ...14
 6.1. Classificació de l’activitat ...14
7. REHABILITACIÓ DELS ELEMENTS CONSTRUCTIUS ..15
 7.1. Recerca d’informació ...16
 7.2. Estudi patològic ...17
 7.3. Justificació de la necessitat ..18
 7.4. Estudi d’alternatives ..18
 7.5. Compliment de la normativa ..19
 7.6. Elecció de la solució i procediment de rehabilitació ..19
8. ENDERROC ...20
9. DISSENY DEL LAYOUT ..21
 9.1. Descripció general de l’activitat de l’empresa ..21
 9.2. Especificacions del promotor ..22
 9.2.1. Zona Administrativa ...22
 9.2.2. Zona Taller ..23
 9.2.3. Zona Magatzem ..24
 9.2.4. Zona Laboratori ..24
 9.2.5. Zona Serveis i Vestuaris ...25
 9.3. Distribució en planta general ..25
 9.3.1. Sistematic Layout Planning modificat ...25
9.4. Distribució específica de les zones .. 31
 9.4.1. Zona taller ... 31
 9.4.2. Zona magatzem ... 34
 9.4.3. Zona Oficines .. 36
 9.4.4. Zona laboratori ... 37
 9.4.5. Zona Serveis i Vestuaris ... 38
 9.4.6. Sala d’instal·lacions ... 39
10. RESUM DEL PRESSUPOST ... 40
11. CONCLUSIONS ... 41
12. RELACIÓ DE DOCUMENTS ... 42
13. BIBLIOGRAFIA ... 43

ANNEXOS A LA MEMÒRIA

Annex B. Estudi Patològic.
Annex C. Instal·lacions contra incendis.
Annex D. Accions en l’edificació.
Annex E. Enderroc.
Annex F. Tancament de coberta.
Annex G. Tancament de façana translúcida de les dents de serra.
Annex H. Revestiment del paviment.
Annex I. Proposta sistema de grua.
Annex J. Estudi bàsic de seguretat i salut.
Annex K. Justificació de preus.
1. INTRODUCCIÓ

1.1. Antecedents

L’empresa Mecanitzats Albert S.A, dedicada a la mecanització de peces metàl·liques, pretén realitzar un canvi de les seves instal·lacions, amb la finalitat d’augmentar la seva superfície de treball i conseqüentment augmentar la seva capacitat de producció.

Aquest propòsit ha sorgit arran del fet que el Sr. Albert Furtià Puig, cap de l’empresa Mecanitzats Albert S.A, heretes un establiment industrial amb unes dimensions de superfície de la nau industrial i de la parcel·la superiors a les que l’empresa disposa actualment, i amb una posició estratègica comercial més favorable.

Actualment, alguns dels elements constructius de la nau industrial en qüestió, es troben deteriorats i malmesos. És per aquesta raó, que el Sr. Furtià ha encarregat el projecte de rehabilitació d’alguns d’aquests elements, de tal forma que elements objectes de rehabilitació, s’adaptin a l’ús de la seva nova activitat. Els elements objectes de rehabilitació són: els tancaments de façana, l’estructura metàl·lica de la nau, el tancament de coberta i el paviment interior de la nau industrial.

A petició del Sr. Furtià, aquest projecte integrarà també l’enderroc de dos edificis annexes a la nau industrial per augmentar la superfície lliure exterior dins la parcel·la, amb la finalitat de tenir major disponibilitat de superfície per habilitar una zona de parking exterior. Així mateix, inclourà l’enderroc d’una paret mitgera interior de la nau, amb la finalitat d’obtenir una major superfície de les diferents zones que conformen la nau.

A més, a petició també del Sr. Furtià, el projecte inclourà un apartat amb el disseny del layout interior de la nau, adaptant-se a les seves especificacions tècniques.

* A priori, cal especificar que el present projecte té un caràcter únicament acadèmic. Motiu per el qual, el promotor del projecte (Albert Furtià Puig) i la seva l’empresa (Mecanitzats Albert SA) mencionats anteriorment, són ficticis. De la mateixa forma ho són els documents d’identitat i direccions que apareixen en aquest document. Així com la classificació i ús de la parcel·la, ja que aquesta és catalogada amb ús agrari dins una zona rural. A partir d’aquestes idealitzacions, el projecte s’ha dut a terme de la forma més real possible, com si d’un projecte real es tractés.
1.2. Objecte

El present projecte té per objecte la rehabilitació dels tancaments de façana, coberta, de l’estructura metàl·lica i el paviment interior de la nau industrial, conjuntament amb la seva adaptació a un taller de mecanitzat. També inclou l’enderroc de dos edificacions annexes a la nau industrial, l’enderroc d’una paret mitgera i la descripció del layout interior de la nau industrial per adaptar-la al sector del mecanitzat.

1.3. Especificacions i abast

El projecte contindrà tota la informació i documentació necessària per dur a terme l’objecte del projecte. Aquest integrarà cinc documents, a continuació és descriu breument contingut de cada document.

- Document nº 1: Memòria. Inclou la descripció de les obres, càlculs necessaris, estudi de seguretat i salut, i justificació de preus.
- Document nº 2: Plànols. S’inclouen els plànols necessaris per dur a terme el projecte.
- Document nº 3: Plec de condicions. Indica les condicions per realitzar les obres.

Els elements constructius de la nau industrial objecte de rehabilitació són els tancaments de façana, el tancament de coberta, l’estructura metàl·lica de la nau i el paviment interior de la nau industrial. Per dur a terme la seva rehabilitació es realitzarà una descripció de l’estat actual d’aquests elements amb la major precisió possible i es realitzarà un estudi patològic per determinar les patologies que els afecten, el seu grau d’afectació i l’origen de les mateixes, amb la finalitat de que no tornin a originar-se. Determinat el seu estat, s’escollirà la solució idònia per a la rehabilitació i es descriurà de forma detallada el procediment a seguir per portar-les a terme.

En aquest projecte no s’inclou la rehabilitació d’altres elements constructius o instal·lacions que puguin estar en mal estat, com per exemple les canal o baixants d’aigües pluvials.
Es descriurà el procediment a seguir per dur a terme de la forma més segura possible les diferents fases de l’enderroc. La fase d’enderroc inclourà: l’enderroc de les edificacions annexes a la nau industrial (exceptuant la zona d’oficines), l’enderroc de la paret mitgera i la retirada de la coberta i plaques translúcides del tancament de façana, necessàries per dur a terme la rehabilitació del tancament de façana i coberta.

No s’inclou en aquest projecte els terminis d’execució necessaris per executar les obres ni el diagrama de Gantt necessari per coordinar les diferents fases de les obres.

Es descriurà també el nou layout interior per tal d’adaptar la nau al sector del mecanitzat. El disseny del layout incorporarà la distribució de les diferents zones que conformaran la nau, així com la distribució dels elements que conformen cada zona. També incorporarà una proposta d’un sistema de grua per alimentar les màquines que ho requereixin.

S’assegurarà que el disseny del layout compleixi amb la normativa contra incendis vigent.

El disseny del layout no inclourà la realització d’obertures i portes en els tancaments de façana o parets divisòries que siguin necessaris perquè es pugui dur a terme la seva execució.

El present projecte no inclou la sol·licitud d’excepció ni la justificació tècnica que especifica les mesures adoptades en el Reglament de Seguretat contra Incendis en els Establiments Industrials (RSCIEI), que aproximen la càrrega de foc d’emmagatzematge del taller a una activitat de producció.
2. PROMOTOR

El Promotor d’aquesta obra, és un particular que ocupa la totalitat de la superfície de la parcel·la.

A continuació s’adjunten les dades del promotor:

- Nom i Cognoms: Albert Furtià Puig
- D.N.I: 4175997- S
- Telefòn de contacte: 972 20 31 45
- Domicili social: c/ Avellaneda nº19 del municipi d'Anglès (Girona)

La persona acreditada per a contactes és el mateix Sr. Albert Furtià.

Projecte realitzat per: Norbert Furtià
3. SITUACIÓ I EMPLAÇAMENT

Les obres a efectuar, per a la rehabilitació d’una nau industrial, es localitzen al Paratge Reclavia, al terme municipal d’Anglès. Aproximadament a 290 metres del km 38,5 de la carretera C-63, que enllaça Lloret de mar amb Olot en els seus extrems.

Les Coordenades geogràfiques de la parcel·la, extretes del Registre de planejament urbanístic de Catalunya (RPUC), són les següents: (470397,9, 4644064,0).

Es pot veure la situació i emplaçament de la nau objecte de rehabilitació en el Plànol nº 1. Situació i en el Plànol nº 2. Emplaçament del Document nº2. PLÀNOLS del mateix projecte.
4. INFORMACIÓ URBANÍSTICA DEL BÉ INMOBLE I DE LA PARCEL·LA

A continuació s’adjunta la taula 1, on es proporcionen les dades urbanístiques de l’immoble i de la seva respectiva parcel·la.

Taula 1. Informació urbanística de l’immoble i de la parcel·la

<table>
<thead>
<tr>
<th>MUNICIPI (CODI)</th>
<th>ANGLÈS (17008)</th>
</tr>
</thead>
</table>

DADES DEL BÉ INMOBLE

<table>
<thead>
<tr>
<th>Referència cadastral</th>
<th>17008A00200208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localització</td>
<td>Polígon 2 Parcel·la 208 P.RECLAVIA. ANGLÈS (GIRONA)</td>
</tr>
<tr>
<td>Classe</td>
<td>Urbà</td>
</tr>
<tr>
<td>Coeficient de participació</td>
<td>100%</td>
</tr>
<tr>
<td>Ús</td>
<td>Industrial</td>
</tr>
<tr>
<td>Any construcció local principal</td>
<td>1975</td>
</tr>
</tbody>
</table>

DADES DE LA PARCEL·LA A LA QUAL S’INTEGRA EL BÉ INMOBLE

<table>
<thead>
<tr>
<th>Localització</th>
<th>Polígon 2 Parcel·la 208 P.RECLAVIA. ANGLÈS (GIRONA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfície construïda (m²)</td>
<td>1.431</td>
</tr>
<tr>
<td>Superfície sòl de la parcel·la (m²)</td>
<td>17.070</td>
</tr>
</tbody>
</table>

S’han consultat les dades íntegres en la taula 1 a la pàgina web de la Seu Electrònica del Cadastre i en la pàgina web del Registre de plantejament urbanístic de Catalunya (RPUC).

* Cal recordar que s’ha modificat les dades obtingudes d’ambdues pàgines web ja que el present projecte és únicament de caràcter acadèmic. Concretament les dades que s’han modificat són: La classe de l’immoble (rústica) i el seu ús (agrari). Realment la parcel·la del present projecte és una finca i està catalogada com a zona forestal amb sòl no urbanitzable.
5. DESCRIPCIÓ GENERAL DE L’ESTABLIMENT INDUSTRIAL

L’edificació està situada a l’interior del polígon 2 del paratge Reclavia, concretament a la parcel·la 208, tenint un únic veí ubicat a més de sis metres de la seva façana oest. La parcel·la disposa de dos vies d’accés alternatives, cadascuna d’elles amb una amplada del carril major a sis metres.

L’establiment industrial està format per dos configuracions: un magatzem (el qual no es tractarà en aquest projecte) i una fàbrica constituïda per la unificació de quatre edificacions. La nau industrial és l’edificació principal de la fàbrica i aquesta disposa de tres edificacions annexes adossades en les seus respectius tancaments de façana. Per tal de diferenciar les tres edificacions en aquest projecte s’ha utilitzat la nomenclatura: edifici 1, edifici 2, i edifici 3.

S’adjunta la figura 1, una imatge aèria de l’edificació, amb la intenció de facilitar la comprensió de les diferents edificacions que composen la fàbrica i ubicar-les dins la parcel·la.

![Imatge aèria de l’establiment industrial](image)

Llegenda Fotogràfica
- Nau industrial
- Edifici 1
- Edifici 2
- Edifici 3

Figura 1. Imatge aèria de l’establiment industrial i diferenciació de les edificacions que el componen mitjançant colors. Font: Institut Cartogràfic i Geològic de Catalunya. Figura modificada mitjançant l’aplicació Instamaps
5.1. Orientació de la fàbrica i denominació de les façanes

Els tancaments de façana de la fàbrica estan orientats amb un angle de 20,58° respecte els punts cardinals. Angle positiu en el sentit contrari de les agulles del rellotge.

Així doncs, els tancaments de façana són gairebé perpendiculars a les direccions colaterals respecte els punts cardinals; Nord-nord-oest (NNO), Oest-sud-oest (OSO), Sud-sud-est (SSE) i Est-nord-est (ENE), les quals estan orientades amb un angle de 22,5° respecte els punts cardinals. Es poden observar les direccions esmentades a la figura 2 adjunta.

![Figura 2. Rosa del vent de setze puntes](https://es.wikipedia.org/wiki/Rosa_de_los_vientos)

Per altra banda, per minimitzar les múltiples orientacions i establir un criteri d’orientació comú, el Codi Tècnic Espanyol (CTE) en l’apèndix A. Terminologia, del Document Bàsic HE. Estalvi d’Energia publicat el Setembre de 2013, estableix que l’orientació d’una façana es caracteritza mitjançant l’angle α que es el format pel Nord geogràfic i la normal exterior de la façana, mesurat en sentit horari. D’aquesta forma, es distingeixen vuit orientacions segons els sectors angulars continguts a la figura 3, establerta en el mateix Apèndix A.

![Figura 3. Orientació de les façanes](Font. Document Bàsic HE. Estalvi d’Energia del CTE)
Així doncs, aplicant el criteri establert pel CTE en el DB HE, s’han definit els tancaments de façana de l’establiment industrial en el present projecte segons la seva orientació, indicada en la figura 4.

Figura 4. Designació dels tancaments de façana en funció de la seva orientació
Font. Registre de planejament urbanístic de Catalunya (http://ptop.gencat.cat/rpucportal/)

5.2. Descripció general de la nau industrial

La nau industrial fa referència a l’edificació principal de l’establiment industrial, la qual conté les demés edificacions adossades al seu voltant.

La nau conté una sola planta i abasta una superfície útil total en el seu interior de 1190,8 m². Aquesta superfície està dividida per dos tancaments interiors, formant així tres sectors rectangulars, dos d’ells són confrontants a la façana oest i tenen una superfície útil de 357,64 m² i 237,76 m², l’altre sector és confrontant a la façana est i té una superfície útil 597,39 m².

L’estructura de la nau és metàl·lica projectada amb pilars HEB de diferents dimensions, els quals estan units entre ells mitjançant una biga o encavallades formades amb perfils angulars de doble L, obtenint així fins a sis pòrtics. A més a més, hi han unes gelosies que uneixen els pòrtics de la nau, també constituïdes mitjançant perfils angulars de doble L, que tenen la funcionalitat de sustentar les corretges on està fixada la coberta, evitar desplaçaments entre els pòrtics i repartir esforços entre l’estructura. Les unions entre les gelosies, encavallades i els pilars s’han realitzat mitjançant soldadures.
La nau industrial disposa de fins a quatre tancaments de façana, diferenciats en el projecte per la seva orientació (nord, est, oest i sud-est). Els tancaments perimetraels de façana estan centrats respecte els pilars de la seva respectiva façana i estan constituïts mitjançant maons de ceràmica amb un revestiment i un acabat pintat en la part exterior de la nau. Excepte el tancament de la façana sud-est, el qual es va construir més tard i està constituït per blocs de formigó sense revestir.

La nau disposa de quatre obertures d’accés directe des de l’exterior. Dos portes ubicades al tancament de façana nord i les altres dos al tancament de façana sud.

La coberta de la nau és del tipus de dents de serra, i s’ha construït mitjançant plaques de fibrociment gran onda. Aquesta disposa de fins a 5 dents, cadascuna de les quals té un faldó inclinat 17º respecte l’horitzontal.

A l’Annex A del present document es descriu de forma més exhaustiva i detallada els elements constructius que formen la nau industrial.

5.3. Descripció general de l’edifici 1

L’edifici 1 era l’antiga zona d’oficines de l’establiment industrial i disposa de dues plantes, comunicades per una escala situada a l’interior de l’edifici, ambdues amb una superfície útil de 53,83 m².

L’edificació té una alçada de 6,9 m respecte el paviment interior de la nau. Està unida a la façana nord de la nau industrial i comunica interiorment amb aquesta mitjançant una porta ubicada a la planta baixa.

L’edifici 1 té una construcció annexa anomenada en aquest projecte: construcció complementària de l’edifici 1. Aquesta construcció està unida a la façana est de l’edifici 1 i al tancament de façana nord de la nau industrial. No obstant, és independent i no comunica internament amb els mateixos. Està formada per dos tancaments constituïts per maons revestits de la mateixa tipologia que els utilitzats en els tancaments de la nau industrial i una coberta formada per una placa de fibrociment gran onda subjectada per bigues de fusta.

No s’entrarà en una descripció més detallada de la construcció de l’edifici 1 i la construcció complementària de l’edifici 1 ja que no es precisa tanta informació.
5.4. **Descripció general de l'edifici 2**

L’edifici 2 es independent a la nau industrial i està situat al costat de la seva façana est. Aquest disposa d’una única planta, té una alçada entre 4 i 4,2 m i una superfície útil de 92,59 m².

No s’ha pogut obtenir més informació sobre la construcció de l’edificació per part del promotor del projecte. Tanmateix a simple vista es pot observar que l’estructura de l’edificació és metàl·lica formada per vuit pilars (quatre a la façana est i quatre en la seva façana oest) centrats respecte el seu respectiu tancament de façana, units entre ells per bigues metàl·liques mitjançant soldadura, les quals suporten corretges metàl·liques del tipus C on es fixen les plaques de la coberta.

La coberta està composta per una única vessant inclinada (es desconeix el seu pendent) formada per plaques de fibrociment gran onda, de la mateixa tipologia que les utilitzades en la coberta de la nau industrial.

5.5. **Descripció general de l'edifici 3**

L’edifici 3 és la construcció adossada a la part central de la façana est de la nau industrial. La construcció és annexa i per tant, no comunica internament amb la nau industrial. Aquesta té una alçada exterior de 4 metres i una superfície interior útil de 27,65 m².

L’edificació consta de tres tancaments de façana, el tancament de façana nord, l’est i el sud-est, amb dos entrades d’accés des de l’exterior situades en el seu tancament est.

El promotor de l’obra no ha pogut facilitar plànols ni detalls sobre la construcció de l’edifici 3. No obstant, ens ha donat el seu testimoni assegurant que l’edificació es va construir amb tancaments constituïts per maons de ceràmica perforats i revestits en ambdues cares i que el seu tancament de coberta es va realitzar mitjançant un forjat unidireccional format a través de biguetes pretensades de formigó armat, revoltons ceràmics, una malla electrosoldada amb una capa de compressió de formigó i un recobriment superficial final amb tela asfàltica.
6. **DESCRIPCIÓ GENERAL DE LA NOVA ACTIVITAT**

El promotor del projecte té la pretensió de traslladar les instal·lacions actuals de la seva empresa (*Mecanitzats Albert S.A.*) a l’establiment industrial objecte de rehabilitació.

Per aquesta raó, l’establiment industrial a rehabilitar ha de permetre desenvolupar l’activitat de mecanització de peces metàl·liques de forma satisfactòria, garantint que l’activitat es realitzi de forma segura i complint la normativa vigent. En aquest projecte, es procurarà doncs, que els elements constructius a rehabilitar s’adaptin a aquesta nova activitat.

6.1. **Classificació de l’activitat**

Segons la classificació nacional d’activitats econòmiques (CNAE), l’activitat a desenvolupar s’identifica amb la descripció: Fabricació d’altres productes metàl·lics ncaa, i la codificació 2599.
7. **REHABILITACIÓ DELS ELEMENTS CONSTRUCTIUS**

A petició del promotor es rehabilitaran els diferents elements constructius explícits a continuació:

- Tancaments de façana de la fàbrica.
- Tancaments de coberta de la nau industrial.
- Estructura metà-l·ica de la nau industrial.
- Paviment interior de la nau industrial.

Alhora d’executar aquestes rehabilitacions, s’ha procurat que totes elles s’adapten a l’ús de la seva nova activitat, el mecanitzat de peces metà-l·iques.

Per tal d’assolir aquestes rehabilitacions de la forma més eficient possible s’ha seguit un procediment similar per cadascun dels elements constructius a rehabilitar. A continuació, es descriuen les diferents fases dutes a terme per executar tals rehabilitacions.

- Recerca d’informació.
- Estudi Patològic.
- Justificació de la necessitat.
- Estudi d’alternatives.
- Compliment de la normativa
- Elecció i descripció de la solució adoptada.
- Descripció del procediment de rehabilitació.
7.1. **Recerca d'informació**

En primera instància, abans d’analitzar els elements constructius a rehabilitar i realitzar qualsevol proposta de canvi, s’ha considerat imprescindible aconseguir tota la informació possible que els defineixi, amb la finalitat d’executar tals rehabilitacions de la manera més eficient possible.

En primer lloc, s’ha obtingut el projecte de construcció de la nau industrial i l’edifici 1, el qual ha estat proporcionat pel propi promotor del projecte.

En primer lloc, s’ha sol·licitat tota la documentació històrica referent a l’edificació de la nau industrial al promotor del projecte i titular de l’establiment industrial. Aquest ens ha pogut lliurar el projecte de construcció de la nau industrial i ens l’ha cedit el temps necessari per a la redacció del projecte. Cal esmentar però, que el projecte de construcció de la nau industrial es va redactar l’any 1975, raó per la qual, aquest projecte únicament consta d’un peticionari, una memòria descriptiva general de quatre pàgines i vuit plànols.

Per falta d’informació doncs, en aquests documents, s’ha considerat idoni realitzar jornades in situ, amb l’objectiu de complementar la informació facilitada amb altra informació que es pugui obtenir realitzant medicions.

Durant les jornades en l’establiment s’ha pogut observar la falta de concordança entre la descripció gràfica existent en els plànols de construcció de la nau i l’edificació real.

Per aquesta raó, a falta de credibilitat en el projecte constructiu de l’establiment, s’han realitzat consultes amb el constructor de l’obra i l’antic propietari de l’establiment, els quals molt amablement ens han atès i proporcionat explicacions sobre la construcció de l’establiment.

Així doncs, s’ha aconseguit tota la informació possible i necessària per a la identificació dels elements constructius a rehabilitar.

En l’Annex A del present document es descriu amb la màxima precisió possible els elements constructius que constitueixen la nau industrial, incloent els elements constructius a rehabilitar.
7.2. Estudi patològic

En segon lloc, s’ha realitzat un estudi patològic en els elements constructius objectes de rehabilitació, amb la intenció de determinar el seu estat actual i el mètode òptim per dur a terme la seva rehabilitació.

També s’ha inclòs en aquest estudi, altres elements constructius que pertanyen a l’edificació, la deficiència dels quals afecta de manera directa o indirecta els elements constructius a rehabilitar.

Un estudi patològic en l’edificació és un informe que identifica i avaluà les patologies o problemes constructius que apareixen en l’edifici, o en alguna de les seves parts, després de la seva execució. El concepte de patologia avarca totes les imperfeccions, visibles o no, de l’obra edificada. Cal especificar però, que l’estudi realitzat és del tipus organolèptic, ja que no hi ha hagut la possibilitat de realitzar testimonis a llarg termini, ni s’ha utilitzat aparells específics i/o tècnics.

Per l’execució i redacció de l’informe, com que actualment no existeix normativa referent a la inspecció i revisió de l’estat de conservació d’establiments industrials, s’han seguit algunes de les pautes descrites en la normativa autonòmica vigent sobre la conservació d’habitatges. Concretament s’ha seguit el Decret 67/2015, de 5 de maig, per al foment del deure de conservació, manteniment i rehabilitació dels edificis d’habitatges, mitjançant les inspeccions tècniques i el llibre de l’edifici.

S’han realitzat múltiples jornades in situ, necessàries per identificar l’estat de conservació dels elements constructius objectes de rehabilitació i avaluar les deficiències aparanets constructives i funcionals que els afecten. Aquestes jornades s’han dut a terme en la setmana 10 de l’any 2015.

L’estudi patològic realitzat tracta les múltiples patologies que poden tenir els elements constructius a rehabilitar, seguint un criteri comú, adjunt a continuació:

- Descripció i classificació de la patologia.
- Causa d’origen.
- Identificació de la regió afectada.
- Representació gràfica.
- Mètode d’actuació sobre la causa, reparació i manteniment.
De forma excepcional, aquest estudi no inclou l’apartat de reparació del tancament translúcid de façana de les dents de serra, del tancament de coberta ni del revestiment del paviment, ja que aquests requereixen d’una major necessitat d’anàlisi alhora d’escollir la solució adoptada per a la seva rehabilitació. La reparació d’aquests elements exclosos, es detallada en els Annexos F, G i H d’aquest document.

La inspecció tècnica visual de l’estudi patològic s’ha realitzat

En l’Annex B del present document s’adjunta l’estudi patològic anteriorment descrit.

7.3. **Justificació de la necessitat**

En els elements constructius a rehabilitar que requereixen d’una necessitat de canvi s’ha justificat la necessitat de la seva rehabilitació. Aquests són els tancaments translúcids de façana de la dent de serra, els tancaments de coberta i el revestiment del paviment de la nau industrial.

La justificació de la necessitat de canvi dels elements esmentats anteriorment es pot observar en els Annexos F, G i H adjunts en aquest document.

7.4. **Estudi d’alternatives**

En els elements constructius a rehabilitar que requereixen d’una necessitat de canvi i a més disposen de múltiples alternatives vàlides per a la seva substitució, s’ha realitzat un estudi de les alternatives aplicables, amb la finalitat d’escollir la solució òptima per a la seva substitució.

Aquests elements són els tancaments de coberta i els tancaments translúcids de façana de les dents de serra de la nau industrial.

7.5. **Compliment de la normativa**

Les rehabilitacions realitzades en tots els elements constructius hauran d’adaptar-se a la legislació que les regula. Per aquesta raó, en cada cas, s’ha indicat el seu compliment a la normativa vigent que els afecta en cada cas.

Per el compliment de la normativa vigent s’ha utilitzat entre d’altres, el Codi Tècnic de l’Edificació (CTE), el qual estableix les exigències mínimes que han de complir els edificis en relació als requisits bàsics de seguretat i habitabilitat.

S’adjunta doncs, l’Annex C, on es defineixen les exigències mínimes que han de complir els elements constructius a rehabilitar envers el foc segons el Reglament de Seguretat contra Incendis en els Establiments Industrials (RSCIEI).

S’ha determinat també les exigències que han de complir els elements constructius a rehabilitar envers les accions en l’edificació, determinades segons el Document de Seguretat Estructural. *Accions en la Edificació*, (DB SE-AE) del CTE.

7.6. **Elecció de la solució i procediment de rehabilitació**

S’ha determinat el mètode idoni de rehabilitació per a cadascun dels elements constructius que requerien d’aquesta necessitat. A més a més, s’ha descrit detalladament el procediment que es seguirà per dur a terme la seva rehabilitació.

S’ha descrit la solució i procediment de rehabilitació dels elements constructius que necessiten d’una necessitat de canvi en els Annexos F, G i H, del present document.

D’altra banda, s’ha descrit la solució i procediment de rehabilitació dels elements constructius que no necessiten d’una necessitat de canvi en l’Annex B, del present document.
8. **ENDERROC**

El procés d’enderroc serà parcial. A petició del promotor, s’enderrocarà l’edifici 2 i 3 de l’establiment industrial i una paret divisòria interior de la nau industrial. Ambdós enderrocs seran executats per criteris logístics.

D’altra banda, el procés d’enderroc també inclourà la retirada de les plaques del tancament de coberta i les plaques translúcids dels tancaments façana de les dents de serra, procés necessaris per dur a terme la rehabilitació dels tancaments esmentats.

Cal recordar que el tancament de coberta de la nau industrial i el tancament de coberta de l’edifici 2, estan constituïts mitjançant plaques de fibrociment, les quals contenen amiant no friable, un material potencialment perillós, causant de diferents malalties específiques provocades per la inhalació de les seves fibres. Per aquest motiu l’empresa contractada o subcontractada per aquesta fase de la demolició, haurà d’estar inscrita a la RERA (Registre d’empreses amb risc per amiant), complir la normativa vigent, i realitzar la demolició amb personal especialitzat i amb el corresponent pla de treball específic.

Cal esmentar, que no serà necessari que els tres enderrocs (edificis annexos, paret divisòria i retirada de les plaques) es duguin a terme de forma continuada, sinó que es podran realitzar per parts, seguint l’ordre escollit pel contractista.

Donat que l’enderroc serà parcial, es tindrà especial precaució en no malmetre els altres elements constructius de l’establiment industrial i es prendran les mesures de protecció necessàries per no damnificar-los.

En l’Annex E, adjunt en el present document, s’identifica els elements constructius a enderroc, així com la seva descripció, i els criteris a seguir, abans, durant i finalitzat l’enderroc.
9. DISSENY DEL LAYOUT

A petició del promotor, s’ha realitzat el disseny del layout per tal d’adaptar la seva empresa dins la nau industrial.

Per tal de dur a terme aquesta petició s’ha tingut en compte principalment el mètode de funcionament de l’activitat de l’empresa i les especificacions del promotor.

9.1. Descripció general de l’activitat de l’empresa

L’empresa Mecanitzats Albert S.A és una empresa dedicada a l mecanitzat de precisió de peces metàl·liques.

L’empresa no es dedica a vendre un producte propi, sinó que actua com una empresa subcontractada per a la fabricació o mecanització de peces per encàrrec. Aquesta únicament tracta peces de petites dimensions i poc pes, i és capaç de fabricar tan sèries unitàries, com curtes, mitges o llargues.

L’empresa és capaç de produir tot tipus de peces metàl·liques per una gran varietat d’indústries i aplicacions. La producció es basa en processos de mecanitzat, incloent operacions simples i processos complexes realitzats amb maquinaria d’alta precisió. Les peces a fabricar o tractar solen ser de ferro, acer inoxidable o d’alumini, de forma més excepcional són peces de bronze o llautó.
9.2. **Especificaciones del promotor**

S’ha tingut en compte alhora de dissenyar la distribució en planta dels diferents elements, el criteri del promotor i el conjunt d’especificacions imposades pel mateix. Aquestes especificacions s’han diferenciats mitjançant zones, en funció de l’activitat que s’hi desenvolupa.

9.2.1. Zona Administrativa

L’establiment industrial disposarà d’una zona d’oficines on es realitzaran les tasques administratives de l’empresa, amb una àrea superior als 150 m² i inferior als 275 m². Aquesta però, haurà de ser el suficientment gran perquè tinguin cabuda els diferents departaments que conformen el sector administratiu, explícits a continuació:

- **Equip directiu o gerència:** L’empresa disposa d’un director i un gerent, encarregat de definir, coordinar i gestionar el funcionament de l’empresa.

- **Departament de recursos humans:** Una persona encarregada de gestionar el personal de l’empresa (contractes, nòmines, necessitats, formació...).

- **Departament de comptabilitat i finances:** Una persona encarregada de tots els temes econòmics relacionats amb l’empresa.

- **Departament de compres:** Dos persones encarregades de les compres i ventes de l’empresa, així com les tasques de gestió del magatzem.

- **Departament de producció:** Tres persones encarregades del sistema productiu, així com del disseny de peces per encàrrec, manteniment de les instal·lacions i encarregades de donar les ordres de fabricació dels productes.

- **Departament de qualitat:** Una persona encarregada de controlar la qualitat dels productes.
9.2.2. Zona Taller

L’empresa disposarà d’una zona de producció, aquesta haurà de complir les següents especificacions:

- La zona de producció reunirà les màquines definides a la taula 2.

Taula 2. Màquines del taller.

<table>
<thead>
<tr>
<th>Tipologia de màquina</th>
<th>Unitats</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robodrill</td>
<td>1</td>
<td>FANUC a-T21iEe</td>
</tr>
<tr>
<td>Fresadores universals de 5 eixos</td>
<td>1</td>
<td>Deckel Maho DMU 70 eVo linear.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Deckel Maho DMU 80P</td>
</tr>
<tr>
<td>Centre de mecanitzat vertical</td>
<td>1</td>
<td>Haas VF-4SS</td>
</tr>
<tr>
<td>Centres de mecanitzat vertical d'alta precisió</td>
<td>1</td>
<td>Makino V77</td>
</tr>
<tr>
<td>Centres de mecanitzat horitzontals</td>
<td>1</td>
<td>Makino V56i</td>
</tr>
<tr>
<td>Multitasca</td>
<td>1</td>
<td>Okuma MULTUS B300</td>
</tr>
<tr>
<td>Torns horitzontals</td>
<td>1</td>
<td>Okuma LB 3000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Okuma LT3000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Haas DS 30 SSY</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Haas SL 30</td>
</tr>
<tr>
<td>Trepants de peu</td>
<td>2</td>
<td>No específicat</td>
</tr>
<tr>
<td>Màquina de marcatge per micropercusió</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Màquina de marcatge per làser</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Serra de disc semiautomàtica</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Serra de disc</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Afiladora de broques</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Totes les màquines tindran com a mínim 1 metre lliure al seu davant, per poder treballar-hi amb facilitat.

- Les màquines de control numèric, excepte la Robodrill, recolliran la ferritja sobrant de la peça en un recipient mòbil de 1 m².

- Les màquines de control numèric hauran de situar-se dins una àrea de treball, aquesta haurà de ser suficientment gran per permetre abastar la màquina, un europalet o contenidor metàl·lic, i un banc per dipositar les peces.

- La zona del taller haurà d’incloure una sala de compressors de com a mínim 10 m², aquesta estarà situada en contacte amb la façana, per tal de poder agafar aire de l’exterior.
- Les màquines del taller DECKEL MAHO DMU 80P, MAZAK PFH-5800, OKUMA LT3000, OKUMA MA-500H i OKUMA MULTUS B300, requereixen de la necessitat d’un sistema d’ajuda addicional en la seva alimentació, per tan és presentarà una proposta de solució, compatible amb el disseny del layout escollit.

9.2.3. Zona Magatzem

L’empresa disposarà d’un magatzem amb un sistema d’emmagatzematge racking convencional servit per carretilles, aquest haurà de complir les següents especificacions:

- El magatzem haurà de tenir una capacitat d’emmagatzematge de 39 europalets i 39 contenidors metàl·lics.
- També haurà de disposar d’una capacitat d’emmagatzematge de com a mínim 10 barres cilíndriques, les quals arribaran al magatzem amb una longitud de 3 metres.
- 4 barrils convencionals de taladrina.
- Disposarà d’una zona d’expedició, que inclourà una màquina automàtica d’embalatge de palets.

9.2.4. Zona Laboratori

L’establiment industrial inclourà un laboratori de metrologia de com a mínim 20 m², i haurà de complir amb les condicions de treball d’un laboratori de metrologia convencional.

El laboratori esmentat haurà de permetre el bon ús dels aparells de mesura explícits a continuació:

- 1 Projector de perfils Mitutoyo.
- 1 Joc de micròmetres digitals exteriors.
- 1 Joc de micròmetres interiors.
- 1 Joc de calibres.
- 1 Perfilòmetre Mahr Surf CD 120.
- 1 Duròmetre Hoytom.

A més, haurà d’incorporar una sala prèvia en la seva entrada amb una dutxa d’aire, d’unes dimensions nominals de 1.080 x 790 x 2.760 mm.
9.2.5. Zona Serveis i Vestuaris

L’establiment industrial disposarà d’una zona de serveis per la zona d’oficines i una altre zona de serveis i vestuaris per la zona de taller, ambdós zones hauran de ser diferenciades.

Els serveis destinats a la zona d’oficina hauran de disposar de 3 o 4 inodors.

D’altra banda, els serveis i vestuaris de la zona del taller s’hauran de diferenciar entre homes i dones. El vestuari d’homes haurà de tenir 3 inodors i 3 dutxes i el vestuari de dones haurà de tenir 2 inodors i 1 dutxa. Aquesta diferenciació és donada a que gairebé tots els treballadors del taller i magatzem de la nau industrial són homes. Tanmateix, el promotor ha decidit disposar d’un vestuari de dones per si en un futur són necessaris.

9.3. Distribució en planta general

Abans de realitzar la distribució en planta s’ha realitzat un estudi previ per tal d’aconseguir les necessitats i/o requeriments de l’empresa. L’estudi previ realitzat es denomina “planejament”.

El planejament realitzat disminuirà el risc de que la distribució final no sigui funcional o bé presenti alguna mancança i s’hagin de fer modificacions posteriors. Evidentment aquestes modificacions a posteriori de forma general van lligades a un augment de costos.

9.3.1. Sistematic Layout Planning modificat

Amb la finalitat de racionalitzar i esquematitzar el planejament industrial, s’ha seguit el model SLPm (Sistematic Layout Planning modificat) desenvolupat per Richard Muther.

El SLPm és un procés organitzat i sistemàtic per poder realitzar un planejament correcte, que participi de la presa de decisions. Aquest pas a pas indica la seqüència a seguir per obtenir la distribució en planta òptima per una implantació industrial.

En el SLPm s’ubiquen els diferents elements de la implantació en el terreny. Aquests elements poden ser directes de producció (màquina, operaris i materials) o bé auxiliars de producció (serveis generals de fabricació i serveis de personal). Aquest consisteix a fixar un quadre operacional de fases, una sèrie de procediments i un conjunt de normes que permetin identificar, valorar i visualitzar tots els elements que participin en la preparació del planejament.
El SLPm es pot desglossar en sis passos ben diferenciats:

- **Definició**: Saber que es fabricarà i com
- **Anàlisi**: Analitzar les diferents operacions del procés industrial i les diverses dependències amb les zones de planta.
- **Avaluació**: Comprar entre diverses solucions.
- **Selecció**: Adoptar la solució més escaient per a cada cas, un cop s’ha realitzat l’avaluació.
- **Síntesi**: Reflectir en uns diagrames l’anàlisi realitzada anteriorment.
- **Implantació i seguiment**: Implantar l’opció dissenyada i realitzar un seguiment d’aquesta

S’ha adaptat aquest model a l’empresa implantar, ja que alguns dels passos, no seran necessaris.

**9.3.1.1. **Definició

En primera instància, tal i com el SLPm indica, per determinar la tipologia de fabricació de l’empresa s’ha realitzat un anàlisi P-Q (Producte-Quantitat).

L’anàlisi P-Q, es realitza a tots els productes (material, o peces) a fabricar. Es representen en un gràfic les quantitats de cada producte, ordenades de major a menor quantitat.

En l’empresa a implantar (*Mecanitzats Albert S.A*) es fabricaran i modificaran peces metàl·liques per encàrrec mitjançant el mecanitzat de precisió. Aquestes seran de petites dimensions i poc pes.

Donat que l’empresa no té un producte propi, i fabricarà o mecanitzarà diferents tipologies de peces, mitjançant sèries unitàries, curtes, mitges i més escassament sèries llargues. Aquesta es trobarà en la zona B, segons la figura 5, adjunta a continuació.
9.3.1.2. \textit{Anàlisi}

En aquest apartat d’anàlisi s’ha recopilat totes les activitats que el promotor creu que seran necessàries per la seva empresa i s’ha estudiat la seves necessitats de relació.

Per dur a terme aquest propòsit, s’ha realitzat una taula relacional d’activitats, la qual evalua la importància de la proximitat entre les activitats, amb el suport d’una codificació apropriada, indicant la causa de la relació. Aquesta taula permet integrar els elements directes de la producció (taller, magatzem, etc.) amb els indirectes (oficines, serveis, etc.).

La codificació utilitzada per determinar la importància de proximitat entre activitats, és la estàndard del SLPm, A continuació es defineixen els codis utilitzats.

- A: Proximitat absolutament important.
- E: Proximitat especialment important.
- I: Proximitat important.
- O: Proximitat ordinària.
- U: Proximitat sense importància.
- X: Símbol negatiu que significa < proximitat no aconsellable >
- XX: Proximitat prohibitiva.
En canvi, per determinar la causa de relació entre les diferents activitats de l’empresa s’ha utilitzat una codificació pròpia. La codificació és una numeració amb una referència que indica la causa de relació entre activitats o zones. A continuació, s’adjunta la codificació utilitzada conjuntament amb la seva referència:

- 1: Recorregut dels productes.
- 2: Relació amb clients.
- 3: Necessitats higièniques.
- 4: Relacions administratives.
- 5: Sense necessitat de relació.
- 6: Necessitats energètiques.
- 7: Soroll.

Distribució general de les zones

Per tal de determinar les diferents zones que conformaran l’activitat de la nova empresa a implantar, s’ha atès a les especificacions del promotor. Segons aquest, la nova activitat estarà composta de sis zones o activitats diferenciades, descrites a continuació:

- **Taller**: És el sector on es portarà a terme tot el procés dedicat a la transformació i manipulació dels materials. Aquest inclourà també la sala de compressors.

- **Magatzem**: És la part on s’emmagatzemarà la matèria primera, producte en curs i producte acabat.

- **Zona d’embalatge i expedició**: És la part del magatzem on s’empaquetaran o embalaran els productes en curs o finals.

- **Laboratori**: És el sector on es realitzarà un anàlisi dimensional i es revisarà la qualitat de les peces produïdes.

- **Oficines**: És el sector on es durà a terme la gestió i administració de l’empresa.

- **Serveis**: És l’espai compartimentat per dutxes i serveis necessaris per la higiene personal.

- **Sala d’instal·lacions**: És la zona on s’ubicaran les instal·lacions de subministrament d’aigua i ACS, calefacció, etc., necessàries per garantir les condicions mínimes de salubritat en la zona d’oficines.
Taula relacional d’activitats

Una vegada determinades les diferents activitats que conformaran la nova empresa, objecte d’implantació. S’ha procedit a realitzar la taula relacional d’activitats segons indica el SLPm.

Alhora d’executar aquesta taula, s’ha tingut en compte dos consideracions d’importantícia, explícites a continuació:

- La sala de compressors haurà d’estar en un sector diferenciat de la zona del taller.
- Algunes de les activitats o sales, és necessari que estiguen en contacte amb l’exterior. Com per exemple: el magatzem per l’aprovisionament de matèria primera.

És per aquest motiu, que a la taula s’ha afegit la sala de compressors i un contacte exterior, aquest últim tot i no ser una activitat, té la mateixa importantícia alhora de determinar la ubicació de les diferents zones en la distribució en planta.

A continuació, s’adjunta la figura 6, on es mostra la taula relacional entre les activitats i zones.

![Figura 6. Taula relacional d’activitats de Mecanitzats Albert S.A](http://example.com/image.png)

Font. Pròpia (AutoCAD 2013)
Solució adoptada

Finalment, tenint en consideració les especificacions del promotor, el qual ens ha indicat les preferències de cada zona, i observant la taula relacional entre activitats, s’ha obtingut un solució de la distribució en planta general.

A continuació s’adjunta la figura 5, on es pot observar la distribució en planta de les diferents zones que constituiran l’activitat del sector del mecanitzat.

![Diagrama de distribució en planta](font-propia-autocad-2013)

S’ha cregut adient la distribució d’aquestes zones, pels motius exposats a continuació:

- La zona de taller és la de major àrea, aquesta estarà en contacte directe amb totes les zones de la nau industrial. Ja que el seu procés productiu així ho requereix. A més, també estarà en contacte amb la façana sud-est, i disposarà d’una sortida per poder traslladar els subproducts al magatzem B.

- La zona d’oficines estarà connectada de forma directe amb l’edifici 1, antiga zona d’oficines. De forma anàloga a la zona de taller, aquest també estarà connectat amb totes les zones que conformen la nau (excepte la zona d’expedició i sala d’instal·lacions) ja que en aquestes zones no es requereix d’un contacte directe. Aquesta zona no superarà els 250 m², així no s’haurà de secoritzar-la segons indica el RSCIEI i es reduiran costos.

- La zona de magatzem estarà en contacte amb la façana sud-est de la nau industrial, la qual serà per on entrarà i sortirà les matèries primeres i productes acabats. amb la zona de serveis habilitada per la zona d’oficines, amb la zona de laboratori.

- La zona d’expedició s’ha situat en l’interior del magatzem, en un punt estratègic.
- La zona d’instal·lacions s’ha connectat amb la construcció complementaria de l’edifici 1, i en contacte el tancament perimetral de façana nord, perquè es puguin complir les especificacions del Reglament d’Instal·lacions Tèrmiques en els Edificis (RITE).

9.4. Distribució específica de les zones

A continuació es detalla de forma més exhaustiva el layout de cada zona. Cal especificar que s’ha dissenyat el layout de les diferents zones tenint en compte les exigències del Document Bàsic de Seguretat d’utilització i accessibilitat del CTE i el Reglament Contra Incendis en Establiments Industrials.

9.4.1. Zona taller

La zona del taller és una de les zones més importants a tenir en compte durant el procés d’implantació de l’empresa, ja que aquesta és on es durà a terme el sistema productiu.

Per tal de escollir una solució óptima del taller, s’han tingut en compte les especificacions del promotor, les zones de treball necessàries en funció de les màquines que vol incorporar l’empresa, les sales necessàries per executar el sistema productiu, i les condicions de seguretat dels vials de circulació i evacuació de les persones segons indica la normativa vigent.

A continuació, s’adjunta la figura 8, on es mostra la distribució optima per al taller.
Les zona de taller estarà formada per tres sales, explícites a continuació:

- Sala general de producció: És on es durà a terme el procés productiu i mecanitzat de les peces.
- Sala d’estris de neteja: S’ala adjunta al taller per guardar estris de neteja del mateix. Aquesta tindrà unes dimensions de 6,55 m². (Zona morada en la figura 8).
- Sala del compressor: Aquest s’ha situat confrontant a la façana sud-est, ja que el compressor necessita agafar aire net de l’exterior. Aquesta sala és necessària, ja que les màquines de mecanitzat de precisió funcionen amb aire comprimit. Aquesta sala tindrà unes dimensions de 16 m². (zona blava en la figura 8).

9.4.1.1. *Sala general de producció*

La sala general de producció constarà de tres parts, explícites a continuació.

- Vials de circulació de vehicles (zona en vermell).
- Vials de circulació de persones i evacuació. (zona verda).
- Àrees de treball de les màquines.

S’ha col·locat les àrees de treball de les màquines de forma consecutiva, de tal forma que els operaris puguin entrar pel darrere (vials de circulació de persones) i els toros les puguin alimentar pel davant (zona de circulació de vehicles), d’aquesta forma, es separen ambdós vials, i es disminueix amb consideració el risc d’accidents.

Zones de circulació de vehicles

La zona de circulació de vehicles estarà en contacte amb la façana sud-est, perquè així es pugui transportar el subproducte al magatzem B.

Aquestes zones tindran una amplada de 3,1 m. S’ha escollit una amplada superior a la necessària per girar necessiten la majoria dels toros.

La zona de circulació que comunica amb el magatzem principal, anirà marcada amb franges grogues, per indicar que els toros en aquesta zona tenen menys visibilitat, i per tant, seran zones on sota cap concepte podran circular el personal a peu.
S’ha habilitat passos de zebra per comunicar els recorreguts de circulació, en aquestes zones els operaris hauran de tenir més precaució en la circulació. Aquests passos de zebra també permetran que els operaris existents en les zones de circulació, puguin sortir ràpidament cap a l’exterior, en cas d’incendi. De la mateixa forma s’ha deixat un espai lliure en la façana nord (on la zona de circulació i la de pas estarà separada per una franja de 10 cm d’amplada).

Zones de circulació de persones

Les zones de circulació tindran una amplada de 1,1 m, permeten així una circulació còmode per els operaris i complint amb les exigències de disseny i recorreguts d’evacuació del RSCIEI.

Des d’aquestes zones es podrà accedir a qualsevol sala o àrea de treball del taller, sense necessitat de trepitjar cap zona de circulació.

Àrees de treball de les màquines

La dimensió de cada àrea de treball dependrà de la dimensió de la màquina que hagi de contenir al seu interior. Independentment d’això, aquesta tindrà el suficient espai perquè hi cabi un banc on es puguin col·locar les peçes de treball, un europalet o contenidor i un dipòsit per albergar el subproducte de les màquines (1m²).

Les màquines tindran al seu davant una distància lliure superior a 1m, per tal que l’operari es pugui moure amb facilitat. Aquest espai haurà de connectar amb la zona de circulació de persones, per tal que no hi hagi cap atrapament i és pugui sortir ràpidament en cas d’incendi.

A continuació s’adjunta la numeració utilitzada en la figura 8, que indica la màquina que hi haurà dins d’aquella àrea de treball.

1. OKUMA MA 500-H (48 m²).
2. MAZAK PFH 5800 (33,3 m²)
3. 2 Trepants, 1a Afiladora de broques, 1a Màquina marcatge per micropercusió, 1a Màquina marcatge per làser. (27 m²).
4. FANUC (13,7 m²).
5. OKUMA LB 300 i MAKINO V56i (33,37 m²).
6. HAAS DS 30 SSY (23,69 m²).
7- MAKINO V77 (20 m²).
8- OKUMA LT 3000 (29,47 m²).
9- OKUMA MULTUS B300 (25,5 m²).
10- HAAS SL 30 (24 m²).
11- HAAS VF 4 (25,98 m²).
12- DECKEL MAHO DMU 70 EVO LINEAR (26,7 m²).
13- DECKEL MAHO DMU 80 P (46,88 m²).

En la àrea de treball que no hi ha numeració, serà l’àrea on es col·locaran els palets o contenidors per tal que els operaris del laboratori puguin agafar les peces, sense necessitat d’anar a cada àrea de treball. Així s’eliminaran temps improductius i com a conseqüència s’augmentaran els beneficis de l’empresa. Aquesta àrea s’ha situat a prop de la zona de laboratori i tindrà una capacitat de 2 europalets o contenidors.

Les àrees de treball de la màquina OKUMA MA-500H i la MAZAK PFH-5800 seran confrontants, de la mateixa forma ho seran les àrees de les màquines OKUMA MULTUS B300, OKUMA LT3000 i DECKEL MAHO DMU 80P. Així serà més fàcil que el sistema de grua pugui alimentar les diferents màquines que així ho necessiten.

El sistema de grua proposat es defineix en l’Annex I, del present projecte.

9.4.2. Zona magatzem

La zona magatzem reunirà les mateixes parts que la sala general de producció. Aquesta disposarà de vials d’accés i circulació, amb les mateixes característiques que l’esmentada.

A continuació s’adjunta la numeració utilitzada en la figura 9, on es pot observar la distribució utilitzada en la zona del magatzem.
Figura 9. Distribució del layout en la zona del magatzem
Font. Pròpia (AutoCAD 2013)

A continuació s’adjunta la numeració utilitzada en la figura 9, que indica la ubicació de les diferents activitats o zones que es duran a terme dins el magatzem.

1- Zona de càrrega i descàrrega de camions (14 m²).

2- Zona d’aparcament de toros i màquina de neteja (10 m²).

3- Zona toreros (4,5 m²). És la zona on els toreros rebran les comandes.

4- Zona d’embalatge i expedició (11,95 m²). Zona on s’embalan els palets.

5- Zona de tall (10,79 m²).

La zona de tall pertany a l’activitat de producció. Tanmateix, s’ha cregut adient col·locar-la a l’interior del magatzem per la següent raó: Aquesta zona és necessària sobretot per tallar la matèria primera, ja que aquesta pot arribar com a peces cilíndriques, les qual tenen 3 metres de longitud, donades les seves dimensions, el seu transport es fa complicat, per aquest motiu és necessari que aquestes ‘peces tinguin un recorregut mínim abans de ser tallades.
9.4.3. Zona Oficines

La zona d’oficines, també anomenada zona administrativa, s’ha situat en l’edifici 1 i a l’interior de la nau industrial. Aquesta està formada per els departaments especificats pel promotor. A continuació, s’adjunta la figura 10, on es pot observar la distribució dels departaments realitzada.

![Distribució del layout en la zona d’oficines.](image)

Font. Pròpia (AutoCAD 2013).

A continuació s’adjunta la numeració utilitzada en la figura 10, que indica la ubicació dels diferents departaments que constituiran la zona d’oficines.

1- Departament tècnic (25,66 m²).
2- Departament de qualitat (19,88 m²).
3- Departament comercial i financer (18,33 m²).
4- Departament de recursos humans (12,83 m²).
5- Sala de reunions (20,44 m²)
6- Sala d’espera (13,53 m²).
7- Recepció (35,04 m²).
8- Despatx gerent (16,45 m²).
9- Despatx Director general (18,4 m²).

S’ha considerat adient, disposar d’un passadís que connecti tots els departaments. Aquest tindrà una amplada de 1,35 m. Així és permet una circulació còmode pels operaris i a més és compleixen les exigències de disseny dels recorreguts d’evacuació segons el RSCIEI.

Aquest passadís connectarà també amb la zona de magatzem, la zona de taller i els serveis.
S’han col·locat els despatxos del departament de producció i el departament de qualitat, el més proper possibles al taller i laboratori de metrologia, per tal de millorar la rapidesa de connexió entre activitats.

També s’ha situat els serveis en un punt mig, de tal forma que tots els despatxos tinguin els serveis a una distància mínima similar.

A continuació s’adjunta la figura 11, on es pot observar una possible distribució dels elements del seu interior.

Figura 11. Distribució dels elements a l’interior de la zona d’oficines
Font. Pròpia (AutoCAD 2013)

9.4.4. Zona laboratori

La zona laboratori serà necessària per a determinar la qualitat de les mecanitzacions realitzades en el procés productiu. Aquesta disposarà d’una zona prèvia, la qual disposarà d’una dutxa d’aire.

El laboratori de metrologia tindrà una superfície útil de 29,56 m², mentre que el vestíbul tindrà una superfície útil de 8,17 m².

A continuació, s’adjunta la figura 12, on es pot observar la distribució de la zona laboratori amb els aparells específicats pel promotor.

Figura 12. Distribució del layout en la zona del laboratori
Font. Pròpia (AutoCAD 2013)
9.4.5. Zona Serveis i Vestuaris

Complint amb les especificacions del promotor, s’ha habilitat la fàbrica amb una zona de serveis i vestuaris diferenciada. A continuació es descriuen les tres zones diferenciades.

- Serveis oficines i laboratori. Aquest tindrà la seva entrada des de oficines, i serà d’ús habitual pels treballadors de les oficines i laboratori. Aquest serà utilitzable tan per homes com per dones, i disposarà de tres inodors i dos piques. La seva superfície útil serà de 10,59 m².

- Serveis i vestuaris homes. S’ha habilitat uns serveis i vestuaris per ús habitual dels operaris (homes) del taller i magatzem. Aquests serveis disposaran de tres inodors i dos piques i d’uns vestuaris amb tres dutxes. La seva superfície útil serà de 23,38 m².

- Serveis i vestuaris dones. S’ha habilitat uns serveis i vestuaris per ús habitual de les operaris (dones) del taller i magatzem. Aquests serveis disposaran de dos inodors i una dutxa. La seva superfície útil serà de 14,8 m².

A continuació, s’adjunta la figura 13, on es pot observar la distribució de les diferents zones de serveis i vestuaris.

![Figura 13. Distribució dels serveis i vestuaris de l’establiment industrial. Font. Pròpia (AutoCAD 2013)](image)

* En el disseny del layout, s’ha habilitat també un servei de petites dimensions en la segona planta de l’edifici 1, aquest si es desitja es pot suprimir pel promotor. El servei esmentat es pot observar en la figura 11.
Cal especificar que la distribució dels serveis s’ha realitzat complint la normativa del Document de seguretat d’utilització i accessibilitat (DB SUA) del CTE.

9.4.6. Sala d’instal·lacions

S’ha situat la sala d’instal·lacions al costat de la façana nord de la nau industrial, d’aquesta manera es podran complir amb les exigències de ventilació d’aquestes sales imposades segons la normativa del Reglament d’Instal·lacions Tèrmiques en Edificis (RITE).

També s’ha connectat amb la construcció complementària de l’edifici 1, així s’ha augmentat la seva superfície fins a 22,22 m². A més, es podrà accedir a la sala d’instal·lacions des de l’exterior.

A continuació s’adjunta la figura 14 on es pot observar la sala en concret.

![Figura 14. Sala d’instal·lacions de l’establiment industrial](AutoCAD 2013)
10. RESUM DEL PRESSUPOST

El pressupost d’execució material de la rehabilitació de la nau industrial existent al paratge Reclavia del municipi d’Anglès, desglossat en capítols i subcapítols, està explícit a la taula 3 i puja a la quantitat de:

DOS-CENTS DOTZE MIL VUITANTA-DOS EUROS AMB QUARANTA CÈNTIMS

Taula 3. Pressupost d’execució material per capítols i subcapítols.

<table>
<thead>
<tr>
<th>Capítol</th>
<th>Subcapítol</th>
<th>Import (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Resolució de Patologies (B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01.01 Tancaments de façana</td>
<td>24511,49</td>
</tr>
<tr>
<td></td>
<td>01.02 Reparació estructura metàl·lica</td>
<td>20209,63</td>
</tr>
<tr>
<td>02</td>
<td>Enderroc (E)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02.01 Retirada coberta i plaques translúcides del tancament de façana</td>
<td>47394,04</td>
</tr>
<tr>
<td></td>
<td>02.02 Enderroc dels edificis 2 i 3</td>
<td>12193,43</td>
</tr>
<tr>
<td></td>
<td>02.03 Enderroc de la paret divisòria</td>
<td>3184,38</td>
</tr>
<tr>
<td>03</td>
<td>Tancament de coberta (F)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03.01 Tancament de coberta</td>
<td>46682,60</td>
</tr>
<tr>
<td>04</td>
<td>Tancament translúcid de façana de les dents de serra (G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04.01 Tancament translúcid de façana de les dents de serra</td>
<td>12787,01</td>
</tr>
<tr>
<td>05</td>
<td>Revestiment del paviment (H)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05.01 Revestiment del paviment</td>
<td>45119,82</td>
</tr>
</tbody>
</table>

PRESSUPOST D’EXECUCIÓ MATERIAL (PEM) 212082,40

El pressupost d’execució per contracte a falta de i.v.a de la rehabilitació de la nau industrial existent al paratge Reclavia del municipi d’Anglès, tenint en compte un 13% en Despeses generals i un 6% de Benefici Industrial, puja a la quantitat de:

DOS-CENTS CINQUANTA-DOS MIL TRES-CENTS SETANTA-VUIT EUROS AMB SIS CÈNTIMS MÉS I.V.A.
11. CONCLUSIONS

El present projecte recopila tota la informació necessària per dur a terme les especificacions del promotor, seguint en tot moment els requeriments de les diferents normes i reglaments que les afecten. Per tant, es garanteix el correcte funcionament dels elements constructius rehabilitats, així com la seguretat i eficiència en el seu procés de rehabilitació i en les diferents fases d’enderroc. Es garanteix també la viabilitat del disseny del layout aplicat a l’interior de la nau.

Per aquesta raó, es donen per complerts els objectius establerts en l’inici d’aquest projecte.
12. RELACIÓ DE DOCUMENTS

- Document nº 1. MÈMORIA
- Document nº 2. PLÀNOLS
- Document nº 3. PLEC DE CONDICIONS
- Document nº 4. ESTAT D’AMIDAMENTS
- Document nº 5. PRESSUPOST
13. BIBLIOGRAFÍA

ANNEX A

DESCRIPCIÓ DELS ELEMENTS CONSTRUCTIUS ACTUALS DE LA NAU INDUSTRIAL
SUMARI. DESCRIPCIÓ DELS ELEMENTS CONSTRUCTIUS ACTUALS DE LA NAU INDUSTRIAL

A.1. INTROCUCCIÓ .. 2
A.2. OBJECTE .. 2
A.3. ESPECIFICACIONS I ABAST .. 3
A.4. DESCRIPCIÓ GENERAL DE L’ESTRUCTURA DE LA NAU ... 3
A.5. ELEMENTS ESTRUCTURAUS ... 4
 A.5.1. Fonamentació ... 4
 A.5.1.1. Sabates .. 4
 A.5.1.2. Mur de contenció .. 5
 A.5.2. Pilars ... 5
 A.5.3. Subestructures metàl·liques .. 7
 A.5.3.1. Encavallada Warren ... 8
 A.5.3.2. Gelosia ... 10
 A.5.4. Tancaments ... 12
 A.5.4.1. Tancaments de façana .. 12
 A.5.4.2. Particions .. 15
 A.5.5. Paviment .. 16
 A.5.6. Coberta ... 16
 A.5.6.1. Dimensions i propietats de les plaques i cavallets de fibrociment 17
 A.5.6.2. Corretges .. 20
 A.5.6.3. Accessoris utilitzats en la subjecció de la coberta .. 20
 A.5.7. Canals de recollida d’aigües pluvials ... 21
 A.5.8. Baixants de recollida d’aigües pluvials .. 21
A.1. INTRODUCCIÓ

Per dur a terme la realització d’aquest projecte és necessària la recuperació del projecte de construcció de l’edificació, per tal de tenir coneixement de tots els elements constructius i instal·lacions que componen l’edificació, amb la finalitat d’identificar aquells elements que podem tractar, modificar o afectar durant l’execució del projecte.

Per aquest motiu, prèviament a l’execució del projecte es va sol·licitar la documentació històrica de l’edificació al titular de l’establiment. No obstant, la major part de l’establiment industrial es va construir l’any 1975 i actualment el titular de l’establiment no conserva tots els plànols sobre l’edificació. Raó per la qual, ha estat necessari la realització de jornades in situ en l’edificació.

Durant una d’aquestes jornades es van observar desconcordances entre plànols de construcció de l’edificació i la nau industrial real. Per aquest motiu, es van realitzar cites amb el titular i el constructor de l’edifici, amb la finalitat de constatar la informació obtinguda durant l’etapa d’inspecció i els canvis realitzats en l’etapa de construcció de l’edificació.

Així doncs, per tal d’identificar i descriure els elements estructurals de la nau industrial en aquest annex, s’ha realitzat una inspecció de l’establiment in situ, s’han utilitzat els plànols de l’edificació proporcionats pel titular i el constructor de l’establiment i s’ha contat també amb el testimoni i les explicacions requerides dels mateixos.

A.2. OBJECTE

En aquest annex es pretén identificar i descriure amb la màxima precisió possible els elements estructurals que formen la nau actual, amb la finalitat de facilitar la comprensió de la seva estructura i obtenir la informació necessària per dur a terme la rehabilitació dels elements escollits.
A.3. ESPECIFICACIONS I ABAST

Les inspeccions tècniques (jornades) han estat del tipus organolèptiques. És a dir, no s’ha utilitzat estris específics i/o tècnics ni s’han realitzat cales d’inspecció en l’edificació, únicament s’ha realitzat una inspecció visual dels elements estructurals i s’han mesurat les distàncies dels elements constructius necessàries.

Per tal d’efectuar la inspecció s’ha constat únicament amb l’ús d’una escala portàtil metàl·lica, un metre convencional i un mesurador a distància làser.

La inspecció tècnica únicament s’ha realitzat en els elements estructurals de l’edificació, no s’han inspeccionat les instal∙lacions de l’edifici, ni observat si corresponen amb els plànols obtinguts.

A.4. DESCRIPCIÓ GENERAL DE L’ESTRUCTURA DE LA NAU

La construcció d’aquesta nau es va realitzar l’any 1975, i posteriorment l’any 2001 es va procedir a la construcció del tancament de la façana sud-est i de la partció central interior.

A priori, es pot observar que l’estructura de la nau és metàl·lica projectada amb pilars HEB de diferents dimensions, els quals estan units per una biga o encavallades formades amb perfils angulars de doble L, obtenint així fins a sis pòrtics. A més a més, hi ha unes gelosies entre les encavallades que tenen la funcionalitat de sustentar les corretges on està fixada la coberta, evitar desplaçaments entre els pòrtics i repartir esforços entre l’estructura.

Les unions entre les gelosies, encavallades i els pilars s’han realitzat mitjançant soldadures.

La nau disposa de fins a 4 façanes, distingides en el projecte per la seva orientació (nord, est, oest i sud-est). Els tancaments perimetrals d’aquestes façanes i les seves particions interiors s’han realitzat mitjançant murs constituïts per maons de ceràmica o blocs de formigó.

La coberta de la nau és del tipus de dents de serra, i s’ha construït mitjançant plaques de fibrociment gran ona. Aquesta disposa de fins a 5 dents, cadascuna de les quals té dos faldons de diferents pendents.
A.5. ELEMENTS ESTRUCTURAUX

A.5.1. Fonamentació

La Fonamentació de l’estructura de la nau és del tipus superficial. Aquesta conté un mur de contenció i 2 tipus de sabates depenent de la dimensió dels pilars que suporten.

A.5.1.1. Sabates

Les sabates perimetrals estan travades a diferència de les interiors que estan aïllades.

Totes les sabates són del tipus centrades i es van omplir de formigó hidrofugat de 200 kg/m² amb l’additiu Plastocrete de c.p.a. Les armadures de les sabates són gruelles de 4x4 d’acer REA 46 de 8,5 mm de diàmetre nominal amb un límit elàstic 4.600 kg/cm².

Les dimensions de les sabates varien en funció del pilar que suporten. Les sabates de la línia central suporten pilars HEB de 160 mm, mentre que la resta de sabates suporten pilars HEB de 140 mm. Es pot observar les dimensions de les sabates en funció del pilar que suporten a la taula 1.

Taula 1. Dimensions de les sabates en funció del pilar que suporten

<table>
<thead>
<tr>
<th>Pilars</th>
<th>Dimensions de la Sabata (m)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amplada (a)</td>
<td>Longitud (b)</td>
</tr>
<tr>
<td>HEB 140</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>HEB 160</td>
<td>1,2</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Les riostres que uneixen les sabates dels pilars perimetrals tenen una alçada de 50 cm i una amplada de 60 cm. Aquestes estan centrades respecte els pilars i a la mateixa cota que les sabates.

Per manca d’informació es desconeix la profunditat de col·locació de les sabates.
A.5.1.2. Mur de contenció

Per tal d’establir i mantenir la diferència de nivell del terreny entre la part interior i exterior de la façana oest i així també mantenir l’anivellació de la nau. Aquesta disposa d’un mur de contenció de terres de formigó armat encofrat a dos cares en taulers de fusta de 90 x 45 cm.

A més a més, aquest mur té la funció de sustentar els pilars de la façana oest (1D a 6 D’) i la coronació de l’escarpa està centrada respecte aquests.

A.5.2. Pilars

La nau està formada per 20 pilars metàl·lics de diferents dimensions, amb una distribució rectangular respecte la planta de la nau, 16 dels quals són perimetral i 4 interiors.

S’ha utilitzat una nomenclatura formada per un número i lletra per denominar tots els pilars que pertanyen a l’estructura de la nau industrial, la qual es pot observar a la figura 1.

La llum entre pilars “L” és de 13,5m, mentre que la llum entre pilars “S” és de 9m.
Com es pot observar a la taula 2 adjunta, els pilars centrals són del tipus B i són perfils HEB 160. En canvi, la resta de pilars són perfils HEB 140, això és degut a que els pilars centrals aguanten el doble de pes de l’encavallada que suporten.

Taula 2. Distribució i característiques generals dels pilars.

<table>
<thead>
<tr>
<th>Distribució i característiques generals dels pilars</th>
<th>Situació</th>
<th>Tipologia</th>
<th>Perfil</th>
<th>Orientació</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilars de façana Est</td>
<td>Tipus A</td>
<td>HEB 140</td>
<td>Eix Y perpendicular a la F.E</td>
<td></td>
</tr>
<tr>
<td>Pilars Centrals</td>
<td>Tipus B</td>
<td>HEB 160</td>
<td>Eix Y paral·lel a la F.E</td>
<td></td>
</tr>
<tr>
<td>Pilars 19 i 20 façana Nord</td>
<td>Tipus C</td>
<td>HEB 140</td>
<td>Eix Y paral·lel a la F.E</td>
<td></td>
</tr>
<tr>
<td>Pilars de façana Oest</td>
<td>Tipus D</td>
<td>HEB 140</td>
<td>Eix Y perpendicular a la F.E</td>
<td></td>
</tr>
</tbody>
</table>

Taula 3. Dimensions i pes dels pilars segons el seu perfil.

<table>
<thead>
<tr>
<th>Profil</th>
<th>Dimensions (mm)</th>
<th>Pes (Kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h</td>
<td>b</td>
</tr>
<tr>
<td>HEB 100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>HEB 120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>HEB 140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>HEB 160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>HEB 180</td>
<td>180</td>
<td>180</td>
</tr>
</tbody>
</table>
A.5.3. **Subestructures metàl·liques**

L’estructura metàl·lica de la nau industrial està composta pels pilars, una biga i dos subestructures metàl·liques. Aquestes subestructures són les encavallades Warren que s’uneixen als pilars formant pòrtics, i unes gelosies que s’utilitzen com a mètode d’unió entre les encavallades o els pilars, i que actuen com a suport de la coberta.

Les unions entre els elements estructurals metàl·lics esmentats (pilars, biga, encavallades Warren i gelosies) s’ha dut a terme mitjançant soldadures.

A continuació s’adjunta la figura 2, amb la intenció de facilitar la compreunció de l’estructura de la nau i la ubicació de les subestructures que la componen.
A.5.3.1. Encavallada Warren

L’encavallada és la subestructura que uneix els pilars perimetrals (tipus A i D) amb els pilars interiors (tipus B) i és del tipus Warren subdividida, ja que solament presenta muntants verticals en els vèrtexs dels triangles del cordó inferior.

S’adjunta la figura 3 amb la intenció de facilitar la comprensió de l’estructura d’una encavallada Warren subdividida i la denominació utilitzada en les seves parts estructurals. Cal tenir present, que l’encavallada de la nau es diferencia principalment de la figura 3, perquè disposa únicament de tres triangles isòsceles en comptes de cinc.

![Figura 3. Encavallada Warren subdividida i denominació de les seves parts estructurals](http://www.construmatica.com/construpedia/Viga_Warren)

La nau disposa de fins a 10 encavallades Warren, les qual uneixen els pilars perimetrals de façana est i oest amb els pilars centrals (pilars tipus B). A la façana nord la nau no disposa d’encavallada, ja que aquesta disposa de més pilars en el seu tancament (pilars tipus C) els quals estan units en la seva part superior per una biga metàl·lica (IPN 260). En canvi, quan es va construir la nau, es va decidir habilitar la façana sud-est amb dos encavallades per si en un futur el propietari de la nau decidia augmentar les seves dimensions.

Les encavallades estan situades a una alçada de 4m respecte el paviment interior de la nau i tenen una altura final de 7,1m respecte aquest.

L’estructura de cada encavallada està formada per perfils angulars de costat iguais d’acer laminat. La dimensió de cada perfil depèn de la quantitat de tensió que suporta.

Els perfils angulars esmentats que tenen la funció de cordons o muntants estan units mitjançant soldadures en unes platines situades a cada nus de l’encavallada.
Les dimensions dels elements estructurals de les encavallades Warren es poden observar a la taula 4 adjunta. Els valors de la taula s’han obtingut realitzant mesures de l’edificació in situ.

Taula 4. Dimensions dels elements estructurals de l’encavallada Warren.

<table>
<thead>
<tr>
<th>Parts de l’encavallada</th>
<th>Elements estructurals</th>
<th>Altura (h)</th>
<th>Base (b)</th>
<th>Gruix (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordó inferior</td>
<td>doble Perfil L</td>
<td>50</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Cordó superior</td>
<td>doble Perfil L</td>
<td>50</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Diagonals a l’extrem</td>
<td>doble Perfil L</td>
<td>80</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>Diagonals internes</td>
<td>doble Perfil L</td>
<td>50</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Muntants verticals</td>
<td>doble Perfil L</td>
<td>70</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>Nusos de l’extrem</td>
<td>Platina rectangular</td>
<td>300</td>
<td>250</td>
<td>10</td>
</tr>
<tr>
<td>Nusos interiors cordó inferior</td>
<td>Platina rectangular</td>
<td>500</td>
<td>250</td>
<td>10</td>
</tr>
<tr>
<td>Nusos dels vèrtex de les diagonals del cordó superior</td>
<td>Platina rectangular</td>
<td>500</td>
<td>250</td>
<td>10</td>
</tr>
<tr>
<td>Nusos dels muntants del cordó superior</td>
<td>Platina rectangular</td>
<td>300</td>
<td>250</td>
<td>10</td>
</tr>
</tbody>
</table>

Taula 5. Dimensions i pes dels perfils angulars de les encavallades.

<table>
<thead>
<tr>
<th>Designació</th>
<th>b</th>
<th>e</th>
<th>r</th>
<th>r₁</th>
<th>Perímetre (cm)</th>
<th>Pes (kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 40x40x5</td>
<td>40</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>15,013</td>
<td>2.97</td>
</tr>
<tr>
<td>L 50x50x5</td>
<td>50</td>
<td>5</td>
<td>7</td>
<td>3.5</td>
<td>18.84</td>
<td>3.77</td>
</tr>
<tr>
<td>L 70x70x10</td>
<td>70</td>
<td>10</td>
<td>9</td>
<td>4.5</td>
<td>26.52</td>
<td>10.3</td>
</tr>
<tr>
<td>L 80x80x10</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>30,36</td>
<td>11.9</td>
</tr>
</tbody>
</table>

Taula 6. Dimensions i pes de les platines d’acer de les encavallades.

<table>
<thead>
<tr>
<th>d</th>
<th>bxd (mm²)</th>
<th>Àrea (cm²)</th>
<th>Pes (kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250x10</td>
<td>25</td>
<td>19,6</td>
<td></td>
</tr>
</tbody>
</table>

A.5.3.2. Gelosia

La nau disposa d’un altre tipus de subestructura metàl·lica anomenada gelosia, formada també per perfils L. Aquesta té la funció de suportar la coberta i donar-li el pendent desitjat (17º), actuar com a nexe d’unió entre les encavallades Warren i els pilars, repartir esforços en l’estructura i evitar desplaçaments de la mateixa.

L’estructura de la nau conté 35 gelosies, que s’agrupen en grups de 7 per formar cada dent de serra de la coberta de la nau. La llum entre aquestes 7 gelosies és de 4,5m i permeten una alçada lliure interior de la nau d’entre 4 i 6,7m.

Les major part de les gelosies estan unides pels seus extrems a les encavallades Warren. L’extrem superior dret (extrem més proper a la façana nord) està unit a la part superior de l’encavallada Warren mitjançant soldadures entre la part superior del muntant de la Warren, el cordó superior de la Warren i la platina que actua com a nus d’aquesta. En canvi, l’extrem inferior esquerre (extrem més proper a la façana sud-est) està unit a la part inferior d’una altra encavallada Warren situada al costat esquerre de l’anterior) unida també mitjançant soldadures entre una platina, la part inferior dels muntants de la Warren i el seu cordó inferior.

Els elements estructurals i les dimensions de cadascuna de les gelosies estan referenciades a la taula 7 adjunta. Els valors d'aquesta taula s’han obtingut realitzant mesures de l’edificació in situ.

Taula 7. Característiques generals dels elements estructurals de cadascuna de les gelosies.

<table>
<thead>
<tr>
<th>Parts de la gelosia</th>
<th>Elements estructurals</th>
<th>Altura (h)</th>
<th>Base (b)</th>
<th>Gruix (e)</th>
<th>Longitud (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordó inferior</td>
<td>doble Perfil L</td>
<td>40</td>
<td>40</td>
<td>5</td>
<td>7.030</td>
</tr>
<tr>
<td>Extrems del cordó inferior</td>
<td>doble Perfil L</td>
<td>40</td>
<td>40</td>
<td>5</td>
<td>1.150</td>
</tr>
<tr>
<td>Cordó superior</td>
<td>doble Perfil L</td>
<td>40</td>
<td>40</td>
<td>5</td>
<td>9.220</td>
</tr>
<tr>
<td>Diagonals internes</td>
<td>Perfil L</td>
<td>40</td>
<td>40</td>
<td>5</td>
<td>1.250</td>
</tr>
<tr>
<td>Diagonal de l'extrem dret</td>
<td>doble Perfil L</td>
<td>40</td>
<td>40</td>
<td>5</td>
<td>1.140</td>
</tr>
<tr>
<td>Diagonal de l'extrem esquerre</td>
<td>doble Perfil L</td>
<td>40</td>
<td>40</td>
<td>5</td>
<td>1.050</td>
</tr>
<tr>
<td>Muntants</td>
<td>Perfil L</td>
<td>40</td>
<td>40</td>
<td>5</td>
<td>660</td>
</tr>
<tr>
<td>Platina extrem dret</td>
<td>Platina trapezoïdal</td>
<td>400/338</td>
<td>260</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Platina extrem esquerre</td>
<td>Platina trapezoïdal</td>
<td>420/340</td>
<td>260</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

En el document nº 2. Plànols, es pot observar l’estructura de la gelosia, les seves dimensions i la denominació de les seves parts.
A.5.4. Tancaments

A.5.4.1. Tancaments perimetrals de façana

Els tancaments perimetrals de façana de la nau industrial estan centrats respecte els pilars de la seva respectiva façana. No obstant, no tots els murs de tancament estan construïts dels mateixos materials.

En la façana nord, est i oest, els tancaments estan construïts mitjançant maons de ceràmica foradats doble, també anomenats totxanes, amb unes dimensions nominals de 290x140x100 mm. Els tancaments tenen un revestiment arrebossat llis amb morter de c.p.a. de 0,5 cm tan a la seva part interior com exterior. A més, a la part exterior de les façanes esmentades se’ls hi va donar un acabat pintat amb pintura impermeable del tipus Acritón.

En canvi, el tancament de la façana sud-est està construït amb blocs de formigó vistos (sense arrebossat). Aquesta diferència és deguda al fet que inicialment la nau no tenia mur de tancament a la façana sud-est i uns anys més tard per raons empresarials es va decidir habilitar-lo. Els blocs de formigó en aquest tancament són del tipus buits amb un acabat llis i unes dimensions nominals de 400x200x150 mm.

Els materials utilitzats i les especificacions de cada tancament de façana estan detallats a la taula 8 adjunta. Les dimensions explicites en aquesta taula s’han mesurat in situ i el pes específic s’ha extret de la taula C.1.Pes específic aparent de materials de construcció integra en l’annex C del Documento básico de Seguridad estructural-acciones en la edificación (DB SE-AE).

Taula 8. Materials i especificacions de cada tancament de façana.

<table>
<thead>
<tr>
<th>Mur de tancament</th>
<th>façana nord/est/oest</th>
<th>façana sud-est</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material utilitzat</td>
<td>Maons de ceràmica</td>
<td>Blocs foradats de ciment</td>
</tr>
<tr>
<td>Tipologia</td>
<td>Foradats doble</td>
<td>Foradats</td>
</tr>
<tr>
<td>Dimensions nominals (mm)</td>
<td>290x140x100</td>
<td>400x200x150</td>
</tr>
<tr>
<td>Pes específic (kN/m³)</td>
<td>12</td>
<td>13 a 16</td>
</tr>
<tr>
<td>Revestiment</td>
<td>Arrebossat llis</td>
<td>No</td>
</tr>
<tr>
<td>Acabat</td>
<td>Pintat (paret exterior)</td>
<td>No</td>
</tr>
</tbody>
</table>
A.5.4.2. Tancament de façana de la dent de serra

A.5.4.2.1 Classificació del tancament

La coberta de la nau industrial a rehabilitar és del tipus de dent de serra. Aquesta tipologia de coberta és definida en l’àmbit internacional amb el mateix criteri, com una coberta formada per la successió de dos aiguavessos d’inclinacions diferents a cada dent de serra. On generalment, el faldó més curt té una inclinació més pronunciada, sol estar orientat al nord i compost per materials translúcids. Aquesta definició s’ha trobat en diferents diccionaris d’arquitectura i construcció, i en la gran enciclopèdia catalana.

Tanmateix, el Codi Tècnic Espanyol (CTE) en l’apèndix A del document HE. *Ahorro de Energía*, defineix les cobertes com aquells tancaments que estan en contacte amb l’aire exterior en la seva cara superior i tenen una inclinació inferior a 60º respecte l’horitzontal. També defineix els lluernaris com un element translúcid de coberta els quals també tindran una inclinació inferior al 60º. A més, defineix els tancaments de façana com els tancaments en contacte amb l’aire exteriors amb una inclinació superior als 60º.

Per altra banda, el CTE en el document SE-AE. *Acciones en la edificación*. Anomena en més d’una situació cobertes amb una inclinació superior als 60º. A més, en el càlcul de l’acció del vent en cobertes, dóna valor d’inclinació de la coberta del 75º.

Aquesta contradicció genera incertesa sobre si el tancament de coberta de la dent de serra inclinat 90º és un tancament de coberta o de façana, fent difícil la seva classificació. No obstant, Es considera prioritària la definició establerta pel CTE respecte les demés enciclopèdies i diccionaris, i seguint aquest criteri, es defineix el tancament més curt de la dent de serra que està inclinat 90º, com un tancament de façana. Anomenat en aquest projecte tancament de la dent de serra.
A.5.4.2.2 Descripció del tancament

Aquest tancament està inclinat 90º respecte l’horitzontal i està constituït per plaques de polièster reforçat amb fibra de vidre (PRFV) gran ona. Aquestes plaques són translúcides per permetre el pas de la llum natural a l’interior de la nau, d’un color verdós per tamisar la llum.

Les plaques tenen un perfil ondulat gran ona, tenen un espessor de 1,3 mm (mesurat in situ amb un peu de rei), una amplada de 1,1 m i una longitud de 2,5 m, excepte les plaques situades al tancament de façana nord de la nau industrial que tenen una longitud de 3m.

A.5.4.2.3 Accessoris de subjecció de les plaques de PRFV

Les plaques estan subjectades a l’encavallada Warren mitjançant ganxos tipus “L” d’acer galvanitzat, aquests son autorroscants i permeten llibertat en el seu ajust. Aquests estan acompanyats de la seva respectiva femella, d’una volandera doble de plom-ferro i una volandera negra asfàltica per garantir estanqueïtat. Aquests ganxos són els mateixos estipulats per la norma tecnològica de l’edificació (NTE) núm. 95, NTE-QTS/1976. *Tejados sinteticos*. A continuació s’adjunta la figura 4, amb els ganxos actuals utilitzats per la subjecció d’aquestes plaques.

![Figura 4. Ganxo d’acer galvanitzat per la subjecció de les plaques i arandela de plom-ferro.](font: NTE-QTS/1976)

A més a més, els ganxos van acompanyats d’un cub de fusta que actua com a nexe d’unió entre la placa i l’encavallada Warren, per tal d’evitar el joc.
Les plaques estan subjectades per 6 ganxos, dos en cada recolzament. Els recolzaments es realitzen en els tubs rectangulars units a les encavallades Warren. Aquests estan separats 1,095m entre ells, excepte els recolzaments del tancament de façana nord de la nau industrial, on els recolzaments estan separats una distancia de 1,44m.

A.5.4.3. Particions

La nau industrial existent disposa de dos particions diferents per així dividir la seva àrea total en tres sectors.

En primer lloc, quan es va construir la nau es va realitzar una partició construïda amb el mateix material que les façanes nord, est i oest, sense l’acabat pintat. Aquesta està centrada entre els pilars que subjecten la encavallada 8E.

En canvi, l’any 2001 es va decidir construir una altre partició, centrada respecte els pilars HEB160 amb abast de la façana nord a la sud-est. Aquesta està edificada amb blocs de formigó foradat amb acabat llis amb unes dimensions nominals de 400x200x200 mm, sense revestiment i amb l’armat que es mostra a la figura 5.

Segons la informació documental proporcionada pel propietari de l’immoble, la figura 5 mostra part del plànol utilitzat en la construcció del tancament centrat respecte els pilars HEB160. No obstant, a simple vista es pot apreciar que la gelosia representada en la figura 5 té diferent forma que la real. A més, el constructor de l’obra i propietari de l’immoble ens han donat el seu testimoni, afirmant que l’armat vertical i els blocs de formigó arribaven fins a l’altura inferior de la gelosia, no fins la superior tal i com mostra la figura.

Figura 5. Representació gràfica de la partició centrada respecte els pilars HEB 160
Tal i com s’observa a la figura 5, es van realitzar dos armats horitzontals, situats a 1,8 m i a 3,8 m respecte el paviment interior de la nau. Cadascun dels armats es va realitzar utilitzant blocs de formigó en U i 4 varilles d’acer corrugat que es van soldar als pilars per els seus extrems, amb una distància entre varilles horitzontal de 10 cm i una distància vertical de 15 cm. En aquestes varilles s’hi va soldar estreps de 6 mm de diàmetre separats 20 cm.

En la part central del tancament es va realitzar un reomplert dels blocs de formigó i es va armar cada forat amb 2 varilles de 12 mm de diàmetre. Les varilles es van ancorar al paviment per la seva part inferior.

A.5.5. Paviment

El paviment interior de la nau està format per una solera, per tal de poder suportar esforços pesants. En primer lloc, es va col·locar una capa de sauló de 15cm d’espessor, en segon lloc unes làmines de poliestirè per aïllar el paviment i finalment, una capa de formigó de 200kg/m³ HA-25 de 15cm amb un especejament en quadres de 4x4m, on se li va donar un acabat corronat (rugós) amb ciment pòrtland.

A.5.6. Coberta

La coberta de la nau és de dents de serra o també anomenada del tipus shed. Disposa de cinc dents i cada dent està formada per dos tancaments, aquests els podem diferenciar pel seu pendent. El tancament de major superfície es considera un tancament de coberta, aquest està situat sobre les corretges i el faldó té una inclinació de 17º (17,13º aproximadament) respecte el pla horitzontal. En canvi, el tancament de menor superfície es considera un tancament de façana, aquest està situat davant l’encavallada Warren i té una inclinació de 90º respecte el pla horitzontal.

Per tal d’unir els dos tancaments esmentats de la dent de serra (el de coberta i el de façana), en el carener de cada dent hi ha un cavallet de fibrociment granular amb una ala ondulada, situada sobre el faldó amb la inclinació de 17º i l’altra ala llisa, situada sobre el tancament amb una inclinació de 90º.

El tancament de coberta de cada dent de serra consisteix en un faldó amb una inclinació de 17º respecte l’horitzontal està format per dues vessants constituïdes per plaques de fibrociment ondulat gran ona, amb un aïllament interior de llana de vidre de 5cm d’espessor.
Aquestes plaques es subjecten en les corretges ubicades sobre les gelosies mitjançant ganxos d’acer especialitzats.

A.5.6.1. Dimensions i propietats de les plaques i cavallets de fibrociment

Les dimensions i característiques de les plaques de fibrociment utilitzades en la coberta estan detallades a la taula 9.

Les cobertes de fibrociment estan regulades per les normes tecnològiques de l’edificació (NTE), les quals no són d’obligat compliment, sinó recomanacions. Per aquest motiu, per definir la tipologia de les plaques de coberta s’ha seguit el criteri establert en la norma núm. 85, NTE-QTF/1976. Tejados de fibrocemento. A més, s’ha comprovat que la coberta actual compleix amb les recomanacions d’edificació establertes en la norma (solapament mínim, complements d’estanqueïtat necessaris i longitud màxima del faldó en funció de la ubicació geogràfica de la nau i la inclinació del faldó).

El pes específic de les plaques de fibrociment s’ha extret de la taula C.2. Peso por unidad de superficie de elementos de cobertura explícita en el DB SE-AE del CTE.

<table>
<thead>
<tr>
<th>Material de les plaques</th>
<th>Fibrociment granular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipologia de les plaques</td>
<td>Simètriques Gran ona. Perfil A</td>
</tr>
<tr>
<td>Angle d'inclinació respecte l'horizontal(º)</td>
<td>17º</td>
</tr>
<tr>
<td>Ubicació geogràfica (figura 6)</td>
<td>1</td>
</tr>
<tr>
<td>Solapament mínim segons la respectiva NTE (mm)</td>
<td>150</td>
</tr>
<tr>
<td>Solapament entre plaques</td>
<td>170</td>
</tr>
<tr>
<td>Necessitat de complements d’estanqueïtat segons la NTE</td>
<td>No són necessaris</td>
</tr>
<tr>
<td>Complements d’estanqueïtat a la coberta</td>
<td>No en té</td>
</tr>
<tr>
<td>Longitud màxima de cada faldó permesa (m)</td>
<td>45</td>
</tr>
<tr>
<td>Longitud real de cada faldó (m)</td>
<td>9</td>
</tr>
<tr>
<td>Longitud de les plaques (mm)</td>
<td>2.000/2.500</td>
</tr>
<tr>
<td>Nº de recolzaments per placa segons la NTE</td>
<td>3</td>
</tr>
<tr>
<td>Nº de recolzaments per placa a la coberta de la nau</td>
<td>3</td>
</tr>
<tr>
<td>Amplada de les plaques (mm)</td>
<td>1.100</td>
</tr>
<tr>
<td>Espessor (mm)</td>
<td>6</td>
</tr>
<tr>
<td>Pes (kN/m²)</td>
<td>0,18</td>
</tr>
</tbody>
</table>
Per determinar el solapament, la necessitat de complements d’estanqueïtat i la longitud màxima del faldó en funció de la inclinació de la coberta, segons el criteri establert en la NTE-QTF/1976, s’ha utilitzat la taula 10 i 11 del mateix document, adjuntes a continuació.

Taula 10. Determinació del solapament.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Inclinació</th>
<th>Pendienta</th>
<th>Perfiles</th>
<th>Complements</th>
<th>Longitud màxima del faldó en m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>en grados</td>
<td>en %</td>
<td>A y B C</td>
<td>de estanqueïtat</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5ª30'</td>
<td>10</td>
<td>200</td>
<td>T + L</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>6ª - 8ª30'</td>
<td>11 a 15</td>
<td>200</td>
<td>T</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>9ª - 11ª</td>
<td>16 a 20</td>
<td>200</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>12ª - 14ª</td>
<td>21 a 25</td>
<td>200</td>
<td>–</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>14ª30' - 10ª</td>
<td>26 a 35</td>
<td>150</td>
<td>–</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>> 19ª</td>
<td>> 35</td>
<td>150</td>
<td>–</td>
<td>> 45</td>
</tr>
<tr>
<td>2</td>
<td>5ª30'</td>
<td>10</td>
<td>200</td>
<td>T + L</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>6ª - 8ª30'</td>
<td>11 a 15</td>
<td>200</td>
<td>T + L</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>9ª - 11ª</td>
<td>16 a 20</td>
<td>200</td>
<td>T</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>12ª - 14ª</td>
<td>21 a 25</td>
<td>200</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>14ª30' - 10ª</td>
<td>26 a 35</td>
<td>150</td>
<td>–</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>> 19ª</td>
<td>> 35</td>
<td>150</td>
<td>–</td>
<td>> 40</td>
</tr>
<tr>
<td>3</td>
<td>5ª30'</td>
<td>10</td>
<td>200</td>
<td>T + L</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6ª - 8ª30'</td>
<td>11 a 15</td>
<td>200</td>
<td>T + L</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>9ª - 11ª</td>
<td>16 a 20</td>
<td>200</td>
<td>T + L</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>12ª - 14ª</td>
<td>21 a 25</td>
<td>200</td>
<td>T</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>14ª30' - 10ª</td>
<td>26 a 35</td>
<td>150</td>
<td>–</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>> 19ª</td>
<td>> 35</td>
<td>150</td>
<td>–</td>
<td>> 35</td>
</tr>
</tbody>
</table>

* La taula 10 s’ha modificat afegint el requadre vermell per remarcar el procés seguit.
Taula 11. Determinació del nombre de recolzaments per placa segons la NTE-QTF/1976

* La taula 11 s’ha modificat afegint el requadre vermell per remarcar el procés seguit.

Les dimensions i característiques específiques dels cavallets de la coberta estan explicites a la taula 12, adjunta a continuació.

Taula 12. Dimensions i característiques específiques de cada cavallet.

<table>
<thead>
<tr>
<th>Material</th>
<th>Fibrociment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud de l'ala llisa (mm)</td>
<td>450</td>
</tr>
<tr>
<td>Longitud de l'ala ondulada (mm)</td>
<td>450</td>
</tr>
<tr>
<td>Angle d'obertura (º)</td>
<td>75º</td>
</tr>
<tr>
<td>Amplada (mm)</td>
<td>1.200</td>
</tr>
<tr>
<td>Espessor (mm)</td>
<td>6</td>
</tr>
<tr>
<td>Pes (kN/m^2)</td>
<td>0,18</td>
</tr>
<tr>
<td>Solapament actual entre cavallets (mm)</td>
<td>138</td>
</tr>
<tr>
<td>Solapament en les plaques (mm)</td>
<td>>150</td>
</tr>
</tbody>
</table>
A.5.6.2. Corretges

Les corretges que subjecten les plaques del faldó inclinat 17º mitjançant ganxos d’acer són del tipus C i estan situades sobre les gelosies amb una separació entre elles de 1,165m, excepte la situada al costat del caneló de recollida d’aigua, que té una aproximació amb la següent de 0,5m. D’aquesta manera, com s’ha pogut observar a la taula 9 del present annex, són necessàries 3 corretges per la subjecció de cada placa, i es situen 9 corretges sobre cada gelosia.

<table>
<thead>
<tr>
<th>Alçada total "ht" (mm)</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplada total "bt" (mm)</td>
<td>50</td>
</tr>
<tr>
<td>Llavi total "dt" (mm)</td>
<td>20</td>
</tr>
<tr>
<td>Espessor "t" (mm)</td>
<td>2</td>
</tr>
<tr>
<td>Radi interior "r" (mm)</td>
<td>2,5</td>
</tr>
<tr>
<td>Pes específic (kg/m)</td>
<td>3,86</td>
</tr>
<tr>
<td>Secció (cm²))</td>
<td>4,92</td>
</tr>
<tr>
<td>Inèrcia respecte l'eix Y (cm⁴)</td>
<td>109</td>
</tr>
<tr>
<td>Inèrcia respecte l'eix Z (cm⁴)</td>
<td>17,9</td>
</tr>
</tbody>
</table>

A.5.6.3. Accessoris utilitzats en la subjecció de la coberta

Els ganxos utilitzats en la subjecció de les plaques de fibrociment són els recomanats per les norma tècniques de l’edificació NTE-QTF/1976. Aquests ganxos són del tipus “J”, fabricats amb acer amb un acabat galvanitzat, són autorroscants i permeten llibertat en el seu ajust. De la mateixa forma que els ganxos utilitzats en les plaques PRFV, aquests estan acompanyats també de la seva respectiva femella, d’una volandera doble de plom-ferro i una volandera negra asfàltica per garantir estanqueïtat.

A continuació s’adjunta la figura 7, amb la intenció de representar els accessoris de subjecció de la coberta actual de la nau industrial.
Figura 7. Ganxo tipus “J” utilitzat per la subjecció de les plaques de coberta, amb la seva respectiva volandera de plom-ferro.
Font. NTE-QTF/1976

A.5.7. Canals de recollida d’aigües pluvials

En les parts baixes de les dents de serra, hi ha ubicades les canals de recollida d’aigües pluvials, les quals amb un pendent lleugerament petit dirigeixen l’aigua recollida cap els seus extrems i les aboquen a les baixants.

Les canals de la coberta es van canviar el març de l’any 2013. Les actuals són continues i sense soldadures, de xapa d’alumini de 0,8 mm d’espessor, plegades a mida in situ i encastades a l’estructura de la nau (sense fixacions).

A.5.8. Baixants de recollida d’aigües pluvials

Les baixants de recollida d’aigües pluvials estan compostes per la unió de tubs de fibrociment d’una allargada màxima de 2,4 m, de 12,5cm de diàmetre nominal interior i 5mm de gruix. Unides a la façana i entre elles per una anella metàl·lica, situades a la part exterior del tancament de façana est i oest de la nau industrial, concretament sota les canals i al costat dels pilars.

No obstant, uns anys més tard de la construcció de la nau industrial, es van construir els edificis 2 i 3 annexes a la façana est de la nau industrial. Per aquest motiu, en aquesta façana es van haver de redirigir les baixants de recollida d’aigües en una altra direcció i es va aprofitar per substituir les
baixants de fibrociment per unes de PVC de 12,5 cm de diàmetre nominal i 3,2 cm d’espessor, seguint la norma UNE-EN 1453-1:2000. Sistemes de canalització en materials plàstics con tubos de pared estructurada per evacuació de aigües residuàries (a baixa y a alta temperatura) en el interior de la estructura de los edificios. Policloruro de vinilo no plastificado (PVC-U). Parte 1: Requisitos para los tubos y el sistema.

Durant el procés de substitució de les baixants de fibrociment, no es van retirar totes les baixants de la façana est de la nau, restant en l’establiment tubs de fibrociment trencats i inutilitzats. Cal esmentar que el fibrociment amb contingut d’amiant (com és aquest cas) és un material potencialment perillós per la salut del personal que respira l’aire del seu voltant, per la qual cosa es recomana la retirada immediata de les baixants de fibrociment inutilitzades que resten a l’establiment.

Cal especificar també, que alguna part de les baixants de fibrociment de la façana oest de la nau, s’ha substituït per una de PVC de la mateixa tipologia que les incorporades a la façana est, degut al seu trencament.
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIDIA D’ÀNGLES.

- ANNEX A. DESCRIPCIÓ DELS ELEMENTS CONSTRUCTIUS ACTUALS DE LA NAU INDUSTRIAL

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
ANNEX B

ESTUDI PATOLÒGIC
SUMARI. ESTUDI PATOLÒGIC

A.1. INTRODUCCIÓ ...5
A.2. OBJECTE ..5
A.3. ESPECIFICACIONS I ABAST ...5
A.4. CRITERIS DE CLASSIFICACIÓ I AVALUACIÓ DE LES PATOLOGIES7
 A.4.1. Tipologia de la patologia ...7
 A.4.2. Nivell de Gravetat ...7
A.5. PATOLOGIES DELS TANCAMENTS DE FAÇANA DE FÀBRICA9
 A.5.1. Ruptura del tancament ...9
 A.5.1.1. Tancaments afectats ..9
 A.5.1.2. Causa ...10
 A.5.1.3. Representació gràfica de la patologia ..11
 A.5.1.4. Actuació sobre la causa, reparació i manteniment12
 A.5.2. Desprenciment del revestiment de façana ..15
 A.5.2.1. Tancaments afectats ..15
 A.5.2.2. Causa ...15
 A.5.2.3. Representació gràfica de la patologia ..16
 A.5.2.4. Actuació sobre la causa, reparació i manteniment16
 A.5.3. Esquerdes ...24
 A.5.3.1. Tancaments afectats ..24
 A.5.3.2. Causa ...24
 A.5.3.3. Representació gràfica de la patologia ..25
 A.5.3.4. Actuació sobre la causa, reparació i manteniment25
 A.5.4. Brutícia per rentat diferencial ...26
 A.5.4.1. Tancaments afectats ..26
 A.5.4.2. Causa ...26
 A.5.4.3. Representació gràfica de la patologia ..27
 A.5.4.4. Actuació sobre la causa, eliminació de la patologia i manteniment27
 A.5.5. Presència de fongs ...29
 A.5.5.1. Tancaments afectats ..29
 A.5.5.2. Causa ...30
 A.5.5.3. Representació gràfica de la patologia ..30
 A.5.5.4. Actuació i manteniment ..30
A.5.6. Obertura .. 32
A.5.6.1. Tancament afectat .. 32
A.5.6.2. Causa ... 32
A.5.6.3. Representació gràfica de la patologia .. 32
A.5.6.4. Actuació sobre la causa, reparació i manteniment ... 33
A.6. PATOLOGIES DELS TANCAMENTS DE FAÇANA DE PLAQUES DE POLIÈSTER REFORÇAT AMB FIBRA DE VIDRE. ... 34
A.6.1. Brutícia superficial i rentat diferencial ... 36
A.6.1.1. Elements afectats ... 36
A.6.1.2. Causa ... 36
A.6.1.3. Representació gràfica de la patologia .. 36
A.6.1.4. Actuació sobre la causa, reparació i manteniment ... 37
A.6.2. Pèrdua de transparència de les plaques translúcides .. 36
A.6.2.1. Elements afectats ... 36
A.6.2.2. Causa ... 36
A.6.2.3. Representació gràfica de la patologia .. 36
A.6.2.4. Actuació sobre la causa i manteniment ... 37
A.7. ESTRUCTURA METÀL·LICA .. 38
A.7.1. Oxidació de l’estructura metàl·lica .. 38
A.7.1.1. Part de l’estructura metàl·lica afectada .. 38
A.7.1.2. Causa ... 39
A.7.1.3. Representació gràfica de la patologia .. 39
A.7.1.4. Actuació sobre la causa, reparació i manteniment ... 39
A.8. CAUSES INDIRECTES DE PATOLOGIES EN ELS TANCAMENTS DE L’ESTABLIMENT INDUSTRIAL .. 49
A.8.1. Metodologia de construcció de la coberta .. 49
A.8.1.1. Dents de serra afectades i patologies generades ... 49
A.8.1.2. Actuació ... 50
A.8.2. Canelons de recollida d’aigua pluvial .. 50
A.8.2.1. Caneló afectat .. 50
A.8.2.2. Causa ... 50
A.8.2.3. Representació gràfica de la patologia .. 51
A.8.2.4. Actuació sobre la causa, reparació i manteniment ... 51
A.8.3. Baixants de recollida d’aigües pluvials de la nau industrial 52
A.8.3.1. Ruptura de les baixants .. 52
A.8.3.2. Baixants afectades ... 52
A.8.3.3. Causa ... 52
A.8.3.4. Representació gràfica i exemplificació de la patologia 53
A.8.3.5. Actuació sobre la causa, reparació i manteniment 53
A.8.3.6. Altres deficiències de les baixants ... 53

A.9. TANCAMENT DE COBERTA .. 54
A.9.1. Brutícia superficial i rentat diferencial... 54
A.9.1.1. Elements afectats ... 54
A.9.1.2. Causa .. 54
A.9.1.3. Representació gràfica de la patologia ... 54
A.9.1.4. Actuació sobre la causa i manteniment 55
A.9.2. Presència de fongs ... 56
A.9.2.1. Plaques afectades ... 56
A.9.2.2. Causa .. 56
A.9.2.3. Representació gràfica de la patologia ... 56
A.9.2.4. Actuació sobre la causa i manteniment 57
A.9.3. Fissura en les plaques .. 58
A.9.3.1. Elements afectats ... 58
A.9.3.2. Causa .. 58
A.9.3.3. Representació gràfica de la patologia ... 58
A.9.3.4. Actuació sobre la causa i manteniment 59

A.10. PAVIMENT INTERIOR DE LA NAU INDUSTRIAL 60
A.10.1. Desgast de la superfície .. 60
A.10.1.1. Causa .. 60
A.10.1.2. Representació gràfica de la patologia ... 60
A.10.1.3. Actuació i manteniment ... 60

A.11. RECULL FOTOGRAFIC .. 61
A.11.1. Tancaments de façana d’obra de fàbrica 63
A.11.1.1. Ruptura del tancament .. 63
A.11.1.2. Desprendiment del revestiment de façana 64
A.11.1.3. Esquerdes .. 65
A.11.1.4. Brutícia per rentat diferencial .. 67
A.11.1.5. Presència de fongs .. 69
A.11.1.6. Obertura .. 70
A.11.2. Tancament de façana amb plaques de polièster reforçat amb fibra de vidre 70
A.11.2.1. Brutícia per rentat diferencial .. 70
A.11.3. Oxidació .. 71
A.11.4. Causes indirectes de patologies en els tancaments de l’establiment industrial........ 72
A.11.4.1. Metodologia de construcció de la coberta.. 72
A.11.4.2. Caneló de recollida d’aigua pluvial de la nau industrial................................... 72
A.11.4.3. Baixants de recollida d’aigües pluvials de la nau industrial trencades 73
A.11.5. Tancament de coberta .. 74
A.11.5.1. Presència de fongs .. 74
A.1. INTRODUCCIÓ

Abans de realitzar el procés de rehabilitació dels tancaments de façana, coberta, l’estructura metàl·lica i el paviment interior de la nau, s’ha considerat necessària la realització d’un estudi patològic que determini l’estat d’aquests elements de l’envoltant de l’edifici.

Un estudi patològic en l’edificació és un informe que identifica i avalia les patologies o problemes constructius que apareixen en l’edifici, o en alguna de les seves parts, després de la seva execució.

El concepte de patologia avarca totes les imperfeccions, visibles o no, de l’obra edificada des del moment del desenvolupament del projecte. Es necessari identificar les lesions i determinar-ne les seves causes per poder-les resoldre.

A.2. OBJECTE

L’objecte del present annex és la realització d’un diagnòstic organolèptic dels diferents elements estructurals de la nau a rehabilitar, amb la finalitat d’avaluar el seu estat i eliminar les seves imperfeccions.

A.3. ESPECIFICACIONS I ABAST

L’estudi realitzat és del tipus organolèptic, ja que no hi ha hagut la possibilitat de realitzar testimonis a llarg termini, ni s’ha utilitzat aparells específics i/o tècnics.

L’estudi patològic s’ha realitzat únicament en els elements estructurals que es pretén rehabilitar en aquest projecte: els tancaments de façana i coberta, l’estructura metàl·lica i el paviment interior de la nau industrial. Per altra banda, també s’ha realitzat un informe de les patologies en altres elements estructurals, que poden afectar de manera indirecte els elements estructurals a rehabilitar, essent les causes d’origen de patologies en els mateixos.

Així doncs, es dona per entès que hi poden haver altres elements o intal·lacions en mal estat en l’establiment industrial els quals no es tractaran en dins aquest estudi.

L’informe patològic de cada element estructural tractat a l’estudi inclou la descripció de la patologia identificada, classificació, causa d’origen, part de l’element estructural afectada, una representació gràfica de la patologia a mode d’exemplificació i una proposta d’actuació que descriu genèricament les línies d’actuació a seguir per tal d’eliminar-la.
Al final de l’informe s’adjunta també un recull fotogràfic per facilitar la identificació i ubicació de les patologies esmentades.

Totes les figures explicites en el present annex són de font pròpia.
A.4. CRITERIS DE CLASSIFICACIÓ I AVALUACIÓ DE LES PATOLOGIES

El resultat d’aquest estudi, ha donat lloc a una sèrie d’anomalies i patologies, que han estat classificades segons la seva tipologia i avaluades en funció del seu nivell de gravetat.

A.4.1. Tipologia de la patologia

- Tipus Físic: Són les causades per l’acumulació de la brutícia, per l’acció de la humitat, o per l’erosió entre altres. (humitats, humitats per capil·laritat, filtracions, condensacions, humitat accidental).

- Tipus Mecànic: Són les ocasionades per esforços mecànics i es visualitzen en forma de fissures, deformacions, que es presenten en els diferents elements de la construcció.

- Tipus Químic: Són les que es presenten per processos químics dels components dels materials, tals com oxidació, eflorescències, organismes vegetals.

A.4.2. Nivell de Gravetat

Per tal de seguir un criteri comú, s’ha avaluat el nivell de gravetat de les deficiències identificades durant la inspecció de l’establiment industrial segons el criteri especificat en l’article 9 del Decret 67/2015, de 5 de maig, *per al foment del deure de conservació, manteniment i rehabilitació dels edificis d’habitatges, mitjançant les inspeccions tècniques i el llibre de l’edifici*.

- Deficiències molt greus: són les que, pel seu abast i gravetat, representen un risc imminent i generalitzat per a l’estabilitat de l’edifici i la seguretat de les persones i béns, i requereixen una intervenció immediata consistent en el desallotjament de l’edifici o l’adopció d’altres mesures de caràcter urgent i cautelar, que poden incloure l’execució d’obres o, en el seu cas, la declaració de ruïna de l’edifici.

- Deficiències greus: són les que, per la seva incidència, representen un risc imminent per a l’estabilitat o la seguretat de determinats elements de l’edifici o greus problemes de salubritat, que pressuposin un risc per a la seguretat de les persones o béns, i que requereixen en una primera fase l’adopció de mesures cautelars i en una segona fase l’execució de les obres per a l’esmena d’aquestes deficiències.
- Deficiències importants: són les que, tot i no representar en un principi un risc imminent ni per a l’estabilitat de l’edifici ni per a la seguretat de les persones, n’affecten la salubritat i funcionalitat, en haver-se constatat un procés gradual de pèrdua de les prestacions bàsiques originàries, que fa necessària una intervenció correctora que no pot quedar relegada a treballs de manteniment.

- Deficiències lleus: són aquelles no incloses en els apartats anteriors, que fan necessària la realització de treballs de manteniment preventiu i/o corrector per evitar el seu agreujament, així com que puguin provocar l’aparició de noves deficiències.
A.5. PATOLOGIES DELS TANCAMENTS DE FAÇANA DE FÀBRICA

A.5.1. Ruptura del tancament

La ruptura del tancament és el trencament dels materials que el composen (maons i revestiment). Aquesta tipologia de patologia és del tipus mecànic, i el seu rang de gravetat es considera greu.

A més de presentar un problema físic en el tancament, el fa més vulnerable als agents i fenòmens externs (humitat, calamarsa, etc.), disminueix la seva protecció contra incendis i augmenta la seva transmitència tèrmica (pont tèrmic).

S’han detectat únicament tres zones afectades per ruptures dels maons, les tres localitzades en el tancament de façana oest de la nau industrial. Durant la redacció de l’estudi patològic s’ha utilitzat la nomenclatura “ruptura A”, “ruptura B” i “ruptura C” per diferenciar aquestes deficiències.

A.5.1.1. Tancaments afectats

El tancament afectat és el tancament de façana oest de la nau industrial. La ruptura A es localitza en la regió de la façana on el pilar 2D entra en contacte amb els blocs de formigó del mur de contenció de terres de la façana oest. Aquesta deficiència està situada a 4 metres d’alçada respecte el carril confrontant a la façana, per la qual cosa genera un risc de perill de despreniment dels fragment trencats i impacte sobre les persones. A més, com que està situada a la part inferior del tancament pot generar un risc per l’estabilitat del mateix. Afortunadament, la ruptura és molt petita, i per aquesta raó, actualment no es considera un perill per l’estabilitat del mateix. La zona afectada de la ruptura A té unes dimensions aproximades de 0,04 m².

La ruptura B està situada en la part inferior de la vessant inclinada 17º de la dent de serra just al costat del pilar 2D, en la quarta dent més allunyada de la façana nord, i es considera que la zona afectada té unes dimensions aproximades de 0,075 m².

En canvi, la ruptura C està situada en la part inferior de la vessant inclinada 17º de la dent de serra just al costat del pilar 1D, en la cinquena dent més allunyada respecta la façana nord i es considera que la zona afectada té unes dimensions aproximades de 0,06 m².

Es pot observar la nomenclatura dels pilars en l’apartat A.5.2 de l’annex A, i la ubicació gràfica de les ruptures a l’apartat A.11 d’aquest annex.
Com que la zona afectada de la ruptura B i C es troba ubicada en la part superior del tancament, no suposa un risc de desplom del mateix. D’altra banda, si implica un risc elevat per les persones, ja que la zona afectada es troba situada a més de 8 metres d’alçada respecte el carril confrontant, i els fragments dels maons o revestiment damnificats podrien caure i impactar sobre una persona, causant-li així greus danys físics.

A.5.1.2. Causa

Es desconeix la causa de l’origen de les tres ruptures del tancament per falta d’informació.

No obstant, observant la localització i similitud entre les ruptures B i C, la metodologia de construcció del tancament de coberta i les diferents patologies observades en el tancament de façana oest de la nau industrial durant la inspecció visual de l’establiment, s’ha arribat a una hipòtesis que explicaria una possible d’aquestes dos deficiències.

Durant la inspecció visual del tancament de façana oest de la nau industrial s’ha observat la presència de brutícia per rentat diferencial. Tanmateix, no s’ha contemplat la mateixa ubicació de la brutícia en les tres dents de serra més properes a la façana nord que en les dos més allunyades.

En les tres dents de serra més properes a la façana nord, la brutícia situada en el tancament pren més força sota la vessant inclinada 17º. En canvi, en les dos dents de serra més allunyades s’ha observat que no hi havia brutícia sota la vessant, però sí al costat de la baixant.

Identificant l’origen de la causa de la brutícia, s’ha apreciat que les tres dents de serra més properes a la façana nord de la nau industrial, tenen brutícia sota la vessant perquè les plaques de la coberta no sobresurten del tancament i sobre els tancaments no hi ha cap remat de coronació que desviï l’aigua provinent de la coberta cap a l’exterior. En el seu lloc hi ha cinta asfàltica adhesiva que uneix l’extrem de les plaques de la coberta i el tancament de façana, per tal que l’aigua de la pluja no penetri cap a l’interior de la nau.

S’ha apreciat que les dos dents de serra més allunyades de la façana nord de la nau industrial, no tenen brutícia sota la vessant perquè les plaques de coberta sobresurten del tancament i per tan l’aigua no cau sobre la façana. Tanmateix, l’aigua que recull l’ona que sobresurt del tancament no cau dins de la canal i cau sobre el tancament, generant un erosió i humitat sobre el tancament i finalitzant amb la ruptura del mateix.
Procés constructiu de la rehabilitació d’una nau industrial existent

ANNEX B

Raó per la qual aquesta deficiència únicament s’ha localitzat en les dos dents més allunyades de la façana nord de la nau industrial.

Per tal de facilitar la comprensió de la hipòtesis integrada, s’adjunta la figura 1, on s’aprecia la diferència entre l’acabat lateral de la coberta (ràfec o no) i la brutícia.

Figura 1. Diferència d’acabat entre les plaques de coberta i el tancament de façana oest de la nau industrial

A.5.1.3. Representació gràfica de la patologia

Figura 2. Representació gràfica de les ruptures. Ordenades alfabèticament d’esquerre a dreta (ruptura A, ruptura B i ruptura C)
A.5.1.4. Actuació sobre la causa, reparació i manteniment

Considerant com a vàlida, la hipòtesis sobre la causa d’origen de la deficiència explícita en l’apartat A.5.1.2. Causa, d’aquest annex. No es pot actuar directament sobre la causa, atès que la ruptura del tancament és ocasionada per un fenomen atmosfèric (l’aigua de la pluja).

Si es pot actuar sobre la causa indirecte. Durant l’habilitació de la nova coberta s’evitarà que l’aigua de la pluja caigui sobre el tancament, evitant així la seva ruptura i disminuint la presència d’humitat en el mateix.

Donat el nivell de gravetat de la patologia, es prendran les mesures necessàries prèvies a la reparació dels desperfectes. Es senyalitzaran ambdues zones afectades amb les senyals d’advertència de perill adequades i s’acordonarà la zona del carril confrontant que sigui vulnerable a la caiguda de fragments.

Es procedirà a reparar les deficiències amb la major rapidesa possible i s’encarregarà del seu arranjament a una empresa especialitzada amb personal qualificat.

Es realitzarà una inspecció visual de les ruptures reparades una vegada hagi finalitzat el sanejament de les mateixes.

A.5.1.4.1. \textit{Maó ceràmic}

Els tancaments perimetrals afectats estan constituïts mitjançant blocs ceràmics foradats, amb una dimensió nominal de 290x140x100 mm.

El Document Bàsic de Seguretat Estructural. Fàbrica. (DB SE-F) del CTE, imposa unes restriccions d’ús dels materials d’obra de fàbrica utilitzats en funció de la classe d’exposició dels mateixos, observable en la taula 1, adjunta a continuació.

Taula 1. Classes generals d’exposició.

<table>
<thead>
<tr>
<th>Clase y designación</th>
<th>Tipo de proceso</th>
<th>Descripción</th>
<th>Ejemplos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior</td>
<td>No agresiva</td>
<td>I</td>
<td>Interiores de edificios no sometidos a condensaciones</td>
</tr>
<tr>
<td></td>
<td>Humedad media</td>
<td>II a</td>
<td>Exteriores sometidos a la acción del agua en zonas con precipitación media anual inferior a 600 mm</td>
</tr>
<tr>
<td></td>
<td>Humedad alta</td>
<td>II b</td>
<td>Exteriores protegidos de la lluvia</td>
</tr>
<tr>
<td></td>
<td>Marino aireo</td>
<td>III a</td>
<td>Interiores con humedades relativas >65% o condensaciones, o con precipitación media anual superior a 600 mm</td>
</tr>
<tr>
<td></td>
<td>Marino sumergido</td>
<td>III b</td>
<td>Exteriores no protegidos de la lluvia. Sótanos no ventilados. Cimentaciones.</td>
</tr>
<tr>
<td></td>
<td>Marino alternado</td>
<td>III c</td>
<td>Interiores con humedades relativas >65% o condensaciones, o con precipitación media anual superior a 600 mm</td>
</tr>
<tr>
<td></td>
<td>Otros cloruros (no marinos)</td>
<td>IV</td>
<td>Idem III c.</td>
</tr>
</tbody>
</table>

Segons els valors climàtics obtinguts per la Agència Estatal de Meteorologia (AEMET) del govern espanyol. Girona (població situada a 15 km de distància de l’establiment industrial) té una precipitació anual mitjana de 728 mm. Així doncs, es considera que la classe general d’exposició dels tancaments de l’establiment és del tipus II b (humitat alta).
A la taula 2, adjunta a continuació, es poden observar les restriccions d’ús dels components de les fàbriques (taula 3.3 del DB SE-F).

Taula 2. Restriccions d’ús dels components de les fàbriques.

<table>
<thead>
<tr>
<th>Elementos</th>
<th>Clases de exposición</th>
<th>General</th>
<th>Específica</th>
</tr>
</thead>
</table>
| Ladrillo macizo o perforado. Extrusión. Categoría I | I, IIb, IIIa, IIIb, IIIc, IV | R | R
| Ladrillo macizo o perforado artesanal. Categorías I & II | - | - | - |
| Bloque de hormigón con cemento CM III y CEM IV | - | - | - |

<table>
<thead>
<tr>
<th>Morteros</th>
<th>Clases de exposición</th>
<th>General</th>
<th>Específica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento Portland CEM I con plastificante</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cemento adición CEM II con plastificante</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hormo alto volúmen CEM III y CEM IV con plastificante</td>
<td>R, R, R, R</td>
<td>R, R, R, R</td>
<td>-</td>
</tr>
<tr>
<td>Mixto de CEM II y cal</td>
<td>R, R, R, R, R</td>
<td>R, R, R, R, R</td>
<td>-</td>
</tr>
</tbody>
</table>

Els maons foradats no estan catalogats ni com a massisos ni perforats. Per aquesta raó la taula del DB SE-F, no dóna informació sobre la tipologia de maons.

Així doncs, s’utilitzaran per la reparació els maons de la mateixa tipologia que els actuals.

A.5.1.4.2. **Morter adequat**

L’associació nacional de fabricants de morters (AFAM) especifica que per a tancaments exteriors de fàbrica revestits, els morters utilitzats han de ser del tipus M-5. Essent M-5 una resistència a la compressió del morter de 5 N/mm².

A.5.2. Despreniment del revestiment de façana

El despreniment del revestiment de façana és la separació entre el material de revestiment i el suport o base on està aplicat. Aquesta patologia és del tipus mecànic i el seu rang de gravetat es considera greu.

A simple vista, és podria considerar un factor únicament estètic. Tanmateix, en les zones de despreniment del revestiment d’alçada considerable, suposa un risc elevat per a la seguretat de les persones, ja que part del revestiment després podria caure sobre una persona i efectuar-li danys severos.

A més a més, la falta de revestiment en algunes zones del tancament de l’edifici pot generar un problema de salubritat i/o falta de protecció de la zona afectada, essent més vulnerable a les humitats i a la protecció en contra el foc, augmentant la transmissió tèrmica del tancament i com a conseqüència reduint la capacitat aïllant del tancament afectat.

A.5.2.1. Tancaments afectats

Aquest fenomen es produeix en les parts inferiors del tancament de la façana nord i est de la nau industrial, a menys de 30 centímetres d’alçada respecte el terra.

També s’ha detectat un despreniments en la façana oest de la nau industrial, concretament en la regió on els maons del tancament entren en contacte amb els blocs de formigó del mur de contenció de terres. Aquests despreniments estan situats a un altura de 4 metres respecte el paviment del carril confrontant a la façana.

El percentatge d’afectació d’aquesta patologia és molt reduït, únicament s’ha detectat un desnepreniment del revestiment en la façana nord, un en la façana est i un en el tancament de la façana oest. Cadascun d’aquests despreniments no supera els 0,3m², excepte el de la façana oest que té unes dimensions aproximades de 1,41m², i es troben de forma molt focalitzada.

A.5.2.2. Causa

Com s’ha mencionat en l’apartat anterior, els tancaments afectats en la seva part inferior, són els tancaments de façana nord i est, això és degut a que són els dos únics tancaments de façana amb revestiment que estan en contacte directe amb el terreny.

Quan la patologia es troba ubicada en les parts en que la maçoneria es troba en contacte amb el terreny, la causant de la patologia sol ser la humitat per capil·laritat. En casos de terreny humits o xopis
per la pluja, l’aigua del terreny conté salts solubles del sòl i s’introdueix a través dels petits porus del material (en aquest cas el maó i morter), això provoca una disminució de l’adherència entre el maó i el morter, i finalitza amb el despreniment del revestiment.

Per altra banda, aquest fet també es pot produir en altres regions de la façana per la falta d’adherència entre el suport o revestiment.

A.5.2.3. Representació gràfica de la patologia

Figura 3. Exemplificació de despreniment de revestiment de façana en la nau industrial

A.5.2.4. Actuació sobre la causa, reparació i manteniment

Els despreniments del revestiment que s’han localitzat a la façana nord de la nau industrial és troben focalitzats a la part inferior del tancament, per aquest motiu no suposen cap risc per a la seguretat de les persones. D’altra banda, els despreniments localitzats a la façana oest estan situats a una alçada de 4 metres respecte el carril confrontant i per aquest motiu, representen un perill per la seguretat de les persones. Raó per la qual, es senyalitzarà la zona afectada de possibles despreniments i es presentaran les mesures de protecció adequades prèvies a l’arranjament d’aquestes deficiències.

Degut al nivell de gravetat d’aquestes deficiències, es senyalitzarà i es protegirà la zona afectada als despreniments de la façana oest amb la major rapidesa possible i s’encarregarà del seu arranjament a una empresa especialitzada amb personal qualificat.

En el cas del despreniment del revestiment a causa de la humitat capil·lar, s’eliminarà l’origen de la humitat ascendent, combatint i intervenint en la font, interceptant el recorregut de l’aigua, impedint l’ascensió capil·lar o fent baixar el punt d’evaporació. A més, com que un mur vell està generalment impregnat de salts i té per tant un determinat nivell d’higroscopicitat, caldrà també sanejar-lo per
eliminar-ne la humitat. Una vegada eliminada la font d’origen de la causa després es podran afegir els tractaments protectors amb hidrorepel·lents o impermeabilitzants.

Per tal d’eliminar la font del problema, s’aconsella evitar l’ús de tècniques agressives, degut a al seu nivell de complicació i/o cost, com per exemple: l’aplicació de barreres fí­siques de projecció horitzontal amb tall mecànic, la col·locació de ventilacions al costat del mur, o la instal·lació d’un sistema deshumidificador a força d’electro-osmosi inversa, entre d’altres.

També es desaconsellen tècniques d’eliminació de la humitat capil·lar mitjançant l’execució de petits forats lleugerament inclinats a la part inferior del mur (injeccions). En aquest forats si col·loquen tubs porosos per on l’aigua es condensa i surt. Tanmateix, tot i que són tècniques que necessiten un baix manteniment (un cada cinc anys per treure les cristal·litzacions), es desaconsellen degut a l’efecte antiestètic i impacte visual que produeixen els forats en la façana.

Altrament, s’aconsella la realització d’un drenatge. Aquest mètode d’eliminació de la humitat capil·lar consisteix en l’excavació d’una rasa al llarg dels tancaments afectats, amb una profunditat fins arribar a la cota dels fonaments. Al fons de la rasa s’hi compacten les terres, s’aplica una capa d’imprimació asfàltica en els fonaments i si adhereix una làmina polimèrica i una làmina drenant que cobreix els fonaments i el punt de contacte amb la part inferior del tancament. Llavors s’hi aboca un llit de formigó de calç, on es col·loca un tub de drenatge perforat de 125 a 200 mm de diàmetre, i amb pendent per evacuar l’aigua recollida fins la xarxa de sanejament (si aquesta està a una altura superior es col·loquen dos bombes de buidatge). Es cobreix totalment el tub amb graves de diferent granulometria, llavors es col·loca un geotèxtil per crear una capa separadora entre la grava i la terra i finalment s’omple la rasa de terra fins a la cota original del terreny.

El drenatge es realitzarà a la façana nord, est i sud-est de la nau industrial i en ambdós tancament de la construcció complementària de l’edifici 1, ja que són tots els tancaments que estan directament en contacte amb el terra, obtenint així una longitud total a drenar de 98,58 m.

En aquest projecte no s’entrarà en el dimensionament del tub de drenatge, el cabal que recollirà ni el punt d’evacuació a la xarxa de sanejament.

Una vegada solucionat l’origen del problema, una possible solució és la realització d’un repicat de la superfície afectada, l’execució del nou revestiment en tots els casos on s’hagi després i l’aplicació de pintura de polisiloxans en el parament per hidrofugar-lo.
Cal especificar, que posant un revestiment impermeable i no eliminant la font d’origen del problema prèviament, només s’aconseguiria que l’aigua no surtis per aquell punt i acabés apareixent a una cota superior.

També s’haurà de vigilar sobretot en les reparacions amb morter de ciment, ja que aquests no permeten la transpiració del tancament. En canvi el morter de calç, al ser transpirable, afavoreix la seva ventilació. Damunt d’aquests morters no s’hi aplicarà en tot cas pintures plàstiques, ja que aquestes també han de ser microporoses. La millor solució serà la realització d’un revestiment porós, el qual augmentarà la ventilació del tancament i afavorirà l’evaporació de la humitat.

Per assegurar que el problema no persisteix es realitzarà un any després de la reparació i execució del drenatge una revisió de l’estat de conservació dels tancaments de l’edifici, i s’examinarà amb major precisió les regions on s’ha localitzat aquesta patologia. A més a més, tal i com s’indica en el capítol 6. *Manteniment i conservació* del DB HS-1 es comprovarà l’estat de conservació del revestiment: possible aparició de fissures, desprendiments, humitats i taques cada tres anys.

A.5.2.4.1. Disseny del tub de drenatge

El Document Bàsic HS (Salubritat) del Codi Tècnic Espanyol (CTE) tracta la protecció en front la humitat en el capítol 1 (HS 1). En l’apartat 3.1. *Tubos de drenaje*, d’aquest capítol s’indica les dimensions de disseny d’un tub de drenatge en funció del grau de permeabilitat mínim exigit en murs.

El grau d’impermeabilitat es determina mitjançant la taula 3 adjunta, aquesta taula s’ha extret del DB HS-1.

Taula 3. Grau d’impermeabilitat mínim exigits als murs

<table>
<thead>
<tr>
<th>Presència d’aigua</th>
<th>$K_s \geq 10^{-2}$</th>
<th>$10^{-5} < K_s < 10^{-2}$</th>
<th>$K_s \leq 10^{-5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Mitja</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Baixa</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
La presència d’aigua es considera:

- Baixa: quan la cara inferior del terra en contacte amb el terreny es troba per sobre del nivell freàtic.
- Mitja: quan la cara inferior del terra en contacte amb el terreny es troba a la mateixa profunditat que el nivell freàtic o al menys dos metres per sota.
- Alta: quan la cara inferior del terra en contacte amb el terreny es considera a dos o més metres per sota del nivell freàtic.

El coeficient de permeabilitat del terreny és un coeficient que indica el pas d’un fluid (l’aigua) a través del sòl i es determina agafant una mostra del terreny i analitzant-la a un laboratori mitjançant un permeàmetre o realitzant assajos de permeabilitat del terreny in situ. Tanmateix, com que la presència d’aigua en el terreny és baixa, ja que la cara inferior del sòl en contacte amb el terreny es troba per sobre del nivell freàtic, el grau d’impermeabilitat mínim del tub de drenatge és 1, independentment del coeficient de permeabilitat del terreny. Per aquest motiu, no serà necessària la realizació d’assajos ni anàlisis del terreny.

Una vegada determinat el grau d’impermeabilitat del terreny, s’ha escollit el pendent mínim i màxim del tub de drenatge i el seu diàmetre nominal. Els pendents mínims i màxims i el diàmetre nominal dels tubs de drenatge hauran de ser els que s’indiquen a la taula 4 adjunta, extreta del DB SH-1.

Taula 4. Pendent i diàmetre nominal mínim d’un tubs de drenatge.

<table>
<thead>
<tr>
<th>Grau d''impermeabilitat</th>
<th>Pendent mínima en %</th>
<th>Pendent màxima en %</th>
<th>Diàmetre nominal mínim (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drenatge sota el sòl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drenatge en el perímetre del mur</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>14</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>14</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>14</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>14</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>14</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
</tr>
</tbody>
</table>

Com que el grau d’impermeabilitat és 1 i el diàmetre es realitzarà en el perímetre dels tancaments, pendent del tub estarà comprès entre els valors de 3 i 14% i el diàmetre mínim del tub serà de 150mm, amb una superfície total mínima d’orificis de 10 cm²/m, valor imposat en la taula 3.2 del DB SH-1. A continuació s’adjunta la taula esmentada.
La taula 5 mostra la superfície mínima d’orificis dels tubs de drenatge:

<table>
<thead>
<tr>
<th>Diàmetre nominal (mm)</th>
<th>Superfície total mínima de orificis (cm²/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>200</td>
<td>12</td>
</tr>
<tr>
<td>250</td>
<td>17</td>
</tr>
</tbody>
</table>

A.5.2.4.2. Elecció del revestiment adequat

L’elecció del morter es realitza en funció de la tipologia constructiva del parament, la compatibilitat amb el mateix, el seu nivell d’exposició del parament als agents externs i el grau de protecció adequat.

En el capítol 1. Protecció frente a la humedat del Document Bàsic HS. Salubridad. S’indica les condicions de disseny de les façanes per protegir-les contra la humitat. Concretament específica les característiques que han de tenir els elements constructius contra la humitat en funció del grau d’impermeabilitat mínim exigint en la façana.

El grau d’impermeabilitat mínim exigit a les façanes enfront de la penetració de les precipitacions s’obté a partir del grau d’exposició al vent i la zona pluviomètrica on està situat l’edifici. Aquests paràmetres s’han determinat de la següent manera.

El grau d’exposició al vent s’ha obtingut de la taula 6 partir de l’altura de coronació de l’edifici sobre el terreny, de la zona eòlica corresponent al punt d’ubicació, obtinguda de la figura 4, i de la classe de l’entorn en el qual està situat l’edifici que és E0 quan es tracta d’un terreny tipus I, II o III i E1 en els altres casos, segons la classificació establerta en el DB SE:

- Terreny tipus I: Vora del mar o d’un llac amb una zona sense aigua en la direcció del vent d’una extensió mínima de 5 km.
- Terreny tipus II: Terreny rural pla sense obstacles ni arbat d’importància.
- Terreny tipus III: Zona rural accidentada o plana amb alguns obstacles aïllats tals com arbres o construccions petites.
- Terreny tipus IV: Zona urbana, industrial o forestal.
- Terreny tipus V: Centres de negoci de grans ciutats, amb profusió d’edificis en alçada.
L’establiment industrial està situat en una zona industrial envoltada per una zona forestal, essent un terreny tipus IV i classificat com E1 segons el DB SE. L’altura de coronació de l’edifici és de 11,6 m en la seva façana oest (façana amb més alçada) i observant la figura 4 s’ha determinat que la velocitat bàsica del vent és de 29 m/s, ja que l’edifici està situat a la zona C. S’ha obtingut un valor de grau d’exposició al vent V3 segons la taula 6 adjunta.

Taula 6. Grau d’exposició al vent

<table>
<thead>
<tr>
<th>Classe d'entorn de l'edifici</th>
<th>E1</th>
<th>E0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona eòlica</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Zona eòlica</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Zona eòlica</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altura de l'edifici (m)</th>
<th>V3</th>
<th>V3</th>
<th>V3</th>
<th>V2</th>
<th>V2</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤15</td>
<td>V3</td>
<td>V3</td>
<td></td>
<td>V2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-40</td>
<td>V3</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V1</td>
</tr>
<tr>
<td>41-100</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V1</td>
<td>V1</td>
<td>V1</td>
</tr>
</tbody>
</table>
La zona pluviomètrica s’ha obtingut a partir de la figura 5 adjunta, essent del tipus III.

Finalment, amb la taula 7 adjunta, explícita en el DB HS-1, s’ha determinat el grau d’impermeabilitat mínim exigit en la façana, essent de grau 3.

Taula 7. Grau d’impermeabilitat mínim exigit

<table>
<thead>
<tr>
<th>Grau d'exposició al vent</th>
<th>Zona pluviomètrica de mitjana</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>V1</td>
<td>5</td>
</tr>
<tr>
<td>V2</td>
<td>5</td>
</tr>
<tr>
<td>V3</td>
<td>5</td>
</tr>
</tbody>
</table>

Les condicions exigides en la solució constructiva del parament de façana en funció del seu grau d’impermeabilitat es poden obtenir a partir de la taula 8 adjunta, explícita en l’apartat 2.3.2.

Condiciones de las soluciones constructivas del DB HS-1.

Taula 8. Condiciones de les solucions de façana amb revestiment exterior

<table>
<thead>
<tr>
<th>Grau d'impermeabilitat</th>
<th>Amb revestiment exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1</td>
<td>R1+C1</td>
</tr>
<tr>
<td>≤ 2</td>
<td></td>
</tr>
<tr>
<td>≤ 3</td>
<td>R1+B1+C1 R2+C2</td>
</tr>
<tr>
<td>≤ 4</td>
<td>R1+B2+C1 R1+B1+C2 R2+C1</td>
</tr>
<tr>
<td>≤ 5</td>
<td>R3+C1 B3+C1 R1+B2+C2 R2+B1+C1</td>
</tr>
</tbody>
</table>
Com que els tancaments de façana afectats estan compostos per blocs ceràmics de 24 cm, i aquests estan classificats com a elements C2 en el DB HS-1. El revestiment utilitzat per tenir una protecció adequada a la humitat, haurà de ser com a mínim del tipus R2.

El revestiment exterior R2 és aquell que ha de tenir al menys una resistència alta a la filtració de l’aigua. Es considera que proporcionen aquesta resistència els revestiments discontinus rígids fixats mecànicament. Tanmateix, com que el revestiment utilitzat actual és del tipus continu, s’utilitzarà un revestiment amb un rang de protecció superior (R3).

Els revestiments exterior continu R3, ha de tenir una resistència molt alta a la filtració i han de complir amb els requisits següents.

- Estanquitat a l’aigua suficient perquè l’aigua de filtració no entri en contacte amb el full de tancament disposada immediatament per l’interior del mateix.
- Adherència al suport suficient per garantir la seva estabilitat.
- Permeabilitat al vapor suficient per evitar el seu deteriorament com a conseqüència d’una acumulació de vapor entre ell i el dull principal.
- Adaptació als moviments del suport i comportament molt bo enfront a la fissuració, de manera que no es fissura a causa dels esforços mecànics produïts pel moviment de l’estructura, pels esforços tèrmics relacionats amb el clima i amb l’alternança dia-nit, ni per la retracció pròpia del material constituent del mateix.
- Estabilitat enfront dels atacs.

Els morters es defineixen a partir de dos característiques bàsiques: La resistència a la compressió (Compresion Strength) (CS) i l’absorció a l’aigua (W).

Segons la Associació nacional de fabricants de morters (AFAM) els revestiments arrebossats amb un rang de protecció R3 han de ser del tipus CS III-W2. On CS III és la categoria de resistència a la compressió d’entre 3,5 i 7,5 N/mm² i W és la capacitat d’absorció a l’aigua on C \leq 0,2$ kg/m²·min^{0.5}$.
A.5.3. **Esquerdes**

Una esquerda en un tancament és una obertura estreta i alargada en alguns materials del tancament.

S’han presenciat quatre esquerdes en tot l’establiment industrial. Aquestes es classificaran per un tècnic especialista en funció de la seva localització, tipologia d’origen, característiques físiques (profunditat, llargada, etc.) i és repararan amb la major rapidesa possible.

Aquesta tipologia de patologia és del tipus mecànic i el seu rang de gravetat es considera molt greu.

En aquest estudi diferenciarem les quatre esquerdes trobades amb la nomenclatura següent: esquerda A, esquerda B, esquerda C i esquerda D.

A.5.3.1. **Tancaments afectats**

L’esquerda A es troba ubicada en la part inferior del tancament de la façana nord de l’edific i 1. Per aquest motiu, l’esquerda pren una major importància, ja que a part de comportar problemes d’estanqueïtat a l’aigua de pluja, filtracions d’aire i altres agents externs, disminuir la capacitat de l’aïllament tèrmic i acústic del tancament, pot comprometre l’estabilitat del propi tancament i de l’edifici. S’ha mesurat l’esquerda A in situ i mesura 2,08m.

Les esquerdes B, C i D es troben ubicades en el mur de contenció de terres de la façana oest amb una orientació vertical i la mesura aproximada in situ de les tres esquerdes és de 3,85m.

A.5.3.2. **Causa**

L’esquerda A s’ha originat en la part on es troben en contacte el tancament de façana i el mur de contenció de terres, concretament enmig de dos blocs de formigó del mur de contenció i s’ha estès amb una inclinació pronunciada respecte l’horitzontal arribant a mesurar fins a 2 metres. Sembla ser doncs, que la causa de l’origen d’aquesta esquerda és la tracció provocada per la separació dels dos blocs de formigó.

Es desconeixen les causes d’origen de l’esquerda B, C i D.

Degut al rang d’importància d’aquesta patologia sobre l’estabilitat en l’edificació i el seu nivell de gravetat, s’identificaran amb seguretat les causes d’origen de les quatre esquerdes per un tècnic especialista, a fi d’eliminar el problema i presentar una solució adequada.
A.5.3.3. Representació gràfica de la patologia

Figura 6. Representació gràfica de les esquerdes ordenades alfabèticament de esquerra a dreta (A,B,C i D)

A.5.3.4. Actuació sobre la causa, reparació i manteniment

Atès el nivell de gravetat d’aquesta patologia, la seva reparació tindrà prioritat envers les demés de gravetat inferior. Es contractarà una empresa especialitzada en reparació d’esquerdes, es realitzarà un repicat en les zones afectades i es repararan amb el morter adequat.

Una vegada finalitzada la reparació de les esquerdes s’assegurarà que el treball de reparació realitzat a eliminat les deficiències existents i s’assegura l’estabilitat estructural de l’establiment.

L’actuació envers aquesta patologia tindrà prioritat sobre les demés amb un rang de gravetat inferior.

Per assegurar que el problema no persisteix es realitzarà un any després del sanejament de les quatre esquerdes una revisió de l’estat de conservació dels tancaments de l’edifici i mur de contenció de terres, on s’ha localitzat aquesta patologia. A més a més, tal i com s’indica en el capítol 6. Manteniment i conservació del DB HS-1, es comprovarà la possible existència d’esquerdes o fissures en els tancaments de façana o mur de contenció cada cinc anys.
A.5.4. Brutícia per rentat diferencial

La brutícia per rentat diferencial és una tipologia de brutícia que apareix en les façanes degut a les distorsions del recorregut de l’aigua a través de la mateixa. Quan es tracta d’aigua pluvial, sobretot quan és de contacte indirecte (el flux de l’aigua ha transcorregut per la coberta i cau sobre la façana), les distorsions del flux de l’aigua acaben realitzant un rentat en la façana de color negrós, donant-li un aspecte brut.

Aquesta tipologia de patologia és del tipus físic i el seu rang de gravetat es considera lleu.

A.5.4.1. Tancaments afectats

Els tancaments de façana afectats per aquesta patologia són els tancaments de façana est i oest de la nau industrial, el tancament de façana nord de l’edifici 1 i els tancaments nord i est de la construcció complementària a l’edifici 1.

En els tancaments de façana est i oest de la nau industrial la brutícia predomina en les regions més properes a la coberta i a les baixants de recollida d’aigües pluvials, les quals estan situades sota els extrems de les canals de recollida d’aigües pluvials.

En el cas del tancament de façana nord de l’edifici 1, la brutícia per rentat diferencial únicament es localitza sota una finestra de la planta baixa de l’edifici.

En la construcció complementària a l’edifici, la brutícia per rentat diferencial predomina en ambdós tancaments en les seves parts superiors i també en part central del tancament de façana est.

A.5.4.2. Causa

La causa directa és l’aigua de la pluja, la qual arrossega les partícules de pols acumulades en la superfície dels tancaments fins i tot aquelles que hi han penetrat lleugerament, formant regalims d’aigua bruts.

La causa indirecte és diferent en gairebé tots els casos i s’ha diferenciat en funció de la seva localització.
- Façana est i oest de la nau industrial: Es produeix brutícia per rentat diferencial en les parts superiors de la dent de serra degut a una falta de remat de coronació o protecció contra la humitat en la part superior del parament vertical. També es produeix brutícia per rentat diferencial en les parts del tancament situades sota els extrems de les canals de recollides d’aigües pluvials ja que s’han detectat canals trencades i en dies de pluja l’aigua vessa per aquelles zones.

- Tancament de la façana nord: Es produeix degut un mal dimensionament de l’estructura metàl·lica habilitada per protegir la finestra enfront robatoris. Quan l’aigua de la pluja es conduïda del replà de la finestra cap l’exterior, topa amb l’estructura metàl·lica redirigint-la cap al tancament de la façana.

- Construcció complementària a l’edifici 1: La construcció no disposa de remat de coronació o de la protecció suficient en la part superior dels tancaments i en dies de pluja, l’aigua pluvial filtra a l’interior del tancament de manera directe. Altrament, s’ha observat que la causa de la brutícia localitzada en la part central del tancament de façana est recau sobre una ruptura de la canal situada en aquella zona, produint vessaments d’aigua sobre el tancament en dies plujosos.

A.5.4.3. Representació gràfica de la patologia

![Figura 7. Presència de rentat diferencial en la façana est de la nau industrial](image)

A.5.4.4. Actuació sobre la causa, eliminació de la patologia i manteniment

El rentat diferencial en aquest cas és degut a un agent atmosfèric, per aquesta raó no es pot actuar directament sobre la causa. Tanmateix, és pot actuar sobre les causes indirectes evitant que l’aigua pluvial recaigui sobre els tancaments de manera brusca o es filtri les partícules d’aigua cap al seu interior, mitjançant solucions constructives o l’ús de pintures protectores.
- Façana est i oest de la nau industrial: En les parts superiors de la dent de serra es proposa habilitar un remat de coronació d’acer galvanitzat prelacat amb el color d’acabat final escollit pel promotor. D’altra banda, es repararan les canals trencades per evitar el vessament d’aigua sobre els tancaments en dies de pluja.

- Tancament de la façana nord: Per tal d’eliminar el problema es pot dissenyar una altra estructura metàl·lica i substituir-la per l’actual. Tanmateix es considera una solució excessiva degut al petit percentatge d’afectació i el baix nivell de gravetat d’aquesta patologia. Així doncs, es recomana que únicament es netegi la zona afectada quan aquesta s’embrutí.

- Construcció complementària a l’edifici 1: La solució proposada en el cas de la brutícia localitzada a la part superior del tancament és la mateixa que en la façana est i oest de la nau industrial, habilitar un remat de coronació d’acer galvanitzat prelacat amb el color d’acabat escollit pel promotor del projecte. Altrament, la solució proposada per acabar amb la causa indirecte en el cas de la brutícia localitzada a la part central del tancament de façana est, és la reparació del canaló de recollida d’aigües pluvials que actualment està trencat.

La brutícia produïda pel rentat diferencial es pot eliminar netejant el parament amb aigua projectada amb una concentració salina baixa, i si s’escau, es pot aplicar una capa d’estucat que tingui un acabat compacte llis. Aquesta acció es durà a terme per una empresa especialitzada mitjançant personal qualificat.

Atès que el nivell de gravetat de la patologia és lleu, l’eliminació de la patologia o execució de les solucions proposades no requereix d’una intervenció immediata.

Es recomana realitzarà una revisió visual anual dels tancaments de façana, duta pel propi propietari de l’establiment si aquest ho desitja, i/o al finalitzar llargs períodes de pluja, amb la finalitat d’avaluar la necessitat de neteja dels tancaments de façana.
A.5.5. Presència de fongs

S’ha observat la presència de floridures en els tancaments de façana en forma de taques groguesques i verdoses.

Aquesta tipologia de patologia és del tipus químic, i quan la patologia no està suficientment desenvolupada genera un problema únicament estètic, raó per la qual el seu rang de gravetat es considera lleu. No obstant això, a llarg termini, quan la patologia es troba molt desenvolupada és capaç de deteriorar l’estat de les façanes i llavors els seu rang de gravetat es considera important.

Cal esmentar, que perquè aquesta patologia malmeti l’estat dels tancaments s’han de donar condicions de molta humitat, falta d’higiene i un període de temps de convivència d’aquestes dos condicions elevat.

Durant l’etapa d’inspecció visual de l’edifici s’ha observat que la patologia solament està desenvolupada a nivell superficial del tancament i per tant el nivell de gravetat d’aquesta és lleu.

A.5.5.1. Tancaments afectats.

Els tancaments afectats són els tancaments de façana nord i est de la nau industrial, de l’edifici 1 i de la construcció complementària a l’edifici 1.

La major part d’aquesta patologia es localitza en les parts inferiors dels tancaments, ja que la principal causa és la humitat que prové de les partícules d’aigua que es fil tren des del sòl cap al tancament per l’eefecte capil·lar.

Aquesta patologia pren més força i es troba més estesa en el tancament de la façana nord de la nau industrial, el tancament est de l’edifici 1 i ambdós tancaments de la construcció complementària a l’edifici 1, ja que són els tancaments que reben menys llum solar diària, dificultant l’evaporació de la humitat i facilitant el creixement de microorganismes.
A.5.5.2. Causa

Durant la realització de la inspecció visual, també s’ha pogut observar que la presència de floridures en els tancaments de façana sempre està acompanyada de brutícia produïda per rentat diferencial o de taques produïdes per la humitat per capil·laritat.

Es conclou doncs, que la causant de les floridures és la presència d’humitat en la superfície del tancament, ja sigui per l’efecte capil·lar o del rentat diferencial.

Cal recordar, que els fongs es propaguen amb rapidesa i mantenen la humitat sobre la zona en què s’estan desenvolupant. Motiu per el qual, un cop desenvolupat el problema és difícil que s’eliminarí únicament amb la presència de llum solar.

A.5.5.3. Representació gràfica de la patologia

![Imatge de fongs en la part inferior de la façana](image)

Figura 8. Presència de fongs en part inferior de la façana est de l’edifici 1

A.5.5.4. Actuació i manteniment

Per eliminar la presència dels fongs existents a les façanes, es netejarà la zona afectada amb un raspall metàl·lic en sec, es fregarà la zona fins eliminar tot el possible el rastre de fongs i llavors s’aplicarà un producte fungicida. S’escolllirà un producte fungicida especial per façanes i es seguirà les instruccions d’aplicació del fabricant per no disminuir la seva efectivitat.

Una vegada aplicat el producte, es deixarà actuar el temps recomanat i llavors s’esbandirà amb el raspall per tal d’eliminar les possibles restes que hagin pogut quedar-ne. Finalment s’aclarirà la zona amb aigua utilitzant pistoles d’aigua a pressió per facilitar la completa eliminació dels fongs i del producte aplicat.
Finalment, quan la zona estigui seca és comprovarà el resultat i si queden restes, es repetirà el procés fins deixar la zona totalmente neta.

Per tal d’acabar completament amb l’aparició de microorganismes s’eliminarà l’origen de la seva causa: la humitat. S’eliminarà la humitat capil·lar seguint el procediment explicat a l’apartat 5.1.4 del mateix annex. Per altra banda, sempre que aparegui brutícia a la façana, en especial quan sigui a causa del rentat diferencial s’eliminarà amb la major rapidesa possible tal com s’especifica en l’apartat 5.2.4 del mateix annex.

Es realitzarà una revisió visual anual per assegurar que no tornen a aparèixer fongs en els tancaments o altres elements constructius.
A.5.6. **Obertura**

Durant l’etapa d’inspecció visual de l’establiment industrial, s’ha detectat una obertura provocada per un tancament de planxa metàl·lica malmès. La patologia és del tipus física i el seu nivell de gravetat es lleu.

A.5.6.1. Tancament afectat

El tancament afectat és el tancament de la cara nord de la construcció complementaria a l’edifici 1. La patologia s’ubica concretament en la part inferior del tancament que està en contacte amb el tancament de façana est de l’edifici 1.

A.5.6.2. Causa

La causa de l’obertura ha estat deguda a una oxidació excessiva del material de tancament (una planxa d’acer) i posterior ruptura dels elements d’unió (cargols) a causa de la humitat.

A.5.6.3. Representació gràfica de la patologia

![Figura 9. Obertura de la planxa metàl·lica](image_url)
A.5.6.4. Actuació sobre la causa, reparació i manteniment

En aquest cas, no es pot actuar directament sobre la causa, ja que l’oxidació de la planxa d’acer és produïda per l’oxigen i l’aigua de la pluja i no es pot actuar directament contra el factors atmosfèrics.

Per tal de solucionar el problema s’extraurà la xapa i els cargols que la uneixen, i s’eliminaran les restes d’òxid que hagin pogut quedar mitjançant paper de vidre o un raspall de pues metàl·liques. A continuació, amb l’ajuda d’un drap es netejarà la zona afectada i tot seguit caldrà aconseguir la passivació de la corrosió amb àcid tànnic amb alcohol. Finalment es deixarà assecar la zona i s’aplicarà una capa de pintura que contingui protecció antioxidant.

Una vegada retirat tot l’òxid i aplicada la protecció antioxidant s’incorporarà una nova planxa d’acer amb els nous cargols pertinents amb les mateixes dimensions que els elements anteriors. Cal especificar que els nous elements encarregats de la substitució dels anteriors hauran de portar protecció antioxidant perquè no es repeteixi de nou aquesta deficiència.

És realitzarà un nou manteniment quan finalitzi la durabilitat de protecció de la pintura aplicada en els nous materials.
A.6. PATOLOGIES DELS TANCAMENTS DE FAÇANA DE PLAQUES DE POLIÈSTER REFORÇAT AMB FIBRA DE VIDRE.

A.6.1. Brutícia superficial i rentat diferencial

Durant l’etapa d’inspecció visual de l’estudi patològic, s’ha observat l’acumulació de brutícia sobre la superfície de les plaques del tancament de façana vertical de la dent de serra i en algunes regions s’observa brutícia per rentat diferencial.

Aquesta tipologia de patologia és del tipus física, i el seu rang de gravetat es considera lleu.

A.6.1.1. Elements afectats

De forma general, s’ha observat aquesta patologia a totes les plaques translúcides dels tancaments de la dent de serra, excepte aquelles que s’han substituït recentment per unes altres de noves.

A.6.1.2. Causa

L’aigua de la pluja arrastra partícules de pols i brutícia acumulada a la superfície de les plaques, formant regaliims d’aigua bruts.

A.6.1.3. Representació gràfica de la patologia

Figura 10. Brutícia en les plaques translúcides del tancament vertical de la dent de serra
A.6.1.4. Actuació sobre la causa i manteniment

No es pot actuar directament sobre la causa, perquè es tracta d’un fenomen meteorològic (la pluja).

No es realitzarà una neteja de les plaques, ja que es pretenen substituir per unes altres de noves. Però per altra banda, s’informa de la necessitat de neteja i manteniment del nou tancament perquè no es torni a originar aquesta patologia.
A.6.2. Pèrdua de transparència de les plaques translúcides

Durant l’etapa d’inspecció visual de l’estudi patològic, s’ha observat que les plaques translúcides de polièster reforçat amb fibra de vidre, han perdut part de la seva transparència, tornant-se més opaques i evitant el pas de la llum a l’interior de la nau.

Aquesta tipologia de patologia és del tipus física, i el seu rang de gravetat es considera lleu.

A.6.2.1. Elements afectats

S’ha detectat aquesta patologia en la majoria de plaques translúcides del tancament vertical de la dent de serra de la nau industrial, excepte les que s’han substituït recentment per unes de noves i encara conserven la seva transparència.

A.6.2.2. Causa

La pèrdua de transparència en les plaques de polièster reforçat amb fibra de vidre és una patologia habitual. Aquesta tipologia de placa esdevé més opaca en el seu procés d’envelliment. L’envelliment és provocat per la incidència dels raigs UVA en la placa. S’estima de forma general que en les primeres 1000h de llum, aquestes perden un 5% de la seva transparència.

A.6.2.3. Representació gràfica de la patologia

Figura 11. Placa opaca en la façana nord de la nau industrial, donada la pèrdua de la seva transparència.
A.6.2.4. Actuació sobre la causa i manteniment

No es pot actuar directament sobre la causa, perquè es tracta d’un agent extern, la llum solar ultraviolada.

Com que es pretén substituir les plaques actuals per unes altres de noves, aquesta patologia desapareixerà. S’aconsella doncs, que la tipologia de plaques translúcides utilitzades en la substitució de les actuals, no perdin la seva transparència a causa de la llum solar.
A.7. ESTRUCTURA METÀL·LICA

A.7.1. Oxidació de l’estructura metàl·lica

L’oxidació és la reacció de la superfície del metall amb l’oxigen de l’aire o de l’aigua, produint una capa superficial d’òxid metàl·lic.

S’ha detectat una oxidació de tota l’estructura metàl·lica de la nau industrial, amb la presència de rovell en la superfície dels pilars i perfils de les gelosies (encavallades Warren i gelosies que les uneixen).

Aquesta tipologia de patologia és del tipus químic i el seu nivell de gravetat és considera important. No genera una deficiència únicament estètica, sinó que a llarg termini la lesió pot provocar exfoliacions i una disminució de la secció dels perfils provocant la pèrdua de la capacitat portant dels mateixos i generant un risc en l’estabilitat de l’estructura.

A.7.1.1. Part de l’estructura metàl·lica afectada

La major part dels pilars, perfils i subestructures metàl·liques (encavallades Warren i gelosies) es troben afectats per aquesta patologia, tan els perfils que estan ubicats a l’interior de la nau, com els ubicats en la part exterior, aquests últims amb un major percentatge d’afectació ja que l’aigua de la pluja els afecta de manera directe.

Cal esmentar, que gairebé tots els pilars de façana est i oest de la nau industrial es troben revestits amb el revestiment de morter de les façanes per la seva part exterior i interior, i protegits per la pluja mitjançant un remat lateral metàl·lic en la part que no hi ha tancament (part de la dent de serra inclinada 90°).

Els pilars lliures de revestiment i remat lateral són els pilars 1D i 13A (pilars situats als extrems de la façana sud-est). El pilar 2D està lliure de revestiment en la part interior i exterior del tancament de façana oest i el pilar 3D està únicament lliure de revestiment en la part exterior del tancament façana oest (per la seva part superior). Per aquest motiu, els pilars 1D, 2D, 3D i 13A estan exempts de protecció contra la pluja, raó per la qual tenen un percentatge d’oxidació considerable.

Es pot observar la nomenclatura dels pilars en l’apartat A.5.2 de l’annex A, i la ubicació gràfica de les ruptures a l’apartat A.11 del mateix annex.
Es desconeix l’estat d’oxidació de les corretges situades sobre les gelosies que sustenten les plaques de tancament de la coberta

A.7.1.2. Causa

La humitat provinent d’agents externs, com l’aigua de la pluja, conjuntament amb una falta de protecció dels perfils metàl·lics, provoca l’oxidació de l’estructura metàl·lica.

A.7.1.3. Representació gràfica de la patologia

![Figura 12. Exemplificació d’oxidació en l’encavallada Warren i pilars de la nau industrial](image)

A.7.1.4. Actuació sobre la causa, reparació i manteniment

Com s’ha especificat anteriorment, l’oxidació dels materials metàl·lics es produeix degut a la reacció entre el metall i l’oxigen de l’aire o l’aigua. Raó per la qual, no es pot actuar directament sobre la causa, ja que es tracta de factors atmosfèrics.

Aquesta patologia s’eradicarà per una empresa especialitzada mitjançant personal qualificat. En primer lloc s’analitzarà els danys que han sofert els elements estructurals durant el període de temps en que han estat oxidats i s’identificarà el grau d’oxidació (A, B, C, D) dels diferents elements segons la normativa ISO 8501-1:2007.

A continuació, s’escolllirà la metodologia de neteja de l’òxid i el seu grau de neteja, en funció dels valors d’oxidació identificats en l’anàlisi inicial, de la tipologia d’acer a tractar i del sistema de pintat que es pretengui aplicar. Els mètodes més utilitzats són el decapatge per raig abrasiu, la neteja amb eines manuals i mecàniques, i la neteja per abrasió mecànica.
Una vegada eliminat l’òxid dels perfils s’eliminarà la capa de protecció contra la corrosió que se’ls havia aplicat anteriorment, si es que se’ls n’havia aplicat i és deixarà la superfície dels perfils totalment neta i seca.

Finalment s’aplicarà un pintat amb la protecció corrosiva contra l’oxidació adequada depenent de l’estat del suport, la durabilitat del pintat, el nivell d’exposició dels perfils als agents corrosius i les limitacions econòmiques i ambientals que puguin sorgir.

Cal esmentar que aprofitant el tractament de protecció contra la corrosió, la pintura aplicada també tindrà propietats ignífugues i s’escolherà el seu nivell de protecció contra incendis en funció de l’activitat generada a l’establiment industrial.

El manteniment realitzat es farà en funció de la durabilitat del tractament realitzat, i es realitzarà una inspecció anual per assegurar que aquesta patologia no persisteix.

A continuació, es recomana un sistema de neteja i protecció adequat al grau d’oxidació observat i al grau de corrosió atmosfèrica en l’establiment i s’adjunta també una estimació de la superfície total a tractar.

A.7.1.4.1. Grau d’oxidació de l’estructura

A. Superfície d’acer revestida de calamina i pràcticament sense corrosió.
B. Superfície d’acer amb presència d’oxidació residual i on la calamina comença a desprendre’s.
C. Superfície d’acer sense calamina, la qual ha desaparegut per l’acció d’oxidació, però amb lleus picades.
D. Superfície d’acer sense calamina, la qual ha desaparegut per l’acció d’oxidació, i amb la que es veuen nombroses picades.
A la figura 13 adjunta es poden observar els quatre graus d’oxidació descrits.

Figura 13. Patrons gràfics del grau d’oxidació

A priori s’observa que el grau d’oxidació de tota l’estructura és del tipus B, ja que s’ha contemplat una oxidació residual en la superfície dels diferents elements on la calamina comença a desprendre’s.

Com que el grau d’oxidació de l’estructura és del tipus B, no s’han observat danys estructurals en l’edificació, ni es considera que els elements estructurals hagin perdut part de la seva capacitat portant.

A.7.1.4.2. Grau de neteja de la superfície afectada

Donat el grau d’oxidació tipus B, es recomana una neteja manual i mecànica intensa de la superfície afectada, amb un grau de neteja St2 segons la norma ISO 8501-1:2007.

A.7.1.4.3. Grau de corrosió atmosfèrica

La normativa ISO 12944-5:2007 classifica els ambients en funció del seu grau de corrosió ambiental per estructures exposades a corrosió atmosfèrica, enterrades o submergides. Aquesta estableix sis categories de corrosió atmosfèrica i en mostra exemples, visibles en la taula 9, adjunta.
Taula 9. Graus de corrosió atmosfèrica i exemples d’ambients típics.

<table>
<thead>
<tr>
<th>Categoria de corrosió</th>
<th>Exterior</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1. Molt Baixa</td>
<td>-</td>
<td>Edificis amb calefacció i atmosferes netes.</td>
</tr>
<tr>
<td>C2. Baixa</td>
<td>Atmosferes amb baixos nivells de contaminació (Àrees rurals).</td>
<td>Edificis sense calefacció amb possibles condensacions.</td>
</tr>
<tr>
<td>C5-I. Molt alta (industrial)</td>
<td>Àrees industrials amb elevada humitat i amb atmosfera agressiva.</td>
<td>Edificis o àrees amb condensacions casi permanents i contaminació elevada.</td>
</tr>
<tr>
<td>C5-M. Molt alta (Marítima)</td>
<td>Àrees costeres i marítimes amb elevada salinitat.</td>
<td>Edificis o àrees amb condensacions permanents i contaminació elevada.</td>
</tr>
</tbody>
</table>

Es considera doncs, que l’establiment industrial està sotmès a una categoria de corrosió C2. Baixa, tan exterior com interior, ja que l’edificació es troba a prop d’una àrea rural, apartada de l’àrea urbana i amb possibles condensacions. Per aquest motiu, la pintura de protecció contra la corrosió escollida serà per una classe d’exposició C2.

A.7.1.4.4. *Durabilitat requerida del sistema de pintat*

S’entén per vida útil d’un sistema de pintat com el període de temps que passa fins que es necessari realitzar un manteniment del sistema per primera vegada després de la seva aplicació. La normativa ISO 12944, especifica un rang de tres intervals de temps per classificar la durabilitat, segons la taula 10 adjunta.

Taula 10. Durabilitat del pintat de protecció.

<table>
<thead>
<tr>
<th>Durabilitat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixa-L</td>
<td>2 a 5 anys</td>
</tr>
<tr>
<td>Mitja- M</td>
<td>de 5 a 15 anys</td>
</tr>
<tr>
<td>Alta-H</td>
<td>més de 15 anys</td>
</tr>
</tbody>
</table>

Es recomana doncs, que el sistema de pintat tingui una durabilitat de protecció contra la corrosió alta, amb la finalitat d’allargar el seu període de manteniment i reduir així costos a llarg termini.
A.7.1.4.5. *Pintures recomanades*

La normativa ISO 12944-5:2007, recomana l’aplicació de dos tipus de pintures amb una durabilitat estimada superior als 15 anys, per a la protecció d’elements d’acer amb una categoria de corrosió atmosfèrica C2. Ambdues pintures i espessor recomanat són visibles a la taula 11 adjunta.

Taula 11. Pintures recomanades per la ISO 12944, amb una categoria de corrosió C2.

<table>
<thead>
<tr>
<th>Tipus de pintura</th>
<th>Sistema</th>
<th>Espessor sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxi fosfat de zinc</td>
<td>1 × C - Pox Primer ZP200 HP</td>
<td>80 μm</td>
</tr>
<tr>
<td>Acrílica ferro micaci</td>
<td>1 x C - Cryl S450 Miox</td>
<td>80 μm</td>
</tr>
<tr>
<td></td>
<td>Espessor total</td>
<td>160 μm</td>
</tr>
<tr>
<td>Epoxi tolerant alumini</td>
<td>1 x C-Pox ST180 AL</td>
<td>110 μm</td>
</tr>
<tr>
<td>Poliuretà</td>
<td>1 x C-Thane S250</td>
<td>50 μm</td>
</tr>
<tr>
<td></td>
<td>Espessor total</td>
<td>160 μm</td>
</tr>
</tbody>
</table>

Cal recordar però, que alhora d’escollir la pintura de protecció contra la corrosió, aquesta tingui també el nivell de protecció passiva necessària contra incendis.

A.7.1.4.6. *Superfície de l’estructura a tractar*

S’ha mesurat tota la superfície de l’estructura metàl·lica a tractar (netejar i protegir), amb la finalitat d’obtenir un valor aproximat d’aquesta, el qual és necessari alhora d’executar el pressupost.

Cal tenir en compte, que la superfície total a tractar, no és la superfície total de l’estructura metàl·lica, ja que hi han parts d’aquesta que estan tapades o revestides per altres elements constructius. Com per exemple, els pilars interiors tenen dos cares ocultades pels tancament interiors.

Així doncs, s’ha analitzat els diferents elements constructius que constitueixen l’estructura metàl·lica (pilars, bigues, perfils, encavallades i gelosies) i s’ha determinat la superfície total a tractar dels mateixos en funció de les seves parts que no estan ocultes. A continuació, s’adjunten quatre taules amb les superfícies totals a tractar de cada element.

Cal especificar, que durant la mesura de la superfície total a tractar no s’ha tingut en compte els arrodeniments dels perfils, ni els gruixos de les platines, ja que generen una superfície menyspreable. A més, tampoc s’ha considerat les superfícies sobreposades que es generen en les unions dels diferents elements.
Taula 12. Superfície total dels pilars a tractar.

<table>
<thead>
<tr>
<th>Perfils HEB</th>
<th>Pilar 1D</th>
<th>Pilar 2D</th>
<th>Pilar 3D</th>
<th>Pilar 4D i 5D</th>
<th>Pilar 6D'</th>
<th>Pilar 7B</th>
<th>Pilars 8B,10B i 11B</th>
<th>Pilar 9B</th>
<th>Pilar 12B'</th>
<th>Pilars 9B, 10B, 11B i 12B' *</th>
<th>Pilar 13A</th>
<th>Pilars 14A, 15A, 16A i 17A</th>
<th>Pilar 18A'</th>
<th>Pilars 19C i 20C'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7,1</td>
<td>7,1</td>
<td>3,1</td>
<td>3,1</td>
<td>1,55</td>
<td>7,1</td>
<td>7,1</td>
<td>3,1</td>
<td>7,1</td>
<td>7,1</td>
<td>3,1</td>
<td>3,1</td>
<td>3,1</td>
<td>3,1</td>
</tr>
<tr>
<td>Longitud de la cara dels perfils (m)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Quantitat (nº de cares)</td>
<td>0,27</td>
<td>0,14</td>
<td>0,27</td>
<td>0,14</td>
<td>0,27</td>
<td>0,16</td>
<td>0,31</td>
<td>0,31</td>
<td>0,27</td>
<td>0,27</td>
<td>0,27</td>
<td>0,27</td>
<td>0,27</td>
<td></td>
</tr>
<tr>
<td>Perímetre del perfil (m)</td>
<td>1,94</td>
<td>0,99</td>
<td>0,85</td>
<td>0,43</td>
<td>1,99</td>
<td>1,14</td>
<td>0,50</td>
<td>1,93</td>
<td>1,14</td>
<td>1,14</td>
<td>1,94</td>
<td>0,87</td>
<td>1,94</td>
<td></td>
</tr>
<tr>
<td>Superfície total (m²)</td>
<td></td>
</tr>
</tbody>
</table>

* En aquesta taula s’ha tingut en compte que s’enderrocarà part del tancament interior de la nau. Per aquest motiu, els pilars 9B, 10B, 11B i 12B’, quedaràn vistos per les seves 4 cares.

Durant la mesura del perímetre dels perfils no s’ha tingut en compte l’arrodoniment dels mateixos.
També es pot observar la nomenclatura dels pilars en la l’apartat A.5.2 de l’Annex A, del present projecte.

Taula 13. Superfície total a tractar d’una encavallada

| Encavallada |
|--------------|----------------------|----------------------|----------------------|
| **Perfils L** | **Longitud dels perfils (m)** | **Quantitat** | **Perímetre del perfil (m)** | **Superfície total (m²)** |
| Cordó inferior i superior | 13,43 | 4 | 0,19 | 10,12 |
| Muntants | 2,9 | 4 | 0,27 | 3,08 |
| Diagonal extrem | 3,55 | 4 | 0,30 | 4,31 |
| Diagonals interiors | 3,55 | 8 | 0,19 | 5,35 |

| Platines |
|----------------------|----------------------|----------------------|----------------------|
| **Platines extrem** | **Àrea de la platina (m²)** | **Quantitat** | **Cares** | **Superfície total (m²)** |
| 0,06 | 4 | 2 | 0,47 |
| Platines de les diagonals | 0,10 | 5 | 2 | 0,98 |
| Platines dels muntants | 0,06 | 2 | 2 | 0,23 |

| **Perfil rectangular** |
|----------------------|----------------------|----------------------|----------------------|
| **Suports de la coberta** | **Longitud dels perfils (m)** | **Quantitat** | **Perímetre del perfil (m)** | **Superfície total (m²)** |
| 13,53 | 4 | 0,2 | 10,82 |
| Unions entre els suports de la coberta i els muntants o pilars | 0,08 | 16 | 0,1 | 0,12 |

| **Superfície total d’una encavallada (m²)** | 35,47 |

Durant la mesura del perímetre dels perfils L no s’ha tingut en compte l’arrodoniment dels mateixos. Tampoc s’ha tingut en compte els gruixos de les platines (1cm), ja que generen una superfície menyspreable.

També es pot observar, la denominació utilitzada pels perfils i platines al Document nº Plànols, del present projecte.
Taula 14. Superfície total a tractar del pòrtic de la façana nord

<table>
<thead>
<tr>
<th>Perfils IPN 260</th>
<th>Longitud dels perfils (m)</th>
<th>Quantitat (nº de bigues)</th>
<th>Perímetre del perfil (m)</th>
<th>Superfície total (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biga entre pilars HEB 140 (de 18A’ a 19C i de 20C’ a 6D’)</td>
<td>6,68</td>
<td>2</td>
<td>0,89</td>
<td>11,93</td>
</tr>
<tr>
<td>Biga entre pilars HEB 140 i HEB 160 (de 19C a 12B’ i de 12B’ a 20C’)</td>
<td>6,74</td>
<td>2</td>
<td>0,89</td>
<td>12,05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perfil rectangular</th>
<th>Longitud dels perfils (m)</th>
<th>Quantitat (nº de perfils)</th>
<th>Perímetre del perfil (m)</th>
<th>Superfície total (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suport de la coberta (superior)</td>
<td>27</td>
<td>1</td>
<td>0,2</td>
<td>5,40</td>
</tr>
<tr>
<td>Suports de la coberta (mig i inferior)</td>
<td>21,71</td>
<td>2</td>
<td>0,2</td>
<td>8,68</td>
</tr>
<tr>
<td>Suport de la coberta (diagonal)</td>
<td>5,2</td>
<td>1</td>
<td>0,2</td>
<td>1,04</td>
</tr>
<tr>
<td>Muntants</td>
<td>3</td>
<td>3</td>
<td>0,2</td>
<td>1,80</td>
</tr>
<tr>
<td>Muntant</td>
<td>0,4</td>
<td>1</td>
<td>0,2</td>
<td>0,08</td>
</tr>
<tr>
<td>Unions entre els suports de la coberta i els pilars</td>
<td>0,14</td>
<td>11</td>
<td>0,1</td>
<td>0,15</td>
</tr>
<tr>
<td>Unions entre els suports de la coberta i els muntants</td>
<td>0,05</td>
<td>7</td>
<td>0,16</td>
<td>0,06</td>
</tr>
</tbody>
</table>

| Superfície total del pòrtic de façana nord (m²) | 41,19 |

En el càlcul de la superfície del pòrtic de la façana nord no s’ha tingut en compte la superfície dels pilars de façana que el constitueixen (6D’, 12B’, 18A’, 19C i 20C’), perquè ja s’han tingut en compte anteriorment.

No s’ha tingut en compte els arrodoniments dels perfil IPN 260 en el càlcul de la superfície d’aquests.

Es pot observar la denominació utilitzada pels diferents perfils que formen el pòrtic de la façana nord en el Document nº 2. Planòls del present projecte.
Taula 15. Superfície total a tractar d’una gelosia

<table>
<thead>
<tr>
<th>Gelosia</th>
<th></th>
<th>Perímetre del perfil (m)</th>
<th>Superfície total (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfils L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordó inferior</td>
<td>7,03</td>
<td>2</td>
<td>0,15</td>
</tr>
<tr>
<td>Extrems del cordó inferior</td>
<td>1,15</td>
<td>4</td>
<td>0,15</td>
</tr>
<tr>
<td>Cordó superior</td>
<td>9,22</td>
<td>2</td>
<td>0,15</td>
</tr>
<tr>
<td>Diagonals internes</td>
<td>1,25</td>
<td>6</td>
<td>0,15</td>
</tr>
<tr>
<td>Diagonal de l'extrem dret</td>
<td>1,14</td>
<td>2</td>
<td>0,15</td>
</tr>
<tr>
<td>Diagonal de l'extrem esquerre</td>
<td>1,05</td>
<td>2</td>
<td>0,15</td>
</tr>
<tr>
<td>Muntants</td>
<td>0,66</td>
<td>7</td>
<td>0,15</td>
</tr>
<tr>
<td>Platines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platina extrem esquerre</td>
<td>0,10</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Platina extrem dret</td>
<td>0,10</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Superfície total d'una gelosia (m²) 8,44

Durant la mesura del perímetre dels perfils L no s'ha tingut en compte l’arrodoniment dels mateixos. Tampoc s’ha tingut en compte els gruixos de les platines (1cm), ja que generen una superfície menyspreable.

També es pot observar, la denominació utilitzada pels perfils i platines de la gelosia en el Document nº 2. Plànols del present projecte.
Finalment, s’adjunta la taula 16 on es pot observar la superfície total a tractar de tota l’estructura metàl·lica,

Taula 16. Superfície total a tractar de l’estructura metàl·lica

<table>
<thead>
<tr>
<th>Estructura metàl·lica</th>
<th>Elements constructius que la constitueixen</th>
<th>Quantitat d'elements a tractar</th>
<th>Superfície de l'element constructiu</th>
<th>Superfície total (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pilars</td>
<td>-</td>
<td>52,56</td>
<td>52,56</td>
</tr>
<tr>
<td></td>
<td>Encavallades</td>
<td>5</td>
<td>35,47</td>
<td>177,35</td>
</tr>
<tr>
<td></td>
<td>Pòrtic de façana nord</td>
<td>1</td>
<td>41,19</td>
<td>41,19</td>
</tr>
<tr>
<td></td>
<td>Gelosies</td>
<td>25</td>
<td>8,44</td>
<td>211</td>
</tr>
<tr>
<td>Superfície total de l'estructura metàl·lica (m²)</td>
<td>482,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Així doncs, la superfície total a tractar de l’estructura metàl·lica serà de 482,1 m².
A.8. CAUSES INDIRECTES DE PATOLOGIES EN ELS TANCAMENTS DE L’ESTABLIMENT INDUSTRIAL.

A.8.1. Metodologia de construcció de la coberta

S’ha observat que les tres dents de serra de la nau industrial més properes a la façana nord de la mateixa, no tenen el mateix acabat lateral que les dos més allunyades.

Aquesta diferència no és considera una patologia. No obstant això, s’esmenta en aquest annex perquè és un factor de causa indirecte de patologies sobre el tancament. Com per exemple, la ruptura del tancament o el rentat diferencial.

A.8.1.1. Dents de serra afectades i patologies generades

Les plaques de coberta de la vessant inclinada 17º que estan en contacte amb l’aire exterior, conjuntament amb els cavallets, situats en els extrems laterals de la coberta de les tres dents de serra més properes a la façana nord de la nau industrial. No sobresurten pels extrems del tancament formant un ràfec. I per tal que no entrés l’aigua a l’interior de la nau es va col·locar cinta aïllant adhesива que unís el tancament de façana amb les plaques i cavallets dels extrems de la coberta.

No es va preveure que part de l’aigua de la pluja que recull la coberta cau pel lateral, generant brutícia per rentat superficial en la part superior del tancament.

Per altra banda, en les dos dents de serra més allunyades de la façana nord de la nau industrial, les plaques de coberta i cavallets si que sobresurten pels laterals formant un ràfec. D’aquesta forma s’evita que l’aigua caigui pel lateral de la coberta sobre el tancament. Tanmateix una de les ones còncaves de la placa (l’ona que recull l’aigua), queda situada sobre el tancament i fora de la canal de recollida d’aigües. Redirigint l’aigua que recull aquella ona i abocant-la de manera focalitzada sobre el tancament de façana, erosionant-lo i generant-li humitat fins al seva ruptura.
A.8.1.2. Actuació

La solució proposada és que durant l’habilitació de la nova coberta, les plaques de coberta no sobresurin pels laterals del tancament formant un ràfec i d’aquesta forma no quedin fora de l’abast de les canals. A més, es proposa col·locar un remat de coronació en la part superior dels tancaments laterals, amb la finalitat de que la petita quantitat d’aigua que vessi pel lateral no caigui sobre els tancaments.

D’aquesta forma s’evitarà la ruptura dels tancaments i la brutícia acumulada sobre els mateixos.

A.8.2. Canelons de recollida d’aigua pluvial

S’ha detectat la presència d’una ruptura d’un canaló de recollida d’aigües pluvials, situat en la construcció complementària de l’edifici 1. Aquesta tipologia de patologia és del tipus físic, i el seu rang de gravetat es considera lleu.

Aquesta deficiència es la causa indirecte de que es generi brutícia per rentat diferencial en la part central de la façana est de la construcció complementària a l’edifici 1.

A.8.2.1. Caneló afectat

El canaló que presenta aquesta deficiència és l’únic canaló que hi ha en la construcció complementària a l’edifici 1, situat a la part superior de la seva façana est.

A.8.2.2. Causa

Es desconeix la causa de ruptura del canaló per falta d’informació, però generalment aquestes deficiències són causades per la humitat o fenòmens atmosfèrics (pluja, neu, calmarsa, etc.).
A.8.2.3. Representació gràfica de la patologia

Figura 14. Ruptura del canaló de la construcció complementària a l'edifici 1

A.8.2.4. Actuació sobre la causa, reparació i manteniment

No es pot actuar sobre la causa, ja que es desconéix el seu origen.

En primer lloc, abans de reparar la ruptura es netejarà la zona afectada eliminant la presència de fongs existents. Si s’escau s’utilitzarà un producte fungicida adeguat i es seguiran les seves instruccions durant la seva aplicació. Una vegada aplicat el producte es deixarà actuar el temps recomanat i llavors s’esbandirà amb un drap per tal d’eliminar les possibles restes que hagin pogut quedar-ne. Finalment un cop assecada la zona afectada s’aplicarà cinta asfàltica autoadhesiva per segellar la ruptura.

Es realitzarà un manteniment cada any per mantenir-los nets i assegurar la funcionalitat dels mateixos.
A.8.3. **Baixants de recollida d’aigües pluvials de la nau industrial**

A.8.3.1. Ruptura de les baixants

Durant la inspecció visual de l’establiment, s’ha observat que diverses baixants de recollida d’aigües pluvials estaven trencades.

Aquesta tipologia de patologia és del tipus física i el seu nivell de gravetat es considera lleu.

El trencament de les baixants d’aigües pluvials és un factor de causa indirecte de deficiències sobre els tancaments de façana. L’aigua de la pluja, la qual reconduïxen les baixants s’escapa del tub i recau sobre el tancament generant brutícia i humitat sobre el tancament de façana i patologies com el rentat diferencial.

Cal esmentar que en algunes de les baixants trencades no s’escapa l’aigua i per tant no generen brutícia en el tancament. Tanmateix aquesta deficiència és un factor de causa en potència, ja que és qüestió de temps que la ruptura de la baixant augmenti i esdevingui una causa indirecte d’altres patologies en el tancament. Raó per la qual s’aconsella un arranjament de totes les ruptures o canvi de les baixants abans que generin altres problemes.

A.8.3.2. Baixants afectades

Únicament s’han observat ruptures en diverses baixants de recollida d’aigües pluvials de la nau industrial, ja que són les úniques que es van construir amb fibrociment i es considera que la seva vida útil ha finalitzat.

A.8.3.3. Causa

No s’ha pogut assegurar la causa de les ruptures de les baixants de recollida d’aigües pluvials, ja que no es disposa de testimonis ni s’observa a simple vista cap factor que les hagi pogut damnificar.

Deguda a la diversificació de ruptures i falta de similitud entre elles, es creu quealgunes s’han pogut danyar a causa de cops produïts per un fenomen atmosfèric (calamarsa) o d’altres degut a algun cop produït per algun operari durant la realització d’una tasca. Tanmateix, com s’ha esmentat anteriorment, no es disposen de suficients dades per catalogar la causa de la patologia.
A.8.3.4. Representació gràfica i exemplificació de la patologia

Figura 15. Exemplificació de ruptures en les baixants de recollida d’aigües pluvials de la nau industrial

A.8.3.5. Actuació sobre la causa, reparació i manteniment

Es desconeix l’origen de la causa d’aquestes deficiències per falta d’informació, però es suposa que les baixants han arribat a la fi de la seva vida útil, essent més vulnerable als agents externs i trencant-se amb més facilitat.

La solució proposada envers aquesta deficiència és el canvi de totes les baixants d’aigües pluvials de la nau industrial i substitució per unes altres que no continguin amiant.

A.8.3.6. Altres deficiències de les baixants

S’han observat altres deficiències en les baixants de la nau industrial. Així com, l’oxidació dels elements de subjecció de les baixants al seu respectiu tancament de façana, el rentat superficial en la superfície de les baixants o la presència de floridures.

Aquestes patologies contribueixen al deteriorament de les baixants, disminuint així la seva vida útil. Per aquest motiu, s’aconsella la substitució de les baixants actuals de la nau industrial per unes altres de noves.
A.9. TANCAMENT DE COBERTA

A.9.1. Brutícia superficial i rentat diferencial

Durant l’etapa d’inspecció visual de l’estudi patològic, s’ha observat l’acumulació de brutícia sobre la superfície de les plaques de la coberta, i en algunes regions s’observa brutícia per rentat diferencial.

Aquesta tipologia de patologia és del tipus física, i el seu rang de gravetat es considera lleu.

A.9.1.1. Elements afectats

Les plaques amb major percentatge d’afectació de brutícia són les que estan situades en la part inferior de la vessant inclinada 17º (al costat de la canal), també es pot observar l’acumulació de brutícia en l’ala llisa dels cavallets on s’hi pot apreciar el fenomen del rentat diferencial.

A.9.1.2. Causa

L’aigua de la pluja arrastra partícules de pols i brutícia acumulada a la superfície de les plaques de coberta, formant regalims d’aigua bruts.

A.9.1.3. Representació gràfica de la patologia

Figura 16. Brutícia en la part inferior de la vessant inclinada 17º i en l’ala llisa del cavallet
A.9.1.4. Actuació sobre la causa i manteniment

No es pot actuar directament sobre la causa, perquè es tracta d’un fenomen meteorològic (la pluja).

No es realitzarà una neteja de les plaques, ja que es pretén substituir la coberta actual per una altra de nova. Però per altra banda, s’informa que és necessària una neteja i manteniment de la nova coberta un cop estigui instal·lada cada vegada que s’hi observi l’acumulació de brutícia, per evitar l’origen de noves patologies i allargar el seu temps de vida. Segons l’apartat 6. *Manteniment i conservació* del DB HS-1 del CTE, s’ha de realitzar una comprovació de l’estat de conservació de la coberta, cada tres anys.
A.9.2. Presència de fongs

S'ha observat la presència de floridures en les plaques de la coberta. Aquesta tipologia de patologia és del tipus químic, i el seu rang de gravetat es considera lleu.

No obstant, si no s'eradica i es deixa desenvolupar aquesta patologia, a llarg termini pot deteriorar l’estat de les plaques i disminuir el seu temps de vida, es llavors quan el rang de gravetat d’aquesta patologia es considera important.

Durant l’etapa d’inspecció visual de l’edifici s’ha observat que la patologia està molt poc desenvolupada i es troba localitzada de manera excepcional en petites regions a nivell superficial. Raó per la qual el nivell de gravetat d’aquesta es considera lleu.

A.9.2.1. Plaques afectades

S’ha observat únicament la patologia en algun cavallet de la coberta i en alguna placa translúcida, ja que donada la ubicació de les plaques, són les que reben menys llum solar diària, dificultant així l’evaporació de la humitat.

A.9.2.2. Causa

La causa d’aquesta patologia és l’acumulació d’huiitat sobre la brutícia superficial de les plaques, generada per l’aigua de la pluja.

A.9.2.3. Representació gràfica de la patologia

Figura 17. Presència d’organismes en l’ala llisa del cavallet situat a la façana nord de la nau industrial
A.9.2.4. Actuació sobre la causa i manteniment

No s’eliminaran els fongs de les plaques i cavallets de la coberta, perquè es pretén substituir la coberta actual per una altra de nova. Tanmateix com s’ha especificat a l’apartat A.9.1.4 del mateix Annex, es netejarà la nova coberta sempre que s’hi observi l’acumulació de brutícia, per tal d’evitar l’origen d’aquesta tipologia de patologia i mantenir-la així en bones condicions, i s’haurà de realitzar una comprovació de l’estat de conservació de la coberta, cada tres anys.
A.9.3. **Fissura en les placa**s

Durant l’etapa d’inspecció visual de l’estudi patològic, s’ha observat que algunes de les plaques de fibrociment de la coberta estaven recobertes amb tela asfàltica. Arran d’aquesta observació, es va preguntar al propietari de l’establiment el motiu d’aquesta mesura. El propietari ens ha afirmat que durant un dia de calamarsa (pedregada), es va produir una fissura en alguna de les plaques, i es van haver de segellar per garantir la seva estanqueïtat.

Aquesta tipologia de patologia és del tipus física, i el seu rang de gravetat es considera lleu.

A.9.3.1. Elements afectats

S’ha detectat aquesta patologia de manera excepcional en alguna de les plaques de coberta, concretament en quatre regions.

A.9.3.2. Causa

Prencent com a vàlid el testimoni del propietari de l’establiment, es pot afirmar que la causa directe és un fenomen atmosfèric (la calamarsa). Tanmateix, aquestes plaques estan dissenyades per suportar tals impactes, i es considera que la fissura de les mateixes, està relacionada de manera indirecte amb el seu deteriorament i fi de la seva vida útil.

A.9.3.3. Representació gràfica de la patologia

Figura 18. Tela asfàltica en les plaques de fibrociment de la coberta de la nau industrial.
A.9.3.4. Actuació sobre la causa i manteniment

No es pot actuar directament sobre la causa, perquè es tracta d’un fenomen meteorològic, la calamarsa.

Per altra banda, com que es pretén substituir les plaques de coberta actuals, durant l’elecció de la nova tipologia de coberta, es tindrà en consideració que la coberta escollida sigui resistent a aquesta tipologia d’impactes.
A.10. PAVIMENT INTERIOR DE LA NAU INDUSTRIAL

No s’han detectat patologies d’importància en el paviment de la nau industrial, únicament s’ha detectat la presència de desgast del revestiment del paviment en algunes regions del paviment de la nau.

A.10.1. Desgast de la superfície

S’ha detectat la presència de desgast i pèrdua del revestiment original en diverses regions del paviment interior de la nau industrial. Aquesta tipologia de patologia és física i el seu rang de gravetat és lleu.

A.10.1.1. Causa

La causa de desgast del revestiment és donat al seu ús continuat. Aquest es desgasta durant la circulació de vehicles o persones per la seva superfície.

A.10.1.2. Representació gràfica de la patologia

![Figura 19. Paviment interior de la nau industrial](image)

A.10.1.3. Actuació i manteniment

Aquesta patologia no requereix d’actuacions complexes, únicament s’haurà de renovar el revestiment del paviment, realitzant un desbast, granellat o fresat en el revestiment actual i aplicar un nou revestiment.
A.11. **RECALL FOTOGRÀFIC**

SUMARI FOTOGRÀFIC

Figura 14. Ruptura A del tancament de façana oest de la nau industrial ..63
Figura 15. Ruptura B del tancament de façana oest de la nau industrial ..63
Figura 16. Ruptura C del tancament de façana oest de la nau industrial ..64
Figura 17. Despreniment del revestiment en la façana nord ...64
Figura 18. Despreniment del revestiment en la façana oest ...64
Figura 19. Esquerda A en la façana nord de l’edifici 1 ..65
Figura 20. Esquerda B en la façana oest de l’edifici 1 ..65
Figura 21. Esquerda C en la façana oest de la nau industrial ..66
Figura 22. Esquerda D en la façana oest de la nau industrial ..66
Figura 23. Brutícia per rentat diferencial en les tres dents de serra de la façana est més properes a la façana nord de la nau industrial ..67
Figura 24. Brutícia per rentat diferencial en les tres dents de serra de la façana oest més properes a la façana nord de la nau industrial ..67
Figura 25. Brutícia per rentat diferencial en la zona del tancament situada sota les canals de les dos dents de serra més allunyades de la façana nord de la nau industrial ..67
Figura 26. Brutícia per rentat diferencial sota la finestra del pis inferior de la façana nord de l’edifici 1 ..68
Figura 27. Brutícia per rentat diferencial sota la finestra de la façana est de l’edifici 168
Figura 28. Brutícia per rentat diferencial en les parts superiors dels tancaments i sota la ruptura del canaló de la construcció complementària a l’edifici 1 ...68
Figura 29. Presència de fongs en la façana est de l’edifici 1 ..69
Figura 30. Presència de fongs en els tancaments de la construcció complementària a l’edifici 169
Figura 31. Obertura de la planxa en el tancament nord de la construcció complementària a l’edifici 1 ..70
Figura 32. Pilars oxidats. Ordenats de esquerra a dreta (pilar 3D, pilar 2D des de l’exterior, pilar 2D des de l’interior, pilar 1D i pilar 13A) ..71
Figura 33. Part de l’encavallada Warren de la façana sud-est ...71
Figura 34. Acabat lateral de les dents de serra en la façana oest de la nau industrial. Ordenades d’esquerra a dreta: Tres dents més properes a la façana nord de la nau, dos dents més allunyades de la façana nord de la nau ..72
Figura 35. Caneló de recollida d’aigua trencat, situat en el tancament est de la construcció complementària a l’edifici 1 ..72
Figura 36. Baixant de recollida d’aigües pluvials trencada, situada en la façana est de la nau industrial ..73
Figura 37. Baixant de recollida d’aigües pluvials trencada en la façana oest de la nau industrial73
Figura 38. Exemplificació d’una ruptura de la baixant, brutícia superficial, i oxidació de la fixació, en la façana oest de la nau industrial...73
Figura 39. Brutícia per rentat diferencial en les plaques translúcides i cavallets de la coberta70
Figura 40. Presència de fongs en l’extrem est de la façana nord ..74
Figura 41. Presència de fongs en l’ala ondulada dels cavallets de la nau industrial74
A.11.1. Tancaments de façana d’obra de fàbrica

A.11.1.1. Ruptura del tancament

Figura 20. Ruptura A del tancament de façana oest de la nau industrial

Figura 21. Ruptura B del tancament de façana oest de la nau industrial
A.11.1.2. Desprengiment del revestiment de façana

Figura 22. Ruptura C del tancament de façana oest de la nau industrial

Figura 23. Desprengiment del revestiment en la façana nord

Figura 24. Desprengiment del revestiment en la façana oest
A.11.1.3. Esquerdes

Figura 25. Esquerda A en la façana nord de l’edifici 1

Figura 26. Esquerda B en la façana oest de l’edifici 1
Figura 27. Esquerra C en la façana oest de la nau industrial

Figura 28. Esquerra D en la façana oest de la nau industrial
A.11.1.4. Brutícia per rentat diferencial

Figura 29. Brutícia per rentat diferencial en les tres dents de serra de la façana est més properes a la façana nord de la nau industrial

Figura 30. Brutícia per rentat diferencial en les tres dents de serra de la façana oest més properes a la façana nord de la nau industrial

Figura 31. Brutícia per rentat diferencial en la zona del tancament situada sota les canals de les dos dents de serra més allunyades de la façana nord de la nau industrial
Figura 32. Brutícia per rentat diferencial sota la finestra del pis inferior de la façana nord de l'edifici 1

Figura 33. Brutícia per rentat diferencial sota la finestra de la façana est de l'edifici 1

Figura 34. Brutícia per rentat diferencial en les parts superiors dels tancaments i sota la ruptura del canaló de la construcció complementària a l'edifici 1
A.11.1.5. Presència de fongs

Figura 35. Presència de fongs en la façana est de l'edifici 1

Figura 36. Presència de fongs en els tancaments de la construcció complementària a l'edifici 1
A.11.1.6. Obertura

Figura 37. Obertura de la planxa en el tancament nord de la construcció complementària a l’edifici 1

A.11.2. Tancament de façana amb plaques de polièster reforçat amb fibra de vidre

A.11.2.1. Brutícia per rentat diferencial

Figura 38. Brutícia per rentat diferencial en les plaques translúcides i cavallets de la coberta
A.11.3. Oxidació

Figura 39. Pilars oxidats. Ordenats de esquerre a dreta (pilar 3D, pilar 2D des de l’exterior, pilar 2D des de l’interior, pilar 1D i pilar 13A)

Figura 40. Part de l’encavallada Warren de la façana sud-est
A.11.4. Causes indirectes de patologies en els tancaments de l’establiment industrial

A.11.4.1. Metodologia de construcció de la coberta

Figura 41. Acabat lateral de les dents de serra en la façana oest de la nau industrial. Ordenades d’esquerra a dreta: Tres dents més properes a la façana nord de la nau, dos dents més allunyades de la façana nord de la nau

A.11.4.2. Caneló de recollida d’aigua pluvial de la nau industrial

Figura 42. Caneló de recollida d’aigua trencat, situat en el tancament est de la construcció complementària a l’edifici 1
A.11.4.3. Baixants de recollida d’aigües pluvials de la nau industrial trencades

Figura 43. Baixant de recollida d’aigües pluvials trencada, situada en la façana est de la nau industrial

Figura 44. Baixant de recollida d’aigües pluvials trencada en la façana oest de la nau industrial.

Figura 45. Exemplificació d'una ruptura de la baixant, brutícia superficial, i oxidació de la fixació, en la façana oest de la nau industrial
A.11.5. Tancament de coberta

A.11.5.1. Presència de fongs

Figura 46. Presència de fongs en l'extrem est de la façana nord

Figura 47. Presència de fongs en l'ala ondulada dels cavallets de la nau industrial
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D'UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIA D'ANGLÈS.

- ANNEX B. ESTUDI PATOLÒGIC

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
ANNEX C

INSTAL·LACIONS CONTRA INCENDIS
SUMARI INSTAL·LACIONS CONTRA INCENDIS

C.1. INTRODUCCIÓ ... 3
C.2. CARACTERÍSTIQUES DE L’ESTABLIMENT .. 3
 C.2.1. Tipologia de l’establiment industrial i configuracions ... 3
 C.2.2. Determinació del nivell de risc intrínsec de la fàbrica ... 4
 C.2.3. Determinació del nivell de risc intrínsec de l’establiment industrial 10
C.3. REQUISITS CONSTRUCTIUS DE L’ESTABLIMENT INDUSTRIAL 14
 C.3.1. Sectorització de l’establiment industrial ... 14
 C.3.2. Risc de foc forestal ... 14
 C.3.3. Façanes accessibles ... 15
 C.3.4. Materials .. 15
 C.3.5. Estabilitat al foc dels elements constructius .. 18
 C.3.6. Evacuació ... 19
 C.3.6.1. Ocupació ... 19
 C.3.6.2. Condicions d’evacuació .. 20
 C.3.6.3. Espai exterior segur .. 21
 C.3.6.4. Senyalització de les sortides d’ús habitual o emergència per l’evacuació 21
 C.3.7. Ventilació i eliminació de fums i gasos de combustió .. 23
 C.3.8. Emmagatzematge ... 23
 C.3.9. Instal·lacions tècniques de serveis ... 24
C.4. REQUISITS DE LES INSTAL·LACIONS DE PROTECCIÓ CONTRA INCENDIS 25
 C.4.1. Sistema automàtic de detecció d’incendis ... 25
 C.4.2. Sistemes manuals d’alarma d’incendis .. 25
 C.4.3. Sistemes de comunicació d’alarma ... 25
 C.4.4. Sistemes d’hidrants exteriors ... 26
 C.4.5. Extintors d’incendi .. 26
 C.4.6. Boques d’incendi equipades (BIE) ... 28
 C.4.7. Sistemes de columna seca .. 28
 C.4.8. Sistemes de ruixadors automàtics d’aigua .. 28
 C.4.9. Sistemes d’aigua polvoritzada, d’espuma física i d’extinció per pols 28
 C.4.10. Sistemes d’abasteixament d’aigua ... 28
 C.4.11. Sistemes d’enllumenat d’emergència ... 29
 C.4.12. Senyalització dels mitjans de protecció ... 30
C.5. **INSPECCIONS I REVISIONS PERIÒDIQUES DE LA INSTAL·LACIÓ CONTRA INCENDIS**

C.5.1. Inspeccions

C.5.2. Revisions periòdiques

C.5.3. Manteniment de la instal·lació de protecció contra incendis

C.6. **SOL·licitud d’exePCIÓ**

C.7. **NORMATIVA D’APLICACIÓ**
C.1. INTRODUCCIÓ

La present rehabilitació es durà a terme seguint el Reglament de Seguretat contra Incendis en els Establiments Industrials (RSCIEI) aprovat en el Reial Decret 2267/2004, de 3 de desembre, on s’hi defineixen els requisits i condicions que han de satisfyer les instal·lacions d’ús industrial per a la seva seguretat en cas d’incendi, evitant la seva generació, i per donar resposta ràpida en cas de produir-se.

Una vegada posada en marxa la instal·lació, s’haurà de presentar a l’òrgan competent de la Generalitat de Catalunya, un certificat emès per un Tècnic titulat de l’empresa instal·làdora de la protecció contra incendis. En el certificat s’hi haurà d’especificar que la indústria segueix les especificacions determinades pel projecte i el compliment de les condicions tècniques i prescripcions reglamentàries que corresponguin, amb l’objectiu de registrar la instal·lació.

A més a més, a part de les operacions de manteniment de les instal·lacions de protecció, s’hauran de realitzar unes inspeccions periòdiques, que les realitzarà un Organisme de Control Facultat per a l’aplicació d’aquest reglament.

C.2. CARACTERÍSTIQUES DE L’ESTABLIMENT

C.2.1. Tipologia de l’establiment industrial i configuracions

S’entén com establiment industrial el conjunt d’edificis o edifici, zona d’aquest, instal·lació o espai obert d’ús industrial o d’emmagatzematge, d’un sol titular.

L’establiment industrial a tractar està localitzat al paratge Reclavia d’Anglès, i la parcel·la està situada en una cantonera, a més de 6 m de distància de la parcel·la veïna.

Aquest disposa de dos edificacions diferenciades, anomenades en aquest projecte: fàbrica i magatzem B. Ambdues edificacions són recintes tancats, i estan separats més de 6 metres entre ells. En aquest projecte, es pretén rehabilitar diferents elements constructius de la nau industrial, per aquesta raó no s’entrarà en avaluar el comportament ni mesures de protecció del magatzem B, el qual constituirà un sector d’incendi independent i diferenciad de fàbrica.

Segons el reglament, s’identifiquen ambdòs edificis de l’establiment amb una configuració del tipus C en funció de les característiques de la seva configuració i ubicació.
La tipologia C defineix els establiments industrials que porten a terme els processos industrials en un o varis edificis, en sectors tancats, els quals estan situats a una distància superior a 3m de l’edifici o activitat més pròxima d’un altre establiment.

C.2.2. Determinació del nivell de risc intrínsec de la fàbrica

Els edificis industrials es classifiquen segons el nivell de risc intrínsec. Aquesta classificació es divideix en nivell baix, mitjà i alt, i porta una numeració del 1 al 8, segons el resultat obtingut en la fórmula de la determinació de la densitat de càrrega de foc ponderada i corregida.

Cada edifici amb una configuració establerta pot tenir varis sectors d’incendi amb diferents nivells de risc. Tanmateix, es preferirà a ser possible, que la fàbrica tingui un únic sector d’incendi, per tal d’evitar així el cost que comporta realitzar sectoritzacions.

Així doncs, dins del sector d’incendi de la fàbrica es duran a terme diferents activitats relacionades amb l’activitat general de l’establiment industrial (el mecanitzat de precisió), les quals s’han diferenciat dins del sector d’incendi mitjançant la seva ubicació i àrea que ocupen, amb la finalitat d’avaluar la densitat de càrrega de foc de cadascuna d’elles i determinar així el nivell de risc intrínsec de la fàbrica.

En la fàbrica es duran a terme 7 activitats diferents, definides a continuació:

- Taller: És el sector on es porta a terme tot el procés dedicat a la transformació i manipulació dels materials. Aquest inclourà també la sala de compressors, i la zona de tall, aquesta última situada a l’interior de la zona magatzem.

- Magatzem: És la part on s’emmagatzemarà la matèria primera, producte en curs i producte acabat.

- Zona d’embalatge i expedició: És la part del magatzem on s’empaquetaran o embalaran els productes en curs o finals.

- Laboratori: És el sector on es realitzarà un anàlisi dimensional i es revisarà la qualitat de les peces produïdes.

- Oficines: És el sector on es durà a terme la gestió i administració de l’empresa.
- Serveis: És l’espai compartimentat per dutxes i serveis necessaris per la higiene personal.

- Sala d’instal·lacions: És la zona on s’ubicaran les instal·lacions de subministrament d’aigua i ACS, calefacció, etc., necessàries per garantir les condicions mínimes de salubritat en la zona d’oficines.

En la figura 1 es pot observar la ubicació i àrea de les set zones de la fàbrica.

![Diagrama de les zones](image)

Figura 1. Diferenciació de les zones dins el sector d’incendi de la fàbrica
Font: Elaboració pròpia (AutoCad 2013)

Tot seguit s’ha procedit a calcular la densitat de càrrega de foc ponderada i corregida de les activitats que engloba el sector d’incendi (Q_s) amb l’equació 1, adjunta a continuació.

$$Q_s = \sum_{A} q_{si} \cdot S_i \cdot C_i \cdot R_a \quad \text{(Eq.1)}$$

On:

Q_s = densitat de càrrega de foc ponderada i corregida del sector o àrea d’incendi.

q_{si} = densitat de càrrega de foc de cada zona amb procés diferent segons els diferents processos que es realitzen en el sector d’incendi (i).

S_i = superfície de cada zona amb procés diferent y densitat descàrrega de foc q_{si} diferent.
Ci = coeficient adimensional que pondera el grau de perillositat (per combustibilitat) de cadascun dels combustibles (i) que existeixen en el sector d’incendi.

A = superfície construïda del sector d’incendi.

Ra = coeficient adimensional que corregix el grau de perillositat (per l’activació) relacionada amb l’activitat del sector.

Els valors dels diferents coeficients de cada zona que es troben a continuació, s’han obtingut a partir de les taules 1.1 i 1.2 de l’annex I del Reglament de Seguretat Contra Incendis en Establiments Industrials.

- Zona Taller

\[S_t = 729.81 \, m^2 \]

\[q_{si} = 200 \, \frac{MJ}{m^2} \] (corresponent a l’activitat de mecànica de precisió, taller.)

\[R_a = 1 \]

\[C_i = 1 \] (valor del coeficient de perillositat per combustibilitat corresponent als sòlids que comencen la seva ignició a una temperatura superior a 200°C)

- Zona Magatzem

\[S_t = 217.02 \, m^2 \]

\[q_{si} = 200 \, \frac{MJ}{m^2} \]

La taula 1.2 del Reglament de Seguretat Contra Incendis en els Establiments industrials, no dóna cap valor d’emmagatzematge de materials de mecànica de precisió, taller. Tanmateix, s’equivaldrà la densitat de càrrega de foc el magatzem de la nau, amb la fabricació i venda d’articles de metall, el qual li correspon una densitat de càrrega de foc mitja de 200 MJ/m².

\[R_a = 1 \]

\[C_i = 1 \]
- Zona d’embalatge i expedició

\[S_i = 11,95 \, m^2 \]

\[q_{si} = 200 \, \frac{MJ}{m^2} \] (valor anàleg a l’activitat d’embalatge de mercaderies incombustibles)

\[R_a = 1 \]

\[C_i = 1 \]

- Zona Laboratori

\[S_i = 40,62 \, m^2 \]

\[q_{si} = 200 \, \frac{MJ}{m^2} \] (correspondent a l’activitat de laboratori metal·lúrgic)

\[R_a = 1 \]

\[C_i = 1 \]

- Zona Oficines

\[S_i = 248,52 \, m^2 \]

\[q_{si} = 600 \, \frac{MJ}{m^2} \] (correspondent a l’activitat d’oficines tècniques)

\[R_a = 1 \]

\[C_i = 1 \]

- Zona Serveis

\[S_i = 53,4 \, m^2 \]

\[q_{si} = 100 \, \frac{MJ}{m^2} \] (valor aproximat a aparells sanitaris, taller)

\[R_a = 1 \]

\[C_i = 1 \]
- Sala d’instal·lacions

\[S_t = 22.6 \, m^2 \]

\[q_{si} = 200 \, \frac{MJ}{m^2} \] (valor aproximat calderes, edificis de)

\[R_a = 1 \]

\[C_i = 1 \]

Per tant, aplicant l’equació 1, s’ha obtingut la densitat de càrrega de foc total del sector d’incendi de la fàbrica següent:

\[
Q_s = \frac{\sum q_{si} \cdot S_i \cdot C_i}{A} \cdot R_a
\]

\[
Q_s = \frac{(200 \cdot 729,81 \cdot 1) + (200 \cdot 217,02 \cdot 1) + (200 \cdot 11,95 \cdot 1) +
(200 \cdot 40,62 \cdot 1) + (600 \cdot 248,52 \cdot 1) + (100 \cdot 53,4 \cdot 1) + (200 \cdot 22,6 \cdot 1)}{1323,92} \cdot 1
\]

\[
Q_s = 271,05 \, \frac{MJ}{m^2}
\]

El valor de 271,05 MJ/m² obtingut correspon a un nivell de risc intrínsec BAIX de grau 1\((Q_s \leq 425 \, MJ/m^2) \) d’acord amb la taula 1 (adjunta a continuació), explícita en l’annex I del RSCIEI.

Taula 1. Densitat de càrrega de foc ponderada i corregida.

<table>
<thead>
<tr>
<th>Risc intrínsec</th>
<th>Densitat de càrrega de foc ponderada i corregida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mcal/m²</td>
</tr>
<tr>
<td>Baix</td>
<td>(Q_s \leq 100)</td>
</tr>
<tr>
<td></td>
<td>100 (< Q_s \leq 200)</td>
</tr>
<tr>
<td>Mig</td>
<td>200 (< Q_s \leq 300)</td>
</tr>
<tr>
<td></td>
<td>300 (< Q_s \leq 400)</td>
</tr>
<tr>
<td></td>
<td>400 (< Q_s \leq 800)</td>
</tr>
<tr>
<td>Alt</td>
<td>800 (< Q_s \leq 1600)</td>
</tr>
<tr>
<td></td>
<td>1600 (< Q_s \leq 3200)</td>
</tr>
<tr>
<td></td>
<td>3200 (< Q_s)</td>
</tr>
</tbody>
</table>
Cal especificar, que durant el càlcul del nivell de risc intrínsec del sector d’incendis de la fàbrica, s’ha menyspreat el volum d’emmagatzematge de les peces metàl·liques en el magatzem de la nau industrial, ja que els materials metàl·lics emmagatzemats són incombustibles i no cremen, sinó que quan es sotmeten a unes condicions de temperatura molt elevada, generalment entre 660 i 1350ºC, canvien d’estat i es fonen. A més a més, aquests s’emmagatzemaran de forma general en estanteries metàl·liques, dins de contenidors metàl·lics.

També s’ha menyspreat l’emmagatzematge de taladrina, ja que aquesta arribarà al taller en bidons de 200l, ja diluïda amb la concentració d’aigua adequada.

Les emulsions d’oli (mineral, sintètic o vegetal/animal) i taladrines semisintètiques o sintètiques, generalment estan constituïdes a base d’una concentració d’oli (mineral o sintètic) del 20 al 60%, una concentració d’aigua del 10 al 75%, emulgents, humectants i/o additius varis (anticorrosius, bactericides, o d’extrema pressió). Aquesta concentració es dilueix entre un 3 i 15% amb aigua d’una duresa adequada per a les operacions de mecanització. La taladrina ja diluïda és un líquid no inflamable, i quan s’escafa, canvia d’estat de líquid a gas. Aquest procés d’evaporació no desprèn calor en el medi sinó que l’absorbeix (calor latent). Raó per la qual, no s’ha tingut en compte l’emmagatzematge de taladrina en el càlcul del nivell de risc intrínsec.

Com que els productes emmagatzemats (peces metàl·liques o taladrina) són productes incombustibles, la densitat de càrrega de foc de l’activitat d’emmagatzematge de la zona del magatzem s’ha calculat de forma anàloga a l’activitat de producció i venta d’un taller de mecanitzat de precisió. S’ha realitzat d’aquesta forma, ja que no s’ha trobat cap especificació en el RSCIEI sobre l’emmagatzematge de materials no combustibles, ni en cap de les instruccions tècniques complementaries (ITC) d’aquest reglament, aprovades per mitjà de les ordres INT/322/2012 i INT/324/2012. Per aquest motiu, s’haurà d’informar d’aquest canvi, en l’ordre competent de la generalitat de Catalunya (Veure apartat C.7).
C.2.3. Determinació del nivell de risc intrínsec de l’establiment industrial.

El nivell de risc intrínsec de l’establiment industrial, s’ha de calcular mitjançant una ponderació entre la càrrega de foc de la fàbrica i el magatzem B.

El magatzem B té una superfície de 30 m2 i s’emmagatzemarà les restes de subproducte generat en el procés productiu, com trossos de metall desaprofitables o ferritja i rebaves generades en el procés productiu, dins de contenidors metàl·lics tapats.

Com s’ha esmentat en l’apartat anterior, el materials metàl·lics són materials no combustibles, i per aquest motiu no tenen poder calorífic, en comptes de cremar es fonen, i quan realitzen el canvi d’estat de sòlid a liquid no alliberen calor, sinó que l’absorbeixen (calor latent). Per aquest motiu, no es pot calcular la càrrega de foc en activitats d’emmagatzematge d’aquesta tipologia de materials, mitjançant l’equació 2 proporcionada per RSCIEI en activitats d’emmagatzematge.

$$Q_s = \frac{\sum_i q_{vi} \cdot c_i \cdot h_i \cdot S_i}{A} \cdot R_a$$

(Eq.2)

Es considera adient, en aquest cas, aproximar la càrrega de foc del magatzem B, al d’una activitat de producció i venta d’un taller de mecanitzat de precisió (caldrà informar d’aquesta aproximació a l’òrgan competent de la generalitat de Catalunya). Per aquest motiu, s’utilitzarà l’equació 1 en comptes de l’equació 2.

$$Q_s = \frac{(200 \cdot 30 \cdot 1)}{30} \cdot 1 = 200 \frac{MJ}{m^2}$$

Així doncs, el nivell de risc intrínsec de l’establiment industrial es calcularà mitjançant l’equació 3.

$$Q_E = \frac{\sum_i Q_{ei} \cdot A_{ei}}{\sum_i A_{ei}}$$

(Eq.3)
On:

\[Q_E = \text{densitat de càrrega de foc, ponderada i corregida, de l’establiment industrial.} \]

\[Q_{ei} = \text{densitat de càrrega de foc, ponderada i corregida, de cadascun dels edificis industrials (i), que componen l’establiment industrial (fàbrica i magatzem B).} \]

\[A_{ei} = \text{Superfície construïda de cadascun dels edificis industrials (i), que componen l’establiment industrial.} \]

Essent:

\[Q_E = \frac{(271,05 \cdot 1323,92) + (200 \cdot 30)}{1323,92 + 30} = 269,48 \frac{MJ}{m^2} \]

Així doncs, es conclou que l’establiment industrial té un nivell de risc intrínsec baix 1, amb una densitat de càrrega de foc ponderada i corregida de 269,48 MJ/m², ja que no supera els 425MJ/m².

Tantmateix, s’ha de tenir present, que els materials metàl·lics que es poden tractar (ferro, alumini, acer, etc.) quan es troben en forma de làmines de ferritja de petites dimensions poden inflamar-se, o fins i tot explotar quan es troben en forma de partícules de pols disperses en l’aire. Això és degut a que la velocitat d’una reacció química s’incrementa si augmenta la superfície de contacte entre els reactius. Quan el material metàl·lic es troba en forma de pols, aquest té una major quantitat de superfície en contacte amb l’aire, poden generar així una reacció de combustió.

Cal especificar també, que tot i que aquesta reacció entre el material metàl·lic (alumini, ferro, etc.) i l’agent extern (oxigen) és termodinàmicament factible a nivell macroscòpic, la majoria de metalls estan passivats mitjançant la formació d’una capa o pel·lícula passivant (d’òxid impermeable) amb tècniques com l’anoditzat entre d’altres. Aquesta passivació redueix la interacció entre els dos reactius, de tal manera, que la reacció es veu reduïda o impedida.

A més a més, per tal que es produïx una explosió s’han d’obtenir partícules de dimensions microscòpiques, les quals es consideren que no s’obtindran durant el procés productiu. A continuació, s’adjunta la taula C.2, on es pot observar les dimensions que han de tenir l’acer per explosionar (similar als paràmeters d’altres metalls).

Taula 2. Paràmetres d’explosivitat per a pols d’acer.

<table>
<thead>
<tr>
<th>Paràmetres de explosivitat per a pols de acer</th>
<th>Producto</th>
<th>Diàmetre de grana (valor mitjà) (μm)</th>
<th>ST 1</th>
<th>Explosivitat</th>
<th>Pràx (bar)</th>
<th>TIN (°C)</th>
<th>TIC (°C)</th>
<th>LIE (g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blasting dust, sand blasting of steel</td>
<td>< 90</td>
<td>-</td>
<td>ST 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>< 100</td>
</tr>
<tr>
<td>Blasting dust, zinc coated steel (blasting agent: sand)</td>
<td>< 125</td>
<td>-</td>
<td>ST 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
</tr>
<tr>
<td>Blasting dust, zinc coated steel (blasting agent: sand)</td>
<td>< 93</td>
<td>-</td>
<td>ST 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>Blasting dust, blasting from steel (blasting abrasive: steel shot), from filter</td>
<td>< 10</td>
<td>-</td>
<td>ST 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>Blasting dust, blasting from steel (blasting abrasive: steel shot), from filter</td>
<td>< 74</td>
<td>-</td>
<td>ST 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>500</td>
</tr>
<tr>
<td>Blasting dust, blasting from steel (blasting abrasive: steel shot), from filter</td>
<td>< 63</td>
<td>96</td>
<td>ST 1</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
</tr>
<tr>
<td>Blasting dust, blasting from steel (blasting abrasive: steel shot), from filter</td>
<td>< 14</td>
<td>-</td>
<td>ST 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Blasting dust, blasting from steel (blasting abrasive: steel shot), from filter</td>
<td>< 10</td>
<td>96</td>
<td>ST 1</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>Blasting dust, surface abrasion hardening abrasives of steel (blasting abrasive: steel shot), from steel induction units</td>
<td>10</td>
<td>96</td>
<td>ST 1</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>250</td>
</tr>
<tr>
<td>Metal dust (cobre)</td>
<td>< 10</td>
<td>-</td>
<td>ST 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Metal dust (cobre)</td>
<td>< 10</td>
<td>127</td>
<td>ST 1</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Metal dust (cobre)</td>
<td>< 10</td>
<td>80</td>
<td>ST 1</td>
<td>5.0</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>600</td>
</tr>
<tr>
<td>Blasting dust, steel (blasting agent: steel shot), from blasting column</td>
<td>< 10</td>
<td>127</td>
<td>ST 1</td>
<td>4.4</td>
<td>290</td>
<td>-</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>Blasting dust, tempering steel (blasting agent: cast steel shot)</td>
<td>< 63</td>
<td>-</td>
<td>ST 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Blasting dust, tempering steel (blasting agent: cast steel shot)</td>
<td>< 35</td>
<td>-</td>
<td>ST 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
</tbody>
</table>

On:

K_{ST}: Velocitat màxima d’aument de pressió

Explosivitat ST 1: Explosivitat dèbil o moderada, amb uns valors de **K_{ST} = 0 – 200 bar · m/s**

TIN: Temperatura mínima a la qual en una suspensió de pols en l’aire es produeix espontàniament la ignició i propagació de la flama

TIC: Temperatura mínima de una superfície en calent a la que la pols depositada sobre ella pot inflamar-se.

LIE: Límit inferior d’explosivitat

Així doncs, es considera que no s’arribarà a produir una atmosfera explosiva dins de l’establiment industrial, ni tampoc es sotmetrà als límits d’exposició de pols de metall als treballadors imposats per
l’institut nacional d’higiene en el treball en les Fitxes internacionals de seguretat química dels materials (FISQ), ja que segons la ACGIH (Association Advancing Occupational and Environmental Health) els materials metàl·lics en pols tenen un valor límit d’exposició (Threshold limit value) inferior a 10 mg/m³.
C.3. REQUISITS CONSTRUCTIUS DE L’ESTABLIMENT INDUSTRIAL

C.3.1. Sectorització de l’establiment industrial

D’acord amb la taula 3, adjunta a continuació, explícita en l’annex II del RSCIEI (anomenada taula 2.1). La superfície construïda de la fàbrica o del magatzem B, no supera la superfície màxima admissible del sector d’incendi, la qual no té límit de sectorització. Per tant, es pot considerar que en la fàbrica o en el magatzem B, hi ha un únic sector d’incendi.

<table>
<thead>
<tr>
<th>Risc intrínsec del sector d’incendi*</th>
<th>Configuració de l’establiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tipus A (m²)</td>
</tr>
<tr>
<td>Baix</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Mig</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Alt</td>
<td>No admès</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Es poden observar les notes de la taula 2.1 al capítol 2 de l’annex II del Reglament esmentat.

C.3.2. Risc de foc forestal

Com que l’establiment industrial està situat al costat d’una zona forestal, origina risc d’incendi en una doble direcció: Perill en cas d’un incendi annex a l’establiment industrial i perill d’originar un foc en una zona forestal.

L’establiment industrial haurà de disposar preferentment de dos vies d’accés alternatives, cadascuna de les quals, haurà de complir les condicions d’aproximació als edificis següents:

- Amplada mínima lliure: 5 m.
- Altura mínima lliure o gàlib: 4,5 m.
- Capacitat portant del vial: 2.000 kp/m²
En trams de corba, el carril d’accés haurà de quedar delimitat per la traçada de una corona circular, amb uns radis mínims de 5,3 m i 12,5 m, amb una amplada lliure de circulació de 7,2m.

No serà necessari mantenir una franja perimetral de 25 m d’amplada lliure de vegetació, ja que el nivell de risc intrínsec de l’establiment industrial és baix.

El present projecte solament informa de l’obligació i necessitat de tals accessos, sense incloure la seva habilitació.

C.3.3. Façanes accessibles

Tant el plantejament urbanístic com les condicions de disseny i construcció de l’edifici, facilitaran la possibilitat de la intervenció de serveis d’extinció d’incendis.

La nau industrial a rehabilitar disposarà de 3 façanes accessibles. Aquestes seran la façana nord, est i sud, les quals compliran els següents requisits:

- Disposaran de portes que permetin l’accés des de l’exterior al personal de serveis d’extinció d’incendis, amb unes dimensions iguals o superiors a 0,80 m d’amplada i 1,20 m d’alçada. A més, la distància entre els eixos verticals de dos accessos consecutius no serà superior a 25 m.
- No s’instal·larà en les esmentades façanes, elements que dificultin o impedeixin la accessibilitat al seu interior, excepte els elements de seguretat situats als accessos de la planta.
- La altura de l’ampit serà no serà major a 1,2 m.

C.3.4. Materials

Les exigències de comportament dels productes de construcció vers el foc, es definiran fixant la classe que han de tenir segons la norma UNE-EN 13501-1.

La reacció al foc dels elements constructius es justificarà mitjançant la seva classe, classificada segons la nova classificació europea o l’establerta en la norma UNE-23727. A continuació, s’adjunten ambdues classificacions utilitzades en cada norma (taula 4 i 5).

Taula C.5. Classificació dels materials utilitzats en la construcció segons la norma UNE 23727:1990

Classificació segons: (classificació principal)	COMBUSTIBILITAT	Aplicació final		---	---	---	---	---	---
	Compartiment de productes o material	Paredes	Terres	Productes a llimít per a aïllament térmic de caminites	COMBUSTIBLE	CONTRIBUCIÓ AL FOC			
A1	A1_k	A1<sub<l</sub>	NO	NO	grau màxim				
A2	A2_k	A2<sub<l</sub>	NO	NO	grau menor				
D	D_k	D<sub<l</sub>	SI	SI	Molt limitada				
C	C_k	C<sub<l</sub>	SI	SI	Limitada				
D	D_k	D<sub<l</sub>	SI	SI	Mitjà				
E	E_k	E<sub<l</sub>	SI	SI	Alta				
F	F_k	F<sub<l</sub>	Sense classificar, sense comportament determinat						

Classificacions addicionals segons: (classificació secundària)

| OPCATIT DE FUMS | Quantitat i velocitat d'emissió | BAIXA | MITJÀ | ALTA |
| | | s1 | s2 | s3 |

| CAIGUDA DE GOTES O DE PARTÍCULES INFLAMABLES | Observacions: Les classes A1, A1_k, i A1<sub<l</sub>, E, E_k, i F_k, no es classifiquen sota aquest concepte |
| | | | | | |

Sense caiguda (UNE-EN 13823:2002) en 600s	d0
Sense caiguda (UNE-EN 13823:2002) durant més de 60s	d1
Ni d0, ni d1	d2

El tractament d'algunes famílies de materials dóna lloc a classificacions específiques (terres, productes líquids per a aïllament térmic). El tractament d'altres productes encara en estudi (sables, canals, tubs...), que es viscer publicats en el BOE com a desenvolupament del RD 3212/2005.
Segons l’apartat 3 del Reglament de Seguretat Contra Incendis en els Establiments Industrials, el comportament dels materials vers el foc serà:

· Productes de revestiment o acabat superficial:

 - En sòls: Classe C_{FL}-s1 (M2) o més favorables.
 - En paret i sostres: Classe C-s3 d0 (M2) o més favorable.
 - Materials de revestiments extèriors de façanes: classe C-s3d0 (M2) o més favorable.
 - Els materials lluernaris continuos en coberta seran de la classe B-s1d0 (M1) o més favorable. En canvi, els que no siguin continuos o les instal·lacions per la eliminació de fums que s’instal·lin en la coberta seran almenys de classe D-s2d0 (M2), o més favorable.

· Productes inclosos a parets i tancaments

Els elements constitutius utilitzats en parets o tancaments hauran de ser de la classe Ds3d0 (M3) o més favorable. Cal especificar que aquest requisit és únicament aplicable als sectors industrials ubicats en edificis amb una configuració tipus B o C i de risc intrínsec baix.

· Productes utilitzats en l’interior de falsos sostres o sòls elevats, tant per aïllament tèrmic i condicionament acústic, com en el revestiment de conductes d’aire condicionat o calefacció, cables elèctrics, etc., hauran de ser de la classe C-s3d0 (M1) o més favorable. Els cables seran no propagadors d’incendis i amb emissió de fum i opacitat reduïda.

· La justificació de que un producte de construcció arribi a la classe de reacció del foc exigida s’acreditarà mitjançant assaigs del tipus o certificats amb conformitat de les normes UNE, emeses per un organisme de control que compleixi els requisits establerts en el Real Decret 2200/1995, de 28 de desembre. Els diferents productes han de contenir amb caràcter obligatori el marcatge “CE”.

· Els productes de construcció, petris, ceràmics i metàl·lics, així com els vidres, morter, formigó i guixos seran de classe A1 (M0).
C.3.5. Estabilitat al foc dels elements constructius

Les exigències de comportament davant el foc dels elements constructius portants, es definiran per el temps en minuts durant el que aquest element es capaç de mantenir la seva estabilitat mecànica o portant, valor determinat en un assaig normalitzat conforme amb la norma corresponent de les incloses en la Decisió 2000/367/CE de la comissió, del 3 de maig de l’any 2000, modificada per la Decisió 2003/629/CE de la Comissió.

S’entendrà com elements portants, aquells elements de l’estructura de l’edifici que inclouin forjats, bigues, suports, estructura principal i secundaria de coberta.

Es defineix l’estructura principal de coberta i els seus suports, com la constituïda per l’estructura de coberta pròpiament dita (gelosies, etc.) i els suports que tinguin com funció única aguantar-la. No es consideren part de l’estructura principal de coberta, les corretges.

L’estabilitat al foc dels elements estructurals amb funció portant i escales que s’utilitzin com a recorregut d’evacuació tindran un valor igual o superior a R30 (EF-30), valors exigits a la taula 6, adjunta a continuació, extreta de l’annex II del RSCIEI (taula 2.2).

<table>
<thead>
<tr>
<th>Nivell de risc intrínsec</th>
<th>Tipus A</th>
<th>Tipus B</th>
<th>Tipus C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baix</td>
<td>R 120</td>
<td>R 90</td>
<td>R 90</td>
</tr>
<tr>
<td>Mig</td>
<td>No admès</td>
<td>R 120</td>
<td>R 120</td>
</tr>
<tr>
<td>Alt</td>
<td>No admès</td>
<td>No admès</td>
<td>R 180</td>
</tr>
</tbody>
</table>

Per la estructura principal de cobertes lleugeres i suports en planta sobre rasant, no previstes per ser utilitzades en l’evacuació d’ocupants, no s’exigirà capacitat portant segons indica la taula 7, adjunta a continuació, explícita en l’annex II del RSCIEI (taula 2.3). Tanmateix, s’haurà de senyalitzar en l’accés principal de l’edifici per a què el personal de servei d’extinció al foc tingui coneixement d’aquesta particularitat.

<table>
<thead>
<tr>
<th>Nivell de risc intrínsec</th>
<th>Tipus B sobre rasant</th>
<th>Tipus C sobre rasant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baix</td>
<td>R 15</td>
<td>No s’exigeix</td>
</tr>
<tr>
<td>Mig</td>
<td>R 30</td>
<td>R 15</td>
</tr>
<tr>
<td>Alt</td>
<td>R 60</td>
<td>R 30</td>
</tr>
</tbody>
</table>

La taula 7 és aplicable quan el fallo d’aquests elements no pot ocasionar danys en establiments o edificis pròxims, ni es comprometi a l’estabilitat d’altres plantes inferiors o sectoritzacions d’incendis. Com és en aquest cas.

Es defineix la coberta lleugera com la coberta que té un pes propi inferior a 100 kg/m². La coberta escollida per la rehabilitació de la nau està inclosa en aquesta tipologia, ja que el seu pes propi no superarà els 100 kg/m².

C.3.6. Evacuació

C.3.6.1. Ocupació

Per a l’aplicació de les exigències relatives a l’evacuació dels establiments industrials, s’ha determinat l’ocupació del mateix (P), obtinguda a partir de l’equació 4, utilitzada quan el nombre de persones en plantilla és inferior a 100.

S’ha calculat una plantilla de 25 a 30 persones.

\[
P = 1,1 \cdot p
\]

(Eq.4)

\[
P = 1,1 \cdot 30 = 33
\]

Essent:

P: ocupació de l’establiment industrial.

p: número de persones que ocupa el sector d’incendis. (S’estima una plantilla de 25 a 30 persones).
C.3.6.2. Condicions d’evacuació

L’evacuació de l’establiment industrial reconegut amb una configuració del tipus C, un nivell de risc intrínsec baix i amb una ocupació superior a 25 persones, haurà de satisfet les següents condicions:

- Número de sortides en el recorregut d’evacuació del sector d’incendi: com a mínim una sortida d’evacuació per recorregut.

- Distància d’evacuació: si el recorregut d’evacuació compta amb una sortida d’evacuació, la seva longitud haurà de ser igual o inferior a 35 metres. En canvi, si el recorregut disposa de dos sortides alternatives d’evacuació, ambdós recorreguts podran tenir una distància de 50 metres.

Per a l’anàlisi de l’evacuació d’un edifici es considerarà com a origen d’evacuació tot punt ocupable. Malgrat tot, en tot recinte que no sigui de densitat elevada i la superfície del qual sigui inferior a 50 m², l’origen d’evacuació es pot considerar situat a la porta del recinte.

La longitud dels recorreguts d’evacuació per passadissos, escales i rampes, es mesuraran sobre l’eix.

L’edifici 1 disposa d’una escala que serà utilitzada per l’evacuació descedent, donat que no supera una altura d’evacuació de 20m no serà necessari protegir-la. A més, una escala de les seves característiques (de 1,2 m d’amplada), permet l’evacuació descedent de 192 persones, valor que supera l’ocupació real de l’establiment. Cal especificar que l’escala compleix també amb les condicions de disseny del DB-SUA-1.

L’amplada de les portes i passos dels recorreguts d’evacuació hauran de ser iguals o superiors a 0,8m, mentre que l’amplada dels passadissos i rampes d’aquests, hauran de ser iguals o superiors a 1m.
C.3.6.3. Espai exterior segur

Les sortides de l’edifici hauran d’assegurar un espai al seu voltant que sigui segur. Aquest espai romandrà lliure en tot moment per poder afrontar qualsevol possible emergència.

La superfície i el radi de l’esmentada superfície estan definides per les equacions 5 i 6.

\[
S > 0,5 \cdot P = 0,5 \cdot 30 = 15 \text{ m}^2 \tag{Eq.5}
\]

\[
R < 0,1 \cdot P = 0,1 \cdot 30 = 0,3 \text{ m} \tag{Eq.6}
\]

Essent:

\(S\): Superfície de sortida de l’edifici.

\(R\): Radi de la superfície lliure.

C.3.6.4. Senyalització de les sortides d’ús habitual o emergència per l’evacuació

Es procedirà a la senyalització de totes les sortides d’ús habitual o d’emergència de l’establiment industrial, i s’indicarà la seva direcció quan no siguin fàcilment localitzables. La senyalització de les sortides es durà a terme tenint en compte el Reglament de senyalització dels centres de treball, aprovat per el Real Decret 485/1997, del 14 d’abril, sobre disposicions mínimes en matèria de senyalització de seguretat i salut en el treball.

S’ubicaran senyals de sortida d’ús habitual en les sortides habituals de l’establiment industrial, i en els recintes ubicats a l’interior d’aquest amb una superfície major als 50m².

Es col·locaran senyals de sortida d’emergència únicament en les sortides amb ús exclusiu de sortida d’emergència.

Es disposarà de senyals indicatives de direcció dels recorreguts, visibles des de tot origen dels recorreguts d’evacuació, des dels que no es percebi directament les sortides o les seves senyals indicatives. En els punts dels recorreguts d’evacuació en els que existeixin diferents alternatives que puguin induir a l’error, també es disposarà d’aquestes senyals, de forma que indiquin clarament l’alternativa correcte. Sobretot en casos de cruïlles, bifurcaciones de passadissos.

A continuació s’adjunta la figura 2 i 3 amb els pictogrames habitualment utilitzats en aquesta tipologia de senyalització.

C.3.7. Ventilació i eliminació de fums i gasos de combustió

L’eliminació dels fums i gasos de la combustió, i amb ells el calor generat, en els espais ocupats per sectors d’incendi de l’establiment industrial, es durà a terme de forma natural. Això es degut a que el sector d’incendi està situat en planta sobre rasant i el nivell de risc intrínsec és baix.

C.3.8. Emmagatzematge

L’emmagatzematge dels materials en el magatzem de la nau industrial es durà a terme amb l’ajuda de prestatges metàl·lics. Aquest sistema d’emmagatzematge es classifica com independent i manual, ja que els prestatges no estaran units a l’estructura de la nau i el transport i elevació dels productes es farà amb l’ajuda de personal i carretons elevadors.

El magatzem de la nau industrial es dissenyarà segons el Reglament de Seguretat Contra Incendis en els Establiments Industrials i haurà de complir els següents requisits:

- El material dels prestatges metàl·lics haurà de ser d’acer de la classe A1 (M0).
- Els revestiments interiors pintats o zincats amb espessors inferiors a 100μm dels magatzems hauran de ser de la classe Bs3d0 (M1).
- En la estructura principal dels sistemes d’emmagatzematge format per estanteries metàl·liques sobre rasant, no s’exigeix capacitat portant independentment de si es disposa de ruixadors automàtics d’aigua.
- Les dimensions dels prestatges no tindran més limitacions que les corresponents al sistema d’emmagatzematge dissenyat.
- Els passos longitudinals i els recorreguts d’evacuació hauran de tenir una amplada mínima de 1 metre.
- Els passos transversals entre prestatges hauran de tenir una amplada màxima de 10 m.
C.3.9. Instal·lacions tècniques de serveis

Les instal·lacions dels serveis elèctrics, les instal·lacions d’energia mecànica (inclòent generació, emmagatzematge, distribució, aparells o equips de consum d’aire comprimit), instal·lacions de moviment de materials, manutenció i elevadors, o si en un futur es decideix comptar amb instal·lacions tèrmiques. Aquestes hauran de complir amb els requisits establerts per els reglaments vigents que específicament els afecten.

En el cas que els cables elèctric alimentin a equips que hagin de continuar en funcionament durant un incendi, aquests estaran protegits per mantenir el corrent elèctric durant el temps exigible a la estructura de la nau.
C.4. REQUISITS DE LES INSTAL·LACIONS DE PROTECCIÓ CONTRA INCENDIS

Tots els aparells, equips, sistemes i components de la instal·lació de protecció contra incendis de la fàbrica, així com el disseny, l’execució, la posta en funcionament i el manteniment de la instal·lació, compliran el que dicta el Reglament de les Instal·lacions de Protecció Contra Incendis.

Per aquest motiu, les empreses instal·ladores o encarregades del seu manteniment, hauran de respectar els requisits imposats per la normativa del reglament esmentat.

C.4.1. Sistema automàtic de detecció d’incendis

No és necessària la instal·lació d’un sistema automàtic de detecció d’incendis en els establiments industrials tipus C amb un nivell de risc intrínsec baix, segons l’annex III del Reglament de Seguretat Contra Incendis en els Establiments industrials.

C.4.2. Sistemes manuals d’alarma d’incendis

S’instal·laran sistemes manuals d’alarma d’incendis ja que la superfície total construïda de l’establiment industrial és superior als 1000 m².

Es situarà un polsador al costat de cada sortida d’evacuació del sector d’incendi i la distància màxima a recórrer des de qualsevol punt fins a un d’aquests no haurà de superar els 25m.

Els polsadors estaran protegits per evitar falses alarmes, amb una protecció fàcil de trencar i amb la indicació de “Trencar en cas d’incendi”, complint els requisits de les normes UNE.

C.4.3. Sistemes de comunicació d’alarma

No serà necessària la instal·lació de sistemes de comunicació d’alarma, ja que la superfície construïda del sector d’incendi de l’establiment industrial és inferior a 10.000 m².
C.4.4. Sistemes d’hidrants externs

Segons la taula 8, adjunta a continuació, explícita en el RSCIEI (taula 3.1), no és necessari que el sector d’incendi de la fàbrica disposi de sistemes d’hidrants.

Taula 8. Hidrants externs en funció de la configuració de la zona, superfície construïda i el nivell de risc intrínsec.

<table>
<thead>
<tr>
<th>Configuració de la zona d’incendi</th>
<th>Superfície del sector o àrea de incendi (m²)</th>
<th>Risc intrínsec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baix</td>
<td>Mig</td>
</tr>
<tr>
<td>A</td>
<td>≥300</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>≥1000</td>
<td>SÍ*</td>
</tr>
<tr>
<td>B</td>
<td>≥1000</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>≥2500</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>≥3500</td>
<td>SÍ</td>
</tr>
<tr>
<td>C</td>
<td>≥2000</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>≥3500</td>
<td>NO</td>
</tr>
<tr>
<td>D o E</td>
<td>≥5000</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>≥15000</td>
<td>SÍ</td>
</tr>
</tbody>
</table>

* No es necessari quan el risc és baix 1.

C.4.5. Extintors d’incendi

S’instal·laran extintors d’incendi portàtils en tot l’establiment industrial. La tipologia d’aquests depèn principalment del tipus de foc a extingir.

Segons la norma UNE-EN:1994/A1:2005, que classifica els tipus de foc, el foc produït per sòlids (com fusta, papers, plàstics, etc.), materials predominants en la zona d’oficines, es classifica del tipus A (Sòlids).

En canvi, el foc produït per ferritges diminutes o pols de metalls (com l’alumini, titani, etc..), es classifica com a tipus D (Metalls especials). A priori, es considera que no es generaran residus d’aquestes dimensions, i la majoria de metalls que es tractaran en el procés productiu no estan classificats com a metalls especials. Tanmateix, es considera adient disposar d’aquesta tipologia d’extintor per millorar la seguretat de protecció contra el foc en cas d’incendi.
Així doncs, es disposarà de dos tipus d’extintors d’incendi, els quals s’escolliran d’acord amb la taula 9, adjunta a continuació, extreta del Real Decret 1942/1993, del 5 de novembre. (taula I-1).

Taula 9. Agents extintors i la seva adequació a les diferents classes de foc.

<table>
<thead>
<tr>
<th>Agent extintor</th>
<th>Classe de foc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (Sòlids)</td>
</tr>
<tr>
<td>Aigua polvoritzada</td>
<td>(2) xxx</td>
</tr>
<tr>
<td>Aigua a xorro</td>
<td>(2) xx</td>
</tr>
<tr>
<td>Pols BC (convencional)</td>
<td>xx</td>
</tr>
<tr>
<td>Pols ABC (polivalent)</td>
<td>xx</td>
</tr>
<tr>
<td>Pols específica per metalls</td>
<td></td>
</tr>
<tr>
<td>Espuma física</td>
<td>(2) xx</td>
</tr>
<tr>
<td>Anhídrid carbònic</td>
<td>(1) x</td>
</tr>
<tr>
<td>Hidrocarburs halogenats</td>
<td>(1) x</td>
</tr>
</tbody>
</table>

Essent:
- xxx Molt adequat
- xx Adequat
- x Acceptable

(1),(2) notes visibles en el Real Decret 1942/1993

Es disposarà d’extintors de 6kg de pols química seca polivalent ABC, ja que aquests són adequats per a focs tipus A, i a més, són acceptables com agents extintors en la presència de tensió elèctrica (ideals en la zona d’oficines).

També es creu necessari disposar d’extintors de 6kg de pols específica per metalls, adequats per a focs tipus D, per millorar la seguretat de l’establiment, aquest estaràn situats únicament a la zona de taller.

S’ha recomanat que els extintors siguin de 6 kg per facilitar la maniobrabilitat dels mateixos.

L’emplaçament dels extintors portàtils d’incendi permetrà que siguin fàcilment visibles i accessibles, estaràn situats pròxims a els punts on s’estimi major probabilitat d’iniciar-se l’incendi, i la seva distribució serà tal, que el recorregut màxim horitzontal, des de qualsevol punt del sector d’incendi fins l’extintor no superi 15 m.
Sempre que sigui possible s’hauran de situar en els paraments, de tal forma que l’extrem superior de l’extintor estigui a menys de 1,7m del nivell del terra.

El nombre mínim d’extintors de pols sec polivalent ABC en l’establiment industrial serà de 5 unitats, ja que es requereix d’un extintor en una superfície de 600 m² i un extintor més per cada 200 m² en excés de superfície.

L’eficàcia mínima de l’agent extintor serà 21A-113B, valors indicats per la Taula 3.1 i 3.2 de l’annex III del Reglament de Seguretat Contra Incendis en Establiments Industrials.

C.4.6. Boques d’incendi equipades (BIE)

Segons el RSCIEI no és obligatòria la instal·lació de boques d’incendi equipades ja que l’establiment industrial és del tipus C amb un nivell de risc intrínsec baix.

C.4.7. Sistemes de columna seca

No serà necessària la instal·lació de sistemes de columna seca en l’establiment industrial a rehabilitar, ja que té un nivell de risc intrínsec baix.

C.4.8. Sistemes de ruixadors automàtics d’aigua

Com succeeix en l’apartat anterior, no serà necessària la instal·lació de sistemes ruixadors automàtics d’aigua en l’establiment industrial a rehabilitar, ja que té un nivell de risc intrínsec baix.

C.4.9. Sistemes d’aigua polvoritzada, d’espuma física i d’extinció per pols

No serà necessària la instal·lació de cap d’aquests sistemes de protecció d’incendis, segons l’activitat que es desenvolupa a l’interior de l’establiment industrial.

C.4.10. Sistemes d’abasteixament d’aigua

Els sistemes d’abasteixament d’aigua són necessaris quan l’activitat de l’establiment ho precisa d’acord amb l’article 1 del RSCIEI o per donar servei, en les condicions de caudal, pressió i reserva adequats, a un o varis sistemes de lluita contra incendis, tals com:
- Xarxa de boques d’incendi equipades (BIE).
- Xarxa d’hidrants exteriors.
- Sistemes de ruixadors automàtiques.
- Sistemes d’aigua polvoritzada.
- Sistemes d’espuma física.

Com que segons els apartats anteriors d’aquest annex (C.5.4, C.5.6, C.5.8 i C.5.9), no serà necessari instal·lar cap d’aquests sistemes de protecció esmentats, ni l’activitat ho precisa, tampoc serà necessària la instal·lació de sistemes d’abasteixament d’aigua.

C.4.11. Sistemes d’enllumenat d’emergència

L’establiment industrial comptarà amb la instal·lació d’enllumenat d’emergència en les vies d’evacuació del sector d’incendi ja que l’ocupació de l’establiment industrial és superior a 25 persones. Aquest haurà de complir els següents requisits d’instal·lació.

- Serà fix, provént de font pròpia d’energia i entrarà automàticament en funcionament al produir-se un fallo del 70 per cent de la seva tensió nominal de servei.
- Mantindrà les condicions de servei durant una hora, com a mínim, des de el moment en que es produexi el fallo.
- Proporcionarà una luminància de un lx, com a mínim, en el nivell del terra en els recorreguts d’evacuació.
- La luminància serà, com a mínim, de cinc lx en els espais on estiguen instal·lats quadres o comandaments de instal·lacions tècniques.
- Uniformitat de luminància. Haurà de tenir un quocient entre la luminància màxima i mínima, menor de 40. A més, els valors mínims de luminància horitzontal que s’estableixen, s’assoliran als 5s el 50 per cent del nivell i el 100 per cent, als 60 s.
- Els nivells d’il·luminació establerts han d’obtenir-se considerant nuls el factor de reflexió de parets i sostres, i contemplant un factor de manteniment que comprengui la reducció del rendiment lumínic degut a l’envelliment de les làmpades i brutícia de les llums.

A més a més, haurà de complir les condicions d’ubicació següents:

- Alçada de col·locació igual o superior a 2 m sobre el nivell del terra.
- Com a criteri general s’ubicaran a cada porta de sortida i per destacar els equips de seguretat i l’existència d’algun perill potencial. Se’n garantirà la disposició en: portes existents en els
recorreguts d’evacuació, a les escales, en els canvis de direcció i en les interseccions entre passadissos.

C.4.12. Senyalització dels mitjans de protecció

Es procedirà a la senyalització de tots els mitjans de protecció contra incendis d’utilització manual emprats en l’establiment industrial. Es disposarà de senyals en la ubicació dels mitjans de protecció per facilitar la seva identificació. Per altra banda, també es disposarà de senyals que indiquin la localització dels mitjans de protecció, els quals no siguin fàcilment localitzables des d’algun punt de la zona protegida. La senyalització dels mitjans de protecció es durà a terme tenint en compte el Reglament de senyalització dels centres de treball, aprovat per el Real Decret 485/1997, del 14 d’abril, sobre disposicions mínimes en matèria de senyalització de seguretat i salut en el treball.

Les senyals dels mitjans de protecció contra incendis hauran de ser rectangulars o quadrades, amb el pictograma blanc, sobre el fons vermell. El vermell haurà de cobrir com a mínim el 50% de la senyal. El seu disseny serà d’acord amb l’establert a la norma UNE 23033-1.

Les dimensió de les senyals d’acord amb la normativa de disseny esmentada i d’acord amb la NTP 35, serà com a mínim de 594x594 mm, valor mínim de disseny quan la distància d’observació màxima està compresa entre 20 i 30 m.

Sempre que es vulgui indicar la direcció d’ubicació d’algún element de protecció contra incendis, es col·locarà la senyal d’identificació del mateix combinada amb la senyal de direcció que cal seguir per trobar algun d’aquests. Aquesta senyal de direcció està constituïda per una fletxa que pot tenir diferents orientacions, però en cap cas canviarà el seu significat.

A continuació, s’adjunta la figura 4 amb els pictogrames habitualment utilitzats en aquesta tipologia de senyalització.
Cal especificar, que també està permès que la pròpia senyal d’identificació de l’element porti incorporada una fletxa, a la seva part inferior, per identificar la seva ubicació. Aquesta tipologia de senyals faciliten la comprensió en un moment de tensió, ja que es disminueix el nombre de senyals a interpretar i redueixen també el cost de senyalització. Tanmateix, com que la fàbrica és de petites dimensions, no caldrà utilitzar aquesta tipologia de senyals.

Com que l’establiment industrial disposarà de dos tipologies d’extintors (pols química seca (PQS) per classe ABC i pols específica per a metalls), es recomana que la senyal d’extintor identifiqui també la tipologia d’extintor mitjançant una llegenda a la seva part inferior, amb la finalitat d’augmentar la rapidesa d’identificació de l’extintor a utilitzar i es disminueixi així el temps d’actuació contra el foc en cas d’incendi. Es pot observar la tipologia d’aquestes senyals recomanades a la figura 5.

Cal esmentar, que en cas d’instal·lar altres mesures de protecció contra incendis per millorar la seguretat de l’establiment, aquestes estaran acompanyades també de la seva respectiva senyalització reglamentària.
C.5. INSPECCIONS I REVISIONS PERIÒDIQUES DE LA INSTAL·LACIÓ CONTRA INCENDIS

C.5.1. Inspeccions

Amb independència de la funció inspectora assignada a la Administració pública competent en matèria de indústria de la comunitat autònoma i les operacions de manteniment previstes en el Reglament de instal·lacions de protecció contra incendis, els titulars de l’establiment industrial hauran de sol·licitar a un organisme de control facultat la inspecció de les seves instal·lacions.

En aquestes inspeccions es comprovarà que no s’hagin produït canvis en l’activitat ni ampliacions, que es manté la tipologia de l’establiment, la sectorització i el seu nivell de risc intrínsec i finalment, que els sistemes de protecció contra incendis continuen estan els exigits i compleixen el seu manteniment.

C.5.2. Revisions periòdiques

Es realitzarà una inspecció periòdica com a mínim cada cinc anys, sempre i quan es mantingui el nivell de risc intrínsec baix de l’establiment industrial.

D’aquestes inspeccions s’aixecarà una acte, firmada pel tècnic de l’organisme de control i pel titular o tècnic de l’establiment industrial, els quals conservaran una copia.

C.5.3. Manteniment de la instal·lació de protecció contra incendis

El manteniment i reparació dels aparells, equips, sistemes i els seus components empleats en la protecció contra incendis hauran de ser realitzats per empreses amb personal autoritzat.

Els sistemes de protecció contra incendis previstos en l’establiment industrial són sistemes manuals d’alarma d’incendis i extintors d’incendi. Aquests seguiran el programa de manteniment mínim, imposat per el Real Decret 1942/1993, del 5 de novembre.

El programa de manteniment mínim dels medis materials de lluita contra incendis seleccionats en l’establiment industrial a rehabilitar estarà indicat en les taules 10 i 11, adjuntes a continuació, i extretes de l’apèndix II del Real Decret 1942/1993, del 5 de novembre. (taula 1 i 2).
Taula 10. Les operacions a realitzar pel personal del titular de la instal·lació contra incendis *.

<table>
<thead>
<tr>
<th>Equip o sistema</th>
<th>Cada tres mesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema manual d’alarma d’incendis</td>
<td>Comprovació de funcionament de la instal·lació (amb cada font de subministrament).</td>
</tr>
<tr>
<td></td>
<td>Manteniment d’acumuladors (neteja de borns, reposició d’aigua destil·lada, etc.).</td>
</tr>
<tr>
<td>Extintors d’incendi</td>
<td>Comprovació de l’accessibilitat, senyalització, bon estat aparent de conservació.</td>
</tr>
<tr>
<td></td>
<td>Inspecció ocular d’assegurances, precintes, inscripcions, etc.</td>
</tr>
<tr>
<td></td>
<td>Comprovació del pes i pressió en el seu cas.</td>
</tr>
<tr>
<td></td>
<td>Inspecció ocular de l’estat extern de les parts mecàniques (broquet, vàlvula, mànega, etc.).</td>
</tr>
</tbody>
</table>

Taula 11. Operacions a realitzar pel personal especialitzat del fabricant o instal·lador dels equips contra incendis *.

<table>
<thead>
<tr>
<th>Equip o sistema</th>
<th>Cada any</th>
<th>Cada cinc anys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema manual d’alarma d’incendis</td>
<td>Verificació integral de la instal·lació.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Neteja dels seus components.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verificació de les unions roscades o soldades.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prova final de la instal·lació en cada font de subministrament elèctric.</td>
<td></td>
</tr>
<tr>
<td>Extintors d’incendi</td>
<td>Verificació de l’estat de càrrega (pes i pressió) de l’extintor i de la botella de gas impulsor (si existeix), estat de les parts mecàniques (boquilla, vàlvules, mànega, etc.).</td>
<td>A partir de la data de timbrat de l’extintor (i per tres vegades) es retimbrarà l’extintor d’acord amb la ITC-MIE AP.5. del Reglament d’aparells a pressió sobre extintors d’incendis (“Butlletí Oficial de l’Estat”, número 149, de 23 de juny de 1982).</td>
</tr>
<tr>
<td></td>
<td>Comprovació de la pressió d’impulsió de l’agent extintor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estat de la mànega, boquilla o llança, vàlvules i parts mecàniques.</td>
<td></td>
</tr>
</tbody>
</table>

*S’ha representat la part de la taula 1 i 2 amb únicament els sistemes de protecció escollits en l’establiment industrial a rehabilitar.
C.6. SOL·LICITUD D’EXEPCIÓ

D’acord amb l’article 1 del RSCIEI, quan en la implantació d’un establiment industrial que es realitzi en naus de polígons industrials, amb plantejaments urbanístics aprovats abans de l’entrada en vigor d’aquest reglament o en algun edifici existent, que per les seves característiques no pugui complir alguna de les disposicions reglamentàries, el titular de l’establiment haurà de presentar una sol·licitud d’excepció i justificar-la mitjançant tota la documentació tècnica necessària on s’hi especifiquin les mesures alternatives adoptades.

Durant el càlcul del nivell de risc intrínsec de la fàbrica i del magatzem B, s’ha realitzat una aproximació de la densitat de càrrega de foc d’emmagatzematge en les zones de magatzem amb la d’una activitat de producció i venta de mecanitzat de precisió (raons explícites en l’apartat C.2.2 i C.2.3 d’aquest Annex). Raó per la qual, abans de l’aplicació d’aquest document, s’informarà d’aquesta aproximació a l’òrgan competent de la comunitat autònoma i es realitzarà una sol·licitud d’excepció presentant la justificació de l’aproximació o alternativa executada en cas que sigui necessari.

En cas que l’òrgan competent de la generalitat de Catalunya accepti la proposta d’aproximació o aprovi la sol·licitud d’excepció presentada, es podrà procedir a l’aplicació d’aquest projecte. En cas contrari, es realitzaran els canvis pertinents proposats pel mateix òrgan competent.
C.7. NORMATIVA D’APLICACIÓ

- Reglament de Seguretat Contra Incendis en Establiments Industrial, aprovat en el Real Decret 2267/2004, de 3 de desembre.
- Correcció d’errades del Real Decret 2267/2004 de data 05/03/2005, BOE nº55.
- INT/322/2012, d’11 d’octubre, per el qual s’aproven les instruccions tècniques complementàries del Reglament de seguretat contra incendis en establiments industrials (RSCIEI).
- INT/324/2012, d’11 d’octubre, per el qual s’aproven les instruccions tècniques complementàries genèriques de prevenció i seguretat en matèria d’incendis en establiments, activitats, infraestructures i edificis.
- Reglament d’Instal·lacions de Protecció Contra Incendis, aprovat per el Real Decret 1942/1993, del 5 de novembre, sobre el manteniment mínim dels medis materials de lluita contra incendis.
- Documento Básico de Seguridad en caso de Incendio (DS-SI), del Código Técnico de la edificación (CTE), aprovado per el Real Decreto 314/2006, de 17 de març.
- Classificació de los productes de construcció y de los elements constructius en funció de sus propiedades de reacció y resistència frente al fuego, aprovat per el Real Decret 842/2013, de 31 d’octubre.
- Reglamento de la Infraestructura para la Calidad y la Seguridad Industrial, aprovat per el Real Decret 220/1995, de 28 de dicembre.
- Real Decreto 485/1997, de 14 de abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo.
- NTP 35. Señalización de los equipos de protección contra incendios. Aprobada per el ministerio de treball i asuntos socials i el instituto nacional de seguretat i higiene en el treball.
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIA D’ANGLÈS.

- ANNEX C. INSTAL·LACIONS CONTRA INCENDIS

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
ANNEX D

ACCIONS EN L’EDIFICACIÓ
SUMARI. ACCIONS EN L’EDIFICACIÓ

D.1. INTRODUCCIÓ ..3
D.2. OBJECTE ..3
D.3. ESPECIFICACIONS ...3
D.4. TANCAMENT DE COBERTA ...4
 D.4.1. Sobrecàrrega d’ús ...4
 D.4.2. Càrrega de vent ..5
 D.4.2.1. Pressió dinàmica ..5
 D.4.2.2. Coeficient d’exposició ..6
 D.4.2.3. Coeficient de pressió ..8
 D.4.2.4. Sobrecàrrega de vent màxima ..14
 D.4.3. Càrrega de neu ..15
 D.4.3.1. Càrrega de neu sobre un terreny horitzontal15
 D.4.3.2. Coeficient de forma ..16
 D.4.3.3. Acumulació de neu ...18
 D.4.3.4. Càrrega de neu més desfavorable ..18
 D.4.4. Accions tèrmiques ...18
 D.4.4.1. Variació de temperatura màxima ...22
 D.4.5. Accions accidentals ..22
 D.4.5.1. Sisme ..22
 D.4.5.2. Càrrega de foc ..22
 D.4.5.3. Impacte ..23
D.5. TANCAMENT DE FAÇANA DE LA DENT DE SERRA24
 D.5.1. Sobrecàrrega d’ús ...24
 D.5.2. Càrrega de vent ..24
 D.5.2.1. Direcció del vent (135 ≤ θ ≤ 225º), Tramuntana i Mestral25
 D.5.2.2. Direcció del vent (-45º ≤ θ ≤ 45º), Xaloc i Migjorn25
 D.5.2.3. Direcció del vent de 45º ≤ θ ≤ 135º, Garbí i Ponent26
 D.5.2.4. Direcció del vent de 225º ≤ θ ≤ 315º, Gregal i Llevant26
 D.5.2.5. Sobrecàrrega de vent màxima ..27
 D.5.3. Càrrega de neu ..28
 D.5.4. Accions tèrmiques ...28
 D.5.5. Accions accidentals ..28
 D.5.5.1. Sisme ..28
 D.5.5.2. Càrrega de foc ..29
D.5.5.3. Impacte ...30

D.6. REVESTIMENT DEL PAVIMENT ..31

D.6.1. Sobrecàrrega d’ús ...31
D.6.2. Càrrega de vent ...32
D.6.3. Càrrega de neu ...32
D.6.4. Accions accidentals ..32
 D.6.4.1. Sisme ...32
 D.6.4.2. Càrrega de foc ...32
 D.6.4.3. Impacte ...32
D.1. INTRODUCCIÓ

Un dels aspectes fonamentals a tenir en compte alhora d’escollir els elements constructius que constituiran un edifici són les accions i càrregues en què estarà sotmès. Aquests hauran de ser capaços de suportar les càrregues que se’ls hi exigeix amb la finalitat de garantir la seguretat estructural de l’edifici.

El compliment d’aquest document consisteix en assegurar que l’edifici té un comportament estructural adequat davant les accions e influències previsibles a les que pugui estar sotmès durant la seva construcció o ús previst. Per satisfacer aquest objectiu, els elements estructurals a rehabilitar es fabricaran, projectaran, construiran i es mantindran de forma que compleixi amb una fiabilitat adequada a les exigències bàsiques que s’estableixin en aquest document.

El document, també especifica els paràmetres objectius i procediments de compliment que asseguren la satisfacció de les exigències bàsiques i la superació dels nivells mínims de qualitat propis del requisit bàsic de seguretat estructural.

La resistència i estabilitat dels elements constructius utilitzats en la rehabilitació seran les adequades per a que no es generin riscos indebuts, de forma que es mantingui la resistència i la estabilitat davant les accions e influències previsibles durant les fases de construcció i ús previst de l’edifici.

D.2. OBJECTE

En aquest annex es pretén determinant i quantificar les accions e influències previsibles a les que puguin estar sotmesos els elements estructurals a rehabilitar.

D.3. ESPECIFICACIONS

En aquest annex únicament s’han determinat i quantificat les accions sobre els tancaments de coberta, el tancament de façana de la dent de serra i el revestiment del paviment interior de la nau industrial.
D.4. TANCAMENT DE COBERTA

D.4.1. Sobrecàrrega d’ús

La sobrecàrrega d’ús és el pes de tot el que pot gravitar sobre l’edifici, per raó del seu ús.

Per el general, els valors de sobrecarrega poden determinar-se mitjançant una càrrega repartida uniformement. Els valors característics s’adoptaran de la taula 1, adjunta a continuació i explícita en el DB SE-AE (Taula 3.1).

Taula 1. Valors característics de la sobrecàrrega d’ús.

<table>
<thead>
<tr>
<th>Categoría de uso</th>
<th>Subcategorías de uso</th>
<th>Carga uniforme [kN/m²]</th>
<th>Carga concentrada [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Zonas residenciales</td>
<td>A1 Viviendas y zonas de habitaciones en, hospitales y hoteles</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A2 Trasteros</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>B Zonas administrativas</td>
<td>C1 Zonas con mesas y sillas</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C2 Zonas con asientos fijos</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C3 Zonas sin obstáculos que impiden el libre movimiento de las personas como vestíbulos de edificios públicos, administrativos, hoteles; salas de exposición en museos; etc.</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C4 Zonas destinadas a gimnasio u actividades físicas</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>C5 Zonas de aglomeración (salas de conciertos, estadios, etc)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>C Zonas de acceso al público (con la excepción de las superficies pertenecientes a las categorías A, B, y D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D Zonas comerciales</td>
<td>D1 Locales comerciales</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>D2 Supermercados, hipermercados o grandes superficies</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>E Zonas de tráfico y de aparcamiento para vehículos ligerones (peso total < 30 kN)</td>
<td></td>
<td>2</td>
<td>20 (1)</td>
</tr>
<tr>
<td>F Cubiertas transitorias accesibles solo privadamente (3)</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>G Cubiertas accesibles únicamente para conservación (3)</td>
<td>G1 Cubiertas con inclinación inferior a 20º (4) (4)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G2 Cubiertas con inclinación superior a 40º (6)</td>
<td>0,4 (6)</td>
<td>1</td>
</tr>
</tbody>
</table>

La coberta de la nau actual és de fibrociment i es considerada lleugera, ja que el seu pes propi no supera 1kN/m².

Aquesta no serà transitable, ha de ser accessible per permetre la seva conservació. El valor de sobrecàrrega d’ús uniforme serà de 0,4 kN/m², mentre que la càrrega concentrada serà de 1kN.
D.4.2. Càrrega de vent

L’acció del vent, en general una força perpendicular a cada punt exposat, o pressió estàtica, es pot calcular mitjançant l’equació 1.

Per calcular la càrrega de vent s’ha obviat la presència de l’edifici 1, ja que la presència del mateix no influència sobre la càrrega màxima de vent que tindran els tancaments.

\[q_e = q_b \times c_e \times c_p \]
\[\text{(Eq.1)} \]

Essent:

\[q_e \]: Càrrega del vent
\[q_b \]: Pressió dinàmica
\[c_e \]: Coeficient d’exposició
\[c_p \]: Coeficient de pressió

D.4.2.1. Pressió dinàmica

El valor del paràmetre de la pressió dinàmica es sol aproximar a 0,5kN/m\(^2\) en qualsevol regió del territori espanyol. Tanmateix, si es vol ser més precis, es pot calcular mitjançant l’equació 2, amb la densitat de l’aire (\(\delta\)) i el valor bàsic de la velocitat del vent corresponent a la regió on està ubicat l’edifici.

\[q_b = 0,5 \cdot \delta \cdot V_b^2 \]
\[\text{(Eq.2)} \]

\[q_b = 0,5 \cdot (1,25) \cdot (29)^2 = 525,625 \cdot \frac{kg}{m \cdot s^2} \cdot \frac{m}{m} = 525,625 \cdot \frac{N}{m^2} = 0,52 \cdot \frac{kN}{m^2} \]

El valor de pressió dinàmica obtingut és d’una magnitud lleugerament superior a l’utilitzat de forma general, essent més desfavorable. Per aquest motiu, en el càlcul de la càrrega de vent s’aplicarà el valor de pressió dinàmica obtingut mitjançant l’equació, essent de 0,52kN/m\(^2\).

El valor de densitat de l’aire s’ha extret del DB SE-AE i aquest és donat com a valor general per tota la regió espanyola, excepte quan l’emplaçament és molt proper al mar. En canvi, el valor bàsic de la velocitat del vent s’ha extret de la figura 1, explícita en el DB SE-AE, adjunta a continuació.
D.4.2.2. Coeficient d’exposició

El coeficient d’exposició té en compte els efectes de les turbulències originades pel relleu i la topografia del terreny. El seu valor es pot prendre de la taula 2, adjunta a continuació, essent l’altura del punt considerat la mesura respecte la rasant mitja de la façana a sobrevent.

Taula 2. Valors del coeficient d’exposició en funció de l’altura de l’edificació

<table>
<thead>
<tr>
<th>Grado de aspereza del entorno</th>
<th>Altura del punto considerado (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>I Borde del mar o de un lago, con una superficie de agua en la dirección del viento de al menos 5 km de longitud</td>
<td>2,4</td>
</tr>
<tr>
<td>II Terreno rural llano sin obstáculos ni arbolado de importancia</td>
<td>2,1</td>
</tr>
<tr>
<td>III Zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas</td>
<td>1,6</td>
</tr>
<tr>
<td>IV Zona urbana en general, industrial o forestal</td>
<td>1,3</td>
</tr>
<tr>
<td>V Centro de negocio de grandes ciudades, con profusión de edificios en altura</td>
<td>1,2</td>
</tr>
</tbody>
</table>

L’edifici té una alçada de 7,4 m, excepte en la seva façana oest, on l’alçada és de 11,4 metres. El coeficient d’exposició en aquests punts es poden obtenir interpolant els valors remarcats de la taula 2. Tanmateix, per ser més precisos s’utilitzaran les expressions que adjunta el DB SE-AE per altures no majors a 200 m.
Les expressions per altures sobre el terreny \(z \), no majors a 200 m, són les equacions 3 i 4, adjuntes a continuació.

\[
c_{e} = F \cdot (F + 7k) \tag{Eq.3}
\]

\[
F = k \cdot \ln\left(\frac{\text{max}(z, Z)}{L}\right) \tag{Eq.4}
\]

Els valors de \(k, z \) i \(L \) són paràmetres característics de l’entorn i s’obtenen a partir de la taula 3, adjunta a continuació. La taula X s’ha extret del DB SE-AE.

Taula 3. Coeficients per al tipus d’entorn.

<table>
<thead>
<tr>
<th>Grado de aspereza del entorno</th>
<th>(k)</th>
<th>(L) (m)</th>
<th>(Z) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Borde del mar o de un lago, con una superficie de agua en la dirección del viento de al menos 5 km de longitud</td>
<td>0,156</td>
<td>0,003</td>
<td>1,0</td>
</tr>
<tr>
<td>II Terreno rural llano sin obstáculos ni arbolado de importancia</td>
<td>0,17</td>
<td>0,01</td>
<td>1,0</td>
</tr>
<tr>
<td>III Zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas</td>
<td>0,19</td>
<td>0,05</td>
<td>2,0</td>
</tr>
<tr>
<td>IV Zona urbana en general, industrial o forestal</td>
<td>0,22</td>
<td>0,3</td>
<td>5,0</td>
</tr>
<tr>
<td>V Centro de negocios de grandes ciudades, con profusión de edificios en altura</td>
<td>0,24</td>
<td>1,0</td>
<td>10,0</td>
</tr>
</tbody>
</table>

Llavors, aplicant les equació 3 i 4 obtenim:

\[
F_{7,4} = 0,22 \cdot \ln\left(\frac{\text{max}(7,4, 5)}{0,3}\right) = 0,705
\]

\[
c_{e 7,4} = 0,7 \cdot (0,7 + 7 \cdot 0,22) = 1,583
\]

\[
F_{11,4} = 0,22 \cdot \ln\left(\frac{\text{max}(11,4, 5)}{0,3}\right) = 0,8
\]

\[
c_{e 11,4} = 0,8 \cdot (0,8 + 7 \cdot 0,22) = 1,87
\]

Així doncs, per calcular la càrrega de vent quan aquest vingui en les façanes nord, est i sud-est, s’utilitzarà un coeficient d’exposició de 1,583. En canvi, quan aquest vingui de la direcció oest, s’utilitzarà un coeficient d’exposició de 1,87.
D.4.2.3. Coeficient de pressió

El valor del coeficient de pressió \(c_p \) depén de la direcció relativa del vent, de la forma i dimensions de l’edifici, de la posició de l’element considerat i de la seva àrea d’influència.

A priori, s’especificuen les dimensions generals de la nau industrial i de la seva coberta, en la figura 2, adjunta a continuació.

![Figura 2. Dimensions generals i forma de la nau industrial. Cotes en metres. Font. Pròpia (AutoCAD 2013)](image)

Com es pot observar a la figura 2, la coberta de la nau és del tipus de dents de serra. Segons el DB SE-AE, aquesta tipologia de coberta es pot tractar com una coberta múltiple, formada per cobertes a una aigua col·locades de forma consecutiva.

Per aquesta raó, per calcular el coeficient de pressió \(c_p \), s’ha utilitzat les taules relatives a les cobertes d’una aigua, proporcionades per el DB SE-AE. Tanmateix, s’aplica un factor corrector en algunes de les dents de serra, ja que la pressió del vent es veurà disminuïda a mesura que incideixi en les dents. No s’aplica aquest factor corrector en la primera dent de serra en contacte amb el vent.
Aquest factor corrector depèndrà de la direcció del vent i la manera que incideix sobre les dents de serra. El DB SE-AE especifica el coeficient de correcció d’una nau amb les dents de serra, però aquesta especificació és errònua (figura 3). Per aquest motiu, per tal de determinar els coeficients de correcció d’una nau amb dents de serra, s’ha seguit el criteri de la normativa EN 1991-1-4:2005+A 1:2010 (E), és poden veure els coeficients correctors en la figura 4.

Per tal de determinar el coeficient de pressió de la coberta és considerarà la possibilitat de que el vent bufi en les quatre direccions (amb un angle de variació de la direcció de 90°).

A continuació s’adjunten les 4 possibilitats de direcció del vent, amb una representació gràfica de l’establiment acotat amb les regions definides i les equacions necessàries per determinar tals regions.
Procés constructiu de la rehabilitació d’una nau industrial existent

ANNEX D

D.4.2.3.1. Direcció del vent \((135 \leq \theta \leq 225^\circ)\), Tramuntana i Mestral.

\[e = \min(b,2h) = (27,14, 2 \cdot 7,4) = 14,8 m \]

\[F_x = G_x = \frac{e}{10} = \frac{14,8}{10} = 1,48 m \]

\[F_y = \frac{e}{4} = \frac{14,8}{4} = 3,7 m \]

\[G_y = b - \frac{e}{2} = 27,14 - \frac{14,8}{2} = 25,66 m \]

\[H = d - \frac{e}{10} = 9 - \frac{14,8}{10} = 7,52 m \]

\[A(m^2) = b \times d = 27,14 \times 9,42 = 255,65 m^2 \]

\[\alpha = 17^\circ \]

Figura 5. Vistes i regions d’una coberta a una aigua
Font. DB SE-AE (Amb modificació pròpia dels errors)

Els valors dels paràmetres \(F\), \(G\) i \(H\) s’obtenen a partir de la taula 4, proporcionada pel DB-SE AE, explícita a continuació.

Taula 4. Valors dels paràmetres \(F\),\(G\) i \(A\) en cobertes a una aigua, en funció del seu pendent i la seva àrea per una direcció del vent de \(135 \leq \theta \leq 225^\circ\).

<table>
<thead>
<tr>
<th>Pendiente de la cubierta (\alpha)</th>
<th>(A) (m(^2))</th>
<th>Zona (según figura), (135^\circ \leq \theta \leq 225^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(F)</td>
</tr>
<tr>
<td>5º</td>
<td>(\geq 10)</td>
<td>-2,3</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-2,5</td>
</tr>
<tr>
<td>15º</td>
<td>(\geq 10)</td>
<td>-2,5</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-2,8</td>
</tr>
<tr>
<td>30º</td>
<td>(\geq 10)</td>
<td>-1,1</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-2,3</td>
</tr>
<tr>
<td>45º</td>
<td>(\geq 10)</td>
<td>-0,6</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-1,3</td>
</tr>
<tr>
<td>60º</td>
<td>(\geq 10)</td>
<td>-0,5</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-1,0</td>
</tr>
<tr>
<td>75º</td>
<td>(\geq 10)</td>
<td>-0,5</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-1,0</td>
</tr>
</tbody>
</table>

Donat que en la taula no estan explícits els valors de \(F\), \(G\) i \(H\) per una coberta amb una inclinació de \(17^\circ\) s’ha interpolat els valors de \(F\), \(G\) i \(H\) entre una coberta amb un pendent de \(15^\circ\) i una coberta amb un pendent de \(30^\circ\), mitjançant l’equació 5.
Procés constructiu de la rehabilitació d’una nau industrial existent

ANNEX D

\[
\frac{(\alpha_{30} - \alpha_{15})}{(X_{30} - X_{15})} = \frac{(\alpha_{30} - \alpha_{17})}{(X_{30} - X_{17})} \quad \text{(Eq. 5)}
\]

\[
\frac{(30 - 15)}{(1,1 - 2,5)} = \frac{(30 - 17)}{(1,1 - (-F))} \quad F = -2,313
\]

\[
\frac{(30 - 15)}{(0,8 - 1,3)} = \frac{(30 - 17)}{(0,8 - (-G))} \quad G = 1,23
\]

\[
\frac{(30 - 15)}{(0,8 - 0,9)} = \frac{(30 - 17)}{(0,8 - (-H))} \quad H = -0,886
\]

Així doncs, es pot concloure que els valors màxims dels coeficients de pressió quan la direcció del vent sigui de \(135 \leq \theta \leq 225^\circ\), seran de succió, i es produiran en els extrems inferiors de la coberta.

D.4.2.3.2. Direcció del vent \((-45^\circ \leq \theta \leq 45^\circ\), Xaloc i Migjorn.

\[
e = \min(b, 2h) = (27,14, 2 \cdot 7,4) = 14,8 \, m
\]

\[
F_x = G_x = \frac{e}{10} = \frac{14,8}{10} = 1,48 \, m
\]

\[
F_y = \frac{e}{4} = \frac{14,8}{4} = 3,7 \, m
\]

\[
G_y = b - \frac{e}{2} = 27,14 - \frac{14,8}{2} = 25,66 \, m
\]

\[
H = d - \frac{e}{10} = 9 - \frac{14,8}{10} = 7,52 \, m
\]

\[
A(m^2) = b \times d = 27,14 \times 9,42 = 255,65 \, m^2
\]

\(\alpha = 17^\circ\)
Els valors dels paràmetres F, G i H s’obtenen a partir de la taula 5, proporcionada pel DB-SE AE, explícita a continuació.

Taula 5. Valors dels paràmetres F,G i A en cobertes a una aigua, en funció del seu pendent i la seva àrea per una direcció del vent de $-45^\circ \leq \theta \leq 45^\circ$.

<table>
<thead>
<tr>
<th>Pendient de la cubierta α</th>
<th>A (m2)</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 10</td>
<td>-1,7</td>
<td>-1,2</td>
<td>-0,6</td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>-2,5</td>
<td>-2,0</td>
<td>-1,2</td>
<td></td>
</tr>
<tr>
<td>15°</td>
<td>0,2</td>
<td>0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 10</td>
<td>-0,9</td>
<td>-0,8</td>
<td>-0,3</td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>-2,0</td>
<td>-1,5</td>
<td>-0,3</td>
<td></td>
</tr>
<tr>
<td>30°</td>
<td>0,7</td>
<td>0,7</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>≥ 10</td>
<td>-0,5</td>
<td>-0,5</td>
<td>-0,2</td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>-1,5</td>
<td>-1,5</td>
<td>-0,2</td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>0,7</td>
<td>0,7</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>≥ 10</td>
<td>0,0</td>
<td>0,0</td>
<td>-0,0</td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>-0,0</td>
<td>0,7</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>60°</td>
<td>0,7</td>
<td>0,7</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>≥ 10</td>
<td>0,7</td>
<td>0,7</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>0,7</td>
<td>0,7</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>75°</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>≥ 10</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td></td>
</tr>
</tbody>
</table>

Donat que en la taula no estan explícits els valors de F, G i H per una coberta amb una inclinació de 17° s’ha interpolat els valors de F, G i H entre una coberta amb un pendent de 15° i una coberta amb un pendent de 30°, mitjançant l’equació 5, descrita anteriorment:

\[
\frac{(30 - 15)}{(0,5 - 0,9)} = \frac{(30 - 17)}{(0,5 - (-F))} \quad F = -0,846
\]

\[
\frac{(30 - 15)}{(0,5 - 0,8)} = \frac{(30 - 17)}{(0,5 - (-G))} \quad G = -0,76
\]

\[
\frac{(30 - 15)}{(0,2 - 0,3)} = \frac{(30 - 17)}{(0,2 - (-H))} \quad H = -0,286
\]

Així doncs, es pot concloure que els valors màxims dels coeficients de pressió quan la direcció del vent sigui de $-45^\circ \leq \theta \leq 45^\circ$, seran de succió, i es produiran en els extrems inferiors de la coberta.
D.4.2.3.3. Direcció del vent de \(45^\circ \leq \theta \leq 135^\circ\), Garbí i Ponent.

\[
e = \min(b, 2h) = (9, 2 \cdot 7,4) = 9 \text{ m}
\]

\[
F_y = G_y = \frac{e}{10} = \frac{9}{10} = 0,9 \text{ m}
\]

\[
F_x = \frac{e}{4} = \frac{9}{4} = 2,25 \text{ m}
\]

\[
G_x = b - \frac{e}{2} = 9 - \frac{9}{2} = 4,5 \text{ m}
\]

\[
H_y = \frac{e}{2} = \frac{9}{2} = 4,5 \text{ m}
\]

\[
l_y = d - H_y - F_y = 27,14 - 4,5 - 0,9 = 21,74 \text{ m}
\]

\[
A(\text{m}^2) = b \times d = 27,14 \times 9,42 = 255,65 \text{ m}^2
\]

\[\alpha = 17^\circ\]

El valors dels paràmetres \(F\), \(G\) i \(H\) s’obtenen a partir de la taula 6, proporcionada pel DB-SE AE, explícita a continuació.

Taula 6. Valors dels paràmetres \(F\),\(G\) i \(A\) en cobertes a una aigua, en funció del seu pendent i la seva àrea per una direcció del vent de \(45^\circ \leq \theta \leq 135^\circ\).

<table>
<thead>
<tr>
<th>Pendient de la cubierta (\alpha)</th>
<th>A (m(^2))</th>
<th>(F_{ref})</th>
<th>(F_{sup})</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>5(^\circ)</td>
<td>(\geq 10)</td>
<td>-2,1</td>
<td>-2,1</td>
<td>-1,8</td>
<td>-0,6</td>
<td>-0,5</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-2,4</td>
<td>-2,6</td>
<td>-2,0</td>
<td>-1,2</td>
<td>-0,5</td>
</tr>
<tr>
<td>15(^\circ)</td>
<td>(\geq 10)</td>
<td>-1,6</td>
<td>-2,4</td>
<td>-1,9</td>
<td>-0,8</td>
<td>-0,7</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-2,4</td>
<td>-2,9</td>
<td>-2,5</td>
<td>-1,2</td>
<td>-1,2</td>
</tr>
<tr>
<td>30(^\circ)</td>
<td>(\geq 10)</td>
<td>-1,3</td>
<td>-2,1</td>
<td>-1,5</td>
<td>-1,0</td>
<td>-0,8</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-2,0</td>
<td>-2,9</td>
<td>-2,0</td>
<td>-1,3</td>
<td>-1,2</td>
</tr>
<tr>
<td>45(^\circ)</td>
<td>(\geq 10)</td>
<td>-1,2</td>
<td>-1,2</td>
<td>-1,2</td>
<td>-1,0</td>
<td>-0,9</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-2,0</td>
<td>-2,0</td>
<td>-2,0</td>
<td>-1,3</td>
<td>-1,2</td>
</tr>
<tr>
<td>60(^\circ)</td>
<td>(\geq 10)</td>
<td>-1,2</td>
<td>-1,2</td>
<td>-1,2</td>
<td>-1,0</td>
<td>-0,7</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-2,0</td>
<td>-2,0</td>
<td>-2,0</td>
<td>-1,3</td>
<td>-1,2</td>
</tr>
<tr>
<td>75(^\circ)</td>
<td>(\geq 10)</td>
<td>-1,2</td>
<td>-1,2</td>
<td>-1,2</td>
<td>-1,0</td>
<td>-0,5</td>
</tr>
<tr>
<td></td>
<td>(\leq 1)</td>
<td>-2,0</td>
<td>-2,0</td>
<td>-2,0</td>
<td>-1,3</td>
<td>-0,5</td>
</tr>
</tbody>
</table>

Donat que en la taula estan explícits els valors de \(F\), \(G\), \(H\) i \(I\) per una coberta amb una inclinació de 17\(^\circ\) s’ha interpolat els valors de \(F\), \(G\) i \(H\) entre una coberta amb un pendent de 15\(^\circ\) i una coberta amb un pendent de 30\(^\circ\), mitjançant l’equació 5, descrita anteriorment.
D.4.2.3.4. Direcció del vent de $225^\circ \leq \theta \leq 315^\circ$, Gregal i Llevant.

Donat que el valor del paràmetre “e” en aquest cas, és el mateix per la direcció del vent de $45^\circ \leq \theta \leq 135^\circ$ que per la direcció de $225^\circ \leq \theta \leq 315^\circ$. Els valors dels paràmetres F_x, F_y, G_x, G_y, I_y i H_y seràn els mateixos, però ubicats de forma simètrica a la perpendicular de la direcció del vent. A continuació s’adjunta l’expressió de càlcul del valor “e” en aquest cas.

$$e = \min(b, 2h) = (9, 2 \times 11,4) = 9 \text{ m}$$

D.4.2.4. Sobre càrrega de vent màxima

Segons els resultats obtinguts, la coberta no estarà mai sotmessa a pressió. En canvi, quan bufi el vent, independentment de la direcció d’aquest, qualsevol regió de la coberta estarà sempre sotmessa a succió. El valor màxim de succió es produirà quan el vent provingui de Garbí i Ponent (Direcció del vent de $225^\circ \leq \theta \leq 315^\circ$). El valor de càrrega del vent màxima de succió serà de $-2,29 \text{ kN/m}^2$, aquest s’ha determinat aplicant l’equació 1. Càlcul adjunt a continuació.

$$q_e = q_b \times c_e \times c_p = 0,52 \times 1,87 \times (-2,36) = -2,29 \text{ kN/m}^2$$
D.4.3. Càrrega de neu

La distribució i intensitat de la càrrega de neu sobre un edifici, o en particular, sobre una coberta, depèn del clima del lloc, del tipus de precipitació, del relleu de l’entorn, de la forma de l’edifici o de la coberta, dels efectes del vent i dels intercanvis tèrmics en els paramentos exteriors.

Per determinar el valor de la càrrega de neu, per unitat de superfície en projecció horitzontal \(q_n \), pot agafar-se l’equació 6, adjunta a continuació i explícita en el DB SE-AE.

\[
q_n = \mu \cdot S_k
\]

Essent:

\(\mu \): coeficient de forma de la coberta

\(S_k \): El valor característic de la càrrega de neu sobre un terreny horitzontal

D.4.3.1. Càrrega de neu sobre un terreny horitzontal

El valor de la sobrecàrrega de neu sobre un terreny horitzontal \(S_k \), depèn de la regió on estigui ubicat l’establiment. El DB SE-AE dóna valors de la sobrecàrrega de neu en les capitals de província de les comunitats autònomes d’Espanya en la taula 3.8, anomenada taula 7 en aquest projecte, adjunta a continuació.

Taula 7. Sobrecàrrega de neu en capitals de província i ciutats autònomes.

<table>
<thead>
<tr>
<th>Capital</th>
<th>Altitud m</th>
<th>(s_k) kN/m²</th>
<th>Capital</th>
<th>Altitud m</th>
<th>(s_k) kN/m²</th>
<th>Capital</th>
<th>Altitud m</th>
<th>(s_k) kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albacete</td>
<td>690</td>
<td>0,6</td>
<td>Guadalajara</td>
<td>680</td>
<td>0,6</td>
<td>Pontevedra</td>
<td>0</td>
<td>0,3</td>
</tr>
<tr>
<td>Alicante / Alicant</td>
<td>0</td>
<td>0,2</td>
<td>Huelva</td>
<td>470</td>
<td>0,2</td>
<td>Salamanca</td>
<td>780</td>
<td>0,5</td>
</tr>
<tr>
<td>Almeria</td>
<td>1.130</td>
<td>0,2</td>
<td>Huesca</td>
<td>570</td>
<td>0,7</td>
<td>SanSebastián / Guipúzcoa / Donosti</td>
<td>0</td>
<td>0,3</td>
</tr>
<tr>
<td>Avila</td>
<td>180</td>
<td>1,0</td>
<td>Jaén</td>
<td>820</td>
<td>0,4</td>
<td>Santander</td>
<td>1.000</td>
<td>0,3</td>
</tr>
<tr>
<td>Badajoz</td>
<td>0</td>
<td>0,2</td>
<td>León</td>
<td>150</td>
<td>1,2</td>
<td>Segovia</td>
<td>0</td>
<td>0,7</td>
</tr>
<tr>
<td>Barcelona</td>
<td>0</td>
<td>0,4</td>
<td>Lérida / Lérida</td>
<td>380</td>
<td>0,5</td>
<td>Sevilla</td>
<td>1.090</td>
<td>0,2</td>
</tr>
<tr>
<td>Bilbao / Bilbo</td>
<td>860</td>
<td>0,3</td>
<td>Logroño</td>
<td>470</td>
<td>0,6</td>
<td>Soria</td>
<td>0</td>
<td>0,9</td>
</tr>
<tr>
<td>Burgos</td>
<td>440</td>
<td>0,6</td>
<td>Lugo</td>
<td>660</td>
<td>0,7</td>
<td>Tarragona</td>
<td>0</td>
<td>0,4</td>
</tr>
<tr>
<td>Cáceres</td>
<td>0</td>
<td>0,2</td>
<td>Madrid</td>
<td>0</td>
<td>0,6</td>
<td>Tenerife</td>
<td>560</td>
<td>0,2</td>
</tr>
<tr>
<td>Cádiz</td>
<td>0</td>
<td>0,8</td>
<td>Málaga</td>
<td>0</td>
<td>0,2</td>
<td>Teruel</td>
<td>550</td>
<td>0,9</td>
</tr>
<tr>
<td>Castellón</td>
<td>640</td>
<td>0,2</td>
<td>Murcia</td>
<td>130</td>
<td>0,4</td>
<td>Toledo</td>
<td>0</td>
<td>0,5</td>
</tr>
<tr>
<td>Ciudad Real</td>
<td>100</td>
<td>0,6</td>
<td>Orense / Ourense</td>
<td>230</td>
<td>0,4</td>
<td>Valladolid</td>
<td>520</td>
<td>0,4</td>
</tr>
<tr>
<td>Córdoba</td>
<td>0</td>
<td>0,2</td>
<td>Oviedo</td>
<td>740</td>
<td>0,4</td>
<td>Vitoria / Gasteiz</td>
<td>650</td>
<td>0,7</td>
</tr>
<tr>
<td>Coruña / A Coruña</td>
<td>1.010</td>
<td>1,0</td>
<td>Palencia</td>
<td>0</td>
<td>0,4</td>
<td>Zamora</td>
<td>210</td>
<td>0,5</td>
</tr>
<tr>
<td>Cuenca</td>
<td>70</td>
<td>0,4</td>
<td>Palma de Mallorca</td>
<td>0</td>
<td>0,2</td>
<td>Zaragoza</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>Gerona / Girona</td>
<td>690</td>
<td>0,5</td>
<td>Palmas, Las</td>
<td>450</td>
<td>0,7</td>
<td>Ceuta y Melilla</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>Granada</td>
<td></td>
<td></td>
<td>Pamplona / Irúña</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15
Donat que l’establiment industrial està situat a la província de Girona (a 16 km de distància aproximadament), es pot prendre el valor de càrrega de neu de 0,4 kN/m².

D.4.3.2. Coeficient de forma

El vent pot acompanyar o seguir les neus, el que origina un depòsit irregular de la neu sobre la coberta. Per aquesta raó, l’espessor de la capa de neu pot ser diferent en cada faldó.

S’estableix un coeficient de forma de la coberta (μ) que determina la influència de la forma de la coberta per l’acumulació de neu sobre la mateixa. Aquest depèn del que tinguem en el lloc on es deposita la neu i de l’impediment del seu lliscament.

El DB SE-AE especifica que en un faldó que limiti inferiorment amb un aiguafons, suposa un impediment per el lliscament de la neu. Quan aquest està inclinat en sentit contrari i la semisuma de les inclinacions és major que 30º, el coeficient de forma de ambdós serà 2.

Aquest aiguafons en el DB SE-AE es considerat en el límit inferior de dos faldons i la nau industrial a tractar té solament un faldó en cada dent de serra, ja que l’altre es considerat un tancament de façana i no es considera en el càlcul de la neu.

Procés constructiu de la rehabilitació d’una nau industrial existent

Taula 8. Coeficients de forma en cobertes.

<table>
<thead>
<tr>
<th>α</th>
<th>μ_1</th>
<th>μ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^\circ \leq \alpha \leq 15^\circ$</td>
<td>$0,8$</td>
<td>$0,8$</td>
</tr>
<tr>
<td>$15^\circ < \alpha \leq 30^\circ$</td>
<td>$0,8$</td>
<td>$0,8 + 0,8 \frac{\alpha}{30^\circ}$</td>
</tr>
<tr>
<td>$30^\circ < \alpha < 60^\circ$</td>
<td>$0,8 \left(\frac{60^\circ - \alpha}{30^\circ} \right)$</td>
<td>$1,1 \left(\frac{60^\circ - \alpha}{30^\circ} \right)$</td>
</tr>
<tr>
<td>$\alpha > 60^\circ$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Com que la inclinació dels faldons de la nau industrial és aproximadament de 17°, s’ha aplicat les equacions remarcades en vermell en la taula 8, anomenades equacions 7 i 8 en aquest projecte.

$$\mu_1 = 0,8 \cdot \left(\frac{30^\circ - \alpha}{30^\circ} \right) = 0,8 \cdot \left(\frac{30^\circ - 17^\circ}{30^\circ} \right) = 0,347$$ \hspace{1cm} \text{(Eq.7)}

$$\mu_2 = 0,8 \cdot \left(\frac{30^\circ + \alpha}{30^\circ} \right) = 0,8 \cdot \left(\frac{30^\circ + 17^\circ}{30^\circ} \right) = 1,254$$ \hspace{1cm} \text{(Eq.8)}

Per a la dent de serra situada a l’extrem, que no té impediment en la sortida de la neu, es considerarà l’evacuació de neu com una coberta a una aigua, segons la taula 8, aquesta li correspon un coeficient de forma de 0,8, lineal en tot el faldó.
S’adjunta la figura 8 on es pot observar el coeficient de forma de la coberta de la nau industrial amb dents de serra.

Figura 8. Distribució del coeficient de forma en la coberta de la nau industrial
Font. Pròpia (AutoCAD 2013)

D.4.3.3. Acumulació de neu

De manera addicional, a efectes dels càlculs, s’ha de considerar que la coberta de dents de serra, impedeix l’evacuació de neu en la part inferior del faldó. Segons el DB SE-AE, la descàrrega total per unitat de superfície s’avaluarà quan el coeficient de forma sigui inferior a 1. Com que a la part inferior del faldó, el coeficient de forma és de 1,245 > 1, es considera que dins aquest valor ja s’ha tingut en compte l’acumulació de neu.

D.4.3.4. Càrrega de neu més desfavorable

El valor de càrrega de neu més desfavorable s’obtindrà en la part inferior del faldó, aplicant l’equació 6 obtenim un valor de càrrega de neu sobre la coberta de 0,498 kN/m².

\[
q_n = \mu \cdot S_k = 1,245 \cdot 0,4 = 0,498 \text{ kN/m}^2
\]

D.4.4. Accions tèrmiques

Els edificis i els seus elements estan sotmesos a deformacions i canvis geomètrics deguts a les variacions de temperatura ambient exterior. La magnitud d’aquestes depèn de les condicions climàtiques del lloc, l’orientació i l’exposició de l’edifici, les característiques dels materials constructius i dels acabats o revestiments, i del règim de calefacció i ventilació interior, així com l’aïllament tèrmic.

Cal especificar, que aquestes deformacions es donen a terme mitjançant contraccions i dilatacions dels materials i quan aquestes estan impedides, produeixen tensions en els elements afectats, fins al punt de produir fissures o ruptures en els mateixos. Per aquesta raó, és imprescindible que en l’etapa de
Procés constructiu de la rehabilitació d’una nau industrial existent

ANNEX D

disseny i elecció dels elements constructius de l’edificació, es tingui present les dilatacions/contraccions que puguin tenir els materials amb la finalitat d’impedir l’origen de tensions no desitjades.

Els fenòmens de dilatació/contracció d’un material són produïts pels efectes globals de l’acció tèrmica (variació de temperatura ambient), i per la majoria de sòlids es calculen mitjançant l’equació 9, adjunta a continuació.

\[L_F = L_i \cdot (1 + \alpha \Delta T) \]

(Eq.9)

Essent:

- \(L_F \): Longitud final
- \(L_i \): Longitud inicial
- \(\alpha \): Coeficient de dilatació lineal (1/K)
- \(\Delta T \): Variació de Temperatura (\(T_{final} - T_{initial} \))

Els valors de \(L_F, L_i \) i \(\alpha \), són valors propis de cada material i element constructiu. En canvi, la variació de temperatura de l’ambient es pot determinar de manera global.

Segons el DB SE-AE, es poden prendre les temperatures extremes a l’hivern i estiu, en funció de les dades climàtiques de l’ubicació de l’establiment.

El valor característic de la temperatura màxima de l’aire, depèn del clima del lloc i de l’altitud. A falta de dades empíriques més precises, es pot agafar, independentment de l’altitud, igual al límit superior de l’interval reflectit en el mapa de la figura 9, adjunta a continuació.
Segons la figura 9 adjunta, la temperatura màxima ambient en la regió on està ubicada l’edificació serà de 42ºC.

El valor característic de la temperatura mínima de l’aire exterior, a falta de valors empírics, es pot determinar mitjançant l’altitud de l’emplaçament i la zona climàtica hivernal.

Segons l’Agència estatal de meteorologia (AEMET) del Govern d’Espanya, el municipi d’Anglès (poble on es localitza l’edificació a rehabilitar) es troba a una altitud de 163 m des de la cota 0 (port d’Alacant).

La zona climàtica hivernal es pot determinar mitjançant la figura 10, adjunta a continuació.
Segons la distribució de les zones climàtiques observables en la figura 10, l’edificació es localitza en la zona 2.

Així doncs, una vegada determinada l’altura de l’emplaçament i la zona climàtica hivernal en que està situada l’edificació, s’ha determinat el valor característic de la temperatura mínima de l’aire exterior, mitjançant la taula 9, adjunta a continuació i explícita en el DB SE-AE (Taula E.2).

Taula 9. Temperatura mínima de l’aire exterior (ºC)

<table>
<thead>
<tr>
<th>Altitud (m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-7</td>
<td>-11</td>
<td>-11</td>
<td>-8</td>
<td>-5</td>
<td>-8</td>
<td>6</td>
</tr>
<tr>
<td>200</td>
<td>-10</td>
<td>-15</td>
<td>-14</td>
<td>-10</td>
<td>-11</td>
<td>-9</td>
<td>3</td>
</tr>
<tr>
<td>400</td>
<td>-12</td>
<td>-15</td>
<td>-14</td>
<td>-10</td>
<td>-11</td>
<td>-9</td>
<td>3</td>
</tr>
<tr>
<td>600</td>
<td>-15</td>
<td>-16</td>
<td>-15</td>
<td>-12</td>
<td>-14</td>
<td>-11</td>
<td>2</td>
</tr>
<tr>
<td>800</td>
<td>-18</td>
<td>-18</td>
<td>-17</td>
<td>-14</td>
<td>-17</td>
<td>-13</td>
<td>0</td>
</tr>
<tr>
<td>1.000</td>
<td>-20</td>
<td>-20</td>
<td>-19</td>
<td>-16</td>
<td>-20</td>
<td>-14</td>
<td>-2</td>
</tr>
<tr>
<td>1.200</td>
<td>-23</td>
<td>-21</td>
<td>-20</td>
<td>-18</td>
<td>-23</td>
<td>-16</td>
<td>-3</td>
</tr>
<tr>
<td>1.400</td>
<td>-26</td>
<td>-23</td>
<td>-22</td>
<td>-20</td>
<td>-26</td>
<td>-17</td>
<td>-5</td>
</tr>
<tr>
<td>1.600</td>
<td>-28</td>
<td>-25</td>
<td>-23</td>
<td>-22</td>
<td>-29</td>
<td>-19</td>
<td>-7</td>
</tr>
<tr>
<td>1.800</td>
<td>-31</td>
<td>-26</td>
<td>-25</td>
<td>-24</td>
<td>-32</td>
<td>-21</td>
<td>-8</td>
</tr>
<tr>
<td>2.000</td>
<td>-33</td>
<td>-28</td>
<td>-27</td>
<td>-26</td>
<td>-35</td>
<td>-22</td>
<td>-10</td>
</tr>
</tbody>
</table>

El valor de temperatura mínima exterior de l’establiment serà de -13º C.
D.4.4.1. Variació de temperatura màxima

Donats els valors de temperatura màxima (42ºC) i mínima (-13ºC) exteriors obtinguts, la variació de temperatura màxima aproximada serà de 55 ºC. Valor que s’haurà de tenir en compte alhora de determinar la dilatació/contracció dels elements escollits.

Cal especificar que s’hauran de prendre les mesures necessàries en la instal·lació dels nous elements, per evitar l’origen de tensions no desitjades entre elements. Així con juntes de dilatació o espais entre aquests.

D.4.5. Accions accidentals

D.4.5.1. Sisme

Les accions accidentals de sisme estan regulades per la norma de construcció sismorresistent (NSCE). *Part general i d’edificació*. Aquesta normativa es obligatòria per construccions d’importància moderada o superior, i proporciona els criteris que s’han de seguir dins el territori espanyol per la consideració de l’acció sísmica, amb la finalitat d’evitar pèrdues humanes, reduir els danys i el cost econòmic que puguin ocasionar futurs terratrèmols.

Cal esmentar, que aquesta normativa tracta amb profunditat els requisits de cimentació i estructura de l’edificació, i menciona únicament de forma superficial la tipologia d’instal·lació que s’ha de dur a terme en els tancaments.

Segons aquesta normativa, els tancaments de coberta hauran d’enllaçar-se correctament als elements estructurals, per evitar el despreniment de les plaques durant les sacsejades sísmiques.

D.4.5.2. Càrrega de foc

Els materials constructius han de tenir una capacitat de resistència i uns efectes de reacció adequats davant el foc, per garantir uns mínims de seguretat estructural i millorar la protecció de les persones en cas d’incendi.

Les especificacions exigides en els materials constructius del tancament de coberta estan detallades a l’annex C. *Contra incendis*, d’aquest projecte i es determinen mitjançant el Reglament de Seguretat Contra Incendis en Establiments Industrials (RSCIEI).
D.4.5.3. Impacte

Un impacte és la col·lisió d’un projectil o objecte contra algun element. La força de l’impacte dependrà de la massa, la geometria i la velocitat del cos impactant, així com la capacitat de deformació i esmorteïment dels dos cossos.

El DB SE-AE expressa que els elements constructius que puguin ser afectats per impacte han de dimensionar-se tenint en compte les accions del mateix, per tal d’aturar o atenuar el projectil o cos impactant i garantir una seguretat adequadada per les persones o elements que estiguin a l’interior de l’edifici.

Els elements constructius de l’envolvent tèrmica estan exposats als fenòmens meteorològics. A Espanya un fenomen meteorològic a considerar en l’acció d’impacte és la precipitació de partícules de glaç en cas de tempesta, anomenat calamarsa quan els grans de glaç tenen fins a 5mm de diàmetre o pedregada quan els grans de glaç superen els 5mm de diàmetre.

Segons diferents assajos en materials realitzats per laboratoris i empreses de prestigi, l’impacte de pedres de 30 mm de diàmetre sol rondar els 4,29J, mentre que les boles de glaç de 35 mm de diàmetre ronda els 7,93J.

Durant l’elecció de les plaques de coberta, s’haurà de considerar tals impactes, i el material escollit en el tancament haurà de capaç de garantir resistència per aquesta tipologia d’impacte. L’assaig vindrà determinat pel tipus de material escollit com a tancament de coberta, i estarà regulat per la seva normativa.
D.5. TANCAMENT DE FAÇANA DE LA DENT DE SERRA

D.5.1. Sobrecàrrega d’ús

El tancament de façana de la dent de serra és vertical (inclinat 90º respecte l’horitzontal). Per aquest motiu, el tancament no tindrà mai sota cap concepte sobrecàrrega d’ús.

D.5.2. Càrrega de vent

La sobrecàrrega de vent en un tancament de façana és una de les accions més importants a tenir en compte alhora d’estimar la càrrega total d’accions en que estarà sotmès el tancament. Aquest es determina de forma anàloga a l’apartat D.4.2 d’aquest annex, aplicant l’equació 1.

Els valors de la pressió dinàmica i el coefficient d’exposició de l’edificació depenen de la seva localització i alçada. Raó per la qual, els valors d’aquests paràmetres seran els mateixos que els determinats en l’apartat D.4.2. Essent la pressió dinàmica de 0,52 kN/m² i el coeficient d’exposició de l’edificació, de 1,583 quan la direcció del vent incideixi de forma perpendicular en els tancaments de façana nord, est i sud-est, i 1,87 quan incideixi de forma perpendicular a la façana oest.

D’altra banda, el valor del coeficient de pressió (c_p) depèn de la direcció relativa del vent, de la forma i dimensions de l’edifici, de la posició de l’element considerat i de la seva àrea d’influència. Per aquesta raó, s’ha tornat a avaluar la influència del vent quan bufa des de les 4 direccions, sobre el tancament de façana de les dents de serra.

Com en l’apartat anterior, per tal de determinar el coeficient de pressió de la coberta és considerarà la possibilitat de que el vent bufi en les quatre direccions (amb un angle de variació de la direcció de 90º).

A continuació s’adjunten les 4 possibilitats de direcció del vent, amb una representació gràfica de l’establiment acotat amb les regions definides i les equacions que s’han utilitzar per determinar tals regions.
D.5.2.1. Direcció del vent (135 ≤ \(\theta \leq 225^\circ \)), Tramuntana i Mestral.

\[e = \min(b, 2h) = (27,14, 2 \cdot 7,4) = 14,8 \]

\[
A = \frac{e}{10} = \frac{14,8}{10} = 1,48 \ m
\]

\[
B = e - A = 14,8 - 1,48 = 13,32 \ m
\]

\[
C = d - e = 45,14 - 14,8 = 30,34 \ m
\]

\[
A(m^2) = b \times H = 27,14 \times 7,4 = 200,83 \ m^2
\]

\[
\frac{h}{d} = \frac{7,4}{45,14} = 0,164
\]

D.5.2.2. Direcció del vent (-45° ≤ \(\theta \leq 45^\circ \)), Xaloc i Migjorn.

\[e = \min(b, 2h) = (27,14, 2 \cdot 4,62) = 9,24 \]

\[
A = \frac{e}{10} = \frac{9,24}{10} = 0,924 \ m
\]

\[
B = e - A = 9,24 - 0,92 = 8,31 \ m
\]

\[
C = d - e = 45,14 - 9,24 = 35,9 \ m
\]

\[
A(m^2) = b \times H = 27,17 \times 4,62 = 125,52 \ m^2
\]

\[
\frac{h}{d} = \frac{4}{45,14} = 0,088
\]

Els valors del coeficient de pressió de les diferents zones, es determinen mitjançant la taula 10, explícita en el DB SE-AE (Taula D.3) i adjunta a continuació. Com es pot observar, els valors dels coeficients d’aquestes regions seran els mateixos en ambdós casos (direcció del vent 135 ≤ \(\theta \leq 225^\circ \) i -45° ≤ \(\theta \leq 45^\circ \)).
Taula 10. Valors dels coeficients de pressió per a les diferents regions.

\[
\begin{array}{cccccc}
\text{A (m²)} & \text{h/d} & \text{Zona (según figura), -45º < θ < 45º} & \text{A} & \text{B} & \text{C} & \text{D} & \text{E} \\
\geq 10 & 5 & -1,2 & -0,8 & -0,5 & 0,8 & -0,7 \\
1 & - & - & - & - & -0,5 \\
\leq 0,25 & - & - & - & 0,7 & -0,3 \\
5 & 5 & -1,3 & -0,9 & -0,5 & 0,9 & -0,7 \\
1 & - & - & - & -0,5 \\
\leq 0,25 & - & - & - & -0,8 & -0,3 \\
2 & 5 & -1,3 & -1,0 & -0,5 & 0,9 & -0,7 \\
1 & - & - & - & -0,5 \\
\leq 0,25 & - & - & - & 0,7 & -0,3 \\
1 & 5 & -1,4 & -1,1 & -0,5 & 1,0 & -0,7 \\
1 & - & - & - & -0,5 \\
\leq 0,25 & - & - & - & -0,3 \\
\end{array}
\]

D.5.2.3. Direcció del vent de 45º ≤ θ ≤ 135º, Garbí i Ponent.

\[e = \min(b, 2h) = (45,14, 2 \cdot 11,4) = 22,8\]
\[A = \frac{e}{10} = \frac{22,8}{10} = 2,28\ m\]
\[B = e - A = 22,8 - 2,28 = 20,52\ m\]
\[C = d - e = 27,14 - 22,8 = 4,34\ m\]
\[A (lateral dent de serra) = 12,51\ m²\]
\[\frac{h}{d} = \frac{11,4}{27,14} = 0,42\]

D.5.2.4. Direcció del vent de 225º ≤ θ ≤ 315º, Gregal i Llevant.

\[e = \min(b, 2h) = (45,14, 2 \cdot 7,4) = 14,8\]
\[A = \frac{e}{10} = \frac{14,8}{10} = 1,48\ m\]
\[B = e - A = 14,8 - 1,48 = 13,32\ m\]
\[C = d - e = 27,14 - 14,8 = 12,34\ m\]
\[A (lateral dent de serra) = 12,51\ m²\]
\[\frac{h}{d} = \frac{7,4}{27,14} = 0,272\]
Si apliquem els valors obtinguts en la taula 10. Obtenim que els coeficients de pressió seran els mateixos per la direcció del vent $45^\circ \leq \theta \leq 135^\circ$ i $225^\circ \leq \theta \leq 315^\circ$.

Taula 10. Valors dels coeficients de pressió per a les diferents regions.

<table>
<thead>
<tr>
<th>A (m2)</th>
<th>h/d</th>
<th>Zona (segón figura), $-45^\circ < \theta < 45^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 10</td>
<td>5</td>
<td>-12 -0,8 -0,5 0,8 -0,7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>* * * * * 0,7 -0,3</td>
</tr>
<tr>
<td>$\leq 0,25$</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-13 -0,9 -0,5 0,9 -0,7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>* * * * * 0,8 -0,3</td>
</tr>
<tr>
<td>$\leq 0,25$</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>-13 -1,0 -0,5 0,9 -0,7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>* * * * * 0,7 -0,3</td>
</tr>
<tr>
<td>$\leq 0,25$</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>5</td>
<td>-1,4 -1,1 -0,5 1,0 -0,7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>* * * * * -0,3</td>
</tr>
<tr>
<td>$\leq 0,25$</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Segons els resultats obtinguts, el tancament de façana de la dent de serra estarà sotmès únicament a pressió quan el vent incideixi de forma perpendicular al tancament de façana nord, tenint un coeficient de pressió de 0,7. En canvi, quan el vent incideixi pels tancaments de façana est i oest, aquest tindrà un coeficient màxim de succió de -1,2 en la regió més afectada (zona A).

D.5.2.5. Sobrecàrrega de vent màxima

Aplicant l’equació 1, obtenim que els valors de sobrecàrrega de vent màxims en el tancament de façana seran de pressió i succió. El tancament estarà sotmès al màxim valor de succió quan el vent provengui des de Garbí i Ponent i incideixi en la façana oest, aquest serà de $1,17 \text{ kN/m}^2$. En canvi, el valor màxim de pressió serà quan el vent incideixi en el tancament de façana nord (tramuntana i mestral), i serà de $0,577 \text{ kN/m}^2$. A continuació s’adjunten els càlculs per a determinar tals valors.

\[q_e = q_b \times c_e \times c_p = 0,52 \times 1,87 \times (-1,2) = -1,17 \text{ kN/m}^2 \]

\[q_e = q_b \times c_e \times c_p = 0,52 \times 1,583 \times (0,7) = 0,577 \text{ kN/m}^2 \]
D.5.3. Càrrega de neu

El tancament de façana de la dent de serra té una inclinació de 90°. Raó per la qual, no s’acumularà neu sobre el tancament, i la càrrega de neu a efectes dels càlculs és nul·la.

D.5.4. Accions tèrmiques

L’acció tèrmica a considerar en el tancament de façana serà la mateixa que en el tancament de coberta. Durant la instal·lació de les plaques s’haurà de considerar una variació de temperatura màxima aproximada serà de 55 ºC.

Donats els valors de temperatura màxima (42ºC) i mínima (-13ºC) exteriors obtinguts, la variació de temperatura màxima aproximada serà de 55 ºC. Valor que s’haurà de tenir en compte alhora de determinar la dilatació/contracció dels elements escollits.

Cal especificar que s’hauran de prendre les mesures necessàries en la instal·lació dels nous elements, per evitar l’origen de tensions no desitjades entre elements. Així con juntes de dilatació o espais entre aquests.

D.5.5. Accions accidentals

D.5.5.1. Sisme

Les accions accidentals de sisme estan regulades per la norma de construcció sismoresistent (NSCE). Part general i d’edificació.

Segons aquesta normativa, els tancaments de façana realitzats amb panells o plaques, han unir-se correctament als elements estructurals, per evitar el despreniment de les peces durant les sacsejades sísmiques.

Donat que l’acceleració sísmica \((a_c) \) és de 0,077g i és inferior a 0,08g, no serà necessari subdividir els tancaments superiors a 5m de longitud o 20 m² de superfície.
D.5.5.1.1. Càlcul de l’acceleració sísmica

L’acceleració sísmica a_c és calcula mitjançant l’equació 10, adjunta a continuació.

$$a_c = S \cdot \rho \cdot a_b$$ \hspace{1cm} (Eq.10)

Essent:

- a_c: Acceleració sísmica bàsica
- ρ: Coeficient adimensional de risc, funció de la probabilitat acceptable del període de que s’excedeixi a_c en el temps de vida de l’edificació
- S: Coeficient d’amplificació del terreny

Segons l’annex 1 de la NSCE, el qual especifica els valors de l’acceleració sísmica bàsica dels termes municipals de les províncies de les comunitats autònomes, el valor d’acceleració sísmica bàsica a Anglès és de 0,08g.

El coeficient adimensional de risc per construccions d’importància normal és 1.

El coeficient d’amplificació del terreny quan $a_b \leq 0,1g$ es calcula mitjançant l’equació 11, càlcul adjunt a continuació.

$$S = \frac{C}{1,25} = \frac{1,3}{1,25} = 0,96$$ \hspace{1cm} (Eq.11)

El coeficient (C) s’ha determinat per la tipologia del terreny. El terreny on està situat la nau industrial és un sòl dur, tipus II i li correspon un valor C de 1,3.

Aplicant els valors dels paràmetres obtinguts a l’equació 10, s’ha obtingut una acceleració sísmica (a_c) de 0,077g. Càlcul adjunt a continuació.

$$a_c = 0,96 \cdot 1 \cdot 0,08 = 0,077g$$

D.5.5.2. Càrrega de foc

Les condicions de càrrega de foc amb les que estarà sotmesa el revestiment del paviment de la nau industrial, s’especificuen en l’annex C. Contra incendis, d’aquest projecte i es determinen mitjançant el Reglament de Seguretat Contra Incendis en Establiments Industrials (RSCIEI).
D.5.5.3. Impacte

Com s’ha esmentat anteriorment, els elements constructius de l’envolvent tèrmica estan exposats als fenòmens meteorològics. A Espanya un fenomen meteorològic a considerar en l’acció d’impacte és la precipitació de partícules de glaç (calamarsa i pedres).

Segons diferents assajos en materials realitzats per laboratoris i empreses de prestigi, l’impacte de pedres de 30 mm de diàmetre sol rondar els 4,29J, mentre que les boles de glaç de 35 mm de diàmetre ronda els 7,93J.

Durant l’elecció de les plaques del tancament de façana, s’haurà de considerar tals impactes, i el material escollit en el tancament haurà de capaç de garantir resistència per aquesta tipologia d’impacte. L’assaig vindrà determinat pel tipus de material escollit com a tancament de façana, i estarà regulat per la seva normativa.

Les plaques de policarbonat cel·lular de 10 mm d’espessor solen presentar una resistència a l’impacte Gardiner a 23°C superior a 27J. Superant amb expectatives els valors mínims de resistència a l’impacte exigits.
D.6. REVESTIMENT DEL PAVIMENT

D.6.1. Sobrecàrrega d’ús

Com s’ha definit en els apartats anteriors, la sobrecàrrega d’ús és el pes de tot el que pot gravitar sobre l’edifici, per raó del seu ús. Aquests valors de sobrecarrega es determinen mitjançant una càrrega repartida uniformement, i els valors característics d’aquesta càrrega s’especifiquen a la taula 11, explícita en el DB SE-AE (Taula 3.1).

Donat que la nau industrial es diferenciarà en 7 zones diferents (taller, magatzem, embalatge i expedició, laboratori, oficines, serveis i sala d’instal·lacions). El revestiment del paviment de la nau industrial que s’apliqui en el procés de rehabilitació haurà de ser capaç de suportar els esforços de sobrecàrrega d’ús de l’activitat més desfavorable.

Taula 11. Valors característics de la sobrecàrrega d’ús.

<table>
<thead>
<tr>
<th>Categoría de uso</th>
<th>Subcategorías de uso</th>
<th>Carga uniforme [kN/m²]</th>
<th>Carga concentrada [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Zonas residenciales</td>
<td>A1 Viviendas y zonas de habitaciones en, hospitales y hoteles</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A2 Trasteros</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>B Zonas administrativas</td>
<td>C1 Zonas con mesas y sillas</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>C2 Zonas con asientos fijos</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C3 Zonas sin obstáculos que impidan el libre movimiento de las personas como vestidores de edificios públicos, administrativos, hoteles; salas de exposición en museos, etc.</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C4 Zonas destinadas a gimnasio u actividades físicas</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>C5 Zonas de aglomeración (salas de conciertos, estadios, etc)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>C Zonas de acceso al público (con la excepción de las superficies pertenecientes a las categorías A, B, y D)</td>
<td>D1 Locales comerciales</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>D2 Supermercados, hipermercados o grandes superficies</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>D Zonas comerciales</td>
<td>F Zonas de tráfico y de aparcamiento para vehículos ligeros (peso total < 30 kN)</td>
<td>2</td>
<td>20 (5)</td>
</tr>
<tr>
<td></td>
<td>F Cubiertas transitibles accesibles sólo privadamente</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G1(7) Cubiertas con inclinación inferior a 20º</td>
<td>1 (4)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G2(7) Cubiertas ligeras sobre correa (sin forjado)</td>
<td>0.4 (6)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>G2(7) Cubiertas con inclinación superior a 40º</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
D.6.2. Càrrega de vent

Un paviment horitzontal, a cota del terreny i cobert, com és el de la nau industrial, no l’hi afecta el vent.

D.6.3. Càrrega de neu

El paviment de la nau industrial està cobert, per aquest motiu no l’affecta la càrrega de neu.

D.6.4. Accions accidentals

D.6.4.1. Sisme

Les accions accidentals de sisme estan regulades per la norma de construcció sismorresistent (NSCE). *Part general i d’edificació.*

Segons aquesta normativa, en les zones de trànsit, la fixació dels revestiments es realitzarà amb materials d’alta durabilitat, mitjançant tècniques apropïades per evitar el despreniment de les peces en cas de sisme.

D.6.4.2. Càrrega de foc

Les especificacions exigides del revestiment del paviment interior de la nau industrial envers el foc estan detallades a l’annex C. *Contra incendis,* d’aquest projecte i es determinen mitjançant el Reglament de Seguretat Contra Incendis en Establiments Industrials (RSCIEI).

D.6.4.3. Impacte

El revestiment del paviment estarà cobert i per tant, no estarà sotmès a accions meteorològiques com calamarsa o pedregada. Tanmateix, aquest haurà de ser resistent a impactes que puguin sorgir a causa d’accions accidentals, com per exemple una caiguda inesperada d’una estanteria.
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIDIA D’ANGLÈS.

- ANNEX D. ACCIONS EN L’EDIFICACIÓ

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
ANNEX E
ENDERROC
SUMARI ENDERROC

E.1. INTRODUCCIÓ ... 3
E.2. OBJECTE ... 3
E.3. ABAST .. 3
E.4. IDENTIFICACIÓ I DESCRIPCIÓ DELS EDIFICIS O CONJUNTS A ENDERROCAR 4
 E.4.1. Tancaments de la dent de serra (plaques de fibrociment i plaques de PRFV) 4
 E.4.1.1. Identificació i descripció general ... 4
 E.4.1.2. Volum d’enderroc .. 5
 E.4.2. Edifici 2 i 3 annexes a la nau ... 5
 E.4.2.1. Identificació i ubicació .. 5
 E.4.2.2. Descripció general ... 6
 E.4.2.3. Volum d’enderroc ... 6
 E.4.3. Tancament interior 6
 E.4.3.1. Identificació i ubicació .. 6
 E.4.3.2. Volum d’enderroc ... 8
E.5. JUSTIFICACIÓ DE LA NECESSITAT ... 9
 E.5.1. Tancaments de la dent de serra ... 9
 E.5.2. Edifici annex a la nau .. 9
 E.5.3. Tancament interior ... 9
E.6. ASPECTES NECESSARIS A TENIR EN COMPTE ABANS I DURANT L’ENDERROC . 10
E.7. ORDRE D’ENDERROC .. 13
E.8. TASQUES A REALITZAR UN COP ACABATS L’ENDERROC .. 14
E.9. PROCÉS CONSTRUCTIU PER A REALITZAR L’ENDERROC DELS DIFERENTS
 ELEMENTS .. 15
 E.9.1. Generalitat ... 15
 E.9.2. Tipus d’enderroc .. 15
 E.9.3. Procés d’enderroc de les plaques de fibrociment i plaques de PRFV 15
 E.9.3.1. Redacció d’un pla de treball específic .. 16
 E.9.3.2. Desmuntatge de les plaques .. 17
 E.9.3.3. Classificació i embalatge dels residus .. 18
 E.9.3.4. Transport i gestió dels residus ... 19
 E.9.4. Procés d’enderroc de l’edifici 2 i 3 ... 20
 E.9.4.1. Treballs i actuacions prèvies .. 20
 E.9.4.2. Demolició dels edificis .. 20
 E.9.4.3. Classificació dels residus .. 21
E.9.4.4. Gestió dels residus ... 22
E.9.4.5. Recollida i transport de residus de construcció 24

E.9.5. Tancament interior .. 25
 E.9.5.1. Treballs i actuacions prèvies .. 25
 E.9.5.2. Demolició del tancament ... 25
 E.9.5.3. Classificació i gestió dels residus ... 25

E.9.6. Elements i volums a conservar, i edificacions veïnes 26
E.9.7. Condicions generals dels equips de demolició 26
E.9.8. Condicions de seguretat en el treball ... 26
 E.9.8.1. Abans de l’enderroc .. 26
 E.9.8.2. Durant l’enderroc ... 27
 E.9.8.3. Després de l’enderroc ... 29

E.10. INSTAL·LACIONS ... 30
E.1. INTRODUCCIÓ

Per tal de dur a terme les especificacions del promotor de l’obra, s’hauran de realitzar diferents enderrocs en l’establiment industrial a rehabilitar.

El procés d’enderroc serà parcial. S’enderrocarà l’edifici 2, l’edifici 3 de l’establiment industrial, una paret divisòria interior de la nau industrial i a continuació es procedirà a retirar la coberta per a la seva rehabilitació. Motiu per el qual, la fase d’enderroc prendrà certa complicació alhora d’executar els treballs, on caldrà tenir especial cura dels elements i volums a mantenir.

Així mateix, l’establiment industrial objecte d’enderroc, està situat en una parcel·la aïllada amb un únic veí a més de sis metres de la seva façana oest. Per aquest motiu, abans de començar el procés d’enderroc també es prendran les mesures necessàries per no damnificar l’establiment o parcel·la confrontant.

Cal especificar també que la parcel·la on resideix l’establiment industrial no està pavimentada, excepte el camí que separa la façana oest de l’establiment industrial amb l’establiment confrontant. Aquesta mancança obligarà a la direcció facultativa de l’obra a prendre majors mesures de precaució durant la fase d’enderroc.

E.2. OBJECTE

En aquest annex es pretén identificar els elements a enderrocar, així com descriure els criteris a seguir abans, durant i finalitzat l’enderroc.

E.3. ABAST

El present annex no inclou la rehabilitació de les instal·lacions que puguin estar connectades entre la nau industrial i els edificis annexes a enderrocar.

Tampoc inclou la retirada de les baixants de fibrociment, les quals es recomana que es retirin degut el seu mal estat observat en l’annex B del mateix projecte, conjuntament amb el procés de retirada de la coberta de la nau industrial.
E.4. IDENTIFICACIÓ I DESCRIPCIÓ DELS EDIFICIS O CONJUNTS A ENDERROCAR

E.4.1. Tancaments de la dent de serra (plaques de fibrociment i plaques de PRFV)

E.4.1.1. Identificació i descripció general

Es procedirà a retirar la coberta de la nau industrial i la de l’anomenat “edifici 2”, ambdues cobertes estan constituïdes per plaques de fibrociment gran onda. No es retirarà la coberta de l’edifici annex a la nau, anomenat com “edifici 1”, ja que aquesta està constituïda per teules i es manté en perfecte estat.

També es retiraran les plaques translúcides de polièster reforçat amb fibra de vidre (PRFV) del tancament de façana de la dent de serra.

En la figura 1 es pot identificar la ubicació de les cobertes a retirar. La coberta de la nau industrial està marcada en vermell i la coberta de l’edifici 2 en blau. També es pot observar la coberta de l’edifici 1 en groc, la qual no es retirarà.

Figura 1. Ubicació de les cobertes a retirar
Font. Institut Cartogràfic i Geològic de Catalunya (modificada per l’aplicació InstaMaps)

Es recomana que aprofitant aquesta fase d’enderroc es retirin també, totes les baixants de recollides d’aigües pluvials de la coberta de la nau industrial, les quals estan fabricades també amb fibrociment. En aquest projecte no s’inclou la retirada de tals baixants.
E.4.1.2. Volum d’enderroc

La superfície ocupada per les plaques de fibrociment de la coberta de la nau industrial, tenint en compte que en la vessant menys inclinada de la dent de serra la coberta està doblada, és de aproximadament 2494 m². En canvi, la superfície ocupada per les plaques de PRFV és de 356,4,5m² i de forma anàloga que la superfície de les plaques de fibrociment de la coberta es troba situada a una altura d’entre 4 i 7,5 metres respecte el paviment interior de la nau.

La superfície ocupada per les plaques de la coberta de l’edifici 2 és aproximadament de 100 m² i es troba a una altura d’entre 3,8 i 4,5 metres respecte el paviment de la nau.

Es preveu un volum de residus generats durant el desmontatge de les plaques de les cobertes i de les plaques del tancament de façana de la dent de serra i els seus components, de 31,3 m³.

E.4.2. Edifici 2 i 3 annexes a la nau

E.4.2.1. Identificació i ubicació

S’enderrocarà l’edifici 2 i 3 annex a la nau, l’enderroc d’aquest edificis serà total i es realitzarà una vegada s’hagi retirat la seva coberta de l’edifici 2. A continuació, s’adjunta la figura 2, on es pot observar la ubicació d’ambdós edificis.

Figura 2. Ubicació de l’edifici 2 (blau) i l’edifici 3 (verd)
Font. Institut Cartogràfic i Geològic de Catalunya (modificada per l’aplicació InstaMaps)

Aquests disposen d’una única planta baixa i estan situats al costat de la façana est de la nau industrial, són annexes a la nau industrial i per tant, no comuniquen internament amb la mateixa. La seva construcció va ser posterior a la construcció de la nau industrial, la qual cosa facilitarà el procés d’enderroc.
E.4.2.2. Descripció general

No es disposa d’informació sobre les construccions d’aquests dos edificis. Per aquest motiu, abans de realitzar l’enderroc es realitzaran les jornades, cales i prospeccions in situ, per tal d’obtenir tota la informació que sigui necessària per efectuar el procés d’enderroc de la forma idònea.

E.4.2.3. Volum d’enderroc

L’edifici 2 i 3 disposen d’una única planta baixa amb una altura exterior d’entre 3,8 i 4,5 metres, l’edifici 2 ocupa un volum de 400 m³, mentre que l’edifici 3 ocupa un volum de 120 m³.

Es preveu que el volum de residus generats durant el procés d’enderroc de l’edifici 2 i 3 siguin aproximadament de 47,1 m³.

E.4.3. Tancament interior

E.4.3.1. Identificació i ubicació

El tancament interior a enderrocar està centrat respecte els pilars HEB160 de la nau industrial i es va construir l’any 2001 per dividir la nau en quatre sectors.

L’esmentat tancament està format per cinc trams idèntics, separats entre ells pels pilars interiors de la nau i cadascun dels trams és independent dels demés.

D’aquests cinc trams que formen el tancament interior, solament s’enderrocaran els tres trams més propers a la façana nord.
En la figura 3 es pot observar la ubicació dels tres trams a enderrocar del tancament interior.

![Diagrama de la ubicació dels trams a enderrocar](image)

Figura 3. Ubicació de les parts a enderrocar del tancament interior
Font. Pròpia (AutoCAD 2013)

Cada tram del tancament interior està edificat amb blocs de formigó foradat amb acabat llis, amb unes dimensions nominals de 400x200x200 mil·límetres, sense revestir. Aquests blocs es van col·locar fins gairebé arribar a l’altura inferior de la gelosia, i per tal de fer arribar el tancament interior fins a l’altura superior de la gelosia, es va realitzar un petit envà de formigó a cada costat de la gelosia amb un espessor inferior a cinc centímetres. A continuació, s’adjunta la figura 4, on es pot observar el tancament esmentat.

![Imatge del tancament interior](image)

Figura 4. Part superior del tercer tram del tancament interior
Font. Pròpia
E.4.3.2. Volum d’nderroc

Cada tram té una llargada de 8,84 metres, una altura de 4,3 metres en la part més baixa de la vessant de la coberta interior i una altura de 7,1 metres en la part més alta de la vessant de la coberta interior, formant així un trapezi de 50,64 \(m^2 \), amb un volum a enderrocar per tram aproximat de 10,13 \(m^3 \).

Així doncs, es preveu que el volum de residus generats durant el procés d’nderroc dels tres trams del tancament interior sigui de 30,39 \(m^3 \).
E.5. JUSTIFICACIÓ DE LA NECESSITAT

E.5.1. Tancaments de la dent de serra

E.5.2. Edifici annex a la nau

S’enderrocaran els edificis 2 i 3 per criteris del promotor, relacionat amb l’augment de superfície exterior de l’establiment industrial i facilitar així l’habilitació d’un parking dins la parcel·la.

E.5.3. Tancament interior

S’enderrocaran els tres trams del tancament interior indicats anteriorment únicament per criteris logístics de l’empresa.
E.6. ASPECTES NECESSARIS A TENIR EN COMPTE ABANS I DURANT L’ENDERROC

- Inspecció i anàlisi de les escomeses i la comprovació de l’anul·lació de totes les xarxes d’instal·lacions i corresponents subministraments.

- Cal tapar els desguassos, clavegueram afectat i la galeria de serveis.

- Inspecció i anàlisi de les possibles esquerdes i altres patologies de l’edifici.

- Instal·lació de tanques, mesures de seguretat, senyalitzacions y adaptació dels accessos.

- Abans de començar a enderrocar els edificis es protegiran els arbres colindants. Si els arbres estan dins l’àmbit de perill.

- Les portes i finestres, en general es desmuntaran sense trossear, abans de procedir a l’enderrocament general.

- Els elements estructurals d’atirantament o travada no es trauran fins saber que no estan en tensió.

- Els elements en voladís o lloses d’escala, s’apuntalaran i s’enderrocaran per trams.

- Les grans jásseres i murs estructurals s’enderrocaran especejant-ho amb trossos manipulables, tallant-lo amb disc o picant-ho amb mitjans mecànics i després tallant l’armament prèvia fixació, apuntalament i atirantament cap al lloc de bolcada.

- Els trams enderrocats seran manejables per la maquinària de càrrega i transport.

- En alçades superiors als 2,00 m, els operaris aniran lligats amb cinturó treballant sempre des de la bastida de tipologia adient a cadascuna de les feines.

- El tall de jásseres bigues o elements de volum petit i no manipulables per una persona, s’enderrocaran suspesos de grues mòbils o apuntalats.

- En tot moment es protegiran i senyalitzaran tots els forats que es formin a cada nivell.
- Si fos necessari l’abatiment de qualsevol element (pilar, pantalla de formigó, mur, etc.) aquest es farà assegurant la resistència del lloc de caiguda i prenent mesures per tal que només pugui girar sobre el punt de recolzament, amb els mitjans auxiliars adients.

- La bolcada no es farà amb els elements encastrats (estructures i altres).

- Les grues no s’utilitzaran per sotmetre els diferents elements constructius a esforços horitzontals o inclinats.

- No es descendiran càrregues controlades per un sol fre mecànic.

- Quan l’edifici tingui més de dos nivells per enderrocar, la baixada de runes es farà mitjançant conductes per la façana. (lloc de càrrega).

- L’espai on cauen runes restarà tancat i només s’obrirà per carregar-les mecànicament.

- L’enderroc de les divisòries interiors es farà amb bastides.

- No es dipositarà cap tipus deruna damunt la bastida.

- No s’acumularà runa ni es recolzaràn elements contra tanques, murs i suports (propis o mitgeres).

- No es permet l’acumulació de runes damunt dels trespols, tot i que estiguin en bon estat.

- Al finalitzar la jornada no han de quedar elements de l’edifici en posició inestable en front al vent, les condicions atmosfèriques o altres causes que poguessin provocar la seva caiguda. Si cal es protegiran amb tendals o plàstics.

- Abans de començar cada jornada es comprovarà que l’edifici romana deshabit.

- S’utilitzaran els mitjans necessaris per tal de no generar polseguera en l’entorn.

- Es mantindran sempre en bon estat les tanques, els engolidors del pati, les arquetes i els apuntalaments necessaris.

- Pel que fa als fonaments es farà la demolició després de la retirada de runes del damunt, prèvia comprovació dels passos soterrats d’instal·lacions, i altres, i els moviments de terres necessaris.
- Tot el mobiliari que hi ha actualment en els edificis (bancs, cadires, taules, prestatgeries, etc) serà retirat, destriat correctament i portat a l’abocador corresponent.

NOTA:

En el cas dels elements que continguin fibrociment (coberta, baixants, etc...) o de ser detectats altres residus de tipus especial descrits en el Catàleg de residus de Catalunya, aquests seran gestionats de manera diferenciada perquè poden comprometre el tractament biològic o la recuperació d’altres fraccions, a més de comportar un risc per al medi o per a la salut de les persones.

El mètode que es farà servir és el següent:

- Imprimació de les capes vistes de les peces per aspersió amb dissolució aquosa d’un copolímer d’acetat de polivinil, per tal d’evitar desprendiments de pols i fibres.

- Les peces trencades existents es retiraran manualment tros a tros, procurant que no caiguin a terra i seran dipositades en un sac i abans d’emmagatzemar-les es posaran en un segon sac convenientment assenyalat.

- En el cas que per causa del desmuntatge caigués a terra una planxa i es trenqués, es pararia el treball normal i es faria el següent: S’humidificarien i imprimirem els trossos trencats, es recollirien manualment un per un els trossos i es posarien en sacs com s’ha descrit abans i es netejaria amb una aspiradora amb filtrat absolut la zona afectada per la ruptura de la placa o baixant.

- Un cop desmuntades les peces, es procedirà a la neteja, per absorció de filtres absoluts, de tota la perfilaria metàl·lica de recolzament de les peces.

Una vegada acabats els treballs de desmuntatge, es procedirà a la neteja amb aspiradors industrials amb filtres absoluts. La pols recollida anirà directament en sacs situats en bidons de recollida. Aquests es posaran dins un altre sac. Tots dos portaran la indicació internacional que indica contingut d’amiant.
E.7. ORDRE D’ENDERROC

Com a criteris generals, hom proposa procedir a l’enderrocament de les diferents parts de l’edifici, amb mitjans manuals i mecànics, de dalt a baix, desmuntant en primer lloc les plaques de la coberta, i les baixants de fibrociment, seguint amb l’enderroc de l’edifici 2 i finalitzant amb l’enderroc de la paret mitgera.

En tot moment romandran instal·lades les proteccions i senyalitzacions necessàries, els criteris de Seguretat i Salut que estableix la normativa vigent així com les directrius de la Direcció Facultativa i la Propietat.

Durant les diferents fases d’enderroc s’utilitzaran eines manuals o mecàniques tenint especial cura durant la demolició per tal de minimitzar el soroll, les molèsties als edificis veïns, i no afectar els volums i elements a conservar o documentar.

Una vegada finalitzat cada fase del procés d’enderroc es farà acopi dels materials petris (maçoneria, llindes i brançals), les plaques de coberta i altres elements constructius indicats per la Direcció Facultativa. El lloc de l’emplaçament de l’acopi, es farà d’acord amb l’Ajuntament.
E.8. TASQUES A REALITZAR UN COP ACABATS L’ENDERROC

- Els transvasaments de runes es realitzaran amb mitjans estancs i protegits per evitar pols i caigudes de materials en el recorregut fins l’abocador legalitzat.

- Regularització general del terreny.

- Assegurar la fixació i l’estabilitat de totes les proteccions i senyalitzacions.

- Deixar neta l’obra i el seu entorn.

Nota:

Per les runes i residus de l’enderroc o bé altres residus que puguin aparèixer emmagatzemats a l’edifici i que puguin ser contaminants o generar qualsevol perillositat a la salubritat pública, s’informarà a la Direcció Facultativa i a la Propietat per tal de fer-ho saber als Serveis Tècnics Municipals i determinar l’abocador legalitzat adient. S’analitzaran les runes generades per l’enderroc per tal de procedir al seu reciclatge en la major quantitat possible i en general donar-li el tractament adient seguint la normativa vigent pel que fa al tractament de residus.
E.9. PROCÉS CONSTRUCTIU PER A REALITZAR L’ENDERROC DELS DIFERENTS ELEMENTS

E.9.1. Generalitats

En tots els casos haurà de ser objecte d’estudi el terreny i l’estat dels diferents elements estructurals de l’edifici, així com les solucions adoptades de bastides, consolidacions i proteccions. Haurà de plantear-se la neutralització de l’escomesa de les instal·lacions, la protecció o desviació de canalitzacions.

E.9.2. Tipus d’enderroc

L’enderroc es farà element a element, el seu ordre es plantearà eliminant prèviament de l’edifici els elements que puguin pertorbar-ne el desembaràs. Els elements resistsents s’enderrocaran, en general, en l’ordre invers que va seguir-se en la seva construcció, alleugerint la càrrega que gravita en els elements abans de demolir-los, contrarestant i anul·lant les components horitzontals de forces, apuntalant -si fos necessari- els voladissos, demolint les estructures hiperestàtiques en l’ordre que impliqui menors fletxes i desplaçaments, i mantenint o introduint els travaments necessaris. En qualsevol cas, en demolir una zona element a element, el que resti dempeus en cada moment ho haurà de fer un estat d’equilibri.

E.9.3. Procés d’enderroc de les plaques de fibrociment i plaques de PRFV.

El procés d’nderroc començarà amb la retirada de les plaques de fibrociment de la coberta de la nau industrial i de l’edifici 2, conjuntament amb la retirada de les plaques de PRFV.

Les plaques de fibrociment estan compostes per amiant no friable, un material potencialment perillós, causant de diferents malalties específiques provocades per la inhalació de les seves fibres. Per aquest motiu l’empresa contractada o subcontractada per aquesta demolició haurà d’estar inscrita a la RERA (Registre d’empreses amb risc per amiant), complir la normativa vigent, i realitzar la demolició amb personal especialitzat i amb el corresponent pla de treball.
E.9.3.1. Redacció d’un pla de treball específic

Abans de començar el procés d’enderroc de la coberta i es necessària la realització d’un pla de treball segons indica l’article 11 del Reial Decret de 396/2006, de 31 de març, i s’haurà de presentar a l’autoritat laboral corresponent al lloc de treball per rebre la seva aprovació.

El pla de treball haurà d’especificar les següents:

- Descripció de la tasca que s’ha de dur a terme amb especificació del tipus d’activitat corresponent.
- Tipus de material que hi ha d’intervenir.
- Ubicació de l’activitat a realitzar.
- Inici i durada de la tasca prevista.
- Relació nominal dels treballadors implicats directament en la feina o en contacte amb el material que conté amiant, així com les categories professionals, formació i experiència.
- Procediments que s’han d’aplicar i les particularitats que es requereixen per adequar aquests procediments.
- Mesures preventives previstes per limitar la generació i dispersió de fibres d’amiant en l’ambient i les mesures adoptades per limitar l’exposició dels treballadors a l’amiant i d’altres persones que estiguin al lloc on s’efectuí la tasca i en la seva proximitat.
- Equips utilitzats per a la protecció dels treballadors, amb especificació de les característiques i el nombre de les unitats de descontaminació i el tipus i manera d’ús dels equips de protecció individual.
- Les mesures per eliminar els residus d’acord amb la legislació vigent, amb indicació de l’empresa gestora i abocador.
- Les mesures destinades a informar els treballadors sobre els riscos a què estan exposats i les precaucions que ha de prendre.
- Recursos preventius de l’empresa, amb indicació, en cas que siguin aliens, de les activitats concertades.
- Procediment establert per avaluar i controlar l’ambient de treballs d’acord amb el que preveu aquest Reial decret.

Recordar que el termini per emetre resolució i notificar-la és de quaranta-cinc dies, a comptar de la data en què la sol·licitud hagi tingut entrada en el registre laboral competent; si transcorregut el termini, no s’ha notificat un pronunciament exprés, el pla de treball es considerarà aprovat.
En la tramitació de l’expedient s’ha de sol·licitar l’informe de la Inspecció de Treball i Seguretat Social i dels òrgans tècnics en matèria preventiva de Catalunya, en aquest cas.

Quan l’autoritat laboral que aprovi un pla de treball sigui diferent de la del territori on l’empresa està registrada, ha de remetre una còpia de la resolució aprovatòria del pla a l’autoritat laboral del lloc on figura registrada.

E.9.3.2. Desmuntatge de les plaques

La retirada de les plaques de fibrociment començarà pel carener i es desmuntaran manualment una per una fins arribar a la part més baixa de la vessant. Les plaques es desmuntaran amb especial precaució, evitant el seu trencament per tal de disminuir el nombre de fibres d’amiant alliberades a l’ambient durant l’operació, i sempre que sigui possible, s’evitarà l’ús d’eines de tall.

Tanmateix, quan sigui necessari l’ús de les mateixes, per tal de garantir un nivell baix d’emissions de fibres d’amiant respirables a l’ambient, aquestes hauran de ser eines de tall lent i amb aspiradors incorporats.

Una vegada retirada la coberta, es retiraran les plaques de PRFV del tancament de façana de la dent de serra, tanmateix, no caldrà prendre les mesures de protecció utilitzades pel fibrociment, ja que aquestes no contenen amiant.

Cal esmentar, que per realitzar el desmuntatge de les plaques, s’utilitzaran elevadors i arnessos, sempre que el tècnic redactor del pla de treball i estigui d’acord. El motiu d’aquesta decisió és perquè majoritàriament l’autoritat laboral de Catalunya desestima la majoria de plans de treball que no utilitzen aquests equipaments.

Es realitzaran també mesuraments ambientals, un cada quinze dies i un altre una vegada hagi finalitzat la primera fase d’enderroc, per tal d’assegurar que no s’alliberen fibres d’amiant en l’ambient.

Les zones de treball amb risc d’exposició a l’amiant hauran d’estar clarament delimitades i senyalitzades.

Durant la realització d’aquesta fase d’enderroc no es podrà realitzar cap altra activitat en paral·lel fins la finalització de la mateixa, tampoc podrà haver-hi personal aliè a l’empresa especialitzada.
Tota la primera fase d’enderroc es durà a terme amb el compliment del Reial Decret 396/2006 del 31 de març on s’estableixen les disposicions mínimes de seguretat i salut aplicables als treballs amb risc d’exposició a l’amiant.

E.9.3.3. Classificació i embalatge dels residus

Es classificaran els residus generats en la primera fase d’enderroc a la zona de acopi assenyalada en el pla de treball i es classificaran a peu d’obra els residus de construcció, segons el Reial Decret 105/2008, separant-los en fraccions (formigó, ceràmics, metalls, fustes, vidres, plàstics, papers o cartons i residus perillosos), dins de l'obra en la que es produeixin, amb mitjans manuals.

A la taula 1 es pot observar la classificació i codificació dels materials d’aïllament i construcció segons el Catàleg europeu de residus, MAM/304/2002.

<table>
<thead>
<tr>
<th>17 Residus de la construcció i demolició</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codi</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Materials d'aïllament i materials de construcció que contenen amiant</td>
</tr>
<tr>
<td>170601</td>
</tr>
<tr>
<td>170605</td>
</tr>
</tbody>
</table>

Cal especificar també, que tot material contaminat amb amiant (filtres, granotes, mascaretes, draps humits, etc.) eliminable, es considera a tots els efectes com a residu d'amiant, i haurà de ser gestionat com a tal.

Així doncs, els residus que continguin o estiguin contaminats d’amiant es recolliran separats de la resta de residus que es puguin generar, es col·locaran a la zona de acopi senyalitzada en el pla de treball i s’embalaran en recipients tancats, per exemple en material plàstic de suficient resistència mecànica, o en contenidors flexibles adequats (de ràfia amb forre i revestiment interior), evitant sempre la ruptura del material, i s’identificaran tal com s’especifica en l’annex II de l’RD 1406/89.
Segons indica l’annex II de l’RD 1406/89, els productes que hagin estat contaminats o continguin amiant, o el seu envoltoi portaran una etiqueta d’advertència de perill, per tal de facilitar la seva identificació. La etiqueta està representada a la figura 5 i conforme amb el model tindrà, al menys, 5 centímetres d’altura (H) i 2,5 centímetres d’amplada.

Figura 5. Etiqueta dels productes que continguin amiant
Font. Real Decreto 1406/89.

E.9.3.4. Transport i gestió dels residus

Els recipients esmentats s’hauran de traslladar fora del lloc de treball el més aviat possible i dipositar en un abocador de residus perillosos, mitjançant un transportista especialitzat, el qual haurà de complir les següents condicions:

- Haurà d’estar autoritzat per l’Agència de Residus de Catalunya.
- Haurà d’estar inscrit al registre d’empreses amb risc d’amiant (RERA).
- Haurà de disposar del corresponent pla genèric d’amiant aprovat per l’autoritat laboral.
- No serà necessària l’especificat en la reglamentació per al transport per carretera de mercaderies perilloses ADR, ja que l’amiant en aquest cas és no friable.

A més a més, cal destacar que el transportista haurà de tenir l’autorització de transport de residus perillosos del grup 18 (amiant en pols).

La destinació final dels residus amb amiant és l’abocador de residus perillosos. A l’actualitat, Catalunya disposa d’un abocador d’aquestes característiques ubicat a la població de Castellolí, aproximadament a 127 km de l’establiment industrial a rehabilitar.
Per a l'admissió d'aquests residus, és necessari disposar de la corresponent fitxa d'acceptació, prèviament als enviaments, si el residu té una procedència industrial, o la fitxa identificativa del client/a si no té aquesta procedència, i del full de seguiment (model itinerant) dels residus que ha d'acompanyar els transports.

E.9.4. Procés d'enderroc de l'edifici 2 i 3

Un cop finalitzada la primera fase d’enderroc, es procedirà a l’inici de la segona fase d’enderroc, la qual inclou l’enderroc de tot l’edifici 2 i 3.

E.9.4.1. Treballs i actuacions prèvies

Abans d’iniciar l’enderroc dels edificis es prendran les mesures de protecció necessàries per tal de no damnificar la façana est de la nau industrial, la qual està en contacte els edificis a enderrocar.

A més a més, es realitzaran les cales, jornades o prospeccions necessàries per tal de facilitar el procés d’enderroc o millorar-ne la seva seguretat.

Cal esmentar que la nau únicament disposa d’una instal·lació d’enllumenat, la qual s’anul·larà abans d’iniciar l’enderroc.

E.9.4.2. Demolició dels edificis

Una vegada assegurada l’estabilitat dels elements de la nau durant l’enderroc de l’edifici 2 i 3, realitzades les cales, jornades o prospeccions necessàries i anul·lada la seva instal·lació elèctrica, es podrà procedir a demolir els edificis.

Aquesta demolició es realitzarà element a element, en l’ordre invers de la seva construcció, retirant qualsevol element únicament relacionat amb la seva construcció. Com a criteris generals, hom proposa procedir a l’enderrocament de les parts de l’edifici, amb mitjans manuals i mecànics, de dalt a baix, desmuntant i enderrocant les bigues de coberta, suports i tancaments, primer i deixant pel final tot el referent a l’estructura de l’edifici.

En l’enderroc de l’estructura s’utilitzarà eines manuals i mecàniques tenint especial cura durant la demolició per tal de minimitzar el soroll, les molèsties als edificis veïns, i no afectar els volums i elements a conservar o documentar, en especial la façana est.
Es trossejarà la solera després d’haver enderrocat els pilars.

Pel que fa als fonaments es farà la demolició després de la retirada de runes del damunt, prèvia comprovació dels passos soterrats d’instal·lacions, i altres, i els moviments de terres necessaris.

Una vegada retirats tots els elements que constituïen l’edifici 2 i 3, s’aportarà terra adequada on sigui necessari, amb posterior compactació de la mateixa, per tal de deixar la zona d’enderroc al nivell de la resta del terreny.

Durant el procés, en tot moment romandran instal·lacions les proteccions i senyalitzacions necessàries, els criteris de Seguretat i Salut que estableix la normativa vigent així com les directrius de la Direcció Facultativa i la Propietat.

E.9.4.3. Classificació dels residus

Els residus de construcció i demolició generats es separaran en les fraccions següents, quan, de manera individualitzada per a cada una de les esmentades fraccions, la quantitat prevista de generació per al total de l’obra superi les quantitats següents:

- Formigó: 80 t.
- Maons, teules, materials ceràmics: 40 t.
- Metall: 2 t.
- Fusta: 1 t.
- Vidre: 1 t.
- Plàstic: 0,5 t.
- Paper i cartró: 0,5 t.

La separació en fraccions l’haurà de portar a terme preferentment l’empresa contractada per a la demolició dels edificis i s’efectuarà en una zona de acopi dins de la mateixa obra. Quan per falta d’espai físic en l’obra no sigui tècnicament viable efectuar l’esmentada separació en origen, es realitzarà la separació de fraccions i classificació dels residus generats per un gestor de residus en una instal·lació de tractament de residus de construcció i demolició externa a l’obra. En aquest últim cas,
el posseïdor dels residus ha d’obtenir del gestor de la instal·lació documentació que acreditï que aquest ha complert, en nom seu, l’obligació recollida en el present apartat.

E.9.4.4. Gestió dels residus

A més de les obligacions que preveu la normativa aplicable, la persona física o jurídica que executi l’obra estarà obligada a presentar al propietari de l’obra un pla que reflecteixi com portarà a terme les obligacions que li incumbeixin en relació amb els residus de construcció i demolició que s’hagin produït durant el procés d’enderroc, en particular les que recullen l’article 4.1 i 5 del Reial decret 105/2008.

Aquest pla, s’haurà d’aprovar per la direcció facultativa i ser acceptat pel propietari de l’obra, a partir d’aquí, passarà a formar part dels documents contractuals de l’obra.

Els plans sobre residus de construcció i demolició o les revisions dels existents que, d’acord amb els apartats 4 i 5 de l’article 5 de la Llei 10/1998, de 21 d’abril, aprovin les comunitats autònomes o les entitats locals, han de contenir com a mínim:

- La previsió de la quantitat de residus de construcció i demolició que es produeixin durant el període de vigència del pla, amb el desglossament de les quantitats de residus perillosos i de residus no perillosos, i codificats d’acord amb la llista europea de residus publicada per l’Ordre MAM/304/2002, de 8 de febrer, o norma que la substitueixi.
- Els objectius específics de prevenció, reutilització, reciclatge, altres formes de valorització i eliminació, així com els terminis per assolir-los.
- Les mesures a adoptar per aconseguir els objectius esmentats, incloses les mesures de caràcter econòmic.
- Els llocs i les instal·lacions apropiats per a l’eliminació dels residus.
- L’estimació dels costos de les operacions de prevenció, valorització i eliminació.
- Els mitjans de finançament.
- El procediment de revisió.

El posseïdor de residus de construcció i demolició, quan no els gestioni ell mateix, i sense perjudici dels requeriments del projecte aprovat, estarà obligat a lliurar-los a un gestor de residus o a participar en un acord voluntari o conveni de col·laboració per a la seva gestió. Els residus de construcció i demolició s’hauran de destinar preferentment, i per aquest ordre, a operacions de reutilització, reciclatge o a altres formes de valorització.
El lliurament dels residus de construcció i demolició a un gestor per part del posseïdor ha de constar en un document fefae, en el qual figuri, almenys, la identificació del posseïdor i del productor, l’obra de procedència i, si s’escau, el número de llicència de l’obra, la quantitat, expressada en tones o en metres cúbics, o en les dues unitats quan sigui possible, el tipus de residus lliurats, codificats d’acord amb la llista europea de residus publicada per l’Ordre MAM/304/2002, de 8 de febrer, o norma que la substitueixi, i la identificació del gestor de les operacions de destinació.

Quan el gestor al qual el posseïdor lliuri els residus de construcció i demolició efectuï únicament operacions de recollida, emmagatzematge, transferència o transport, en el document de lliurament també ha de figurar el gestor de valorització o d’eliminació ulterior al qual es destinen els residus.

En tot cas, la responsabilitat administrativa en relació amb la cessió dels residus de construcció i demolició per part dels posseïdors als gestors es regueix pel que estableix l’article 33 de la Llei 10/1998, de 21 d’abril.

El posseïdor dels residus està obligat, mentre estiguin en el seu poder, a mantenir-los en condicions adequades d’higiene i seguretat, així com a evitar la mescla de fraccions ja seleccionades que n’impedeixi o en dificulti la posterior valorització o eliminació.

A més dels requisits exigits per la legislació sobre residus, el productor de residus de construcció i demolició haurà de complir les obligacions següents:

- Incloure en el projecte d’execució de l’obra un estudi de gestió de residus de construcció i demolició, que ha de contenir com a mínim:
 a) Una estimació de la quantitat, expressada en tones i metres cúbics, dels residus de construcció i demolició que s’han de generar en l’obra, codificats d’acord amb la llista europea de residus publicada per l’Ordre MAM/304/2002, de 8 de febrer, per la qual es publiquen les operacions de valorització i eliminació de residus i la llista europea de residus, o norma que la substitueixi.
 b) Les mesures de prevenció de residus en l’obra objecte del projecte.
 c) Les operacions de reutilització, valorització o eliminació a què s’han de destinar els residus que es generen en l’obra.
 d) Les mesures per a la separació dels residus en obra, en particular, per al compliment per part del posseïdor dels residus de l’obligació que estableix l’apartat 5 de l’article 5 del Reial decret 105/2008.
e) Els plànols de les instal·lacions previstes per a l’emmagatzematge, el maneig, la separació i, si s’escau, altres operacions de gestió de residus de construcció i demolició dins de l’obra. Posteriorment, dits plànols poden ser objecte d’adaptació a les característiques particulars de l’obra i els seus sistemes d’execució, amb l’acord previ de la direcció facultativa de l’obra.

f) Les prescripcions del plec de prescripcions tècniques particulars del projecte, en relació amb l’emmagatzematge, el maneig, la separació i, si s’escau, altres operacions de gestió dels residus de construcció i demolició dins de l’obra.

g) Una valoració del cost previst de la gestió dels residus de construcció i demolició que ha de formar part del pressupost del projecte en un capítol independent.

- S’haurà de fer un inventari dels residus perillosos que es generen, que s’ha d’incloure a l’estudi de gestió a què es refereix a l’apartat anterior, així com preveure’n la retirada selectiva, amb la finalitat d’evitar la mescla entre si o amb altres residus no perillosos, i assegurar el seu enviament a gestors autoritzats de residus perillosos.

- Disposar de la documentació que acrediti que els residus de construcció i demolició realment produïts en les seves obres han estat gestionats, si s’escau, en obra o lliurats a una instal·lació de valorització o d’eliminació per al seu tractament per un gestor de residus autoritzat, en els termes que recullen el Reial decret 105/2008 i, en particular, l’estudi de gestió de residus de l’obra o les seves modificacions. La documentació corresponent a cada any natural s’ha de mantenir durant els cinc anys següents.

E.9.4.5. Recollida i transport de residus de construcció

Els titular de l’activitat que dugui a terme la operació de recollida, transport i emmagatzematge de residus no perillosos de construcció i demolició ho notificarà a l’òrgan competent en matèria mediambiental de Catalunya, i aquestes activitats han de quedar degudament registrades en la forma que estableixi la legislació de Catalunya.

Segons l’Agència de residus de Catalunya es realitzarà un estudi de gestió de residus el qual s’inclourà en el projecte d’execució i és obligació del productor vetllar perquè així sigui i contingui els requeriments estipulats per la legislació vigent. Aquest document haurà de recollir les directrius de gestió de residus de la construcció i demolició que posteriorment es concretaran a obra mitjançant el Pla de Gestió de Residus.
El Pla de Gestió haurà d’identificar totes aquelles accions de minimització a tenir en consideració en l’obra per tal de prevenir la generació de residus de la construcció i demolició durant la fase d’obra o de reduir-ne la seva producció.

E.9.5. Tancament interior

L’últim fase d’enderroc, serà la fase on es durà a terme l’enderroc dels tres trams del tancament interior més propers a la façana nord.

E.9.5.1. Treballs i actuacions prèvies

La construcció del tancament interior es va construir posteriorment a la construcció de la nau, concretament a l’any 2001, la qual cosa facilitarà l’enderroc.

Es tindrà especial cura en l’enderroc de la paret divisòria i es durà a terme de tal forma que s’asseguri l’estat dels elements estructurals de la nau, així com els pilars en que està en contacte, la gelosia i el paviment interior de la nau. Per aquest motiu, ja abans de realitzar l’enderroc es prendran les mesures necessàries per assegurar que no es perjudiqui cap altre element que no estigui relacionat amb la paret divisòria a enderrocar.

Una vegada assegurada la conservació dels altres elements exclosos a l’enderroc, es procedirà a l’enderroc dels trams del tancament.

E.9.5.2. Demolició del tancament

La demolició dels tres trams del tancament interior s’efectuarà des del tram més proper a l’accés del recinte cap al seu interior, i de dalt cap a baix, de manera que la demolició es realitzi pràcticament al mateix nivell i procurant deixar espais lliures prop de l’entrada de la nau, a fi de permetre una millor evacuació en cas d’incidència

E.9.5.3. Classificació i gestió dels residus

Es classificaran i es gestionaran els residus produïts durant aquesta tercera fase d’enderroc seguin en mateix criteri que en la segona fase d’enderroc i complint el Reial decret 105/2008.
E.9.6. Elements i volums a conservar, i edificacions veïnes

L’enderroc es farà sempre conservant els elements i volums que s’hagin de preservar, caldrà apuntalar aquests elements o edificacions si és necessari abans de l’enderroc de la coberta i façanes en contacte amb aquests.

També caldrà tenir especial cura amb la nau veïna, sense enderrocar ni tocar aquesta edificació veïna. En cas que sigui necessari, es protegirà segons indiqui la direcció facultativa.

E.9.7. Condicions generals dels equips de demolició

Els equips de demolició seran els adients al pes, dimensió i situació dels elements a enderrocar.

E.9.8. Condicions de seguretat en el treball

E.9.8.1. Abans de l’enderroc

L’edifici, abans de l’enderroc, estarà envoltat d’una tanca o mur d’alçària no menor de dos metres. Les tanques se situaran a una distància de l’edifici i de les bastides no inferior a un metre i mig.

A les façanes se situaran proteccions com xarxes i lones, així com una pantalla inclinada rígida que reculli la runa o les eines que puguin caure. Aquesta pantalla sobresortirà de la façana una distància no menor de dos metres.

Aquestes proteccions es col·locaran, també, sobre els elements aliens a l’enderroc i més baixos del que s’enderroca

Es disposaran en obra, per tal de proporcionar en cada cas l’equip indispensable a l’operari, una provisió de palanques, falques, barres, puntals, pics, taulons, brides, cables amb terminals de fàbrica com ganxos, lones o plàstics, ulleres antifragments, caretes antiespurnes, botes de sola dura i altres mitjans que puguin servir per a eventualitats o per a socórrer els operaris que puguin accidentar-se.
En llocs amb estructura de fusta o amb abundància de material combustible es disposarà, com a mínim, d’un extintor manual contra incendis.

No es permetran fogueres dins l’edifici, i les fogueres exteriors estaran protegides del vent i controlades. En cap cas s’utilitzarà el foc amb propagació de flama com a mitjà d’enderroc.

Abans d’iniciar l’enderroc es neutralitzaran les escomeses de les instal·lacions, d’acord amb les companyies subministradores.

Es revisaran els locals de l’edifici, comprovant que no hi hagi emmagatzematge de materials combustibles o perilllosos, ni altres derivacions d’instal·lacions que no provinugu de les preses generals de l’edifici, així com el buidatge de tots els dipòsits i canonades.

Es deixaran previstes preses d’aigua per al rec per tal d’evitar la formació de pols, durant els treballs.

En la instal·lació de grues o maquinària a emprar es mantindrà la distància de seguretat a les línies de conducció elèctrica i es consultaran les normes corresponents d’electricitat, baixa tensió i posta a terra.

E.9.8.2. Durant l’enderroc

L’ordre d’enderroc s’efectuarà de dalt a baix, de manera que la demolició es realitzi pràcticament al mateix nivell, sense que hi hagi persones situades en la mateixa vertical ni en la proximitat d’elements a abatre o bolcar.

Durant l’enderroc, si pareixen esquerdes en les edificacions adjacents que no s’enderroquen, es col·locaran testimonis a fi d’observar els possibles efectes de l’enderroc i d’efectuar el seu apuntalament o consolidació si fos necessari.

Sempre que l’alçària de caiguda de l’operari sigui superior a tres metres serà obligatori l’ús de cinturons de seguretat ancorats en punts fixos o bé es disposaran bastides. Hi haurà passarel·les per a la circulació entre biguetes o nervis de sostres als quals s’hagi tret l’entrebigat.

No se suprimiran els elements atirantats o de travament mentre no s’anul·lin o contrarestin les tensions que incideixen en ells.
Procés constructiu de la rehabilitació d’una nau industrial existent

En elements metàl·lics en tensió es tindrà present l’efecte d’oscil·lació en realitzar el tall o en suprimir les tensions.

Es desmontaran sense trossejar-los els elements que puguin produir talls o lesions.

Els trossejat d’un element es realitzarà per peces de mida manejable per una sola persona.

El tall o desmuntatge d’un element no manejable per una sola persona es realitzarà mantenint-lo suspès o apuntalat, evitant caigudes sobtades i vibracions que es transmetin a la resta de l’edifici o als mecanismes de suspensió.

L’abatiment d’un element es realitzarà permetent el gir però no el desplaçament dels seus suports, mitjançant mecanismes que treballin per damunt de la línia de suport de l’element i permetin el descens lent i controlat.

La bolcada només podrà realitzar-se en elements divisibles en peces, no encastats, situats en façanes i en tots els elements de la planta baixa. Serà necessari, prèviament, atirantar i apuntalar l’element, descalçar inferiorment un terç del seu espessor o anul·lar els ancoratges, aplicant la força per damunt del centre de gravetat de l’element. Es disposarà en el lloc de caiguda de sòl consistent i d’una zona de costat no menor de l’alcària des de la qual es deixe caure.

Els compressors, martells pneumàtics o similars s’utilitzaran prèvia autorització de la direcció Facultativa de l’obra.

En el cas de demolició d’elements de fusta, s’arrencaran o doblegaran les puntes i els claus.

Les grues no s’utilitzaran per a realitzar forces horitzontals o obliques.

En aplicar-se les càrregues de demolició, es començaran a incrementar de valor lentament, amb la finalitat d’observar si es produeixen anomalies, en el qual cas se solucionaran després d’haver baixat la càrrega al seu valor original.

No es baixaran les càrregues amb només el control del fre.
L’evacuació de runa es pot realitzar de les següents maneres:

- Mitjançant la grua quan es disposi d’espai per a la seva instal·lació i zona de descàrrega de la runa.
- Mitjançant canals. El darrer tram del canal s’inclinará de manera que es redueixi la velocitat de sortida del material i de manera que l’extrem quedi, com a màxim, a dos metres per damunt del terra o de la plataforma del camió que en realitzi el transport. El canal no anirà situat exteriorment en façanes que donin a espais públics, excepte el seu tram inclinat inferior, i la seva secció útil no serà superior a cinquanta per cinquanta centímetres. La seva boca superior estarà protegida contra caigudes accidentals.
- Per desenrunat mecanitzat. La màquina s’aproximarà a les edificacions veïnes sense depassar mai la distància d’un metre i treballant en direcció no perpendicular a cap mitgera. S’evitarà la formació de pols regant lleugerament els elements i runes. Es desinfectarà tot el que pugui transmitre malalties contagioses.

En tots els casos, l’espai on cau la runa estarà acotat i vigilat. No s’acumularan runes amb un pes superior a cent quilos per metre quadrat damunt dels sostres encara que estiguin en bon estat. No es dipositarà runa sobre les bastides. No s’acumularà runa ni es recolzaràn elements en tanques, murs i suports propis que hagin de mantenir-se dempeus o d’edificacions i elements aliens a l’enderroc.

En finalitzar la jornada no han de romandre elements de les edificacions en estat inestable que el vent, les condicions atmosfèriques o bé altres causes puguin esfondrar. Es protegiran de la pluja, mitjançant lones o plàstics, les zones o elements que puguin ésser afectats per l’aigua.

E.9.8.3. Després de l’enderroc

Un cop finalitzat l’enderroc de cada element, es farà una revisió general de les parts que hagin de romandre dempeus i de les edificacions veïnes per a observar les lesions que s’hagin pogut produir.

S’assegurarà doncs, que els elements exclosos a l’enderroc quedin en perfecte estat de servei, quan s’aperceï alguna anomalia en els demés elements o en el seu funcionament, es notificarà immediatament a la direcció facultativa de l’obra.
E.10. **INSTAL·LACIONS**

S’exigeix l’anul·lació prèvia de totes les instal·lacions de l’establiment industrial que puguin generar problemes durant l’enderroc.

La desconexió de totes les xarxes d’instal·lacions afectades serà sempre prèvia a l’inici dels enderrocs. Totes les actuacions realitzades en aquesta desconexió es realitzaran d’acord amb les respectives companyies subministradores. La xarxa de desguàs anul·lada s’obturará convenientment per tal d’evitar l’entrada de runa o altres materials en la xarxa de clavegueram urbana. L’estat de les instal·lacions anul·lades es revisarà diàriament durant l’enderroc.
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIA D’ANGLÈS.

- ANNEX E. ENDERROC

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
ANNEX F

TANCAMENT DE COBERTA
SUMARI. TANCAMENT DE COBERTA

A.1. INTRODUCCIÓ .. 3
A.2. OBJECTE .. 3
A.3. DESCRIPIÓ I CARACTERÍSTIQUES DE LA COBERTA ACTUAL 4
 A.3.1. Capes que componen la coberta actual ... 4
 A.3.1.1. Pes de la coberta actual ... 5
 A.3.1.2. Transmitància de la coberta actual ... 6
A.4. JUSTIFICACIÓ DE LA NECESSITAT ... 10
 A.4.1. Vida útil ... 10
 A.4.2. Propietats nocives .. 11
 A.4.3. Exposició a les fibres ... 12
 A.4.4. Estètica ... 12
A.5. DESMUNTATGE DE LA COBERTA ACTUAL ... 13
A.6. ESTUDI D’ALTERNATIVES .. 13
A.7. SOLUCIÓ ADOPTADA .. 15
 A.7.1. Elecció de la tipologia de tancament de coberta .. 15
 A.7.2. Elecció de l’aïllament del panell sandvitx ... 15
 A.7.3. Dimensions del panell sandvitx de poliuretà ... 17
 A.7.3.1. Longitud de les plaques .. 18
 A.7.3.2. Resistència a les càrregues en funció de l’espessor .. 18
 A.7.4. Transmitància tèrmica de la nova coberta ... 19
 A.7.4.1. Pont tèrmic de la canal .. 20
 A.7.4.2. Pont tèrmic del carener de la dent de serra ... 21
A.8. EMPRESA RECOMANADA .. 23
A.9. ACCESSORIS D’INSTAL·LACIÓ .. 24
 A.9.1. Cargols de subjecció ... 24
 A.9.2. Remats ... 24
 A.9.2.1. Remat en el cavallet de la dent de serra .. 25
 A.9.2.2. Remats de coronació laterals .. 25
 A.9.2.3. Remat de tancament en la part inferior de la vessant 26
 A.9.3. Juntes d’estanqueïtat ... 27
 A.9.4. Xapa d’acer i aïllament de llana de vidre ... 28
A.10. SUPERFÍCIE DEL TANCAMENT I DISTRIBUCIÓ RECOMANADA 29
A.11. INSTAL·LACIÓ DELS PANELLS .. 30
 A.11.1. Emmagatzematge ... 30
 A.11.2. Elevació dels panells ... 31
 A.11.3. Estat de conservació del suport ... 31
 A.11.4. Col·locació dels panells i remats 31
 A.11.4.1. Solapament entre panells ... 32
 A.11.5. Manteniment dels panells .. 33
A.12. COMPLIMENT DE LA NORMATIVA VIGENT 34
 A.12.1. Accions en l’edificació (DB SE-AE) 34
 A.12.2. Normativa contra incendis (RSCIEI) 34
 A.12.3. Protecció contra la humitat (DB HS-1) 34
F.1. INTRODUCCIÓ

Les cobertes són uns dels tancaments exteriors de les edificacions que adquireixen major importància donada la seva polivalent funcionalitat. Raó per la qual, requereixen d’una major precaució en la seva etapa de disseny i instal·lació.

Anteriorment, només s’exigia que les cobertes protegissin l’interior de l’edifici del sol i de les inclemències meteorològiques, i fossin capaces de desviar o dirigir el curs de l’aigua pluvial cap als llocs desitjats (canals). Tanmateix, en els temps actuals, també se’ls exigeix que siguin capaces d’aïllar tèrmicament i acústicament l’interior de l’edifici de l’exterior, que les seves propietats mecàniques romanguin inestables i no es vegin afectades per els agents externs (humitat, pols, fred, calor, etc.) al llarg de la seva vida útil, que siguin capaces de garantir uns mínims d’estabilitat i resistència al foc en cas d’incendi, regulats per la normativa vigent, i a més presentin una durabilitat elevada de la seva vida útil.

La coberta actual de la nau industrial és del tipus shed o també anomenada de dents de serra, està constituïda per plaques de fibrociment ondulat gran onda i un aïllament de fibra de vidre. La coberta actual ha perdut la seva funcionalitat, per aquesta raó entre d’altres, s’aconseiglia la seva retirada i substitució per una altra que presenti millors característiques.

F.2. OBJECTE

En aquest annex es pretén justificar la retirada i substitució de la coberta actual, escollir i descriure la tipologia de coberta idònia per realitzar el nou tancament de coberta, descriure’n la seva instal·lació, així com assegurar el compliment de la normativa vigent que la regula.
F.3. DESCRIPIÓ I CARACTERÍSTIQUES DE LA COBERTA ACTUAL

La coberta de la nau està formada per cinc dents de serra, cadascuna d’elles té dos tancaments diferenciables pel seu pendent. El tancament de major superfície, el qual està situat sobre les corretges, té una inclinació de 17° (30,57%) respecte el pla horitzontal i és considera un tancament de coberta inclinada, ja que la seva inclinació és superior al 5%. En canvi, el faldó de menor superfície que està situat davant l’encavallada Warren té una inclinació de 90° respecte el pla horitzontal, segons el CTE els tancaments amb contacte amb l’exterior amb una inclinació superiors a 60° són tancaments de façana.

Així doncs, la coberta està formada únicament per cinc faldons, cadascun d’ells està format per dues vessants constituïdes per plaques de fibrociment ondulat gran onda, amb un aïllament interior de llana de vidre de 50 mil·límetres d’espessor.

Per tal d’unir els faldons de la coberta amb el tancament de façana de la dent de serra, en el carener de cada dent hi ha un cavallet de fibrociment granular amb una ala ondulada, situada sobre el faldó amb la inclinació de 17° i l’altre ala llisa, situada sobre el tancament de façana de la dent de serra.

Les plaques de fibrociment es subjecten a corretges tipus C (separades entre elles 1.165mm) mitjançant ganxos d’acer galvanitzat tipus J.

Si es desitja més informació de l’estat actual de la coberta es pot consultar l’annex A d’aquest projecte.

F.3.1. Capes que composen la coberta actual

La coberta actual està formada per quatre capes, col·locades amb l’ordre d’exterior a interior: una vessant amb plaques de fibrociment de 6 mm d’espessor, càmera d’aire de 17,5 cm d’espessor, i una altre vessant amb aïllament de llana de vidre de 12,5 mm d’espessor i plaques de fibrociment de 6 mm d’espessor.

A continuació, s’adjunta la figura 1, on es mostra la distribució dels elements constructius i capes de la coberta actual.
Segons el DA DB HE-1, la càmera d’aire és molt ventilada, ja que les seves obertures excedeixen els 1500 mm². L’aire ambient exterior es cola entre les ones de la vessant formada per plaques de fibrociment que està en contacte amb l’exterior.

F.3.1.1. Pes de la coberta actual

Les plaques de fibrociment eren àmpliament utilitzades en l’antiguitat per les seves propietats mecàniques, resistent a agents externs, químics, bon comportament al foc i el seu baix cost d’adquisició. Tanmateix no presenten un bon pes en relació als nous materials utilitzats com a tancaments de coberta. Les plaques de fibrociment de 6 mm d’espessor tenen un pes de 180 N/m² (18,35 kg/m²), i la llana de vidre té 12,5 mm d’espessor i un pes de 100 kg/m³).

Així doncs, la vessant situada a l’exterior té un pes de 18,35 kg/m², mentre que la vessant situada a l’interior (aïllament + placa de fibrociment) té un pes de 19,6 kg/m².

Cal especificar, que les plaques estan sobreposades per els seus extrems, el que significa que cada vessant de la coberta té un pes realment superior a l’indicat. Tanmateix, no serà necessari determinar el pes exacte de la coberta actual, ja que la majoria de coberta actuals tenen un pes inferior a l’aproximat.
F.3.1.2. Transmitància de la coberta actual

La transmitància tèrmica s’usa en els materials de la construcció per determinar la capacitat d’aïllament dels tancaments o calcular les pèrdues energètiques dels edificis. Es defineix com la quantitat d’energia que travessa en la unitat de temps, una superfície d’un element constructiu de dos cares paral·leles, quan en aquestes hi ha un gradient tèmic unitat.

S’ha determinat la transmitància tèrmica del tancament segons indica el Documento de apoyo al Documento básico. Ahorro de Energia (DA DB HE-1), mitjançant l’equació 1.

\[
U = \frac{1}{R_T} = \frac{1}{R_{se} + R_i + R_{si}}
\]

Essent:

- \(U_T \): Transmitància tèrmica del tancament (W/m²K).
- \(R_T \): Resistència total del tancament (m²K/W).
- \(R_i \): Sumatori de les resistències tèrmiques de cadascuna de les capes que formen el tancament (m²K/W).
- \(R_{se} \): Resistència tèrmica superficial exterior (m²K/W).
- \(R_{si} \): Resistència tèrmica superficial interior (m²K/W).

Cal especificar, que quan el tancament conté una càmera d’aire molt ventilada, s’ha de menysprear la resistència tèrmica de la càmera d’aire i de les demés capes entre la càmera d’aire i l’ambient exterior (capa de fibrociment), i incloent una resistència superficial exterior corresponent a l’aire en calma igual a la resistència superficial interior del tancament.

Així doncs, el valor \(R_i \) s’ha determinat sumant les resistències tèrmiques dels elements que componen el tancament excepte de la vessant situada entre la càmera d’aire i l’ambient exterior (placa de fibrociment). Les resistències tèrmiques a considerar són les de les dos capes que componen la vessant inferior del faldó. Essent la resistència tèrmica de l’aïllament de llana (\(R_{AW} \)) i la de les plaques de fibrociment (\(R_F \)) A continuació, s’adjunta la taula 1, on s’especifika les resistències tèrmiques de cada paret que componen el tancament de coberta actual.
Procés constructiu de la rehabilitació d’una nau industrial existent

Taula 1. Propietats dels elements constructius de la coberta

<table>
<thead>
<tr>
<th></th>
<th>Espessor (m)</th>
<th>Pes (kg/m²)</th>
<th>Conductivitat (W/mK)</th>
<th>Resistència tèrmica (m²K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placa de fibrociment</td>
<td>0,006</td>
<td>18,35</td>
<td>0,95</td>
<td>0,00632</td>
</tr>
<tr>
<td>Càmera d’aire</td>
<td>0,107</td>
<td>-</td>
<td>0,024</td>
<td>0,18</td>
</tr>
<tr>
<td>Llana de vidre</td>
<td>0,0125</td>
<td>1,25</td>
<td>0,036</td>
<td>0,34722</td>
</tr>
<tr>
<td>Placa de fibrociment</td>
<td>0,006</td>
<td>15</td>
<td>0,95</td>
<td>0,00632</td>
</tr>
<tr>
<td>Correja d’acer</td>
<td>0,002</td>
<td>-</td>
<td>50</td>
<td>0,00004</td>
</tr>
</tbody>
</table>

Aplicant l’equació 2 s’ha calculat el valor del paràmetre R_i.

$$R_i = R_F + R_{AV} = 0,006 + 0,347 = 0,3535 \quad (Eq.2)$$

La resistència tèrmica superficial dels tancaments en contacte amb l’aire exterior i interior es determina mitjançant la taula 2, adjunta a continuació i explícita en el DA DB HE-1 (taula 1).

Taula 2. Resistències tèrmiques superficials dels tancaments en contacte amb l’exterior.

<table>
<thead>
<tr>
<th>Posició del tancament y sentido del flux de calor</th>
<th>R_{se}</th>
<th>R_{st}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerraments horitzontals com pendient sobre la horizontal $\leq 80^\circ$ y fluxo descendente (Techo)</td>
<td>0,04</td>
<td>0,17</td>
</tr>
<tr>
<td>Cerraments horitzontals com pendient sobre la horizontal $\leq 80^\circ$ y fluxo descendente (Suelo)</td>
<td>0,04</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Cal recordar, que alhora de calcular la transmitància tèrmica del tancament la resistència superficial exterior (R_{se}) i la resistència de la càmera d’aire s’ha menyspreat i s’ha substituït per el valor de la resistència tèrmica interior (R_{st}).

Així doncs, determinats el valor dels paràmetres R_i i R_{st}, i aplicant l’equació 1, s’ha determinat que la transmitància tèrmica del tancament és de 1,806 W/m²K.

$$U = \frac{1}{R_T} = \frac{1}{R_{st} + R_i + R_{st}} = \frac{1}{0,1 + 0,1 + 0,3535} = 1,806 \text{ W/m}^2\text{K}$$
Procés constructiu de la rehabilitació d’una nau industrial existent

Cal esmentar però, que el tancament de coberta actual disposa de ponts tèrmics, el que significa que la seva transmitància és lleugerament superior. Els ponts tèrmics són les regions dels tancaments on es transmet la calor amb més facilitat que en la resta del tancament.

S’han detectat dos ponts tèrmics d’importància en el tancament de coberta de la nau actual, el de menor importància és el situat sota la canal de recollida d’aigües pluvials, i el de major importància està situat en el carener de la dent de serra.

El pont tèrmic de la canal és la regió del tancament de coberta que està constituïda per tres parets, la canal d’alumini de 0,8 mm d’espessor, i la vessant interior amb l’aïllament de llana de vidre i la placa de fibrociment. En aquest punt la transmitància tèrmica és de 2,026 W/m²K. A continuació s’adjunta el càlcul de la transmitància tèrmica d’aquesta regió del tancament i la figura 2, on es mostra una representació gràfica del pont tèrmic de la canal.

\[
U = \frac{1}{R_T} = \frac{1}{R_{se} + R_i + R_{si}} = \frac{1}{0,04 + 0,1 + 0,006 + 0,347 + \frac{0,0008}{235}} = 2,026 \, W/m^2\, K
\]

Figura 2. Pont tèrmica de la canal
Font. Pròpia (AutoCAD 2013)

En canvi, el pont tèrmic del carener de la dent de serra es produeix en el cavallet, on la transmitància tèrmica d’aquest és de 7,11 W/m²K. A continuació, s’adjunta el càlcul de la transmitància tèrmica d’aquesta regió del tancament i la figura 3, on es mostra una representació gràfica del pont tèrmic del cavallet.

\[
U = \frac{1}{R_T} = \frac{1}{R_{se} + R_i + R_{si}} = \frac{1}{0,04 + 0,1 + 0,00632} = 7,11 \, W/m^2\, K
\]
Figura 3. Pont tèrmic del cavallet de la dent de serra
Font. Pròpia (AutoCAD 2013)
F.4. JUSTIFICACIÓ DE LA NECESSITAT

S’aconsella una retirada de les plaques de la coberta i consecuentment habilitació d’una nova coberta, pels motius exposats a continuació.

F.4.1. Vida útil

Les plaques de coberta actuals estan deteriorades i envellides. A més, durant l’etapa d’inspecció visual de l’estudi patològic, s’ha observat que algunes de les plaques de fibrociment de la coberta estaven recobertes amb tela asfáltica. Arran d’aquesta observació, es va preguntar al propietari de l’establiment el motiu d’aquesta mesura. El propietari ens ha afirmat que durant un dia de calamarsa (pedregada), es va produir una fissura en alguna de les plaques, i es van haver de segellar per garantir la seva estanqueïtat.

En l’article 4.2 de l’Ordre de 7 de desembre de 2001, que modifica l’Annex I del Reial decret 1406/1989, de 10 de novembre, que imposa limitacions a la comercialització i a l’ús de certes substàncies i preparats perilloses, és prohibeix la utilització, producció i comercialització de productes que continguin amiant. No obstant, aquesta normativa permet únicament la utilització de productes que continguin fibres d’amiant, quan estaven instal·lats o en servei abans de l’entrada en vigor de l’anomenat Ordre, i segueix permès el seu ús fins a la seva eliminació o fi de la seva vida útil.

Cal entendre per vida útil la duració estimada de funcionament que un objecte o producte pot tenir fent la funció per a la qual ha estat creat. S’entén doncs, que si algunes de les plaques tenen fissures i no són capaces de garantir la seva estanqueïtat, han deixat de fer la seva funció, i per tant, han arribat a la fi de la seva vida útil.

Durant la rehabilitació de la coberta, s’ha desestimat realitzar un doblatge de la coberta actual, ja que si una coberta necessita doblar-se amb un altra coberta metàl·lica o amb un panell prefabricat, es pot considerar que està deixant de fer de coberta i, per tant, de fer la seva funció. Així doncs, entraria dins de la prohibició d’ús de productes que contenen amiant de l’OM de 7 de desembre de 2001.

Segons la Nota Tècnica de Prevenció (NTP) nº 1006, titulada “materials amb amiant en vivendes”, publicada per l’Institut Nacional de Seguretat i Higiene en el Treball (INSHT) l’any 2014, considera que els materials que contenen amiant (MCA) tenen un cicle de vida entre 30 i 50 anys. La nau industrial es va construir l’any 1975, el que significa, que les plaques de fibrociment han realitzat la
seva funció durant 40 anys i es considera doncs, que estan arribant al final de la seva vida útil aconsellable.

F.4.2. Propietats nocives

Les plaques de fibrociment estan compostes per amiant, un material potencialment perillós, causant de diferents malalties específiques, irreversibles i mortals, provocades per la inhalació de les seves fibres, entre elles es poden destacar: l’asbestosi, càncer pulmonar, mesotelioma de pleura o irritació crònica de la dermis.

Anteriorment es desconeixien les propietats nocives d’aquest material i degut a les seves excel·lents propietats aïllants, mecàniques, químiques i resistentes al foc, així com el seu baix cost, poden explicar que durant el segle 70 la majoria de cobertes es realitzessin amb aquesta tipologia de material.

El càncer és la principal causa de mort relacionada amb l’amiant i la seva exposició. La inhalació de les fibres pot provocar càncer de pulmó o mesotelioma de pleura, un càncer de la cèl·lula mesotelial que afecta a la pleura i al peritoni. Per aquest motiu, la Agència Internacional per la investigació del Càncer (IARC) ha classificat totes les fibres d’amiant com “cancerígenes per els humans” i ha esmentat que no es coneix cap nivell d’exposició que no sigui perillós.

Una altra malaltia específica molt perjudicial provocada per la inhalació de les fibres d’amiant és l’asbestosi, una malaltia pulmonar produïda per la irritació o inflamació del teixit pulmonar, generant fibrosis pulmonar, a causa de la penetració de les fibres d’amiant en els pulmons.

És per aquest caràcter perniciós, que actualment no està permesa la fabricació, comercialització ni la construcció d’instal·lacions, de materials que continguin amiant i també pel que s’aconsella la retirada de les plaques de fibrociment i habilitació d’una nova coberta.
F.4.3. Exposició a les fibres

El risc de presentar una malaltia associada a l’amiant està relacionada amb la concentració de les fibres presents en l’aire, la duració i freqüència de l’exposició, i les dimensions de les fibres inhalades.

La principal via d’entrada de l’amiant és la via respiratòria. Les fibres d’amiant, degut a les seves característiques aerodinàmiques, de petita dimensió i de mida allargada, poden romandre en suspensió en l’aire el temps suficient per a que representin un risc respiratori. Igualment, poden adherir-se a la roba o la pell, i posteriorment alliberar-se amb el consegüent risc d’inhalació.

L’any 1975, any de la construcció de la coberta, la legislació permetia una exposició de 175 fibres per metre cúbic. Actualment, segons l’article 4 del Real Decret 396/2006, l’obligació dels empresaris és assegurar que cap treballador està exposat a una concentració d’amiant en l’aire superior al valor límit ambiental d’exposició diària (VLA-ED) de 0,1 fibres per centímetre cúbic mesurades com una mitjana ponderada en el temps per un període de vuit hores.

Cal especificar però, que l’amiant amb el que estan compostes les plaques de fibrociment és amiant no friable, és la denominació que es dóna a l’amiant quan aquest està barrejat amb altres components, en aquest cas, el ciment. Les fibres permaneixen fortament unides i no són alliberades a l’aire amb tanta facilitat. Tanmateix, una transformació, manipulació, desgast o ruptura del material provocada per un factor inesperat o un fenomen meteorològic, genera una alliberació de les fibres de mida microscòpica, implicant un risc d’exposició a l’amiant pels operaris inesperat i no mesurat, i conseqüent una damnificació de la salut de la persona que les inhali.

F.4.4. Estètica

La coberta actual de la nau industrial està envellida i desgastada, la qual genera una percepció antiquada i de caràcter poc innovador. Una renovació de la coberta, implicaria una millora de la imatge que dóna l’empresa envers els clients, mostrant una imatge de major serietat i professionalitat en les seves instal·lacions. Generant així, de forma indirecte un major potencial de captar i/o mantenir clients.
F.5. DESMUNTATGE DE LA COBERTA ACTUAL

El procés de desmuntatge de la coberta actual està descrit en l’annex E del mateix projecte, i serà dut a terme per una empresa inscrita a la RERA (Registre d’empreses amb risc per amiant), la qual comptarà amb personal especialitzat i amb el corresponent pla de treball.

F.6. ESTUDI D’ALTERNATIVES

Les necessitats tant climàtiques com funcionals de l’activitat que es desenvoluparà a l’interior de l’edifici (mecanitzat de precisió) i l’estructura de l’edifici, condicionen el tipus de coberta i la seva tipologia estructural.

La coberta de la nau industrial és inclinada, amb un pendent aproximat del 30,5%, el DB HS-1 del CTE, estableix les pendents mínimes de les cobertes inclinades, quan aquestes no tenen capa d’impermeabilització. A continuació s’adjunten els pendents mínims exigits per la normativa esmentada en la taula 3.

Taula 3. Pendents mínims de les cobertes inclinades

<table>
<thead>
<tr>
<th>Pendente mínima</th>
<th>(en %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teja curva</td>
<td>32</td>
</tr>
<tr>
<td>Teja mixta i plana monocanal</td>
<td>30</td>
</tr>
<tr>
<td>Teja plana marselesa o allicantina</td>
<td>40</td>
</tr>
<tr>
<td>Teja plana con encaje</td>
<td>50</td>
</tr>
<tr>
<td>Cinc</td>
<td>60</td>
</tr>
<tr>
<td>Pizarra</td>
<td>60</td>
</tr>
<tr>
<td>Fibrocemento</td>
<td>10</td>
</tr>
<tr>
<td>Gálibo planisós</td>
<td>10</td>
</tr>
<tr>
<td>Gingebret planisós</td>
<td>10</td>
</tr>
<tr>
<td>Gingebret planisós de nervadura media</td>
<td>25</td>
</tr>
<tr>
<td>Sintétics</td>
<td>10</td>
</tr>
<tr>
<td>Perfiles de ondulado grande</td>
<td>10</td>
</tr>
<tr>
<td>Perfiles de ondulado pequé</td>
<td>15</td>
</tr>
<tr>
<td>Perfiles de grecado grande</td>
<td>5</td>
</tr>
<tr>
<td>Perfiles de grecado medio</td>
<td>8</td>
</tr>
<tr>
<td>Perfiles nervados</td>
<td>10</td>
</tr>
<tr>
<td>Galvanizados</td>
<td>15</td>
</tr>
<tr>
<td>Perfiles de ondulado pequé</td>
<td>15</td>
</tr>
<tr>
<td>Perfiles de grecado o nervadura grande</td>
<td>5</td>
</tr>
<tr>
<td>Perfiles de grecado o nervadura medio</td>
<td>8</td>
</tr>
<tr>
<td>Perfiles de nervado pequé</td>
<td>10</td>
</tr>
<tr>
<td>Paneles</td>
<td>5</td>
</tr>
<tr>
<td>Aleaciones lligeres</td>
<td>15</td>
</tr>
<tr>
<td>Perfiles de ondulado pequé</td>
<td>5</td>
</tr>
<tr>
<td>Perfiles de nervado medio</td>
<td>5</td>
</tr>
</tbody>
</table>

Observant la taula 3, es pot afirmar, que la tipologia de la nova coberta de la nau industrial, haurà d’estar formada per plaques o perfils.

Cal esmentar, que les plaques de fibrociment que es menciona a la taula 3 no contenen amiant.
Les cobertes actuals de plaques i perfils poden ser del tipus Deck, amb panells prefabricats o del tipus sandvitx in situ. A continuació s’adjunta la figura 4, amb una representació gràfica de les tipologies de cobertes esmentades.

![Figura 4. Tipologia de cobertes mitjançant l’ús de plaques i perfils](image)

Font. Apunts de la UdG elaborats per Susana Duran

La coberta deck a diferència de les demés té un acabat superficial totalment pla. Per aquesta raó i per la seva capacitat resistent i elevada a les càrregues, aquesta tipologia de coberta s’usa en quan la coberta és del tipus plana transitable. El fet de tenir aquest acabat superficial totalment pla, fa que no sigui capaç de dirigir tan bé el recorregut de l’aigua com les demes tipologies de cobertes constituïdes per plaques o perfils. Motiu pel qual es desestima aquesta tipologia de coberta.

Les cobertes sandvitx in situ estan constituïdes per dos fulles de xapa perfilada o grecada, entre les quals se situa un àïllament tèrmic i/o acústic. Aquestes es situen sobre les corretges, o de vegades també és situa una fulla sobre la corretja i l’àïllament conjuntament amb l’altra xapa és situen sota la corretja deixant passar el pas de l’aire (càmera d’aire), aquesta última també s’anomena coberta de xapa simple amb fals sostre i àïllament.

Tanmateix, les cobertes sandvitx disposen de més problemes d’àïllament que les demés cobertes, ja que l’aire exterior es sol colar entre els perfils de la xapa inferior i les corretges. A més, aquestes presenten una major dificultat d’instal·lació i també d’ús d’elements translúcids en comparació a les cobertes amb panells industrials.

Les cobertes de panell industrials prefabricades són panells sandvitx prefabricats, a diferència de les cobertes sandvitx i situ, el perfil inferior del panell prefabricat sol ser llis (sense greques), per la qual cosa, l’aire exterior no pot passar entre el panell i les corretges i proporciona un major àïllament. A més, presenten una major facilitat d’instal·lació i incorporació de lluernaris.
F.7. SOLUCIÓ ADOPTADA

F.7.1. Elecció de la tipologia de tancament de coberta

El tancament de coberta haurà de complir una sèrie d’especificacions, garantint els mínims imposats per la normativa que les regula, de la major manera possible tenint en compte el cost del producte i la seva instal·lació. Elconjunt d’especificacions necessàries s’adjunten a continuació.

- Estanqueïtat a l’aigua (CTE DB HS-1).
- Seguretat estructural (DB SE).
- Bon comportament envers el foc (RSCIEI).
- Constructibilitat (Facilitat de construcció).
- Bon aïllament tèrmic i acústic.
- Captació/dissipació d’energia.
- Confort higrotèrmic, acústic i lumínic.
- Durabilitat (necessitats de manteniment).
- Facilitat d’incorporació de lluernaris.

Es considera doncs, que la tipologia de tancament de coberta que millor compleix aquestes especificacions i s’adapta als requeriments desitjats en la nau industrial, són els panells industrials sandvitx (prefabricats). Aquests disposen de bones característiques d’aïllament tèrmic i acústic, en funció de les seves dimensions i contingut d’aïllant que les composa (poliuretà, llana de roca, etc.). També tenen una bona resistència a les càrregues i al foc, la seva vida útil és elevada, i la seva instal·lació és senzilla. A més, si es desitja, es poden incorporar lluernaris amb facilitat, canviant una placa actual per un lluernari de les mateixes dimensions.

F.7.2. Elecció de l’aïllament del panell sandvitx

Actualment els panells sandvitx més utilitzats com a tancaments de coberta, façana o particions són els que estan compostos amb un aïllament de poliuretà injectat o de llana de roca, aquests últims poden ser d’alta o baixa densitat.

Ambdós tipologies de panells tenen bones característiques com a tancaments de coberta. Tanmateix, les seves propietats són diferents, raó per la qual s’usa una tipologia de panell en funció de les especificacions desitjades.
Per tal de comparar ambdós panells i escollir l’òptim per a la coberta a rehabilitar, s’ha observat i comparat les propietats dels panells amb diferents aïllaments i amb les mateixes dimensions (idònies per al tancament de la coberta de la nau). A continuació s’adjunta la taula 4 comparativa.

Cal especificar, que els valors de la taula 4, s’han obtingut de l’empresa Paneles ACH, una empresa pionera dins el sector de la fabricació de panells sandvitx prefabricats, i tots els assajos s’han realitzat complint la normativa que els regula.

Taula 4. Comparació dels materials aïllants dels panells sandvitx de 5 greques per un mateix espessor.

<table>
<thead>
<tr>
<th></th>
<th>Llana de roca de baixa densitat (L)</th>
<th>Llana de roca d’alta densitat (M)</th>
<th>Poliuretà (PUR)</th>
<th>Poliuretà (PIR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessor (mm)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Amplada de la placa (mm)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Pes (kg/m²)</td>
<td>14,9</td>
<td>16,7</td>
<td>9,71</td>
<td>9,71</td>
</tr>
<tr>
<td>Aïllament acústic, Rw (dB)</td>
<td>>31</td>
<td>>33</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Transmitència tèrmica (W/m²K)</td>
<td>0,589</td>
<td>0,589</td>
<td>0,32</td>
<td>0,32</td>
</tr>
<tr>
<td>Comportament al foc</td>
<td>A2-s1, d0</td>
<td>A2-s1, d0</td>
<td>C-s3,d0</td>
<td>B-s2,d0</td>
</tr>
<tr>
<td>Resistència a les càrregues per un panell birecolzat amb una distància entre suports de 2,25m (kg/m²)</td>
<td>135</td>
<td>200</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Preu d’adquisició i instal·lació (€/m²)</td>
<td>28,32</td>
<td>28,15</td>
<td>16,5</td>
<td>17,5</td>
</tr>
</tbody>
</table>

Com es pot observar a la taula 4, per un mateix espessor, l’aïllament de poliuretà injectat presenta majors propietats d’aïllament tèrmiques i major resistència a les càrregues, per un pes i cost d’adquisició i instal·lació inferior que el dels panells sandvitx de llana de roca.

Per altra banda, aquest presenta un aïllament acústic elevat, però inferior al de les plaques de llana de roca. A més, el comportament del poliuretà injectat envers el foc és baix, és considerat un material combustible amb una contribució al foc limitada, i per tant, no presenta resistència al foc. Per aquest motiu, les plaques de poliuretà són l’opció idònia quan no s’exigeix capacitat portant en la coberta (envers el foc), o no es requereixen altes exigències d’aïllament.

Els Panells sandvitx de poliuretà PIR, també anomenats panells amb nucli d’escuma de polisocianurat, difereixen dels panells de poliuretà amb nucli d’escuma pures (PUR) per la seva relació de mescla dels seus components. Els PIR tenen una relació de mescla poliol:isocianat de 100:150, mentre que els PUR tenen una relació de mescla de 100:100. Aquesta diferència en la mescla, ofereix al material unes

Segons el Reglament contra incendis en establiments industrials (RSCIEI), i el disseny del layout de l’activitat que es durà a terme en la nau industrial, l’establiment industrial té una configuració tipus C i té un nivell de risc intrínsec baix 1, pel que no s’exigeix estabilitat al foc. A més, els elements constitutius utilitzats en parets o tancaments han de ser de la classe Ds3d0 (M3) o més favorable. Pel que si s’utilitzen les plaques amb un aïllament de poliuretà és compliran els requisits de protecció contra incendis.

Així doncs, donades les exigències en la coberta de la nau industrial, es considera que la solució idònia es realitzar la coberta amb panells sandvitx de poliuretà amb nucli PUR, ja que aquest són més econòmics, i presenten unes propietats majors respecte els demés.

F.7.3. Dimensions del panell sandvitx de poliuretà

El panell sandvitx de poliuretà estàndard té una amplada de 1000 mm i la seva longitud màxima és de 13.500 m (16.000 m si s’utilitza transport especial). Aquest disposarà de 5 greques, els quals presenten millor aïllament i una resistència a les càrregues majors que els panells de 3 o 2 greques, a més, també dirigeixen millor el recorregut de l’aigua. Cal especificar que ambdós panells (2, 3 i 5 greques) per unes dimensions equivalents, tenen un cost d’adquisició i instal·lació gairebé equivalent, variant únicament cèntims d’euro el m².

A continuació, s’adjunta la figura 5 on es poden observar les dimensions d’un panell industrial sandvitx de poliuretà de 5 greques.

![Figura 5. Dimensions d’un panell prefabricat sandvitx de 5 greques amb aïllament de poliuretà](http://www.panelesach.com/assets/documentacion/fichas-tecnicas/panel-basic-5G.pdf)
F.7.3.1. Longitud de las placas

El faldó de la coberta de la nau industrial mesurarà 9,1 m. Tanmateix, no s’utilitzarà una placa d’aquesta longitud, ja que es necessitarien camions amb una capacitat elevada i grues per elevar les placas durant la seva instal·lació, la qual costa augmentaria el seu cost de transport i muntatge.

És per aquest motiu, que es dividirà l’allargada del faldó en dos placas, una placa de 4,1 m de longitud i l’altra de 5 m de longitud. Així les placas es podran manipular únicament amb una carretilla elevadora i es disminuirà així el seu cost d’instal·lació.

F.7.3.2. Resistència a les càrregues en funció de l’espessor

La resistència a les càrregues del panell sandvitx de poliuretà està directament relacionada amb l’espessor de l’aïllament de la placa i les planxes d’acer que la componen. A continuació s’adjunta la taula 5, extreta de la pàgina web de l’empresa Paneles ACH, on es pot observar la resistència a les càrregues d’una placa de poliuretà en funció de l’espessor del seu aïllament.

<table>
<thead>
<tr>
<th>Acero - acero</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les corretges actuals de la nau industrial, seran les encarregades de subjectar les placas, per no modificar els esforços sobre la gelosia, les corretges continuaran tenint la mateixa ubicació. Aquestes tenen una llum entre elles de 1,165 m, excepte la corretxa més propera a la canal que té una llum amb la següent de 0,5m. Així doncs, mantenint les corretges actuals, cada faldó estarà subjectat per 5 corretges.

Com es pot observar a la taula 5, si es manté la llum entre corretges, les placas independentment de l’espessor tindran una resistència a les càrregues igual o superior als 300 kg/m².
Procés constructiu de la rehabilitació d’una nau industrial existent

Considerant que l’activitat duta a terme dins l’establiment industrial serà un taller de mecanitzat, i que no es necessari unes condicions d’aïllament elevades en la nau industrial, i tenint en compte que a menor espessor de la plaça, menor és el seu cost d’adquisició. L’espessor idoni de la plaça serà de 30 mm d’espessor.

F.7.4. Transmitància tèrmica de la nova coberta

La transmitància tèrmica del nou tancament de coberta es determinarà segons indica el Documento de apoyo al Documento básico. Ahorro de Energia (DA DB HE-1), mitjançant l’equació 1, els valors dels paràmetres R_{se} i R_{si} són els mateixos que l’apartat E.3.1 d’aquest annex.

\[
U = \frac{1}{R_T} = \frac{1}{R_{se} + R_i + R_{si}}
\]

\[
U = \frac{1}{R_T} = \frac{1}{0,04 + 0,1 + \frac{1}{0,54}} = 0,502 \text{ W/m}^2\text{K}
\]

Cal esmentar però, que el tancament de la nova coberta continuarà tenint ponts tèrmics, el que significa que la seva transmitància serà lleugerament superior a la indicada.

Els dos ponts tèrmics de la coberta continuaran estant en els mateixos llocs que la coberta actual, aquests estaran situats en la canal i el cavallet.
F.7.4.1. Pont tèrmic de la canal

En la canal el pont tèrmic continuarà essent el mateix que el de la coberta actual (2,026W/m²K). Tanmateix, perquè això sigui així es col·locarà una xapa de 3 mm d’espessor d’acer galvanitzat sota la canal i es col·locarà un aïllament de llana de vidre de 1,25 cm d’espessor entre ambdós xapes. Així s’obtindrà una canal doble.

Cal especificar, que l’aïllament de llana de vidre, no podrà tenir un espessor superior a 1,25 cm, ja que si fos així es modificaria l’alçada de col·locació de la canal, i com a conseqüència s’hauria de modificar el recorregut de les baixants de recollides d’aigües pluvials. També es disminuiria la capacitat de la canal, per la qual cosa s’hauria de garantir que aquesta continua tenint el volum necessari exigit segons el Documento Básico (HS). Salubridat. del CTE.

Aprofitant la col·locació de la xapa d’acer, també es col·locaran una làmina d’aïllament de llana de vidre de 2,5 cm d’espessor en ambdós laterals, així es reduirà el pont tèrmic existent en la part inferior del tancament de façana de la dent de serra (on anteriorment hi havia solament la canal) i el pont tèrmic entre la corretja i l’ambient exterior.

Cal especificar, que s’haurà de moure la corretja situada al costat de la canal 2,6 cm en sentit positiu al pendent.

La xapa es plegarà in situ i es fixarà per una ala l’encavallada de la nau mitjançant cargols autorroscants. L’altra ala es fixarà mitjançant el cargol que uneix els panells amb la corretja. Cal

La xapa d’acer galvanitzat estarà en contacte en una regió amb la xapa d’alumini de la canal. No s’haurà de col·locar aïllament entre ells, ja que són dos materials compatibles des del punt de vista de la corrosió. L’associació d’alumini en el seu codi estructural, estableix que no hi ha necessitat de separar o pintar la superfície d’acer galvanitzat que estigui en contacte amb la de l’alumini.

L’aïllament de llana de vidre no es reutilitzarà de l’aïllament de la coberta anterior, ja que la llana sol tenir una vida útil de 50 anys. Tenint en consideració que la nau es va construir l’any 1975, aquestes han realitzat la seva funció durant 40 anys, i es considera que d’aquí 10 anys s’haurien de substituir per perdre les seves propietats. Cal esmentar també, que la llana de vidre és un material incombustible, donat l’origen petri de les matèries primeres que la composen (sorra i altres minerals), per aquesta raó està classificat amb un comportament al foc classe A1 segons la norma UNE-EN 13501:2007+A1:2010.

Així doncs, aplicant aquesta doble canal amb aïllament de llana de roca entremitg de les xapes, millorarem el pont tèrmic que hi havia en la corretja ($U_{P.T.C}$), que passarà a ser de 1,806W/m²K a 1,2
W/m²K. De forma anàloga, en el tancament inferior de façana de la dent de serra ($U_{PT,F}$), que passarà de 7,14 W/m²K a 1,2 W/m²K. A continuació, s’adjunten els càlculs del coeficient de transmitància del ponts tèrmics en coberta, i el pont tèrmic en la part inferior del tancament de façana, i la figura 6, on es representa la doble canal.

\[
U_{PT,E} = \frac{1}{R_T} \frac{1}{R_{se} + R_i + R_{sl}} = \frac{1}{0,04 + 0,1 + 2 \cdot (0,347) + \frac{0,0008}{235} + \frac{0,005}{50}} = 1,2 W/m^2K
\]

\[
U_{PT,F} = \frac{1}{R_T} \frac{1}{R_{se} + R_i + R_{sl}} = \frac{1}{0,04 + 0,1 + 2 \cdot (0,347) + \frac{0,0008}{235} + \frac{0,003}{50}} = 1,2 W/m^2K
\]

Figura 6. Doble canal in situ amb aïllament de llana de vidre
Font. Pròpia (AutoCAD 2013)

F.7.4.2. Pont tèrmic del carener de la dent de serra

El pont tèrmic del cavallet de la dent de serra, també continuarà essent de la mateixa magnitud. Tanmateix, s’ha reduït la seva àrea de 10,01 m² a 2,25 m². A continuació, s’adjunta el càlcul de la transmitància tèrmica d’aquesta regió del tancament i la figura 7, on es mostra una representació gràfica del pont tèrmic del cavallet.

\[
U = \frac{1}{R_T} = \frac{1}{R_{se} + R_i + R_{sl}} = \frac{1}{0,04 + 0,1 + \frac{0,0003}{50}} = 7,14 W/m^2K
\]
Figura 7. Pont tèrmic del remat de coronació de la dent de serra
Font. Pròpia (AutoCAD 2013)
F.8. EMPRESA RECOMANADA

L’empresa recomanada per a la rehabilitació de la coberta és l’empresa Cobertnaus S.L. Cobertnaus està situada a Sabadell i és una empresa especialista en la rehabilitació de tancaments. A més, disposa de múltiples projectes que els avalen i ofereix el servei de desamiantat.

Es recomana també que els panells utilitzats en el tancament de la coberta siguin de l’empresa ACH Paneles A.I.E, també anomenada Paneles ACH. Aquesta és una empresa amb la seu a Guadalajara i pertany al Grup Saint Gobain. L’empresa fabricant panells sandvitx amb diferents aïllaments i la seva xara de ventes és a l’àmbit internacional. A més, els seus productes disposen del marcatge CE, la certificació ISO 9001 (qualitat) i ISO 14001 (Gestió ambiental), certificades per l’entitat IQNet i Aenor.

Si es decideix optar amb panells d’una altre empresa, aquests hauran de tenir unes característiques i propietats idèntiques o gairebé equivalents als panells sandvitx escollits de l’empresa Paneles ACH.

Cal esmentar, que l’empresa escollida per a la instal·lació dels panells sandvitx de la coberta haurà de complir amb els criteris d’instal·lació proporcionats per l’empresa fabricant dels panells.
F.9. ACCESSORIS D’INSTAL·LACIÓ

Els accessoris necessaris per dur a terme de forma correcta la instal·lació de les plaques escollides i per la canal doble són els següents.

F.9.1. Cargols de subjecció

Els cargols de subjecció dels panells sandvitx a les corretges tipus C seran autorroscants, amb unes dimensions de 6,5 x 70 mm, d’acer inoxidable i aniran acompanyats d’una volandera de neoprè o goma EPDM per garantir l’estanqueïtat. Aquests es col·locaran on es solapen ambdós panells (en la seva part lateral).

A continuació, s’adjunta la figura 8, on es mostra la tipologia i ubicació del cargol.

![Figura 8. Cargol de subjecció de les plaques a les corretges tipus C](http://www.panelesach.com/panel-lana-roca-5-grecas)

F.9.2. Remats

La coberta anirà acompanyada de remats, tan a la seva part superior (carener), com en els seus laterals. Aquests tindran la funció de garantir l’estanqueïtat i tapar les unions entre la coberta i els tancaments.

Els remats seran de xapa d’acer, del mateix color que les plaques, amb un recobriment prelacat. Les seves dimensions dependran de la seva ubicació, excepte el seu espessor, que serà de 3 mm per tots els remats.
F.9.2.1. Remat en el cavallet de la dent de serra

El remat de coronació de la dent de serra, ha diferència dels demés, haurà de ser encunyat. Donat que els panells sandvitx de la coberta tenen 5 greques, és creu convenient encunyar el remat per mantenir major estanqueïtat. De la mateixa manera s’encunyará el remat en la part que està en contacte amb els tancaments de policarbonat (ja que els perfils de subjecció de les plaques sobresurten més que aquestes).

Aquests solen tenir unes dimensions de 3.200 mm de allargada, dels quals 200 mm són sobreposats, per aquesta raó es considera que tenen uns 3000mm de allargada útil. Això significa que serien necessaris 9 remats d’aquesta tipologia per tapar la coronació de cada dent de serra i un total de 45 remats per cobrir la coronació de tota la nau industrial.

Els remats de coronació de la dent de serra es fixaran mitjançant cargols en les greques dels panells i en els perfils que subjecten les plaques de policarbonat. S’utilitzaran dos cargols per subjectar cada remat, i es col·locaran en la part on es sobreposen. Aquests estaran acompanyats de volanderes de goma per garantir l’estanqueïtat.

A continuació s’adjunta la figura 9, on es mostra les dimensions estàndards dels remats de cumbrella per panells sandvitx de 5 greques i la seva part encunyada.

![Figura 9. Remat de coronació de la dent de serra encunyat](http://lopanel.com/cubiertas-de-chapa/informacion/coronacion-trasera-remate-panel-sandwich/)

F.9.2.2. Remats de coronació laterals

Es col·locaran també remats de coronació laterals per garantir estanqueïtat entre els panells sandvitx i els tancaments de façana est i oest de la nau industrial.
Aquests solen tenir unes dimensions estàndard i una allargada màxima de 6 m. S’ha de tenir present que en les seves unions es solaparan 200 mm de tal forma que el remat situat a més alçada de la dent quedï per sobre el situat a la part inferior de la dent, per tal de garantir l’estanqueïtat.

Els remats de coronació laterals es fixaran mitjançant cargols en les greques dels panells i en els tancaments de façana. S’utilitzaran dos cargols per subjectar cada remat, i es col·locaran en la part on es solapen. Aquests estaran acompanyats de volanderes de goma per garantir l’estanqueïtat.

A continuació s’adjunta la figura 10, on es poden observar les dimensions estàndards dels remats de coronació laterals utilitzats per panells sandvitz de 5 greques.

![Figura 10. Remat de coronació lateral](http://www.panel-sandwich.es/remates/cubierta-fachada.php)

Figura 10. Remat de coronació lateral

F.9.2.3. Remat de tancament en la part inferior de la vessant

Es col·locarà un remat a la part inferior de la vessant, anomenat remat de tancament de canto. Aquest es col·locarà sobre la corretja i s’unirà mitjançant mateix cargol que subjecti el panell. També s’unirà l’ala superior del remat amb la xapa superior de la placa mitjançant reblons. A continuació, s’adjunta la figura 11, on es pot observar les dimensions del remat i la seva ubicació.

![Figura 11. Dimensions i ubicació del remat inferior](http://www.panel-sandwich.es/remates/cubierta-fachada.php)

Figura 11. Dimensions i ubicació del remat inferior

Font. Pròpia (figura esquerre) i pàgina web de paneles ACH (figura dreta)
F.9.3. Juntes d’estanqueïtat

Durant la instal·lació dels panells es disposarà de juntes d’estanqueïtat en totes les regions on es cregui necessari.

S’haurà de col·locar una junta de polietilè en l’extrem de les plaques situades a la part inferior i superior de la vessant, per garantir l’estanqueïtat a l’aigua i a la pols. També es col·locarà una junta de butil en el solapament entre la canal i el remat del tancament de canto, aquesta més que per garantir estanqueïtat, serà per permetre la dilatació entre la canal (alumini) i el remat (acer). A continuació, s’adjunta la figura 12, on es poden observer ambdós tipologies de juntes.

![Figura 12. Juntes de polietilè en l’extrem inferior del panell situat a la part inferior de la vessant, i junta de butil](http://www-panelesach.com/panel-lana-roca-5-grecas)

Es col·locaran també dos juntes de butil en els solapaments entre panells per garantir l’estanqueïtat. No caldrà col·locar juntes entre ambdós panells (tal i com es mostra en la figura 13). A continuació, s’adjunta la figura 13, on es poden observer ambdós les juntes esmentades.

![Figura 13. Juntes de butil en el solapament entre panells](http://www-panelesach.com/panel-lana-roca-5-grecas)
F.9.4. Xapa d’acer i aïllament de llana de vidre

Com s’ha esmentat anteriorment en l’apartat 7.4 del mateix annex, la canal doble es realitzarà mitjançant una xapa d’alumini de 3 mm d’espessor, els plegs es realitzaran in situ, com si d’una canal es tractes. No serà necessari que la xapa sigui d’una sola tirada (27 m d’allargada), sinó que es poden unir les xapes entre elles mitjançant reblons.

Per facilitar la maniobrabilitat d’aquestes durant la seva instal·lació, s’aconsella realitzar el tancament amb dos xapes d’una allargada de 13.5 m.

La xapa s’unirà per una ala en l’encavallada de la nau, i per l’altra ala, situada sobre la corretja estarà unida a la mateixa mitjançant el cargol utilitzat per subjectar el panell sandvitz.

A continuació s’adjunta la figura 14, on es mostren les dimensions de la xapa d’acer.

La llana de vidre utilitzada situada a la part inferior de la canal (entre la canal i la xapa d’acer) tindrà un espessor de 1,25 cm, una amplada de 46 cm, i haurà de cobrir una allargada total de 27m. En canvi, la llana de vidre situada al costat de la corretja tindrà un espessor de 5 cm, una amplada de 13,25 cm i una allargada de 27 m. La llana de vidre situada entre la canal i l’encavallada tindrà un espessor de 5 cm una amplada de 26,9 cm i una allargada de 27 m.
F.10. SUPERFÍCIE DEL TANCAMENT I DISTRIBUCIÓ RECOMANADA

La superfície a cobrir en cada faldó és de 9,1 m de llargada i 27 m d’amplada. Tenint en compte que la nau disposarà de 5 faldons, un per cada dent de serra, la superfície total a cobrir serà de 1228,5 m².

Cal recordar que cada faldó disposarà de 27 plaques de 4,1 m de allargada i 27 plaques de 5 m d’allargada, per tal de facilitar la manipulació de les plaques i reduir el cost de maquinaria a utilitzar durant la seva fase d’instal·lació.

Cal especificar que la xapa superior del panell de 5m haurà de solapar 200 mm el panell de 4,1 m, per la qual cosa, el panell de 5m haurà de mesurar abans de la seva col·locació 5,2 m, i se li haurà de realitzar un tall de 200 mm en la seva xapa inferior i aïllant abans de col·locar-lo.

En el document nº 2. Plànols, d’aquest projecte, es pot observar la distribució de les plaques de la coberta.
F.11. INSTAL·LACIÓ DELS PANELLS

F.11.1. Emmagatzematge

Els panells sandvitx s’hauran de protegir de les condicions meteorològiques adverses i de possibles impactes accidentals per part d’operadors i vehicles en moviment.

Els panells sandvitx no s’emmagatzemaran directament al terra, ja que els elements poden ser danyats i es pot dificultar molt la elevació de cadascun dels panells. Els paquets dels panells hauran d’emmagatzemar-se sobre una superfície rígida i plana i s’hauran d’ubicar sobre distanciadors de poliestirol o fusta. Separats per no mes de un metre. Aquesta configuració d’emmagatzematge també permet la circulació de l’aire baix el paquet i evita que l’aigua pugui acumular-se en el sòl i es filtri dins el mateix paquet.

Els paquets es col·locaran en una posició lleugerament inclinada (min 5%) per facilitar l’evacuació de la condensació i evitar l’acumulació d’aigua. Es possible apilar fins a un màxim de tres paquets, un sobre l’altre, si s’introduceix distanciadors de fusta o polièster entre ells.

El polietilè utilitzat per embolicar els panells no és adequat per una exposició prolongada a l’aire lliure, ja que la llum del sol pot modificar les seves propietats. Per aquesta raó els paquets emmagatzemats en una zona exterior hauran de protegir-se amb una coberta impermeable i que permeti la circulació de l’aire per evitar la formació d’humitat. Es aconsellable no cobrir la pila dels panells amb teles obscurcs o que absorbeixin la calor, per evitar així la acumulació de calor.

Una altra consideració està relacionada amb la pel·lícula de protecció amb la que s’entreguen normalment els panells. Aquesta pel·lícula no s’ha d’exposar a la llum solar, ja que no es resistents als rajos UV i es pot deteriorar fins el punt de dificultar la seva eliminació. Aquesta pel·lícula s’ha de retirar abans de que passin quatre mesos de la seva posta o entrega. Aquesta pel·lícula es traurà en el moment de la instal·lació del panell, però si s’emmagatzema un paquet en una zona exterior, es recomana treure la del panell que es troba més amunt, ja que és el que estarà exposat directament al sol.

L’empresa instal·ladora haurà de seguir les instruccions d’emmagatzematge del fabricant del producte.
F.11.2. Elevació dels panells

Donat que la longitud dels panells no superarà els 6 m de longitud, es podran elevar amb un camió grua i no serà necessari instal·lar una grua de construcció. En aquest cas, es podran separar les forquilles fins a una longitud màxima, i la carga s’haurà de centrar i repartir en aquestes. A continuació s’adjunta la figura 15, on s’exemplifica la tipologia d’elevació descrita.

![Elevació dels panells amb un camió elevador](http://www.panelsandwich.com/Almacenamiento%20y%20manejo%20de%20Panel%20Sandwich.html)

F.11.3. Estat de conservació del suport

Abans de col·locar els panells es revisarà l’estat de conservació de les corretges, i s’assegurarà que aquestes continuïn tenint un bon estat de conservació i garanteixin la seva capacitat portant, si no es així s’informarà a la direcció facultativa de l’obra.

F.11.4. Col·locació dels panells i remats

La col·locació dels panells i remats es realitzarà en funció del vent predominant i el pendent de la coberta.

Els panells es col·locaran des de la part inferior cap a la part superior, de tal forma que els panells situats a la part més elevada de la vessant solapin els panells situats a la part inferior de la vessant. Amb la finalitat de garantir l’estanqueïtat en la coberta i dirigir correctament el flux de l’aigua.

El sentit de col·locació dels panells lateral depèn directament de la direcció del vent predominant. Segons l’Agència estatal de meteorologia del ministeri d’Espanya (AEMET), la direcció del vent predominant i la direcció del vent on s’han obtingut els valors extrems absoluts a Girona, és el vent de tramuntana. Cal recordar que Girona és una província situada aproximadament a 16 km de distància del municipi d’Anglès (localització de l’establiment a rehabilitar).
Així doncs, tenint en compte que l’establiment industrial està inclinat 20º en el sentit antihorari respecte la meridiana en direcció al pol nord, el sentit de col·locació dels panells haurà de ser d’esquerre a dreta, Així la placa de situada a la dreta solaparà lateralment la placa situada més a l’esquerre.

A continuació, s’adjunta la figura 16 per tal de facilitar la comprensió de l’explicació en l’ordre de col·locació dels panells i remats.

![Diagrama de col·locació dels panells]

Figura 16. Ordre de col·locació dels panells sandvitx
Font. Pròpia (AutoCAD 2013)

F.11.4.1. Solapament entre panells

El solapament mínim entre panells superior (2, 4, nombre parell) i inferior (1, 3, 5, nombre imparell) serà de 150 mm, tanmateix es recomana un solapament de 200 mm. La numeració dels panells s’ha utilitzat seguint la figura 16.

El solapament entre panells laterals es realitzarà solapant la greca del panell (x+2) en la greca del panell (X). Essent x el numero del panell que li correspon seguint l’ordre de col·locació de la figura 16.

De forma anàloga es realitzarà amb el solapament entre remats.

Les cintes segelladores es col·locaran abans de solapar els panells, si l’empresa instal·ladora ho considera adient s’utilitzaran silicones o massilles neutres a base de poliuretà per millorar l’estanquètat en el solapament entre panells.
F.11.5. Manteniment dels panells

El manteniment dels panells sandvitx es realitzarà seguint les instruccions del fabricant. A priori es recomana no utilitzar productes químics en la neteja de les plaques.

F.12. COMPLIMENT DE LA NORMATIVA VIGENT

F.12.1. Accions en l’edificació (DB SE-AE)

El pes propi dels panells de poliuretà és de 8,57 kg/m², mentre que el de les plaques de fibrociment actuals és de 18,35 kg/m². Raó per la qual es continuarà garantint la seguretat estructural de l’edifici, i no serà necessari realitzar nous càlculs per garantir la seva estabilitat.

Les càrregues màximes en la coberta es produiran quan bufi el vent i seran sempre de succió, amb un valor de -2,29 kN/m². D’altra banda, es produiran unes càrregues de pressió en la coberta per càrregues de neu de 0,50 kN/m² i per sobrecàrrega d’ús de 0,4kN/m². La placa de poliuretà de 30 mm d’espessor serà capaç d’aguantar unes càrregues majors de 2,94 kN/m², pel que es garanteix la seva estabilitat davant les accions en el cas més desfavorable. A més, aquests són suficientment resistentes als impactes atmosfèrics.

F.12.2. Normativa contra incendis (RSCIEI)

Els panells sandvitx de poliuretà amb nucli pur escollits per realitzar el tancament de coberta, tenen un comportament al foc de classe C-s3,d0, és a dir, són panells inflamables amb una contribució al foc limitada. Aquesta classificació s’ha realitzat segons la norma UNE-EN 13501:2007+A1:2010. Segons el Reglament contra incendis en establiments industrials (RSCIEI), els elements constitutius utilitzats en parets o tancaments han de ser de la classe Ds3d0 (M3) o més favorable, per la qual cosa es compleix amb aquest requisit.

Aquests panells tampoc garanteixen capacitat portant envers el foc. L’establiment industrial té un nivell de risc intrínsec baix 1, pel que no se l’hi exigeix capacitat portant en la seva coberta (lleugera). Tanmateix, s’haurà de senyalitzar en l’accés principal de l’edifici per a què el personal de servei d’extinció al foc tingui coneixement d’aquesta particularitat.

F.12.3. Protecció contra la humitat (DB HS-1)

Durant la instal·lació de la coberta, així com els elements utilitzats per la seva habilitació compliran amb el mínims exigits per assegurar el grau d’impermeabilitat exigiti en les coberta segons el capítol 1. *Protecció frente la humedad* del DB HS. *Salubridad* del CTE.
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIA D’ANGLÈS.

- ANNEX F. TANCAMENT DE COBERTA

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
ANNEX G
TANCAMENT DE FAÇANA TRANSLÚCID DE LES DENTS DE SERRA
SUMARI. TANCAMENT DE FAÇANA TRANSLÚCID DE LES DENTS DE SERRA

G.1. INTRODUCCIÓ ...3
G.2. OBJECTIU ...3
G.3. DESCRIPCIÓ DEL TANCAMENT DE PLAQUES PRFV3
 G.3.1. Polièster reforçat amb fibra de vidre ..4
 G.3.2. Propietats de les plaques de PRFV ..4
 G.3.3. Transmitància tèrmica del tancament actual de PRFV6
G.4. JUSTIFICACIÓ DE LA NECESSITAT ...8
 G.4.1. Pèrdua de la seva transparència ...8
 G.4.2. Estètica ...8
 G.4.3. Aïllament tèrmic ..9
G.5. ESTUDI D’ALTERNATIVES ..11
 G.5.1. Polièster reforçat amb fibra de vidre ..11
 G.5.2. Placa acrílica ..11
 G.5.3. Polimetacrilat de metil (PMMA) ...13
 G.5.4. Policarbonat compacte ..14
 G.5.5. Policarbonat cel·lular ...16
G.6. SOLUCIÓ ADOPTADA ...18
 G.6.1. Elecció de la tipologia de plaques ...18
 G.6.2. Elecció de l’estructura ...18
 G.6.3. Dimensions de la placa de policarbonat cel·lular escollida19
 G.6.3.1. Resistència de la placa en funció de l’amplada20
 G.6.4. Transmissió de la llum solar ...21
 G.6.5. Transmitància tèrmica del tancament de policarbonat22
G.7. EMPRESA RECOMANADA ...23
G.8. ACCESSORIS D’INSTAL·LACIÓ DE LES PLAQUES24
 G.8.1.1. Cintes segelladores ..24
 G.8.1.2. Remats ..25
 G.8.1.3. Perfils de subjecció de les plaques ...25
 G.8.1.4. Recomanacions ..28
G.9. SUPERFÍCIE DEL TANCAMENT I DISTRIBUCIÓ RECOMANADA30
 G.9.1. Tancament de façana nord ...31
 G.9.2. Tancament vertical de les dents de serra (excepte façana nord)32
G.10. INSTAL·LACIÓ DE LES PLAQUES ..33
 G.10.1. Emmagatzematge de les plaques ..33
G.10.2. Col·locació de les plaques ...33
G.10.3. Procediment de tall ..33
G.10.4. Col·locació de les cintes de segelladores ...34
G.10.5. Fixació de les plaques ...34
G.10.6. Distàncies mínimes de seguretat ...34
G.10.7. Col·locació dels remats ...36
G.10.8. Manteniment i neteja ..36
G.11. COMPLIMENT DE LA NORMATIVA VIGENT ..38
 G.11.1. Accions en l’edificació (DB SE-AE) ...38
 G.11.2. Normativa contra incendis RSCIEI ...38
 G.11.3. Protecció contra la humitat (DB HS-1) ...38
G.1. INTRODUCCIÓN

El Codi Tècnic Espanyol (CTE) defineix els tancaments de façana com aquells tancaments que estan en contacte amb l’aire exterior i tenen un inclinació superior als 60º respecte l’horitzontal. Per aquest motiu, s’ha considerat que el tancament de les dents de serra inclinada 90º respecte l’horitzontal és un tancament de façana.

Aquest tancament, actualment està constituït per plaques de polièster reforçat amb fibra de vidre (PRFV) les quals per diferents raons han perdut la seva funcionalitat. Per aquest motiu, s’aconsella la retirada i substitució de les plaques per unes altres de noves capaces de garantir i millorar la funcionalitat de les anteriors.

G.2. OBJECTIU

En aquest annex es pretén determinar quines són les plaques amb unes propietats i característiques òptimes per realitzar el tancament vertical de les dents de serra, demostrar que aquestes són capaces d’aguantar a les accions externes i compleixen amb la normativa vigent. A més, es descriurà el procés d’instal·lació i la distribució de les plaques recomanades.

G.3. DESCRIPCIÓ DEL TANCAMENT DE PLAQUES PRFV

El tancament de la dent de serra inclinat 90º respecte l’horitzontal està constituït per plaques de polièster reforçat amb fibra de vidre (PRFV). Aquestes plaques són translúcides per permetre el pas de la llum natural a l’interior de la nau, d’un color verdós per tamisar la llum.

Les plaques tenen un perfil ondulat estàndard gran ona, un espessor de 1,3 mm, una amplada de 1,1 m i una longitud de 2,5 m, excepte les plaques situades al tancament de la dent de serra més propera a la façana nord de la nau industrial, les quals tenen una longitud de 3m. A la figura 1, adjunta a continuació, es pot observar el perfil i dimensions de les plaques actuals.

Figura 1. Perfil longitudinal de la placa estàndard gran ona
Les plaques estan subjectades a l’encavallada Warren mitjançant ganxos tipus “L” d’acer galvanitzat, aquests son autorroscants i permeten llibertat en el seu ajust. Aquests estan acompanyats de la seva respectiva femella, d’una volandera doble de plom-ferro i una volandera negra asfàltica per garantir estanqueïtat.

Si es destija més informació de la topologia de plaques actuals, accessoris de subjecció utilitzats, es pot consultar l’Annex A del present projecte.

G.3.1. Polièster reforçat amb fibra de vidre

El polièster reforçat amb fibra de vidre va ser un dels materials revolucionaris en la construcció del segle 20 en els anys 70, especialment en aplicacions industrials. Aquest material s’utilitzava i s’usa sobretot en tancaments de coberta o façana, i el seu gran èxit va ser donat per la seva gran disponibilitat, versatilitat de forma, facilitat d’instal·lació, bones característiques mecàniques i aïllants, i el seu baix cost.

Les plaques PRFV estan constituïdes mitjançant una resina a base d’una matriu de plàstic termoestàble (resina de poliestirè no saturat), cargues i additius (anti-UVA, ignífugs, etc.), a la que se li uneixen fibres minerals (de vidre). Aquests materials es dipositen en una matriu oberta (motlle) , i generalment se’ls hi dóna la forma desitjada mitjançant una laminació manual amb corrons d’acer (procés anomenat hand lay-up).

G.3.2. Propietats de les plaques de PRFV

S’ha de tenir present, que els additius o el contingut de fibres de vidre utilitzat en la fabricació de les plaques pot variar. Raó per la qual, és difícil saber amb exactitud les característiques i propietats d’una placa d’aquesta tipologia si no es disposa de la fitxa tècnica del producte. Així doncs, per tal de tenir una referència del pes i les propietats de les plaques de la nau industrial, es seguirà els criteris establerts per la normativa vigent d’aquesta tipologia de plaques.

Actualment les plaques es diferencien segons la norma UNE-EN 1013:2013 en quatre classes, en funció del contingut de fibra de la plaça. A continuació s’adjunta la taula 1, amb les classes de plaça en funció del contingut de fibra.
Taula 1. Classes de plaques de resina de polièster reforçades amb fibra de vidre en funció del seu contingut nominal de fibra.

<table>
<thead>
<tr>
<th>Classes</th>
<th>Contingut de fibra nominal (g/cm²)</th>
<th>Ús habitual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe I</td>
<td>290</td>
<td>Hivernacles
Instal·lacions interiors
Construccions provisionals</td>
</tr>
<tr>
<td>Classe II</td>
<td>390</td>
<td>Construccions habituals
Sobrecàrregues de vent i neu moderades</td>
</tr>
<tr>
<td>Classe III</td>
<td>500</td>
<td>Construccions en emplaçaments exposats
Sobrecàrregues de vent i neu elevades</td>
</tr>
<tr>
<td>Classe IV</td>
<td>> 600</td>
<td>Construccions en emplaçaments especialment exposats
Sobrecàrregues de vent i neu molt elevades</td>
</tr>
</tbody>
</table>

Tenint en consideració que actualment en el mercat les plaques amb un perfil gran ona i un espessor de 1,3 mm són de classe III, es considerarà que la tipologia de plaques de la nau actual és de classe III.

Per tal d’obtenir un valor referència del pes de les plaques utilitzades en la nau industrial, s’ha consultat la fitxa tècnica de les plaques amb unes característiques anàlogues a les existents, proporcionades per les empreses fabricants i/o distribuïdors d’aquest producte (Onduline materiales de construcció S.A, Euronit Fachadas y cubiertas S.L, Hiansa S.A, Inpre S.L, entre d’altres). A la taula 2, es pot observar els pesos de les plaques en funció de la seva classe, espessor i empresa fabricant i/o distribuïdora.

Taula 2. Pes de les plaques de perfil estàndard gran ona proporcionat per les diferents empreses distribuïdores, en funció del seu espessor i classe.

<table>
<thead>
<tr>
<th>Classe</th>
<th>Espessor (mm)</th>
<th>Pes (kg/m²)</th>
<th>Empreses Fabricants i/o distribuïdors</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,8</td>
<td>1,34</td>
<td>ACH Paneles, A.I.E / Hiansa S.A</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1,295</td>
<td>Euronit S.L</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>1,675</td>
<td>ACH Paneles, A.I.E / Hiansa S.A</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1,68</td>
<td>Onduline S.A</td>
</tr>
<tr>
<td>III</td>
<td>1,3</td>
<td>2,188</td>
<td>ACH Paneles, A.I.E / Hiansa S.A</td>
</tr>
<tr>
<td>IV</td>
<td>1,7</td>
<td>2,865</td>
<td>Inpre S.L</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3,57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4,85</td>
<td></td>
</tr>
</tbody>
</table>
Com es pot observar a la taula, els espessors de les plaques estan relacionats de forma directe amb el contingut de fibra de les mateixes. Per aquesta raó, el pes de les plaques de les diferents empreses és generalment similar per un mateix espessor.

Es pot apreciar també, que de forma incoherent, algunes plaques de la mateixa classe, tenint un espessor superior, pesen menys que les que tenen un espessor inferior. El motiu d’aquesta incoherència, és que les cargues o additius aplicats en el procés de fabricació de la placa poden fer variar el seu pes, modificant així les seves propietats.

Considerant que les plaques de la nau industrial són de classe III i tenen un espessor de 1,3 mm, es pot aproximar el seu pes a 2,188 kg/m², ja que és el valor que tenen les plaques amb unes caràcteresístiques anàlogues a les de la nau industrial.

D’altra banda, les característiques de les plaques de classe III s’estableixen de forma general independentment del seu pes. Aquestes estan explícites a la taula 3, adjunta a continuació.

Taula 3. Característiques de les plaques de classe II i III.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistència a la tracció (N/mm²)</td>
<td>65 a 80</td>
<td>UNE-ISO-527</td>
</tr>
<tr>
<td>Resistència a la flexió (kg/cm²)</td>
<td>> 1530</td>
<td>EN-ISO-178</td>
</tr>
<tr>
<td>Resistència a l'impacte sense entalla (kJ/m²)</td>
<td>35 a 50</td>
<td>EN-ISO-179</td>
</tr>
<tr>
<td>Impacte amb entalla (kJ/m²)</td>
<td>45 a 55</td>
<td>EN-ISO-179</td>
</tr>
<tr>
<td>Temperatura de reblandeixament (ºC)</td>
<td>140 a 150</td>
<td>EN-ISO-306</td>
</tr>
<tr>
<td>Densitat (g/cm³)</td>
<td>1,5 a 1,8</td>
<td>EN-ISO-1183</td>
</tr>
<tr>
<td>Conductivitat tèrmica (W/mK)</td>
<td>0,23</td>
<td>ASTM C-177</td>
</tr>
<tr>
<td>Coeficient de dilatació tèrmica (mm/m°C)</td>
<td>0,035</td>
<td>UNE-53126</td>
</tr>
</tbody>
</table>

G.3.3. Transmitància tèrmica del tancament actual de PRFV.

S’ha determinat la transmitància tèrmica del tancament segons indica el Documento de apoyo al Documento básico. Ahorro de Energía (DA DB HE-1), mitjançant l’equació 1.

\[U = \frac{1}{R_T} = \frac{1}{R_s + R_i + R_s} \]
Essent:

\(U_T \): Transmitència tèrmica del tancament (W/m² K).

\(R_T \): Resistència total del tancament (m² K/W).

\(R_i \): Sumatori de les resistències tèrmiques de cadascuna de les capes que formen el tancament (m² K/W).

\(R_{se} \): Resistència tèrmica superficial exterior (m² K/W).

\(R_{si} \): Resistència tèrmica superficial interior (m² K/W).

La resistència tèrmica superficial dels tancaments en contacte amb l’aire exterior i interior es determina mitjançant la taula 2, adjunta a continuació i explícita en el DA DB HE-1 (taula 1).

Taula 2. Resistències tèrmiques superficials dels tancaments en contacte amb l’exterior.

<table>
<thead>
<tr>
<th>Posició del cerramiento y sentido del flujo de calor</th>
<th>(R_{se})</th>
<th>(R_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerramiento vertical con pendiente sobre la horizontal >60° y flujo horizontal</td>
<td>0,04</td>
<td>0,13</td>
</tr>
<tr>
<td>Cerramiento horizontal con pendiente sobre la horizontal ≤60° y flujo ascendente (Techo)</td>
<td>0,04</td>
<td>0,10</td>
</tr>
<tr>
<td>Cerramiento horizontal y flujo descendente (Suelo)</td>
<td>0,04</td>
<td>0,17</td>
</tr>
</tbody>
</table>

Així doncs, aplicant l’equació 1, s’ha obtingut que la transmitència tèrmica del tancament de plaques de PRFV és de 5,64 W/m² K, càlcul adjunt a continuació.

\[
U = \frac{1}{R_T} = \frac{1}{R_{si} + R_i + R_{si}} = \frac{1}{0,13 + \frac{0,0017}{0,23} + 0,04} = 5,64 \text{ W/m}^2 \text{K}
\]
G.4. JUSTIFICACIÓ DE LA NECESSITAT

Es considera adient realitzar una substitució de les plaques actuals del tancament de la dent de serra inclinat 90° per unes altres de noves per diferents motius, exposats a continuació.

G.4.1. Pèrdua de la seva transparència

Durant l’etapa d’inspecció visual de l’estudi patològic realitzada en la nau industrial s’ha observat que les plaques havien perdut gran part de la seva transparència (excepte les que s’havien substituït recentment). Aquest fenomen es habitual en aquesta tipologia de plaques, ja que durant el seu temps de vida pateixen un procés d’envelliment provocat per la radiació solar ultraviolada.

Aquesta patologia s’ha descrit, classificat i complementat amb imatges fotogràfiques de les plaques en l’Annex B. Estudi patològic, del present projecte.

La pèrdua de transparència de les plaques i augment de la seva opacitat, significa que el pas de la llum a través d’elles s’ha reduït considerablement, disminuint així la il·luminació interior de la nau. Aquest fet pot provocar la necessitat de dependre dels aparells d’il·luminació artificial de la nau (llums) en certs moments del dia, augmentant així la factura elèctrica de la nau i el consum energètic.

S’aconsella doncs, la substitució de les plaques actuals per unes altres de noves que garanteixin la seva transparència a llarg termini i no es degradin tan ràpid amb el temps.

G.4.2. Estètica

Les plaques actuals estan envellides i a més, s’hi ha detectat durant l’etapa d’inspecció visual de l’estudi patològic brutícia superficial per rentat diferencial. Aquestes patologies generen una percepció antiquada, de brutícia i de baixa qualitat en la empresa que desenvolupi una activitat a l’interior de l’establiment.

Aquesta patologia s’ha descrit, classificat i complementat amb imatges fotogràfiques de les plaques en l’Annex B. Estudi patològic, del present projecte.
A més, aquesta tipologia de plaques era utilitzada de forma massiva en els tancaments translúcids construïts en els anys 70 i la seva presència s’ha atenuat considerablement en l’actualitat a causa de l’aparició d’altres tipologies de plaques translúcides amb millors propietats. Per aquesta raó, aquesta tipologia de plaques utilitzada com a tancament genera una percepció antiquada i de caràcter poc innovador vers la indústria a implantar-se.

Si es té en compte que s’està en una època en què la majoria d’informació és visual, una percepció inadequada de l’empresa causada per culpa dels tancaments de façana, podria minvar el nombre de clients en l’empresa a implantar-se.

Per aquesta raó, es creu que una substitució de les plaques actuals per unes altres de més innovadores complementades amb un bon manteniment i neteja, implicaria una millora de la imatge que dóna l’empresa envers els clients, mostrant una imatge de major serietat i professionalitat en les seves instal·lacions. Generant així de forma indirecte un major potencial de captar i/o mantenir clients, i evitant perjudicis injustos de l’empresa.

G.4.3. Aïllament tèrmic

La principal funció de l’aïllament tèrmic d’un tancament de façana és reduir la transferència de calor entre l’interior i l’exterior de l’edifici com a conseqüència de la diferència de temperatures existent, i retardar el pas d’aquesta calor a través d’ell. També contribueix en la disminució del salt tèrmic que es produirà a l’interior d’un recinte, ja que hi haurà una certa tendència a estabilitzar la diferència relativa de temperatures entre l’interior i l’exterior.

Una millora de l’aïllament tèrmic d’un tancament de l’envolvent tèrmica pot comportar certs beneficis en l’empresa instal·lada. A continuació es descriuen els beneficis principals.

- Estalvi energètic: Un bon aïllament tèrmic d’un tancament de façana, permet mantenir una temperatura confortable a l’interior de l’edifici, afavorint així l’estalvi energètic, disminuint el cost de la factura de climatització i reduint les emissions de CO₂ a l’atmosfera.
- Millora de la producció: Una millora de les condicions de confort dels usuaris que treballen dins el procés productiu de l’empresa pot millorar el rendiment dels mateixos, augmentant els beneficis de l’empresa.
- Reducció de la humitat: Una millora de l’aïllament tèrmic pot evitar la formació de condensacions en els tancaments augmentant el temps de vida dels mateixos.
Així doncs, si es substitueix les plaques actuals per unes altres amb un millor aïllament tèrmic que les anteriors, augmentaran els beneficis de l’empresa.
G.5. ESTUDI D’ALTERNATIVES

Actualment, existeixen diferents materials translúcids utilitzats com a tancaments en l’àmbit de la construcció industrial. Per aquest motiu, abans d’escollir les plaques s’ha tingut en compte les propietats dels materials actualment disponibles en el mercat i s’ha avaluat els seus avantatges i inconvenients. Amb la finalitat d’escollir el material òptim per al nostre cas.

A continuació, s’adjunta una breu descripció d’aquests materials, un anàlisi dels seus avantatges i inconvenients, i les propietats generals. Cal esmentar que els valors de les propietats mecàniques d’aquests materials són aproximats i s’han obtingut per valors d’entre 1 i 10 mm d’espesor del material.

G.5.1. Polièster reforçat amb fibra de vidre

La plaques de polièster reforçat amb fibra de vidre estan compostes mitjançant una resina a base d’una matriu de plàstic termostable (resina de poliestirè no saturat), cargues i additius (anti-UVA, ignífugs, etc.), a la que se li uneixen fibres minerals (de vidre). Aquest material és l’utilitzat en les plaques actuals, i es pot observar les seves propietats en l’apartat G.3 del mateix annex.

Inconvenients

- Dificultat de reciclatge.
- Pèrdua de la transmissió de la llum del 11 al 25% durant l’exposició al sol.

G.5.2. Placa acrílica

La placa acrílica és un laminat termoplàstic compost per resina acrílica reforçada amb fibra de vidre. La resina acrílica proporciona una bona resistència a la llum, mentre que la fibra de vidre eleva les seves propietats mecàniques.

Avantatges

- La transparència d’aquest plàstic està compresa entre el 85 i 92%.
- Bona resistència a la intempèrie i a l’impacte, la seva duració és millor que la del PRFV.
Inconvenients

- Transmissió de la llum del 55%.
- Baix comportament contra el foc.
- Pèrdua de la llum del 7% durant l’exposició.

A continuació s’adjunta la taula 4, amb les propietats generals de la placa acrílica i una imatge d’una placa d’aquesta tipologia del material (figura 2).

Taula 4. Propietats generals de la placa acrílica

<table>
<thead>
<tr>
<th>Propietat</th>
<th>Valor</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densitat (g/cm³)</td>
<td>1,5 a 1,8</td>
<td>ISO 1183</td>
</tr>
<tr>
<td>Resistència a la tracció (N/mm²)</td>
<td>67</td>
<td>ASTM D-638</td>
</tr>
<tr>
<td>Resistència a la flexió (kg/cm²)</td>
<td>1,25</td>
<td>ASTM D-790</td>
</tr>
<tr>
<td>Resistència a l'impacte (J/m)</td>
<td>310</td>
<td>ASTM D-25</td>
</tr>
<tr>
<td>Conductivitat tèrmica (W/mK)</td>
<td>0,23</td>
<td>ASMT D-52612</td>
</tr>
<tr>
<td>Coeficient de dilatació tèrmica (mm/m°C)</td>
<td>0,026</td>
<td>ASTM D-696</td>
</tr>
<tr>
<td>Classificació contra el foc (espessor 1,2 mm)</td>
<td>C s-d0</td>
<td>EN 13501 - 1</td>
</tr>
</tbody>
</table>

Figura 2. Placa acrílica
G.5.3. Polimetacrilat de metil (PMMA)

És un material acrílic que s’obté a partir de la polimerització de metacrilat de metil.

Avantatges

- La transparència d’aquest plàstic està compresa entre el 85 i 92%.
- Dur i resistent.
- Bona resistència a l’envelliment i a l’interpèrie, la seva duració és millor que la del PRFV.

Inconvenients

- Elevat cost del material.
- Alt cost de l’estructura requerida.
- Fàcil de ratllar.
- Baixa resistència al foc en comparació a altres materials translúcids.

A continuació s’adjunta la taula 5, amb les propietats generals del PMMA i una imatge de les plaques del material (figura 3).

Taula 5. Propietats generals del PMMA

<table>
<thead>
<tr>
<th>Propietat</th>
<th>Valor</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densitat (g/cm³)</td>
<td>1,19</td>
<td>ISO 1183</td>
</tr>
<tr>
<td>Resistència a la tracció (N/mm²)</td>
<td>67</td>
<td>DIN 53455</td>
</tr>
<tr>
<td>Resistència a la flexió (kg/cm²)</td>
<td>1,15</td>
<td>DIN 53452</td>
</tr>
<tr>
<td>Resistència a l’impacte (kJ/mm²)</td>
<td>15</td>
<td>ISO 179/1D</td>
</tr>
<tr>
<td>Temperatura de reblandeixament (ºC)</td>
<td>120</td>
<td>ISO 306</td>
</tr>
<tr>
<td>Conductivitat tèrmica (W/mK)</td>
<td>0,19</td>
<td>DIN 52612</td>
</tr>
<tr>
<td>Coeficient de transmissió tèrmica (W/m²K), per un espessor de 1, 3, 5 i 10 mm</td>
<td>5,8 / 5,6 / 5,4 / 4,4</td>
<td>DIN 4701</td>
</tr>
<tr>
<td>Coeficient de dilatació tèrmica (mm/m°C)</td>
<td>0,07</td>
<td>DIN 53752-A</td>
</tr>
<tr>
<td>Classificació contra el foc (espessor 1,5 mm)</td>
<td>B2 /D o E (Alta o mitja)</td>
<td>DIN 4102 /EN 13501-1</td>
</tr>
<tr>
<td>Índex RW d’atenuació acústica (dB) per un espessor de 4, 6 i 10mm</td>
<td>26/ 30/ 32</td>
<td>-</td>
</tr>
</tbody>
</table>
G.5.4. Policarbonat compacte

El Policarbonat compacte és un termoplàstic amorf amb una alta resistència a l’impacte, facil de treballar, moldejar i termoformar, per aquest motiu és àmpliament utilitzat en la manufactura moderna. El nom “policarbonat” es basa en que es tracta de polímers que presenten grups funcionals units per grups de carbonat en una llarga cadena molecular.

Avantatges

- Elevada resistència a l’impacte (Fins a 10 vegades més resistent que el PMMA).
- Transmissió de la llum del 90%.
- Durabilitat alta. Les seves alta resistència al clima fa que mantingui les seves propietats durant anys, la pèrdua de transparència amb el temps és gairebé nul·la.
- Excel·lent aïllament acústic i elèctric.
- Fàcil instal·lació i manipulació. Les plaques es poden treballar fàcilment amb màquines i eines comunes.
- Possibilitat d’incorporar protecció UV.
- Alta resistència als elements químics.
- Bona resistència a l’envelliment i a la intempèrie, la seva duració és millor que la del PRFV. Les plaques són capaces de suportar amb èxit una gran varietat de condicions atmosfèriques.
- Bon comportament contra el foc.

Inconvenients

- Cost del material. A igual espessor que el metacrilat és més car, tanmateix l’espessor necessari per obtenir condicions similars és menor, i acaba sortint més barat).
- Sensibilitat a l’entalla.
A continuació s’adjunta la taula 6, amb les propietats generals del policarbonat compacte i una imatge de les plaques d’aquesta tipologia de material (figura 4).

<table>
<thead>
<tr>
<th>Propietat</th>
<th>Valor</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densitat (g/cm³)</td>
<td>1,2</td>
<td>ISO 1183-1</td>
</tr>
<tr>
<td>Resistència a la tracció (N/mm²)</td>
<td>> 60</td>
<td>ISO 527-2/1B/50</td>
</tr>
<tr>
<td>Resistència a la flexió (kg/cm²)</td>
<td>60</td>
<td>ISO 527-2/1B/50</td>
</tr>
<tr>
<td>Resistència a l'impacte (kJ/mm²)</td>
<td>90</td>
<td>ISO 527-2/1B/50</td>
</tr>
<tr>
<td>Temperatura de reblandeixament (ºC)</td>
<td>148</td>
<td>ISO 306</td>
</tr>
<tr>
<td>Conductivitat tèrmica (W/mK)</td>
<td>0,2</td>
<td>DIN 52612</td>
</tr>
<tr>
<td>Coeficient de transmissió tèrmica per 1mm d'espessor (W/m²K)</td>
<td>5,8</td>
<td>-</td>
</tr>
<tr>
<td>Coeficient de dilatació tèrmica (mm/mºC)</td>
<td>0,065</td>
<td>DIN 53752-A</td>
</tr>
</tbody>
</table>

Figura 4. Plaques de policarbonat compacte
G.5.5. Policarbonat cel·lular

La placa de policarbonat cel·lular, també anomenat policarbonat alveolar és una placa composta per múltiples parets molt fines unides entre sí per nervis interns creant una estructura en forma de cel·les que li confereixen unes característiques tècniques excel·lents com aïllant tèrmic.

Avantatges

- Elevada resistència a l’impacte (gairebé fins a 10 vegades més resistent que el polimetacrilat de metil, i molt pròximes a les del policarbonat compacte).
- Transmissió de la llum del 90%.
- Durabilitat alta. Les seves alta resistència al clima fa que mantingui les seves propietats durant anys, la pèrdua de transparència amb el temps és gairebé nul·la.
- Fàcil instal·lació i manipulació.
- Excel·lent aïllament tèrmic, major que el policarbonat compacte.
- Molt lleuger, pesos inferiors al policarbonat compacte i més barat per equivalència de propietats aïllants tèrmiques.
- Possibilitat d’inserir protecció UV.
- Resistència als elements químics.
- Bon comportament contra el foc.

Inconvenients

- Sensibilitat a l’entalla.

A continuació s’adjunta la taula 7, amb les propietats generals del policarbonat cel·lular i una imatge de les plaques d’aquesta tipologia de material (figura 5).
Taula 7. Propietats generals del Policarbonat cel·lular.

<table>
<thead>
<tr>
<th>Caràcterística</th>
<th>Valor (4, 6, 8, 10 i 16 mm)</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densitat (kg/m²)</td>
<td>0,8 / 1,3 / 1,5 / 1,7 / 2,4</td>
<td>ISO 1183-1</td>
</tr>
<tr>
<td>Resistència a la tracció (N/mm²)</td>
<td>> 60</td>
<td>ISO 527-2/1B/50</td>
</tr>
<tr>
<td>Resistència a la flexió (kg/cm²)</td>
<td>95</td>
<td>ISO 527-2/1B/50</td>
</tr>
<tr>
<td>Resistència a l’impacte (kJ/mm²)</td>
<td>80</td>
<td>ISO 527-2/1B/50</td>
</tr>
<tr>
<td>Temperatura de reblandeixament (ºC)</td>
<td>148</td>
<td>ISO 306</td>
</tr>
<tr>
<td>Conductivitat tèrmica del material (W/mK)</td>
<td>0,2</td>
<td>DIN 52612</td>
</tr>
<tr>
<td>Coeficient de transmissió tèrmica (W/m²K)</td>
<td>4,1 / 3,7 / 3,3 / 3,1 / 2</td>
<td>ASTM C 976/9</td>
</tr>
<tr>
<td>Coeficient de dilatació tèrmica (mm/m°C)</td>
<td>0,065</td>
<td>DIN 53752-A</td>
</tr>
<tr>
<td>Classificació contra el foc</td>
<td>B-s1, d0</td>
<td>EN 13501-1</td>
</tr>
</tbody>
</table>

Figura 5. Plaques de policarbonat cel·lular
G.6. SOLUCIÓ ADOPTADA

G.6.1. Elecció de la tipologia de plaques

L’elecció de la tipologia de plaques translúcides que constituiran el tancament de la dent de serra amb una inclinació de 90º respecte l’horitzontal, s’ha realitzat mitjançant el següent criteri.

La tipologia de plaques òptimes per aquest tancament seran les que compleixin les següents especificacions.

- Transparència elevada (superior al 75%).
- Pèrdua de transparència amb el temps molt reduïda.
- Alta resistència als impactes i als fenòmens atmosfèrics.
- Bon comportament envers el foc.
- Bona relació Pes/Aïllament tèrmic.
- Facilitat d’instal·lació.

Les plaques de policarbonat cel·lular són les que compleixen amb majors expectatives aquestes especificacions. Per aquest motiu, s’ha escollit com a opció prioritària realitzar el tancament mitjançant plaques de policarbonat cel·lular.

Concretament s’ha escollit les plaques de 10 mm d’espessor, ja que aquestes tenen un pes d’entre 1,7 i 1,75 kg/m², inferior al de les plaques actuals, uns valors de reducció del soroll de 19dB i una transmitència tèrmica igual o inferior a 3,1 W/m²K. Un valor de transmitència tèrmica inassolible en aquest pes per a la resta de materials translúcids.

G.6.2. Elecció de l’estructura

Les plaques de policarbonat cel·lular poden tenir diferents estructures, compostes per làmines unides entre si mitjançant nervis, aquestes estructures es diferencien pel nombre de parets que la composen. S’anomena paret d’una placa a la làmina o nervi de policarbonat que s’oposa al pas de la llum entre les dos cares de la placa.

Cal tenir en compte, que algunes de les propietats de la placa poden variar depenen de l’estructura que la composa. Per aquesta raó, abans d’escollir la tipologia d’estructura de la placa s’ha realitzat una comparació de les diferents estructures de les plaques amb un espessor de 10 mm.
Actualment, s’ha observat que les empreses fabricants i distribuïdores de plaques de policarbonat alveolar disposen de quatre tipus d’estructures en les plaques de 10 mm d’espessor. A la taula 8 es pot observar una representació gràfica de cada estructura, conjuntament amb el seu pes i transmitància tèrmica.

Taula 8. Estructures de les plaques de policarbonat cel·lular de 10 mm d’espessor.

<table>
<thead>
<tr>
<th>Estructura</th>
<th>Pes (kg/m²)</th>
<th>Transmitància tèrmica (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 parets</td>
<td>1,7</td>
<td>3</td>
</tr>
<tr>
<td>3 parets</td>
<td>1,75</td>
<td>2,6</td>
</tr>
<tr>
<td>4 parets</td>
<td>1,75</td>
<td>2,5</td>
</tr>
<tr>
<td>5 parets</td>
<td>1,75</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Les plaques amb una estructura de cinc parets tenen majors propietats mecàniques i tèrmiques respecte les que tenen un menor nombre de parets. L’estructura de cinc parets proporciona una resistència lleugerament superior a la placa i una transmitància tèrmica lleugerament inferior per un pes equivalent. D’altra banda, l’inconvenient que presenta aquesta tipologia d’estructura respecte les demés és la seva transmissió de la llum, essent lleugerament inferior. Tot i això, són capaces de proporcionar una transparència superior al 75%.

Es considera doncs, que l’estructura idònia per les plaques translúcides de 10 mm d’espessor del tancament de façana de les dents de serra, serà de 5 parets.

G.6.3. Dimensions de la placa de policarbonat cel·lular escollida

De forma genèrica, les plaques d’aquesta tipologia solen tenir una amplada de 700, 1050, 1200mm, mentre que la seva longitud varia dels 2 als 12 metres.

Per tal de determinar l’amplada de les plaques escollides es necessari tenir en compte la superfície total a cobrir. L’amplada de les plaques és estandarditzada, raó per la qual en la majoria de casos, s’ha de tallar alguna de les plaques per cobrir la superfície desitjada. Un tall en les plaques gènere una pèrdua de les seves propietats mecàniques, s’intentarà doncs, escollir una amplada de les plaques que disminueixi el nombre de plaques a tallar durant la seva instal·lació.
També s’ha de tenir en compte que per una determinada distància entre suports, la resistència a les càrregues d’una placa varia en funció de la seva amplada. Per aquesta raó, abans d’escollir l’amplada de la placa s’ha consultat la resistència a les càrregues d’una placa de 10 mm d’espessor amb estructura de 5 paret.

G.6.3.1. Resistència de la placa en funció de l’amplada

L’empresa Polygal Sud S.A (fabricant i distribuïdora de plaques de policarbonat) mostra els valors de càrrega màxima que pot suportar una placa de 5 paret i 10 mm d’espessor en funció de la seva amplada i distància entre suports màxima. A continuació s’adjunta la taula 9, amb els valors obtinguts en els assajos.

Taula 9. Valors de càrrega màxima en funció de la distància entre suports.

<table>
<thead>
<tr>
<th>Distància entre suports (m)</th>
<th>Amplada de les plaques (mm)</th>
<th>Càrrega màxima (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>1200</td>
<td>1050</td>
</tr>
<tr>
<td>1,3</td>
<td>200</td>
<td>1,1</td>
</tr>
<tr>
<td>1,4</td>
<td>180</td>
<td>1,3</td>
</tr>
<tr>
<td>1,5</td>
<td>160</td>
<td>1,4</td>
</tr>
<tr>
<td>1,6</td>
<td>140</td>
<td>1,5</td>
</tr>
<tr>
<td>1,7</td>
<td>120</td>
<td>1,7</td>
</tr>
<tr>
<td>1,8</td>
<td>100</td>
<td>1,9</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Com es pot observar a la taula 9, per una distància entre suports inferior a 1,7m les plaques de 1.200 mm d’amplada són les que presenten una major resistència a la càrrega.

Donat que la distància entre suports serà de 1,1 i 1,44 m, l’amplada ideal per la placa escollida és de 1200 mm. Raó per la qual, s’intentarà que la major part de les plaques de la superfície a cobrir sigui d’aquesta amplada.
G.6.4. Transmissió de la llum solar

La placa cel·lular mitjançant un procés de co-extrusió incorporarà en la seva cara exterior un recobriment que el protegirà dels raigs UV del sol.

Les longituds d’ona que emet el sol (intensitat solar) i arriben a la superfície terrestre estan entre els 295 i 2140 nanòmetres i es segmenten de la següent manera.

- Raigs UV: són les longituds d’ona que, entre d’altres efectes, provoquen la degradació dels materials i l’exposició prolongada d’aquests raigs a les persones pot causar-s’hi efectes nocius. Els raigs UVB es troben en una longitud d’ona entre els 280-315, en canvi, els raigs UVA són els més nocius i es troben entre una longitud d’ona dels 316-380nm.
- Llum visible: és el rang de longitud d’ona emesa pel sol, que permet veure els colors que es troben entre els 381-780 nm.
- Infraroigs: és l’espectre de longitud d’ona que produeix la calor i es troba per sobre els 718 nm.

Així doncs, la placa mitjançant un recobriment protector en la seva cara exterior serà capaç de desviar el 98% dels raigs UV de la intensitat solar. A continuació s’adjunta l’espectre de transmissió de la llum solar de la placa cel·lular de 10 mm amb recobriment en la figura 6 i el comportament de la llum solar envers el material a la figura 7.

![Diagrama d'espectre de transmissió de la llum solar](http://www.sabic-ps.cl/pdf/alveolar/SABIC_Chile_Policarbonato_Alveolar_ficha_tecnica_20131008.pdf)
G.6.5. Transmitància tèrmica del tancament de policarbonat

La transmitància tèrmica del tancament de policarbonat cel·lular es determinarà segons indica el Documento de apoyo al Documento básico. Ahorro de Energía (DA DB HE-1), mitjançant l’equació 1, els valors dels paràmetres R_{se} i R_{st} són els mateixos que l’apartat G.3.3 d’aquest annex.

\[
U = \frac{1}{R_T} = \frac{1}{R_{se} + R_i + R_{si}}
\]

\[
U = \frac{1}{R_T} = \frac{1}{R_{si} + R_i + R_{si}} = \frac{1}{0,13 + \frac{1}{2,4} + 0,04} = 1,7 \text{ W/m}^2 \text{K}
\]

Així doncs, es pot afirmar que el tancament de policarbonat cel·lular té una transmitància tèrmica de 1,7 W/m²K, una capacitat d’aïllament fins a tres vegades millor que el tancament actual translúcid actual (5,63 W/m²K).

Figura 7. Intensitat solar transmesa (TSD i RI), reflexada (R i RE) i absorbida (A)
G.7. EMPRESA RECOMANADA

Es recomana que l’empresa instal·ladora de les plaques de policarbonat cel·lular, sigui l’empresa Cobertnaus S.L, la mateixa empresa recomanada per dur a terme la rehabilitació del tancament de coberta de la nau industrial.

La placa de policarbonat instal·lada haurà de tenir unes especificacions idèntiques o gairebé equivalents a la placa Titan Sky de Polygal Sud S.A, ídem per els accessoris de subjecció de les plaques.

Polygal Sud S.A és una empresa fabricant de productes plàstics, la qual disposa de múltiples tipologies de plaques de policarbonat cel·lular, amb diferents estructures i dimensions. A més, aquesta dóna tota la informació d’instal·lació de les plaques i dóna una garantia de funcionament de les mateixes de 10 anys. També destaca per la gran fiabilitat dels seus productes i disposa de la certificació de qualitat ISO 9001.

Polygal Sud S.A disposa d’un model de placa de policarbonat cel·lular que compleix amb les especificacions desitjades. La placa Titan Sky, és una placa de Polygal Sud S.A que disposa d’una estructura de tres làmines amb nervis entrecreuats (estructura de 5 parets), la qual li dóna major rigidesa i resistència que les plaques estàndards equivalents. Aquesta és excel·lent per suportar cargues pesades i es fabrica amb un gruix de 10 mm d’espressor. A més, es pot escollir amb el color tipus Clear, el qual li dóna una transparència superior al 75%. Aquesta incorpora un capa de protecció coextruida en la seva cara exterior, capaç de desviar el 98% dels rajos UV.
G.8. ACCESSORIS D'INSTAL·LACIÓ DE LES PLAQUES

Els accessoris necessaris per dur a terme de forma correcta la instal·lació de les plaques escollides són els següents.

G.8.1.1. Cintes segelladores

Es col·locarà una cinta llisa d'alumini o polièster en la part superior de la placa cel·lular, per evitar l’entrada d’aigua, pols, bacteris o insectes a l’interior de les cel··les.

També es col·locarà una cinta perforada d’alumini o polièster en la part inferior de la placa cel·lular per permetre l’evacuació de la condensació.

Ambdues cintes tindran un espessor de 25 mm i es col·locaran de tal forma que la línia central de la cinta quedi col·locada en el centre de la placa.

A continuació s’adjunta la figura 8, amb una imatge de ambdues cintes i la seva ubicació.

Figura 8. Col·locació de les cintes
G.8.1.2. Remats

A la part superior i inferior de les plaques es col·locarà remats de policarbonat o d’alumini anoditzats per a protegir les cintes segelladores. A priori s’aconsella el remat d’alumini, amb la finalitat d’obtenir un acabat més estètic, tanmateix és deixa llibertat per utilitzar el perfil U de policarbonat si es desitja. A continuació s’adjunta una la figura 9, amb una imatge de les dos opcions de remat per facilitar la comprensió.

![Remat de policarbonat (A) i remat d'alumini (B).](http://www.sabic-ps.cl/pdf/alveolar/SABIC_Chile_Policarbonato_Alveolar_Mini_Guia_20131008.pdf)

Cal esmentar, que el remat d’alumini o policarbonat situat a la part inferior de la placa, tindrà forats de petites dimensions per permetre l’evacuació de l’aigua condensada a l’interior de la placa.

G.8.1.3. Perfs de subjecció de les plaques

Les plaques es subjecten en perfs tubulars capaços de suportar el seu pes. Tanmateix existeixen diferents mètodes de subjecció de les plaques en aquests perfs. A continuació es descriuen breument els dos mètodes generalment utilitzats quan les plaques tenen un acabat lateral rectangular.
- Subjecció de les plaques mitjançant perfils d’alumini anoditzat i gomes.

Les plaques es subjecten per pressió mitjançant gomes. Aquestes es col·loquen a ambdues cares de les plaques i permeten la seva dilatació/contracció sense presentar oposició. Les gomes són subjectades per perfils d’alumini anoditzat, aquest perfils solen ser estàndards, però les seves dimensions poden variar en funció de l’empresa fabricant. A continuació, s’adjunta la figura 10, on es mostra aquesta tipologia de subjecció.

Figura 10. Mètodes de subjecció de les plaques mitjançant gomes i perfils d’alumini anoditzat.

Essent:

A: Perfil tapa d’alumini anoditzada per a perfil universal (6000).
B: Perfil universal d’alumini anoditzat (6000).
C: Perfil de goma tipus EPDM*, trapezoïdal per assegurar l’estanqueïtat.
D: Perfil de goma tipus EPDM, amb base plana negre de 60 mm d’amplada.
E: Perfil hexagonal d’alumini (6000)
F: Perfil goma tipus EPDM, per suportar el perfil hexagonal.

*La goma EPDM (goma monòmer d’etilè propilè diè, classe M segons la norma D-1418 de la ASTM), és un tipus de goma sintètica, un elastòmer amb amplies aplicacions, que destaca per la seva resistència al calor, inclemències meteorològiques, bona resistència a substàncies polars i al vapor i les seves propietats aïllants.
Per tal d’aplicar la subjecció de la figura 10 en les plaques es necessari que els perfils tubulars que suporten les plaques estiguin disposats de forma vertical. Els perfils tubulars soldats a l’encavallada Warren són horitzontals. Tanmateix no serà problema, ja que les pròpies empreses distribuïdores, disposen de perfils lleugers per suportar les gomes que actuen com a muntants. Es recomana que si s’utilitzen aquests perfils, siguin (del mateix material que les encavallades) per evitar la diferència de dilatacions.

- **Subjecció de les plaques mitjançant perfils de policarbonat.**

Les plaques s’uneixen entre elles mitjançant un perfil de policarbonat en forma de H. Aquest perfil permet l’estanqueïtat entre plaques i la seva dilatació. Per tal de subjectar les plaques en els perfils tubulars horitzontals es realitzen forats i s’hi passa un cargol que s’uneix als perfils. Es disposarà d’una junta de goma EPDM a les dos cares de les plaques.

Aquesta subjecció és utilitzada quan no es vol utilitzar perfils d’alumini com a acabat i vol donar un imatge més uniforma al tancament. Tanmateix es desaconsella aquesta tipologia de subjecció perquè es necessari perforar les plaques. A més, aquests perfils es solen utilitzar quan les càrregues són molt baixes.

A continuació s’adjunta la figura 11, on es pot observar aquesta tipologia de perfils.

![Figura 11. Mètode de subjecció de les plaques mitjançant un perfil de policarbonat](http://www.coprosider.com/es/policarbonato-celular.aspx)
Procés constructiu de la rehabilitació d’una nau industrial existent

ANNEX G

Essent:

G: Perfil H de policarbonat per la unió entre plaques.

H: Perfil U de policarbonat per la protecció de la cinta antifongs.

J: Botó de polipropilè per la fixació mecànica entre plaques a perfils mitjançant un cargol autotaladrant. (Veure figura 12).

Cal especificar, que si en algun punt o regió del tancament es necessari perforar les plaques per afectar-les, la perforació es realitzarà seguint les instruccions del fabricant i es tindran en compte les dilatacions, sempre utilitzant gomes EPDM en el mètode de subjecció. A continuació s’adjunta la figura 12 amb la subjecció d’una placa mitjançant la seva perforació.

G.8.1.4. Recomanacions

Es recomana utilitzar els accessoris d’instal·lació de les plaques de l’empresa Polygal Sud S.A. Aquesta disposa de cintes segelladores, remats d’alumini i de diferents models de perfils d’alumini per a la subjecció de les plaques.

Concretament es recomana el model de perfils d’alumini 6-36 per a la subjecció de les plaques. Aquests perfils, especialment dissenyats per làmines de policarbonat d’entre 10 i 32 mm d’espessor, són sistemes de subjecció ideals quan els perfils de l’encavallada que la subjecten són horitzontals, essent capaços d’exercir la funció de muntants. A més, són capaços de suportar altes càrregues, ajuden a prevenir falles degut a càrregues de vent i neu, i permeten l’expansió i contracció tèrmica de la placa. També permeten una fixació de la placa senzilla i acurada.
A continuació, s’adjunta la figura 13, amb una representació gràfica d’aquests perfils.

Figura 13. Sistema de fixació amb perfils d’alumini (model 6-36)
G.9. SUPERFÍCIE DEL TANCAMENT I DISTRIBUCIÓ RECOMANADA

Alhora de cobrir la superfície dels tancaments verticals de les dents de serra, s’han tingut en compte tres especificacions, explícites a continuació.

- Les plaques que aguanten major càrrega tenen una amplada de 1200mm.
- S’ha de respectar la distància mínima entre plaques (cargol + distància mínima de dilatació)
- S’ha d’evitar realitzar talls verticals en les plaques.

Per tal de cobrir de manera òptima la longitud del tancament complint aquestes especificacions, s’ha alternat l’ús de plaques de diferent amplada (donant prioritat a l’amplada que suporta més càrrega), i s’ha donat diferents valors de distància entre plaques, de tal manera que es pugui fixar de manera correcta al suport i es compleixi les distància mínima de dilatació/contracció. Aquest procediment s’ha realitzat mitjançant l’equació 2, adjunta a continuació.

\[
L_T = 2 \cdot \left(\frac{L_S}{2} \right) + \left(L_{p\,1200} + (2 \cdot L_{separació}) \right) \cdot X_{p\,1200} + \left(L_{p\,1050} + (2 \cdot L_{separació}) \right) \cdot X_{p\,1050} \quad \text{(Eq. 2)}
\]

Essent:

\(L_T \): Longitud total a cobrir dels diferents tancaments de façana de la dent de serra, en cm.

\(L_S \): Longitud del suports de les plaques (mutants), en cm.

\(L_{p\,1200} \): Longitud de la placa de policarbonat de 1200 mm d’amplada, en cm.

\(L_{p\,1050} \): Longitud de la placa de policarbonat de 1050 mm d’amplada, en cm

\(X_{p\,1200} \): Nº de plaques de policarbonat cel·lular amb una amplada de 1200 mm.

\(X_{p\,1050} \): Nº de plaques de policarbonat cel·lular de 1050 mm d’amplada.

\(L_{separació} \): Distància entre la placa i el centre del suport (essent la distància del radi del cargol + la distància de seguretat per dilatació), en cm.

En el document n° 2. Plànols, d’aquest projecte, es detallen les longituds de l’equació 2 esmentades, conjuntament amb les dimensions del suport.

La superfície total a cobrir és diferent pel tancament de la façana nord, que per la resta de tancaments verticals de les dents de serra.
G.9.1. Tancament de façana nord

La superfiçie del tancament translúcide de la façana nord tindrà dos parts. La part principal tindrà 21,56 m d’amplada \((L_1) \) i 3,1 m d’alçada, i la part secundària tindrà 4,98 m d’amplada \((L_2) \) amb una alçada variable.

Si apliquem l’equació 2, obtenim que el nombre de plaques a utilitzar en la part principal del tancament de façana nord és de 15 plaques d’una amplada de 1200 mm i 3 plaques d’una amplada de 1050 mm. A continuació s’adjunta la taula 10 amb les distàncies de separació entre plaques òptima i el càlcul realitzat aplicant l’equació 2.

Taula 10. Distància recomanada entre plaques en funció de la seva amplada per al tancament translúcide principal de la façana nord.

<table>
<thead>
<tr>
<th>nº de plaques</th>
<th>Amplada de la placa (mm)</th>
<th>Distància entre la placa i el centre del suport (mm)</th>
<th>Distància de dilatació (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1200</td>
<td>9,5</td>
<td>4,5</td>
</tr>
<tr>
<td>3</td>
<td>1050</td>
<td>8,5</td>
<td>3,5</td>
</tr>
</tbody>
</table>

(Eq.2)

\[
L_1 = 2 \cdot \left(\frac{L_S}{2} \right) + \left(L_{p \, 1200} + (2 \cdot L_{separació}) \right) \cdot X_{p \, 1200} + \left(L_{p \, 1050} + (2 \cdot L_{separació}) \right) \cdot X_{p \, 1050}
\]

\[2155,8 = 2 \cdot \left(\frac{7,2}{2} \right) + (120 + (2 \cdot 0,95)) \cdot 15 + (105 + (2 \cdot 0,85)) \cdot 3\]

Les tres plaques de 1050 mm es col·locaran al centre del tancament, ja que en aquest punt, la càrrega de vent serà menor, i a més, s’aconseguirà donar un aspecte més simètric al tancament.

S’ha seguit el mateix procediment per la part secundària del tancament de la dent de serra de la façana nord. Aquest s’ha realitzat amb 4 plaques de 1200 mm d’amplada, a continuació, s’adjunta la taula 11 amb les distàncies de separació entre plaques òptima i el càlcul realitzat aplicant l’equació 2.
Taula 11. Distància recomanada entre plaques per el tancament translúcid secundari de la façana nord.

<table>
<thead>
<tr>
<th>nº de plaques</th>
<th>Amplada de la plaça (mm)</th>
<th>Distància entre la plaça i el centre del suport (mm)</th>
<th>Distància de dilatació (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1200</td>
<td>13,5</td>
<td>8,5</td>
</tr>
</tbody>
</table>

(Eq.1)

\[L_2 = 2 \cdot \left(\frac{L_5}{2} \right) + \left(L_p 1200 + (2 \cdot L_{sep\,ació}) \right) \cdot X_p 1200 + \left(L_p 1050 + (2 \cdot L_{sep\,ació}) \right) \cdot X_p 1050 \]

\[498 = 2 \cdot \left(\frac{7,2}{2} \right) + (120 + (2 \cdot 1,35)) \cdot 4 + (105 + (2 \cdot 0,85)) \cdot 0 \]

G.9.2. Tancament vertical de les dents de serra (excepte façana nord).

La superfície dels tancaments verticals de les demés dents de serra, té una amplada de 27 m \((L_3)\), respecte una alçada de 2,4 m. Per tal de determinar la quantitat i amplada de plaques òptimes del tancament s’ha realitzat el mateix procediment que en el tancament de façana nord. A continuació, s’adjunta la taula 12, amb la quantitat, amplada i distància entre plaques, i el càlcul realitzat amb el procediment seguit.

Taula 12. Distància recomanada entre plaques per els tancaments translúcids (excepte del de la façana nord).

<table>
<thead>
<tr>
<th>nº de plaques</th>
<th>Amplada de la plaça (mm)</th>
<th>Distància entre la plaça i el centre del suport (mm)</th>
<th>Distància de dilatació (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1200</td>
<td>12,5</td>
<td>7,5</td>
</tr>
<tr>
<td>8</td>
<td>1050</td>
<td>9,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

(Eq.2)

\[L_3 = 2 \cdot \left(\frac{L_5}{2} \right) + \left(L_p 1200 + (2 \cdot L_{sep\,ació}) \right) \cdot X_p 1200 + \left(L_p 1050 + (2 \cdot L_{sep\,ació}) \right) \cdot X_p 1050 \]

\[2699,9 = 2 \cdot \left(\frac{7,2}{2} \right) + (120 + (2 \cdot 1,25)) \cdot 15 + (105 + (2 \cdot 0,95)) \cdot 8 \]

Les vuit plaques de 1050 mm es col·locaran al centre del tancament, ja que en aquest punt, la càrrega de vent serà menor, i a més, s’aconseguirà donar un aspecte més simètric al tancament.
G.10. INSTAL·LACIÓ DE LES PLAQUES

G.10.1. Emmagatzematge de les plaques

Abans de la seva instal·lació, les plaques s’hauran d’emmagatzemar-se en un lloc net, cobert, sec, segur i amb ombra, per evitar que els raigs solars provoquin que la pel·lícula protectora que porten les plaques (film) s’adhereixi a aquestes.

Es recomana que les plaques cel·lulars amb un espessor de 10mm no s’apilin horitzontalment fins a obtenir una altura superior a 10 m.

G.10.2. Col·locació de les plaques

Les plaques es col·locaran de tal forma que els nervis quedin orientats de forma vertical o paral·lela a la direcció del pendent.

La cara de la placa que disposi de protecció contra la llum solar UV, estarà en contacte amb l’aire exterior, i la cara sense protecció estarà en contacte amb l’aire interior del recinte. La cara de la placa amb protecció solar estarà indicada mitjançant un text en el film protector.

No es retirarà el film protector fins que finalitzi la instal·lació de les plaques.

G.10.3. Procediment de tall

Es tallarà la placa en el sentit perpendicular o paral·lel a les cel·les mitjançant un cúter gruixut (10mm) de qualitat i ben afilat. Es marcarà la zona de tall i es repetirà 2 o 3 vegades la incisió de forma continuà i sense interrupcions.

També s’aconseiglia tallar les plaques en el mateix sentit que les cel·les amb una serra circular amb les dents petites i fines. No s’utilitzarà aquest procediment per tallar en sentit perpendicular a les cel·les ja que podria quedar ferritja residuals dins d’aquestes i no sempre es poden retirar. En el cas de generar pols en el procés de tall, es podrà aspirar amb una aspiradora o expulsar amb aire comprimit.

Si es necessari realitzar alguna perforació en el procés de tall es podrà realitzar amb un trepant manual elèctric amb broques helicoïdals d’acer, però les plaques hauran d’estar correctament subjectades per evitar vibracions.
L’ús de líquids de refrigeració en el procediment de tall és desaconsejable.

G.10.4. Col·locació de les cintes de segelladores

Es segellarà mitjançant les cintes d’alumini o polièster llisa les parts superiors de la placa i mitjançant cinta perforada del mateix material les parts inferiors de la placa, per evitar l’entrada d’aigua, pols, insectes i evitar la condensació dins les plaques.

G.10.5. Fixació de les plaques

Les plaques es col·locaran i es fixaran en l’encavallada de forma consecutiva. En primer lloc, es col·locaran els perfils base d’acer o alumini i les gomes EPDM trapezoidals, de tal forma que quedin orientades de forma vertical (perpendiculars als perfils tubulars de l’encavallada) i es fixaran mitjançant dos cargols autotaladrants per cada perfil tubular de l’encavallada (suport). A continuació, es col·locaran les plaques conjuntament amb les gomes trapezoïdals i el perfil tapa d’alumini, el qual s’unirà al perfil base mitjançant cargols autotaladrants. Aquest procediment es repetirà fins a col·locar totes les plaques.

G.10.6. Distàncies mínimes de seguretat

Cal especificar, que durant la col·locació de les plaques s’ha de tenir present la dilatació/contracció de les mateixes. El coeficient de dilatació/contracció tèrmica (α) d’una placa de policarbonat és de 0,000065mm/mmºC, aquest és alt en comparació als altres materials constructius utilitzats habitualment. Com a conseqüència d’això, s’haurà de tenir en compte la expansió/contracció de les plaques, tan en sentit longitudinal com lateral. Per aquest motiu durant la fixació de les plaques, els cargols no podran anar cargolats al màxim i les plaques hauran d’estar separades una distància mínima entre elles per permetre la seva expansió tèrmica.

La variació de longitud de les dimensions d’un material a causa de la seva dilatació o contracció, depèn del tipus de material, les seves dimensions i la variació de temperatura en que està sotmès. Aquesta es determina mitjançant l’equació 3, adjunta a continuació.

\[\Delta L = \alpha \cdot L_i \cdot \Delta T \]

(Eq.3)
Essent:

\[\Delta L: \text{Variació de la longitud del material} \]

\[L_i: \text{Longitud inicial del material, (en aquest cas longitud a temperatura ambient).} \]

\[\alpha: \text{Coeficient de dilatació lineal (1/K)} \]

\[\Delta T: \text{Variació de Temperatura (} T_{\text{final}} - T_{\text{inicial}}) \]

Sabent que les plaques amb unes dimensions màximes, mesuraràn 3.100 mm d’alçada i 2.100 mm d’ample, a temperatura ambient (25°C), que el policarbonat té un coeficient de dilatació lineal de 0,000065 mm/mm°C i que la temperatura màxima exterior de l’establiment serà de 42°C, mentre que la temperatura mínima exterior serà de -13°C (valors de temperatura determinats en l’annex D. Accions en l’edificació).

Aplicant l’equació 3, s’ha determinat la distància mínima horitzontal que s’haurà de deixar a cada costat de la placa per la seva dilatació \((L_{dx})\) i contracció \((L_{cx})\), i la distància mínima vertical a cada costat de la placa per la seva dilatació \((L_{dy})\) i contracció \((L_{cy})\). A continuació s’adjunten els càlculs.

\[
\Delta L_{dx} (mm) = \alpha \cdot A \cdot \Delta T = 0,000065 \cdot 1200 \cdot (42 - 25) = 1,32 mm
\]

\[
L_{dx} (mm) = \frac{\Delta L_{dx}}{2} = \frac{1,32}{2} = 0,66 mm
\]

\[
\Delta L_{cx} (mm) = \alpha \cdot A \cdot \Delta T = 0,000065 \cdot 1200 \cdot (25 - (-13)) = 2,964 mm
\]

\[
L_{cx} (mm) = \frac{\Delta L_{cx}}{2} = \frac{2,964}{2} = 1,49 mm
\]

\[
\Delta L_{dy} (mm) = \alpha \cdot A \cdot \Delta T = 0,000065 \cdot 3100 \cdot (42 - 25) = 3,425 mm
\]

\[
L_{dy} (mm) = \frac{\Delta L_{dy}}{2} = \frac{3,425}{2} = 1,72 mm
\]

\[
\Delta L_{cy} (mm) = \alpha \cdot A \cdot \Delta T = 0,000065 \cdot 3100 \cdot (25 - (-13)) = 7,657 mm
\]
En el document nº 2. Plànols, es poden observar les distàncies mínimes horitzontals d’instal·lació (L_{dx} i L_{cx}).

Com es pot observar a l’equació 3, aquestes distàncies de seguretat disminueixen quan les dimensions de les plaques són menors de les plaques. Tanmateix es recomana deixar aquestes distàncies mínimes de seguretat per totes les plaques que tinguin unes dimensions iguals o inferiors a les dels càlculs. Així doncs, s’haurà de tenir especial precaució en la instal·lació de les plaques alhora de respectar aquestes distàncies mínimes de dilatació/contracció, per tal d’evitar tensions o ruptures de les plaques durant una variació de temperatura.

Cal esmentar, que en la distribució de les plaques recomanada en aquest annex, s’ha respectat les distàncies mínimes de dilatació i contracció de les plaques.

G.10.7. Col·locació dels remats

Es col·locaran els remats en la part inferior i superior de les plaques i en els extrems laterals del tancament, indicats pel fabricant de les plaques. Durant la col·locació dels perfils de remat es podrà utilitzar silicona per millorar la seva fixació i garantir estanqueïtat. Aquesta silicona haurà de ser especialitzada o neutra i oxímica perquè sigui compatible amb la placa.

G.10.8. Manteniment i neteja

Es necessària una neteja adequada de les plaques per conservar la transmissió de la llum del material. La correcta forma de fer-ho consisteix en realitzar el següent cicle.

- Esbandir la placa amb aigua freda per eliminar l’excés de brutícia.
- Netejar amb un sabó suau i aigua, retirant la pols o taques amb un drap o esponja.
- Esbandir i secar amb un drap o franel suau per evitar les taques de l’aigua.
- Repetir el procés o utilitzar productes de neteja compatibles i especialitzats si és necessari.

No s’utilitzarà durant la neteja raspalls o altres estris susceptibles a ratllar la placa, ni líquids agressius com dissolvents, querosens o altres alcalins o detergents en pols (abrasius).
Cal especificar que si les plaques tenen garantia (generalment el fabricant dona una garantia de 10 anys), s’haurà de realitzar la neteja conforme les recomanacions del fabricant.

Al acabar la instal·lació de les plaques es retirarà el film protector i es realitzarà una neteja conforme l’indicat.

G.11. COMPLIMENT DE LA NORMATIVA VIGENT

G.11.1. Accions en l’edificació (DB SE-AE)

El pes propi de les plaques de policarbonat escollides és de 1,7kg/m², mentre que el de les plaques actuals és de 2,188 kg/m², raó per la qual es continuarà garantint la seguretat estructural de l’edifici, i no serà necessari realitzar nous càlculs per garantir l’estabilitat.

El policarbonat cel·lular és un dels materials translúcids més resistentes als impactes i al suport de càrregues, per aquest motiu es àmpliament utilitzat com a lluernari en cobertes transitables. Les plaques de policarbonat cel·lular de 10 mm garantiran la seva resistència a les accions meteorològiques més desfavorables (càrregues de vent i neu) i són capaços de garantir la seva resistència a impactes accidentals (calamarsa i pedregades) ja que tenen una resistència a l’impacte superior als 27J.

En la instal·lació de les plaques es té en compte també l’acció tèrmica, i els efectes de dilatació/contracció produts per una variació de temperatura de 55ºC. Segons els valors de temperatura mínima (hivern) i temperatura màxima (estiu) obtinguts en la ubicació de l’establiment industrial.

G.11.2. Normativa contra incendis RSCIEI

Les plaques escollides tenen un comportament contra el foc classe B-s1 d0, classificació al foc segons la norma europea UNE-EN 13501:2007+A1:2010. Aquesta classe és superior a l’exigida en parets i tancaments de edificis amb una configuració tipus C i amb risc intrínsec baix, la qual és suficient una classe Ds3-d0. La majoria de plaques translúcides tenen aquesta classe perquè habitualment són utilitzades com a lluernaris continus de coberta, els quals se’ls exigeix una classe B-s1 d0.

G.11.3. Protecció contra la humitat (DB HS-1)

En els tancaments de façana de la nau industrial se’ls hi exigeix un grau d’impermeabilitat mínim de 3, segons el DB HS. Salubridat. La determinació d’aquest grau d’impermeabilitat es pot observar en l’annex B. Estudi Patològic, apartat B.5.2.4.2.
El DB HS, únicament dóna les solucions constructives de tancaments de façana d’obra de fàbrica i específica les condicions mínimes d’impermeabilitat de cada element que la constitueix. Com que no especifica les condicions d’impermeabilitat de tancaments amb plaques de policarbonat, s’exigirà les condicions anàlogues a les d’una impermeabilitat de grau 3 d’obra de fàbrica (resistència alta a la filtració).

Les plaques de policarbonat cel·lular són impermeables, raó per la qual superen amb expectatives les condicions d’impermeabilitat imposades. A més, en la unió entre plaques i l’encavallada de la nau s’utilitza goma tipus EPDM, un elastòmer impermeable que garanteix l’estanqueïtat entre plaques, i en els perímetres del tancament es disposarà de remats d’alumini que garanteixin també l’estanqueïtat. Durant la col·locació de les plaques també es respecte la seva dilatació.
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIA D’ANGLÈS.

- ANNEX G. TANCAMENT DE FAÇANA TRANSLÚCID DE LES DENTS DE SERRA

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
ANNEX H

REVESTIMENT DEL PAVIMENT
SUMMARI. REVESTIMENT DEL PAVIMENT

H.1. INTRODUCCIÓ ..2
H.2. OBJECTE..2
H.3. DESCRIPCIÓ DE L’ESTAT ACTUAL ..2
H.4. JUSTIFICACIÓ DE LA NECESSITAT ..3
H.5. SOLUCIÓ ADPOTADA ..4
H.6. RELACIÓ DE SUPERFÍCIES ..5
H.7. COMPLIMENT DE LA NORMATIVA VIGENT ..6
 H.7.1. Resistència al lliscament ..6
 H.7.2. Discontinuïtats en el paviment ..7
 H.7.3. Comportament envers el foc ..8
H.8. FASES DEL PROCÉS ...9
 H.8.1. Resistència mecànica ...9
 H.8.2. Humitat del suport ..9
 H.8.3. Preparació del paviment ..9
 H.8.4. Imprimació ..10
 H.8.5. Revestiment de fons ..10
 H.8.6. Revestiment final ..10
H.9. DESCRIPIÓ DE LA SOLUCIÓ ..11
 H.9.1. Revestiment en la zona de taller, magatzem i zona d’expedició11
 H.9.1.1. Senyalització ..12
 H.9.2. Revestiment laboratori de metrologia. ...13
 H.9.3. Revestiment zona oficines ...14
 H.9.4. Revestiment zona vestuaris ..14
 H.9.5. Revestiment sala d’instal·lacions ..15
H.10. EMPRESA RECOMANADA ..15
H.1. INTRODUCCIÓ

Quan es va procedir a la construcció del paviment interior de la nau, aquest es va dimensionar tenint en compte que l’activitat que s’hi produiria seria una fusteria, raó per la qual el promotor de l’obra va especificar que la capa d’acabat superficial del paviment fos un acabat corronat rugós. Actualment aquesta capa superficial del paviment interior de la nau es troba lleugerament deteriorada i malmesa degut a l’activitat exercida anteriorment en l’establiment. Per aquest motiu es prendran les mesures necessàries per millorar-ne les seves condicions.

H.2. OBJECTE

En aquest annex es pretén justificar la necessitat de millorar el paviment interior de la nau, descriure les condicions específiques que ha de complir i presentar les mesures necessàries per a la seva adequació.

H.3. DESCRIPCIÓ DE L’ESTAT ACTUAL

El paviment interior de la nau està format per una solera i es va dimensionar per tal de poder suportar esforços pesants. En primer lloc, es va col·locar una capa de sauló de 15cm d’espessor, en segon lloc unes làmines de poliestirè per aïllar el paviment i finalment, una capa de formigó de 200 kg/m^3 HA-25 de 15cm amb un especejament en quadres de 4x4m, on se li va donar un acabat corronat (rugós) amb ciment pòrtland.

No es disposa de més informació durant la seva construcció, així que l’empresa contractada per a la millora del paviment haurà de realitzar totes les mesures i comprovacions que siguin necessàries per a la seva adequació.

A simple vista, es pot observar que la capa superficial del paviment està deteriorada, ja que presenta petites irregularitats i desperfectes, els quals s’han produït arran de l’anterior activitat duta a terme en l’establiment.
H.4. JUSTIFICACIÓ DE LA NECESSITAT

La llei 31/1995 del 8 de novembre, Prevenció de riscos laborals, estableix en el seu article 15 (principis de l’acció preventiva) que l’empresari aplicarà les mesures que integren el deure general de prevenció previst a l’article 14 (dret de protecció enfront riscos laborals), de la citada llei entre els que figuren evitar, avaluarc i eliminar els riscos.

Tenint en compte l’estat actual del paviment i la magnitud del risc que comporta, podent generar riscos d’entrebancs i caigudes, s’ha considerat necessària l’adecuació del paviment interior de la nau.

A més a més, l’anterior activitat que s’exercia en l’establiment industrial a rehabilitar era un taller de fusteria. Per aquest motiu, l’acabat del paviment que es va escollir va ser un acabat coronat rugós. Aquest acabat (l’actual) no és l’idoni en quant a l’activitat que s’hi pretén desenvolupar, raó per la qual s’escollirà una tipologia d’acabat diferent a l’actual, que reuneixi les característiques necessàries en funció de l’activitat realitzada a cada zona de l’establiment.

D’altra banda, una diferència del color del paviment i senyalització del mateix, ajudaria a diferenciar les àrees de treball, zones de circulació i zones de pas, millorant el layout de l’empresa i la seguretat dels seus occupants.

Així mateix, una millora del paviment interior de la nau també implicaria una millora de la imatge que dóna l’empresa envers els clients, mostrant una imatge de major serietat i professionalitat en les seves instal·lacions.

Finalment podem concloure que principalment per una qüestió de seguretat, i també logística i estètica, l’empresa requereix d’una necessitat de millorar el paviment interior de la nau.
H.5. SOLUCIÓ ADOPADA

A fi de millorar l’estat actual del paviment interior de la nau, es creu convenient realitzar un revestiment a tota la superfície del paviment de la nau, excepte l’anterior zona d’oficines, anomenada com edifici 1, ja que en aquesta part l’edifici disposa de rajoles sobre el paviment, i aquestes es troben en bon estat. D’aquesta forma, s’aconseguirà millorar l’acabat superficial del paviment existent, aconseguint una millor anivellació del paviment, eliminant les cavitats i desperfectes produïts arran de l’anterior activitat i adequant-lo a les seves noves especificacions de treball.

La tipologia d’acabat utilitzat en el revestiment del paviment s’escollirà en funció de l’activitat prevista a exercir sobre el paviment, per aquest motiu, és definirà una tipologia de revestiment ideal per a cada zona (taller, magatzem, laboratori, oficines i vestuaris) de l’establiment industrial.

És senyalitzarà mitjançant pintura, les diferents zones de pas, circulació i treball en la zona de taller i magatzem, per facilitar la comprensió del layout, l’evacuació de l’ocupació i evitar riscos d’accidents.

Tanmateix, abans de dur a terme aquesta acció, es prendran les mesures i comprovacions necessàries per assegurar que el paviment actual continuarà essent capaç de garantir la seva funció sense deteriorar-se, sinó és així, es prendran les mesures necessàries perquè continuï complint amb la seva funció.
H.6. RELACIÓ DE SUPERFÍCIES

Com s’ha esmentat en l’apartat H.5 del mateix annex, s’aplicarà una tipologia d’acabat en el revestiment del paviment en funció de l’activitat que si desenvolupi, ja que cada activitat requerirà unes condicions i característiques del paviment diferents.

Per aquest motiu, s’ha diferenciat les diferents activitats que es durant a terme en l’activitat prevista de mecanització dins la nau industrial i s’ha quantificat la seva àrea en la taula 1, adjunta a continuació.

Taula 1. Zones i àrea de les activitats dutes a terme en la nau industrial (excepte edifici 1).

<table>
<thead>
<tr>
<th>Zones</th>
<th>Àrea (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taller</td>
<td>729,81</td>
</tr>
<tr>
<td>Magatzem</td>
<td>217,02</td>
</tr>
<tr>
<td>Expedició</td>
<td>11,95</td>
</tr>
<tr>
<td>Oficines</td>
<td>137,2</td>
</tr>
<tr>
<td>Laboratori</td>
<td>40,62</td>
</tr>
<tr>
<td>Vestuaris</td>
<td>53,4</td>
</tr>
<tr>
<td>Sala d’instal·lacions</td>
<td>13,6</td>
</tr>
</tbody>
</table>

A continuació, s’adjunta la figura 1 on es pot observar la ubicació de les diferents zones descrites.

Figura 1. Diferenciació i àrea de les zones dins la nau industrial (excepte l’edifici 1)
Font. Pròpia (AutoCAD 2013)
H.7. COMPLIMENT DE LA NORMATIVA VIGENT

El revestiment haurà de complir unes exigències mínimes, imposades per el Codi Tècnic de l’Edificació (CTE), amb la finalitat de garantir la seguretat en el seu ús i en cas d’incendi.

H.7.1. Resistència al lliscament

El risc considerat en zones interiors seques és el lliscament en sec, considerant que un sòl accessible pel públic i situat en una zona interior seca estarà ocasionalment humit, per exemple durant la seva neteja.

D’acord amb el Document Bàsic de seguretat d’utilització i accessibilitat (DB-SUA) que inclou les exigències de seguretat davant el risc de caigudes. Es limitarà el risc de lliscament per tal que els usuaris no sofreixin caigudes, adequant els sòls a les seves condicions de servei.

Segons l’apartat 1, del document DB-SUA, els sòls es classifiquen en funció del seu valor de resistència al lliscament \(R_d \), d’acord amb l’establert a la taula 2 adjunta a continuació i explícita en el DB-SUA com a taula 1.1.

Taula 2. Classificació dels sòls segons el seu lliscament

<table>
<thead>
<tr>
<th>Resistència al lliscament</th>
<th>Classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_d \leq 15)</td>
<td>0</td>
</tr>
<tr>
<td>(15 < R_d \leq 35)</td>
<td>1</td>
</tr>
<tr>
<td>(35 < R_d \leq 45)</td>
<td>2</td>
</tr>
<tr>
<td>(R_d > 45)</td>
<td>3</td>
</tr>
</tbody>
</table>

El DB-SUA, indica la classe que han de tenir els sòls, com a mínim, en funció de la seva localització. Aquesta classe es mantindrà durant la vida útil del paviment. A continuació s’adjunta la taula 3, on es pot observar la classe exigida dels sòls, explícita en el DB-SUA com a taula 1.2.
Taula 3. Classe exigida als sòls en funció de la seva localització

<table>
<thead>
<tr>
<th>Localització i característiques del sòl</th>
<th>Classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zones interiors seques</td>
<td></td>
</tr>
<tr>
<td>· superfícies amb un pendent menor al 6 %</td>
<td>1</td>
</tr>
<tr>
<td>· superfícies amb un pendent igual o major al 6 % i escales</td>
<td>2</td>
</tr>
<tr>
<td>Zones interiors humides, tals com les entrades als edificis des de</td>
<td></td>
</tr>
<tr>
<td>l'espai exterior¹, terrasses cobertes, vestuaris, banys, lavabos, cuines, etc.</td>
<td></td>
</tr>
<tr>
<td>· superfícies amb pendent menor que el 6%</td>
<td>2</td>
</tr>
<tr>
<td>· superfícies amb un pendent igual o major al 6 % i escales</td>
<td>3</td>
</tr>
<tr>
<td>Zones exteriors. Piscines², Duxes.</td>
<td>3</td>
</tr>
</tbody>
</table>

¹ Excepcions quan es tracti d'accessos directes en zones d'ús restringit
² En zones previstes per usuaris descalços i en les zones en les que la profunditat no excedirà 1,5 m.

Així doncs, s’escolherà la rugositat de l’acabat del paviment de cada zona en funció de la taula 2 i 3.

H.7.2. Discontinuïtats en el paviment

Segons l’apartat 1 del DB SUA, excepte en les zones d’ús restringit o exteriors i amb el fi de limitar el risc de caigudes com a conseqüència de entrebancs, el sòl haurà de complir les següents condicions.

No tindrà juntes que presentin un ressalt de més de 4mm. Els elements que sobresurtin del nivell del paviment, puntuals i de petita dimensió (per exemple, els tancadors de portes) no hauran de sobresortir del paviment més de 12mm i el sortint que excediixi de 6mm en les seves cares oposades al sentit de circulació de les persones, no haurà de formar un angle amb el paviment que excediixi 45°.

Els desnivells que no excediren 5 cm, es resoldran amb una pendent que no excedirà el 25 %.

En zones de circulació de persones, el sòl no presentarà perforacions o forats, per als que pugui introduir-se una esfera de 1,5 cm de diàmetre.
H.7.3. Comportament envers el foc

Les exigències de comportament dels productes de construcció vers el foc, s’han definit fixant la classe que han de tenir segons la norma UNE 23727, segons indica l’Annex II del Reglament de seguretat contra incendis en establiments industrials, aprovat en el Real Decret 2267/2004, al 3 de desembre.

En aquest reglament, es descriu doncs, que els productes de revestiment o acabat superficial en sòls hauran de ser de Classe Cf1-s1 (M2) o més favorables.

Es conclou doncs, que el revestiment o acabat utilitzat per a la millora del paviment haurà de ser de Classe Cf1-s1 (M2) o més favorable.
H.8. FASES DEL PROCÉS

Durant la millora i adequació del paviment, es tindran en consideració les diferents fases d’avaluació i preparació del paviment amb l’objectiu de seleccionar un revestiment idoni que asseguri un bon comportament i resposta del paviment enfront els interessos desitjats.

Sempre que l’empresa encarregada de millorar el paviment ho consideri adient, podrà incorporar o modificar alguna de les fases descrites a continuació, així com prendre les mesures necessàries per facilitar l’elecció del paviment, amb la finalitat de millorar el seu comportament.

H.8.1. Resistència mecànica

Abans de realitzar el revestiment es mesurarà i comprovarà que la resistència a la compressió i la flexo-tracció de la base sobre el que s’aplicarà el revestiment, sigui suficient per a que el nou revestiment respongui a les exigències mecàniques que requereix.

H.8.2. Humitat del suport

Un dels aspectes fonamentals es mesurar la humitat del paviment sobre la qual s’aplicarà el revestiment. La majoria dels problemes en els paviments continus amb resina, deriven de no haver mesurat aquest factor abans d’implantar el sistema.

Sense aquesta dada, s’exposa a un risc de que el revestiment es pugui aixecar.

Quan la humitat del suport supera certs valors d’humitat puntuals, es fa imprescindible utilitzar revestiments compatibles amb el valor d’humitat assolit.

H.8.3. Preparació del paviment

Abans d’aplicar el revestiment escollit pel paviment, serà necessari realitzar una adequada i conscienciat preparació del suport per a que l’adherència a la base sigui la idònia. Evitant així problemes, quan el nou paviment sigui sotmès a càrregues dinàmiques i puntuals altes.

Cal tenir en compte, que cada suport requereix un tipus de preparació concreta.
Actualment, els mètodes de preparació del paviment poden ser granallat amb perdigons d’acer, fresat amb tungstè, polit amb carborúndum, diamantat amb diamant, polit amb pedra, atac químic amb àcids.

Finalitzat el mètode de preparació escollit, s’haurà d’aspirar les partícules de pols que s’han generat sobre la superfície tractada.

L’empresa encarregada de millorar el paviment escollirà el mètode de preparació que millor s’escaigui al paviment existent.

H.8.4. Imprimació

Una vegada s’hagi preparat el suport del revestiment, es procedirà a la aplicació de la imprimació. La imprimació permetrà exercir de pont d’unió entre el suport actual (ja preparat) i el revestiment final.

Cal tenir en compte, que cada suport i revestiment a executar requereix una imprimació concreta. La tipologia d’imprimació serà escollida per l’empresa contractada per millorar el paviment.

H.8.5. Revestiment de fons

El revestiment de fons és la capa intermitja entre la imprimació i el revestiment acabat, i pot estar format per una o més capes. És col·locarà un revestiment de fons quan l’empresa contractada ho consideri adient, i serà en funció de la tipologia de revestiment escollit.

Recordar que després d’aplicar cada capa, es deixarà assecar abans d’aplicar la següent (sol tardar un dia) i s’aspirarà la zona tractada abans de realitzar la següent capa.

H.8.6. Revestiment final

El revestiment final, també anomenat capa de rodadura, serà la part que estarà en contacte directe amb l’activitat puntual realitzada sobre el paviment.

S’escollirà una tipologia de revestiment final que sigui compatible amb l’activitat que si realitzi i compleixi amb les especificacions requerides per dur a terme l’esmentada activitat.
H.9. DESCRIPCIÓ DE LA SOLUCIÓ

S’aplicaran revestiments a tota la superfície de l’establiment industrial, excepte l’anterior zones d’oficines, situada en l’edifici 1. Tanmateix la tipologia de revestiment aplicat no serà el mateix en cada zona, ja que s’escollirà la tipologia d’acabat en funció de l’activitat que se desenvolupi.

H.9.1. Revestiment en la zona de taller, magatzem i zona d’expedició

El revestiment escollit en la zona de taller i magatzem serà un revestiment multicapa continu, resistent, antilliscant i segur. Fabricat a base de morters de resina amb sílic de quars de granulometria especial.

Aquesta tipologia de revestiments és utilitzat per restaurar paviments, regenerant la capa de rodadura degradada i obtenint una base anivellada, resistent i antilliscant. A més a més, té molt bon comportament superficial davant la fricció.

Es tractarà d’un revestiment impermeable, que no absorbeix líquids i resistent químicament. Per tal que els possibles vessaments de taladrina, olis o hidrocarburs que es puguin produir es netegin fàcilment sense deixar marca.

L’aplicació d’aquesta tipologia de revestiment és ideal en molls de càrrega i descàrrega, tallers de mecanitzat, fàbriques i en general a tots aquells paviments industrials amb sol·licituds altes o molt altes sotmesos al trànsit de carretilles i transpalets.

S’escollirà el rang de rugositat en funció del coeficient de llissament idoni per a la seva aplicació. Segons la taula 3, Classe exigible als sols en funció de la seva localització, visible en l’apartat A.7.1 del mateix annex, la classe exigida en la zona de taller i magatzem és 1, considerada una zona interior seca amb un pendent inferior al 6 %.

Així doncs, segons la taula 2, visible també en el mateix apartat que la taula 3, el revestiment de classe 1 haurà de comprendre un valor de la resistència al llissament entre $15 < R_d \leq 35$.

El seu color d’acabat serà clar, permeten així un major contrast i visibilitat de les línies de senyalització aplicades en el paviment. El color recomanat és un gris clar.

El seu espessor total serà d’entre 2 i 6 mm a l’elecció de l’empresa contractada i haurà d’estar anivellat amb la resta de revestiments aplicats en la nau industrial.
H.9.1.1. Senyalització

Un cop assecat el revestiment del paviment aplicat, s’aplicarà en la seva superfície, una pintura de poliuretàn per diferenciar les zones de pas, circulació i àrees de treball. Aquestes zones es pintaran seguint la distribució indicada en el plànol de Layout. La pintura s’aplicarà en dos capes, i tindrà un espessor d’entre 60 i 70 μm per capa (ambdues capes es podran aplicar al mateix dia).

El color de senyalització de les diferents zones del taller (zona de pas, circulació i àrees de treball) estarà determinada per l’annex VII. *Disposiciones mínimas relativas a diversas señalizaciones*, de la *Guía técnica sobre señalización de seguridad y salud en el trabajo*, del Instituto Nacional de higiene i Seguridad en el Trabajo.

Les zones de pas i els recorreguts d’evacuació es pintaran de color verd. Aquestes es separaran de les àrees de treball mitjançant una franja de color groc de com a mínim 5 cm d’amplada, i de les zones de circulació mitjançant una franja de com a mínim 10 cm d’amplada. Les àrees de treball seran d’un color grisos, més clar que el de les àrees de circulació.

A continuació s’adjunta la figura 2, on es pot observar una senyalització del paviment similar al descrit.

![Figura 2. Senyalització del paviment d’una nau industrial](http://www.wg-resina.it/pavimenti-in-resina)
H.9.2. Revestiment laboratori de metrologia.

El revestiment escollit en el laboratori de metrologia serà un paviment continu antiestàtic d’alta conductivitat. Aquests són utilitzats per aquelles zones sensibles a càrregues electrostàtiques, on la presència d’electricitat estàtica pot ser un problema, com en el cas de quiròfans, sales amb equips informàtics d’alta sensibilitat, àrees robotitzades i laboratoris de metrologia entre d’altres.

Els terres epòxodics presenten l’inconveni que es carreguen electroestàticament pel fregament produït per la circulació de les persones. Per tal d’eliminar aquesta electricitat estàtica, es poden efectuar algunes modificacions sobre el paviments.

1. **En primer lloc es col·locarà una capa de fons (imprimació) que sigui conductora.** És una capa molt poc carregada de sorra de silici, amb una granulometria que anirà de 0,1 a 0,7 mm i incorporarà una càrrega important de grafit.
2. **Seguidament, es col·locarà una malla de coure de cintes autoadhesives com tomes a terra.**
3. **A continuació, es col·locarà una capa de revestiment epòxic amb llimadures de pols d’alumini, d’uns 3 mm a sobre de l’anterior.** La mida mitjana d’aquestes llimadures serà de l’ordre de 0,2 i 0,4 mm. La relació en pes entre la resina i les llimadures serà de l’ordre de 1:1,5.
4. **Finalment s’aplicarà una capa a base de morters de resina amb silici de quars de granulometria especial fins a anivellar amb la capa del taller.**

La unió entre ambdós revestiments serà visual, no requerirà cap tipologia de juntes ni cap mena de separació entre ambdós revestiments.

L’acabat pot ser antilliscant, net, estètic i resistent, amb les mateixes propietats superficials que el revestiment multicapa escollit en la zona de taller, magatzem i expedició.

S’escollirà el rang de rugositat en funció del coeficient de lliscament idoni per a la seva aplicació. Segons la taula 3.Classe exigible als sols en funció de la seva localització, visible en l’apartat A.7.1 del mateix annex, la classe exigida en la zona del laboratori de metrologia és 1, considerada una zona interior seca amb un pendent inferior al 6 %.

Així doncs, segons la taula 2, visible també en el mateix apartat que la taula 3, el revestiment de classe 1 haurà de comprendre un valor de la resistència al lliscament entre $15 < R_d \leq 35$.

El seu color d’acabat serà clar serà a l’elecció del promotor i serà qualsevol de la carta RAL.
H.9.3. Revestiment zona oficines

En la zona d’oficines es realitzarà el mateix revestiment que en la zona de taller, magatzem i expedició. Tanmateix es col·locarà en la seva superfície un enrajolat amb rajoles del tipus gres o ceràmica, de 30x30 centímetres.

S’escollierà el rang de rugositat en funció del coeficient de lliscament idoni per a la seva aplicació. Segons la taula 3.Classe exigible als sols en funció de la seva localització, visible en l’apartat A.7.1 del mateix annex, la classe exigida en la zona d’oficines és 1, considerada una zona interior seca amb un pendent inferior al 6 %.

Per aquest motiu, segons la taula 2, visible també en el mateix apartat que la taula 3, el revestiment de classe 1 haurà de comprendre un valor de la resistència al lliscament entre $15 < R_d \leq 35$.

La tipologia d’enrajolat, així com el seu color, serà escollit per el promotor de l’obra.

H.9.4. Revestiment zona vestuaris

En la zona de vestuaris es realitzarà el mateix revestiment que en la zona de taller, magatzem i expedició. Tanmateix es col·locarà també en la seva superfície un enrajolat amb rajoles tipus gres o ceràmica, de 30x30 centímetres.

Les rajoles de gres seran impermeables, sense relleus que acumulin la brutícia, de fàcil neteja, antibacterians i resistentes a productes higiènics de neteja.

En les dutxes, el sòl haurà de tenir un pendent del 2% cap els embornals sifònics i/o canaletes de desaigua. Les rejilles seran de material inoxidable.

S’escollierà el rang de rugositat en funció del coeficient de lliscament idoni per a la seva aplicació. Segons la taula 3.Classe exigible als sols en funció de la seva localització, visible en l’apartat A.7.1 del mateix annex, la classe exigida en la zona d’oficines és 2, considerada una zona interior humida amb un pendent inferior al 6 %.

Per aquest motiu, segons la taula 2, visible també en el mateix apartat que la taula 3, el revestiment de classe 2 haurà de comprendre un valor de la resistència al lliscament entre $35 < R_d \leq 45$.
La tipologia d’enrajolat, així com el seu color, serà escollit per el promotor de l’obra.

H.9.5. Revestiment sala d’instal·lacions

En la sala d’instal·lacions es realitzarà el mateix revestiment que en la zona de taller, magatzem i expedició, a diferència d’aquests, el paviment haurà de disposar d’un pendent mínim per evacuar les aigües en cas de vessament. Aquest pendent es determinarà en funció de la col·locació del desaigua, aquest es col·locarà mitjançant el Reglament d’Instal·lacions Tèrmiques en els Edificis (RITE) i serà capaç d’evacuar les aigües cap als embornals de desaigua.

H.10. EMPRESA RECOMANADA

L’empresa recomanada per realitzar el revestiment del paviment és l’empresa Resifloor S.L. Aquesta empresa està situada a Cardedeu (Barcelona) i és una empresa especialista en la realització de paviments continus i discontinus, disposa de més de 20 anys d’experiència i és una empresa líder a Catalunya en sistemes multicapa. A més, disposa de múltiples projectes que els avalen la seva qualitat.
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIA D’ANGLÈS.

- ANNEX H. REVESTIMENT DEL PAVIMENT

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
ANNEX I

PROPOSTA SISTEMA DE GRUA
SUMMARY. PROPOSTA SISTEMA DE GRUA

I.1 INTRODUCCIÓ ... 2
I.2 OBJECTE... 2
I.3 ESPECIFICACIONS.. 2
I.4 ESTUDI D’ALTERNATIVES .. 3
 I.4.1 Sistema de grua monorail o birrail suspès a l’estructura de la nau 3
 I.4.2 Sistema de grues ploma ... 4
 I.4.3 Sistema de grua de pòrtic lleugera .. 5
 I.4.4 Sistema de grues suspès en una estructura lleugera i autoportant 6
I.5 SOLUCIÓ ADOPTADA .. 7
I.6 EMPRESA RECOMANADA .. 9
I.7 DESCRIPCIÓ DE LA SOLUCIÓ .. 10
 I.7.1 Estructura .. 10
 I.7.1.1 Estructura A ... 11
 I.7.1.2 Estructura B .. 11
 I.7.2 Sistema de Grua.. 11
 I.7.2.1 Sistema EHB-X .. 11
 I.7.2.2 Perfils del sistema .. 12
 I.7.3 Polispast ... 13
 I.7.3.1 Seleccion del polispast ... 13
 I.7.3.2 Model del polispast ... 14
 I.7.3.3 Equip de propulsió .. 14
 I.1.1 Factor de marxa .. 17
 I.7.3.4 Ganxo .. 18
 I.7.3.5 Cadena .. 18
 I.7.3.6 Vida útil del polispast .. 18
 I.7.3.7 Fitxa tècnica del polispast .. 20
I.8 NORMATIVA D’APLICACIÓ ... 21
I.1 INTRODUCCIÓ

A petició del promotor, s’ha inclòs en l’apartat del layout, una solució que faciliti l’alimentació en algunes de les màquines de control numèric del taller.

La solució haurà de facilitar l’elevació de peces soltes que presentin dificultat o no es puguin elevar de forma manual, i sigui capaç de facilitar també, el trasllat de les mateixes dins l’àrea de treball de la màquina corresponent. Amb la finalitat d’evitar així, el risc de lesions a l’esquena dels operaris i disminuir la fatiga produïda per l’excés de forces generades en aquesta fase de treball.

I.2 OBJECTE

En aquest annex es pretén descriure la solució adoptada a la petició d’incorporar un sistema d’ajuda en algunes de les màquines de control numèric a la zona del taller que permeti donar una ajuda addicional en l’elevació i trasllat de les peces, així com facilitar l’alimentació de les màquines de control numèric sempre que sigui necessari.

I.3 ESPECIFICACIONS

A petició de l’empresa promotora, les màquines del taller que requereixen de la necessitat de presentar una ajuda addicional en la seva alimentació sempre que sigui necessari, són les següents:

- DECKEL MAHO DMU 80P
- MAZAK PFH-5800
- OKUMA LT3000
- OKUMA MA-500H
- OKUMA MULTUS B300

A més a més, el sistema d’ajuda proporcionat haurà de ser capaç d’aixecar i transportar fins a 500 kg sempre que sigui necessari amb una velocitat superior als 2 m/min.

La solució escollida haurà de complir amb la legislació vigent.
I.4 ESTUDI D’ALTERNATIVES

El mètode idoni i més econòmic per a l’elevació i trasllat de peces permeten moviments discontínus és un sistema de grua. Tanmateix, actualment predominen al mercat diferents sistemes de grues: Sistemes de grues ploma giratòries, sistemes de grua de pòrtic o semipòrtic, sistemes de grua suspesos en una estructura independent o en la mateixa estructura de la nau, etc.

I.4.1 Sistema de grua monorail o birrail suspès a l’estructura de la nau.

En primer lloc, cal esmentar que durant el dimensionament de la estructura de la nau, no es va preveure la incorporació d’un sistema de grues en un futur, per aquest motiu l’estructura de la nau no disposa de mènsules en els pilars o d’altres elements que facilitin la seva incorporació.

A més a més, l’altura de l’encavallada de la nau és de 4 metres i l’alçada de la màquina amb major altura és de 3,05 metres, ambdues alçades respecte el paviment actual de la nau. Si es vol que el sistema de grues es desplaci entre la màquina i l’encavallada, el sistema de grua escollit haurà de ser lleuger i de petites dimensions.

Un dels avantatges de les naus amb una tipologia d’estructura de dents de serra, és que permeten una llum entre pilars elevada, en el cas de la nau a rehabilitar, els pilars tenen una llum de 13,5 metres. La qual cosa es converteix en un inconveni alhora de suportar ponts grues entre pilars quan aquest ha de ser lleuger i de petites dimensions.

Per aquest motiu, es descarta un sistema de grues suportat pels pilars de la nau.

Tanmateix, no es desestima l’opció de sospesar un sistema de grues en les encavallades de la nau. Però cal tenir en compte, que per tal d’executar aquesta opció caldria realitzar prèviament un anàlisi del comportament de l’estructura de la nau envers la nova càrrega permanent (sistema de grua) i variable (peça a elevar), per tal d’assegurar amb seguretat que l’estructura de la nau podrà continuar garantint la seva estabilitat.

Per tant, no s’assegura que aquesta opció sigui una alternativa vàlida fins assegurar l’estabilitat de l’estructura.
En la figura 1, adjunta a continuació, es pot observar un sistema de grues suspès en l’encavallada d’una nau.

I.4.2 Sistema de grues ploma

Una possible solució seria l’habilitació d’una grua ploma giratòria autoportant dins de cada àrea de treball. D’aquesta forma es podria alimentar les màquines simultàniament quan fos necessari.

Cal tenir en compte però, que en el disseny del layout realitzat, les àrees de treball de les màquines que precisen d’un sistema d’elevació i trasllat de peces són colindants, i aquestes tipologia de grues, quan tenen una estructura autoportant lleguera tenen un angle de rotació de 275º respecte l’horitzontal. Així doncs, caldria restringir el moviment de rotació de les grues fins a 90º per tal que no topessin entre elles.
En la figura 2, adjunta a continuació, es pot observar l’estructura d’una grua ploma giratòria lleugera.

Figura 2. Sistema grua ploma lleugera

I.4.3 Sistema de grua de pòrtic lleugera

Els sistemes de grua pòrtic lleugers són utilitzats quan es volen realitzar llargs desplaçaments de la peça, permeten també el desplaçament del sistema de grua, essent un sistema de grua ideal per naus amb grans espais de moviment, però no quan l’àrea de treball de les màquines és reduïda, tal i com es mostra en el disseny del layout escollit.

Permeten càrregues de fins a 2 tones i la grua pòrtic és fàcilment desplaçable sobre les quatre rodes amb fre, a més a més permet desmuntar-se fàcilment quan faci falta.

Tanmateix, si es vol tenir una capacitat de càrrega simultània en les màquines especificades pel promotor, s’hauria de disposar de 5 grues de pòrtic, la qual cosa incrementaria el valor del pressupost i reduiria també l’espai de maniobra dins les àrees de treball.

En la figura 3, adjunta a continuació, és pot observar un model de grua de pòrtic lleugera.

Figura 3. Grua de pòrtic lleugera LPK
I.4.4 Sistema de grues suspès en una estructura lleugera i autoportant

Un altre sistema de grua molt utilitzat quan les àrees de treball són de petites dimensions (inferior a 12 metres d’amplada) i la capacitat de càrrega no és elevada (inferior a 2 tones) i no es vol comprometre l’estructura de la nau a suportar nous esforços, és l’habilitació d’una estructura metàl·lica lleugera i autoportant que suporti tants ponts grues com sigui necessari.

Observant el disseny del layout del taller i la proximitat entre les àrees de treball de les màquines, es pot assegurar que seria necessària la creació de dos estructures lleugeres per alimentar les 5 màquines.

En la figura 4 es pot observar una estructura metàl·lica lleugera dissenyada per suportar tres ponts grues.

Figura 4. Sistema de grua suspès, en una estructura lleugera i autoportant.
1.5 SOLUCIÓ ADOPTADA

Per tal de facilitar l’alimentació de les màquines, d’entre les diferents alternatives, s’ha considerat com a millor opció, l’habilitació de sistemes de grua suportats per estructures lleugeres, independents i autoportants.

Les estructures estaran ubicades dins les àrees de treball de les màquines a alimentar. Cada estructura suportarà tantes grues com màquines abastí dins el seu recinte, d’aquesta manera, s’assegurarà la possibilitat d’alimentar les màquines simultàniament.

S’ha desestimat l’opció de sospesar els sistemes de grua en les encavallades de la nau per evitar així els nombrosos càlculs i simulacions complexes que s’haurien de produir per tal d’assegurar l’estabilitat de l’estructura i la viabilitat d’aquesta opció. A més a més, si en un futur es volguessin realitzar modificacions dels paràmetres del sistema de grua, com per exemple, la seva ubicació o un increment de la seva àrea de treball, implicaria realitzar nous anàlisis de l’estructura, i les modificacions serien costoses.

S’ha desestimat també l’opció d’habilitar la nau amb grues ploma degut a les dimensions de les àrees de treball de les màquines i la seva proximitat. Les àrees de treball en què estan ubicades les màquines són rectangulars, i les grues ploma desplacen el carril en que es desplaça el polispast mitjançant un moviment de rotació sobre un eix vertical. D’aquesta forma no s’aconsegueix arribar en totes les regions de l’àrea de treball rectangular sense que la grua sobresurti de la mateixa àrea de treball, envaint així l’àrea de treball colindant.

Es descarta l’ús de grues pòrtic lleugeres, ja que la grua pòrtic únicament permet el moviment de translació del polispast per la biga que el suporta en un únic eix, i si es vol desplaçar la peça en altres direccions, l’operari ha de desplaçar el pòrtic manualment. Això implica frenar i desfrenar el pòrtic cada vegada que es vulgui desplaçar la peça en una altre direcció, generant operacions innecessàries durant el procés de trasllat d’una peça. A més a més, els peus que suporten les grues pòrtic ocupen un volum innecessari dins l’àrea de treball, el qual podria dificultar el flux de materials dins l’àrea de treball.
Així doncs, s’ha considerat com a opció prioritària habilitar la nau amb dos estructures lleugeres independents que suportin els carrils dels ponts grua, ja que així es permet simultaneïtat de càrrega en les màquines, no es requerirà realitzar càlculs ni anàlisis complexes en l’estructura de la nau, el volum que ocupa l’estructura dins les àrees de treball és molt petit (únicament els pilars que suporten l’estructura) i la modificació d’alguns paràmetres que puguin sorgir en un futur, com per exemple un canvi de la ubicació del sistema de grua o l’augment de l’àrea que abasta no serà costós.
I.6 EMPRESA RECOMANADA

En el cas d’executar la solució proposada es recomana l’empresa *ABUS Grúas, S.L.U* com a l’empresa encarregada del muntatge i manteniment dels sistemes de grues instal·lats, per a la seva tecnologia avançada, qualitat i experiència en el sector.

ABUS Grúas, S.L.U és una empresa resident a Barcelona, filial del grup ABUS, un dels líders mundials de fabricació de ponts grua i polispasts.

L’empresa disposa d’ampli assessorament, personalització de projectes, fabricació, entrega, muntatge, posta en marxa i servei tècnic de manteniment, inspeccions i recanvis.

Els equips ABUS disposen del segell CE, dissenyats i fabricats sota el segell de qualitat ISO 9001, assegurant la qualitat dels mateixos.
I.7 DESCRIPCIÓ DE LA SOLUCIÓ

I.7.1 Estructura

En consideració al disseny de Layout escollit en la zona de taller, es considera que serà necessària la construcció de dos estructures lleugeres independents i autoportants que suportin els sistemes de grua instal·lats.

S’entendrà com a estructure que suporta el sistema de grues, com el conjunt d’elements encarregats de la sustentació del sistema de grua (pilars, bigues, etc.).

Els models i dimensions dels pilars i les bigues de l’estructura seran escollits en funció de la carga i separació dels pilars, per l’empresa encarregada del disseny i fabricació dels sistemes de grua, complint amb els requisits de disseny imposats. Sempre que l’empresa promotora i instal·ladora hi estigui d’acord, seran perfils d’acer laminat en fred i aniran pintats de color RAL 5017 (blau trànsit), per diferenciar-los de la resta de la instal·lació.

La unió entre pilars i bigues de l’estructura, serà a l’elecció de l’empresa instal·ladora (mitjançant cargols, soldadures, etc.). Tanmateix, els pilars de l’estructura estaran soldats a una placa de suport situada a nivell del terra, la qual s’ançorarà al paviment mitjançant tacs químics.

Caldrà tenir en consideració que els tacs químics funcionen gràcies a les característiques que tenen les resines, responsables de garantir la unió entre materials, i que aquestes propietats, depenent del tipus de resina, comencen a modificar-se a partir dels 80°C. Tenint en compte també, que l’acer té una gran conductivitat tèrmica, caldrà que l’empresa responsable del muntatge de l’estructura, col·loqui els tacs una vegada ja s’hagi soldat la placa al perfil i s’hagi deixat refredar. A més a més, caldrà que realitzi un control i procés d’execució en obra més acurat de l’habitual.

També caldrà tenir especial precaució si s’aplica la proposta que en el disseny de l’estructura i el sistema de grua. Les bigues de l’estructura que suportin el sistema de grua, conjuntament amb el mateix, estaran situats per sota de l’encavallada de la nau i per sobre de la màquina de major altura.

Per facilitar la comprensió, diferenciarem les dos estructures mitjançant les referències: A i B.
I.7.1.1 Estructura A

L’estructura A disposerà de tres ponts grua i serà capaç d’alimentar les màquines Okuma LT3000, OKUMA MULTUS B300 i Dehck Maho DMU 80P.

I.7.1.2 Estructura B

L’estructura B disposerà de dos ponts grua i serà capaç d’alimentar les màquines OKUMA MA-500H i MAZAK PFH-5800.

I.7.2 Sistema de Grua.

S’entendrà com a sistema de grua, el conjunt d’elements encarregats de sustentar i permetre el moviment del polispast, així com rails, biga de grua, etc.

I.7.2.1 Sistema EHB-X

En relació als requisits de disseny, es recomana com a solució de sistema de grua de ABUS, el sistema EHB-X. Aquest és el sistema idoni en sales d’ajust, quan l’altura de la nau és considerada petita, i s’ha de desplaçar sobre màquines de gran altura, permeten un màxim aprofitament de l’alçada de la nau.

El sistema EHB-X és un sistema de grua suspès, del tipus monorail, que té una capacitat màxima de càrrega de fins a 1.000 kg i una longitud màxima de feix de fins a 8 metres, essent capaç de complir amb els requisits imposats.

A diferència dels altres sistemes, el feix de grua no penja en posició transversal sota les vies de la grua, sinó que està situat entre les vies a la mateixa altura. D’aquesta forma, la grua completa té la altura d’un únic perfil, reduint així l’altura de configuració de la instal·lació en centímetres diversos i valuosos, essent capaç de donar una major altura d’elevació.

El feix de grua es desplaça de forma transversal entre els rails amb el maneig de la barana. El cotxe dins de la biga de la grua instal·la també el polispast com a mecanisme d'elevació.

Un altre avantatge més, és el seu desplaçament. El EHB-X disposa d’un monorail grua que es permet desplaçar amb gran eficàcia fins i tot sense motor de translació, el viatge és molt suau i les càrregues es poden desplaçar fàcilment de forma manual quan no es superen els 500 kg. Per aquest motiu es prescindirà de motor elèctric de translació en la instal·lació.
Gràcies a un dimensionat molt curt de les caps, aconsegueixen dimensions de topall molt reduïts. Permeten aconseguir molt bé, per exemple, els llocs de treball al costat de les parets.

En la figura 5, adjunta a continuació, es pot observar un pont grua EHB-X suspès en una estructura lleugera.

![Figura 5. Sistema EHB-X de ABUS S.A](https://via.placeholder.com/150)

Font. Pàgina web de ABUS grues.

I.7.2.2 Perfils del sistema

Per a la construcció del sistema grua EHB-X, es recomana utilitzar els nous perfils d’acer HB110S que permeten una capacitat de càrrega de 500 kg.

Aquests perfils són ideals en naus de sostre baix, ja que per una capacitat de càrrega equivalent, tenen unes dimensions inferiors que els perfils convencionals (HB160), permeten així un menor volum de la instal·lació del sistema.
I.7.3 Polispast

I.7.3.1 Selecció del polispast

En referencia al sistema de pont grua recomanat i la capacitat d'elevació de carga del mateix, es recomana el model de polispast d’entre la sèrie ABUCompact. Es tracta de polispast de cadena, robustos i de baix manteniment, amb recorregut sobre el perfil de la grua manual o elèctric. Es caracteritzen pel seu disseny innovador i la fiabilitat de la seva tecnologia.

El polispast és elèctric de cadena amb botonera suspesa i mànega, llest per instal·lar, amb recull cadena, cadena muntada i endoll per a la connexió elèctrica.

La carcassa del motor va pintada amb RAL 5017 (blau trànsit). Conté una anella de suspensió de fàcil obertura i desmontable. La cadena és d’alta resistència, de perfil d’acer galvanitzat i amb bosses per recollir la cadena. El recorregut del ganxo pot arribar fins a 32m i el cable de control s’ajusta a la ruta d’aquest.

El polispast té una protecció IP 55 i aïllament classe F, a més, inclou un control a través de la botonera amb interruptor de parada d'emergència i protecció IP65. També està equipat amb segurs de sobrecàrregues mitjançant embragatge de fricció ajustable des de l'exterior.

Amb comandament de control directe i connexió ràpida per endoll amb fixació roscada, aquests permeten dues velocitats d'elevació (la velocitat principal i la de precisió).

La seva tensió de servei és de corrent altern trifàsica 400V/50Hz.

Figura 6. Polipast ABUCompact
Font. Pàgina web de ABUS grues.
I.7.3.2 Model del polispast

Els aspectes més importants a l'hora de seleccionar el model d'un polispast, són la capacitat de carga, el recorregut de ganxo, la velocitat d'elevació, i el grup de motors adequat per a l'aplicació pretesa.

S'ha cregut suficient una velocitat màxima d'elevació de 4m/min, tenint en compte l'àmbit d'aplicació del sistema de grua segons l'activitat que es desenvolupa en l'establiment industrial.

Observant les taules de selecció de models ABUCompact, proporcionades per la mateixa empresa ABUS, amb una velocitat d'elevació màxima de 4 m/min, són necessaris 2 ramals, i amb una capacitat de carga de 500Kg es suficient el model GM2.

Per tant el model escollit entre la sèrie ABUCompact serà el model amb la referència GM2 500. 4-2.

Essent:

GM : Sèrie
2: Mida del model
500: Capacitat de carga (kg)
4: Velocitat d’elevació ràpida (m/min)
-2: nº de ramals de càrrega

I.7.3.3 Equip de propulsió

Per un correcte i efectiu funcionament del polispast, s’ha determinat l’equip de propulsió adient per la seva aplicació.

Per tal de determinar l’equip de propulsió dels polispasts ha sigut necessari calcular el temps mig de funcionament t_m (temps acumulat de servei del polispast durant un dia) i determinar el col·lectiu de càrregues (k).
El temps mig de funcionament \(t_m \) s’ha calculat mitjançant la següent fórmula:

\[
t_m = \frac{2 \cdot \text{elevació mitja} \; (m) \cdot \text{cicle} \; \left(\frac{1}{h} \right) \cdot \text{servei} \left(\frac{h}{\text{dia}} \right)}{60 \left(\frac{\text{min}}{h} \right) \cdot \text{velocitat d’elevació} \left(\frac{m}{\text{min}} \right)}
\]

Essent:

Elevació mitja: la mitjana del recorregut del ganxo.

Cicle: Un cicle consisteix en una elevació i descens del ganxo.

Servei: Temps de treball del polispast.

Velocitat d’elevació: velocitat màxima d’elevació del polispast.

Aplicant els valors aproximats de treball i les característiques del model del polispast escollit, s’ha obtingut un temps mig de funcionament igual a 4.

\[
t_m = \frac{2 \cdot 3 \; (m) \cdot 20 \left(\frac{1}{h} \right) \cdot 8 \left(\frac{h}{\text{dia}} \right)}{60 \left(\frac{\text{min}}{h} \right) \cdot 4 \left(\frac{m}{\text{min}} \right)} = 4
\]
El col·lectiu de càrrega s’ha extret a partir de l’espectre de càrrega funcional del polispast. L’espectre de càrrega esmentat s’avalua a partir de 4 tipus de condicions de servei, observables a la taula 1, adjunta a continuació.

Taula 1. Condicions de servei

<table>
<thead>
<tr>
<th>Càrregues lleugeres</th>
<th>Càrregues mitjanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 10 50 100</td>
<td>016,7 33,3 50 100</td>
</tr>
<tr>
<td>% de càrrega màxima</td>
<td>% de càrrega màxima</td>
</tr>
<tr>
<td>% temps de func.</td>
<td>% temps de func.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condicions de servei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocasionalment carga màxima</td>
</tr>
<tr>
<td>Regularment carga moderada</td>
</tr>
<tr>
<td>Carga morta molt petita</td>
</tr>
<tr>
<td>Carga màxima amb freqüència</td>
</tr>
<tr>
<td>Regularment carga lleugera</td>
</tr>
<tr>
<td>Carga morta mitja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Càrregues pesades</th>
<th>Càrregues molt pesades</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 10 50 100</td>
<td>0 80 100</td>
</tr>
<tr>
<td>% de càrrega màxima</td>
<td>% de càrrega màxima</td>
</tr>
<tr>
<td>% temps de func.</td>
<td>% temps de func.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condicions de servei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga màxima freqüent</td>
</tr>
<tr>
<td>Carga mitjana constant</td>
</tr>
<tr>
<td>Gran carga morta</td>
</tr>
<tr>
<td>Carga màxima regularment</td>
</tr>
<tr>
<td>Carga morta molt gran</td>
</tr>
</tbody>
</table>

Tenint en compte que els polispasts escollits tenen la capacitat de suportar 500 kg i habitualment aquests suportaran el 10% i 40% de la seva càrrega màxima. S’ha arribat a la conclusió, que les condicions de servei dels polispasts seran de càrrega lleugera.

Una vegada determinats el temps mitjà de funcionament i el col·lectiu de càrregues, s’ha procedit a escollir el grup de motor segons la DIN 15020 i FEM 9.511 mitjançant la taula 2, adjunta a continuació.
Taula 2. Grup de treball adequat en funció de “k” i t_m.

<table>
<thead>
<tr>
<th>Col··lectiu de càrregues</th>
<th>Definició del col··lectiu de càrregues</th>
<th>Temps mitjà de funcionament (t_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lleugeres (1)</td>
<td>$k \leq 0,5$</td>
<td>≤ 2 2 a 4 4 a 8 8 a 16 > 16</td>
</tr>
<tr>
<td>Mitjanes (2)</td>
<td>$0,5 < k \leq 0,63$</td>
<td>≤ 1 1 a 2 2 a 4 4 a 8 8 a 16</td>
</tr>
<tr>
<td>Pesades (3)</td>
<td>$0,63 < k \leq 0,8$</td>
<td>$\leq 0,5$ 0,5 a 1 1 a 2 2 a 4 4 a 8</td>
</tr>
<tr>
<td>Molt pesades (4)</td>
<td>$0,8 < k \leq 1$</td>
<td>$\leq 0,25$ 0,25 a 0,5 0,5 a 1 1 a 2 2 a 4</td>
</tr>
</tbody>
</table>

Grup de motors segons FEM I ISO 1Bm/M3 1Am/M4 2m/M5 3m/M6 4m/M7

S’ha escollit el grup de motor 2m, referenciat com a M5 segons la norma ISO.

1.1.1 Factor de marxa

El factor de marxa (% ED) és el percentatge de temps màxim de funcionament possible en un interval de temps màxim de 10 minuts.

$$ED(\%) = \frac{\text{temps de marxa}}{\text{temps de marxa} + \text{temps de repòs}} \times 100$$

La classificació FEM 1.001 de un equip d’elevació exigeix un factor de marxa mínim segons la taula 3, adjunta a continuació.

Taula 3. Factor de marxa mínim.

<table>
<thead>
<tr>
<th>Grup motor</th>
<th>Per elevació c/h</th>
<th>ED(%)</th>
<th>Per transacció c/h</th>
<th>ED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3 (1Bm)</td>
<td>150</td>
<td>25</td>
<td>120</td>
<td>20</td>
</tr>
<tr>
<td>M4 (1Am)</td>
<td>180</td>
<td>30</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>M5 (2m)</td>
<td>240</td>
<td>40</td>
<td>180</td>
<td>30</td>
</tr>
<tr>
<td>M6 (3m)</td>
<td>300</td>
<td>50</td>
<td>240</td>
<td>40</td>
</tr>
<tr>
<td>M7 (4m)</td>
<td>360</td>
<td>60</td>
<td>300</td>
<td>50</td>
</tr>
</tbody>
</table>
Segons el model de polispast escollit (GM2 500. 4-2) amb grup motor 2m (M5). El motor d’elevació tindrà una potència de 0,09 a 0,35 kW amb un factor de marxa mínim del 60% i 360 connexions per hora.

I.7.3.4 Ganxo

La unió de cadena i ganxo té un rodament que permet un gir de 360º, facilitant així l’ancoratge i orientació de la càrrega. El ganxo i la seva suspensió formen una unitat fixa i estable.

La mida del ganxo idònia per el model de polispast escollit és la “05”.

El recorregut d’elevació i descens del ganxo serà de 3.000 mm aproximadament.

I.7.3.5 Cadena

La cadena és d’acer galvanitzat i endurit, essent capaç de resistir un 25% més de la càrrega que una cadena d’anelles de la mateixa mida. La major superfície de contacte de les anelles té un efecte positiu i redueix el desgast, oferint una major seguretat i una vida útil de la mateixa superior.

La mida de la cadena, escollida a partir del recorregut del ganxo (3.500 mm) i el nº de ramals del polispast (2), serà de mida “3”.

I.7.3.6 Vida útil del polispast

Els polispasts de sèrie estan concebuts, en principi i segons la norma FEM 9.511, per a una vida útil teòrica de 10 anys. Però realment la vida útil del polispast depèn del grup propulsor escollit i una selecció no adequada per a les condicions reals de l'aplicació, pot comportar sota certes circumstàncies, que la vida útil real estigui molt per sota d'aquests 10 anys. Això suposa, a la vegada, costos addicionals de manteniment i reparació i una revisió general prematura.

Per tal de tenir una referència sobre el temps de vida útil del polispast en funció del grup motor escollit i el col·lectiu de càrregues de treball en el que estarà sotmès, es pot observar la taula 4, adjunta a continuació.
Taula 4. Temps de vida útil teòric del polispast.

<table>
<thead>
<tr>
<th>Grup propulsor</th>
<th>1Bm/M3</th>
<th>1Am/M4</th>
<th>2m/M5</th>
<th>3m/M6</th>
<th>4m/M7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col·lectiu de càrregues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lleugeres</td>
<td>3.200</td>
<td>6.300</td>
<td>12.500</td>
<td>25.000</td>
<td>50.000</td>
</tr>
<tr>
<td>mitjanes</td>
<td>1.600</td>
<td>3.200</td>
<td>6.300</td>
<td>12.500</td>
<td>25.000</td>
</tr>
<tr>
<td>pesades</td>
<td>800</td>
<td>1.600</td>
<td>3.200</td>
<td>6.300</td>
<td>12.500</td>
</tr>
<tr>
<td>molt pesades</td>
<td>400</td>
<td>800</td>
<td>1.600</td>
<td>3.200</td>
<td>6.300</td>
</tr>
</tbody>
</table>

Així doncs, podem concloure, que el grup motor escollit tindrà un temps de vida útil aproximat de 12.500 hores, un valor acceptable segons els criteris de duració de la FEM.

A més a més, l'usuari està obligat per les normes UVV BGV D 8 i BGV D 6 a determinar en cada revisió la vida útil teòrica consumida. Un cop transcorregut el temps de vida útil, el polispast s’ha de substituir. Només es permetrà continuar utilitzant quan un expert determini que no hi ha objeccions per a una continuïtat d'ús i quan s'hagin establert les condicions per al seu ús posterior.

Per norma general s'ordenarà una revisió general del polispast. Només així es pot garantir que el polispast s'utilitzarà dins d'una vida útil segura (SWP = Safe Working Period).

Per tal d’avaluar millor el temps de vida del polispast, s’incorporarà un conta hores de servei, enregistrant el recorregut d’elevació i descens del polispast. Com que el model de polispast escollit és el GM2, per la incorporació d’aquest equip addicional serà necessària una carcassa addicional.
I.7.3.7 Fitxa tècnica del polispast

La fitxa tècnica del polispast inclou tots els valors de referència i característiques del polispast, observables a la taula 5, adjunta a continuació.

Taula 5. Fitxa tècnica del polispast.

<table>
<thead>
<tr>
<th>Caràcteristica</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitat de carga (kg)</td>
<td>500</td>
</tr>
<tr>
<td>Velocitat d'elevació (m/min)</td>
<td>1,0 - 4,0</td>
</tr>
<tr>
<td>Nº de ramals</td>
<td>2</td>
</tr>
<tr>
<td>Grup motor (FEM/ISO)</td>
<td>2m/M5</td>
</tr>
<tr>
<td>Potència motor (kW)</td>
<td>0,09/0,35</td>
</tr>
<tr>
<td>Factor de marxa (%)</td>
<td>60</td>
</tr>
<tr>
<td>Referència ganxo</td>
<td>5</td>
</tr>
<tr>
<td>Recorregut del ganxo (m)</td>
<td>3,5</td>
</tr>
<tr>
<td>Referència de la mida de la cadena</td>
<td>3</td>
</tr>
<tr>
<td>Referència polispast</td>
<td>GM 2500.4-2</td>
</tr>
</tbody>
</table>
I.8 NORMATIVA D’APLICACIÓ

Si s’aplica la solució proposada, l’empresa encarregada del disseny, instal·lació i manteniment del pont grua, haurà de complir amb la normativa referent a estructures d’acer, aparells d’elevació i ponts grua, i s’aconseilla seguir les guies de bones pràctiques NTP referents als sistemes de grua.

- NTP 738. *Grúas tipo puente III. Montaje, instalación y mantenimiento*.
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT
AL PARATGE RECLAVIA D’ANGLÈS.

- ANNEX I. PROPOSTA SITEMA DE GRUA

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
ANNEX J

ESTUDI BÀSIC DE SEGURETAT I SALUT
SUMARI. ESTUDI DE SEGURETAT I SALUT

J.1. INTRODUCCIÓ ..3
J.2. JUSTIFICACIÓ DE LA NECESSITAT ..5
 J.2.1. Obligatorietat de l’estudi bàsic de seguretat i salut ..5
 J.2.2. Dret a la protecció enfront els riscos laborals ...5
J.3. DESIGNACIÓ D’UN COORDINADOR DE SEGURETAT I SALUT6
J.4. OBJECTE..7
J.5. DADES DEL PROJECTE I L’OBRA ..7
J.6. FASES D’EXECUCIÓ DE LES OBRES ..8
J.7. MESURES PREVENTIVES ...9
 J.7.1. Mesures preventives generals ...9
 J.7.2. Mesures preventives especials ...10
 J.7.2.1. Manipulació del material ..10
 J.7.2.2. Mesures d’embalatge del material ..10
 J.7.2.3. Mesures preventives de terminació ..11
 J.7.2.4. Mesures preventives de coordinació ...11
 J.7.2.5. Mesures de Eliminació dels residus ...11
 J.7.2.6. Mesures en el trasllat dels residus ...11
 J.7.2.7. Abocador de residus específic ..11
J.8. IDENTIFICACIÓ, VALORITZACIÓ DELS RISCOS I MESURES PREVENTIVES
 ESPECÍFIQUES ..12
 J.8.1. Identificació i valorització dels riscos ...12
 J.8.1.1. Probabilitat del risc ..12
 J.8.1.2. Grau de severitat ..12
 J.8.1.3. Grau de risc ..13
 J.8.1.4. Identificació i valorització dels riscos a cada fase de treball14
 J.8.2. Mesures preventives específiques ...18
J.9. EQUIPS DE PROTECCIÓ ..22
 J.9.1. Col·lectiva ..22
 J.9.2. Equips de protecció individual ..22
 J.9.2.1. Protectors del cap ...22
 J.9.2.2. Protectors de mans i braços ...22
 J.9.2.3. Protectors de peus i cames ..23
J.9.2.4. Protectors del cos...23
J.9.2.5. Equips de protecció especials...23

J.10. ELEMENTS INDISPENSABLES QUE HA DE DISPOSAR L’OBRA.........24
J.10.1. Farmaciola..24
J.10.2. Senyals ..24
J.10.2.1. Senyals d’advertència ...24
J.10.2.2. Senyal de prohibició..25
J.10.2.3. Senyals d’obligació...25
J.10.3. Senyals manuals i de circulació de vehicles..............................26
J.10.4. Telèfons de contacte ..27

J.11. PLA DE SEGURETAT I SALUT EN EL TREBALL..........................28
J.12. PLA DE TREBALL ESPECÍFIC..29
J.13. OBLIGACIONS DE CONTRACTISTES I SUBCONTRACTISTES........31
J.14. OBLIGACIONS DELS TREBALLADORS AUTÒNOMS.......................32
J.15. LLIBRE D’INCIDÈNCIES...33
J.16. PARALITZACIONS DELS TREBALLS..34
J.17. DRETS DELS TREBALLADORS...34
J.18. DISPOSICIONS MÍNIMES DE SEGURETAT I SALUT QUE TENEN QUE APLICAR-SE A LES OBRES........................34

J.19. NORMATIVA D’APLICACIÓ...35
J.19.1. Normativa legal d’aplicació general..35
J.19.2. Condicions Ambientals dels Llocs de Treball............................35
J.19.3. Utilització dels equips de treball..36
J.19.4. Equips de Protecció Individual (EPI’s).....................................36
J.19.5. Senyalització ..36
J.19.6. Activitats específiques...37
J.19.7. Varis ..37
J.1. INTRODUCCIÓ

La llei 31/1995, de 8 de novembre de 1995, de Prevenció de Riscos Laborals té per objecte la determinació del cos bàsic de garanties i responsabilitats precises per a establir un adequat nivell de protecció de la salut dels treballadors enfront dels riscos derivats de les condicions de treball.

La llei estableix un marc legal a partir de com les normes reglamentàries aniran fixant i concretant els aspectes més tècnics de les mesures preventives. Aquestes normes complementàries queden resumides a continuació:

- Disposicions mínimes de seguretat i salut en els llocs de treball.
- Disposicions mínimes en matèria de senyalització de seguretat i salut en el treball.
- Disposicions mínimes de seguretat i salut per a la utilització pels treballadors dels equips de treball.
- Disposicions mínimes de seguretat i salut en les obres de construcció.
- Disposicions mínimes de seguretat i salut relatives a la utilització pels treballadors d'equips de protecció individual.

Són les normes de desenvolupament reglamentari les quals han de fixar les mesures mínimes que han d'adoptar-se per a l'adecuada protecció dels treballadors. Entre elles es troben les destinades a garantir la utilització pels treballadors en el treball d'equips de protecció individual que els protegeixin adequadament d'aquells riscos per a la seva salut o la seva seguretat que no puguin evitar-se o limitar-se suficientment mitjançant la utilització de mitjans de protecció col·lectiva o l'adopció de mesures d'organització en el treball.

És especialment, el RD 1627/1997, i el seu article 7 concernent al Pla de Seguretat i Salut (PSS) que el contractista a de elaborar i lliurar al Coordinador de Seg. i Salut de l'obra per a la seva aprovació.
D’aquesta manera, s’integra en el Projecte, les premisses bàsiques per a les quals el/s Contractista/es constructor/s pugui/n preveure i planificar, els recursos tècnics i humans necessaris per a l’acompliment de les obligacions preventives en aquest centre de treball, de conformitat al seu Pla d’Acció Preventiva propi d’empresa, la seva organització funcional i els mitjans a utilitzar, havent de quedar tot allò recollit al Pla de Seguretat i Salut, que haurà de presentar-se al Coordinador de Seguretat i Salut en fase d’Execució, amb antelació al inici de les obres, per a la seva aprovació i al inici dels tràmits de Declaració d’Obertura del centre de treball davant l’Autoritat Laboral.

L’avaluació de riscos referida, haurà de tenir en compte la naturalesa de l’activitat, i de forma especial, dels treballadors exposats a riscos especials. Igual avaluació s’haurà de fer també, quan es produeixin canvis o modificacions en el lloc de treball, s’adquireixen nous equips o substàncies.
J.2. JUSTIFICACIÓ DE LA NECESSITAT

El Reial Decret 1627/1997, de 24 d’octubre, pel que s’estableixen les disposicions mínimes de seguretat i salut en les obres de construcció, estableix en el marc de la Llei 31/1995, de 8 de novembre, de Prevenció de Riscos Laborals, las disposicions mínimes de seguretat i salut aplicables a les obres de construcció.

S’entén per obra de construcció, qualsevol obra, pública o privada, es la que s’efectuïn treballs de construcció o enginyeria civil.

J.2.1. Obligatorietat de l’estudi bàsic de seguretat i salut

El promotor està obligat a fer que en la fase del projecte s’elabori un estudi bàsic de seguretat i salut, en cas que no es compleixin cap d’aquests aspectes que a continuació s’indiquen:

- Pressupost d’execució per contracte superior als 450.759,07 €.
- Durada superior a 30 dies laborables, i que s’emprin, encara que sigui d’una manera puntual, més de 20 treballadors simultàniament.
- Volum de mà d’obra superior a 500 dies.
- En obres especials de túnels, galeries, conduccions subterrànies i preses.

La rehabilitació de la nau industrial, objecte d’aquest projecte, no supera cap d’aquests aspectes. Raó per la qual, no serà d’obligatorietat la redacció d’un estudi complet de seguretat i salut, i es podrà elaborar un estudi bàsic. Tanmateix, si per qualsevol motiu es preveu la superació d’algum d’aquest l’estudi bàsic hauria de passar a un estudi complet.

J.2.2. Dret a la protecció enfront els riscos laborals

Els treballadors tenen dret a una protecció eficaç en matèria de seguretat i salut en el treball. A aquest efecte, l’empresari realitzarà la prevenció dels riscos laborals mitjançant l’adopció de quantes mesures siguin necessàries per a la protecció de la seguretat i la salut dels treballadors, amb les especialitats que es recullen en els articles següents en matèria d’avaluació de riscos, informació, consulta, participació i formació dels treballadors, actuació en casos d'emergència i de risc greu i imminent i vigilància de la salut.
J.3. DESIGNACIÓ D’UN COORDINADOR DE SEGURETAT I SALUT

El Reial Decret 1627/1997 estableix en l’article 3, que quan en l’execució en l’execució de l’obra intervinguin més d’una empresa, o una empresa i treballadors autònoms o diversos treballadors autònoms, el promotor, abans de l’inici dels treballs o tan punt com es constati aquesta circumstància, es designarà un coordinador en matèria de seguretat i salut durant l’execució de l’obra.

Durant la rehabilitació de la nau industrial intervindrà més d’una empresa, és per aquest motiu que s’haurà de contractar un coordinador de seguretat i salut. Si per alguna raó, el contractista decideix contractar una única empresa, per a l’execució de tota l’obra, i no és necessària la designació d’un coordinador de seguretat i salut, la direcció facultativa de l’obra assumirà les funcions d’aquest.

Aquest haurà de desenvolupar les següents funcions:

- Coordinar l’aplicació dels principis generals de prevenció i seguretat.
- Coordinar les activitats de l’obra per garantir l’aplicació dels principis de l’activitat preventiva que preveu l’article 15 de la Llei de prevenció de riscos laborals.
- Aprovar el pla de seguretat i salut i les seves modificacions.
- Organitzar la coordinació de les activitats empresarials preventives que preveu l’article 24 de la Llei de prevenció de riscos laborals.
- Coordinar les accions i funcions de control d’aplicació correcta de la metodologia de treball.

La designació del Coordinador en matèria de Seguretat i Salut no eximirà al promotor de les seves responsabilitats.

El promotor tindrà que efectuar un avis a la autoritat laboral competent abans del començament de les obres, que es redactarà d’acord amb el que es disposa en l’Annex III del Reial Decret 1627/1997, tenint que exposar-se en la obra de forma visible i actualitzant-se si fos necessari.
J.4. OBJECTE

El present Estudi Bàsic de Seguretat i Salut en el Treball, estableix les previsions amb respecte a la previsió de riscos d’accidents i malalties professionals, establint les mesures preventives necessàries en els treballs de la instal·lació, muntatge, reparació, conservació i manteniment.

Per tot això es detallaran els procediments, equips tècnics i medis auxiliars que s’hagin d’utilitzar o que es prevegin utilitzar, identificació dels riscos laborals que puguin ser evitats, indicant a tal efecte les mesures tècniques necessàries per fer-ho. A més a més, es donarà una relació dels riscos laborals que no puguin eliminar-se, conforme el que s’ha assenyalat anteriorment, especificant les mesures preventives i les proteccions tècniques que tendeixen a controlar i reduir els riscos, en tot cas es valorarà la seva eficàcia quan es proposin mesures alternatives.

En definitiva, servirà per marcar les directrius bàsiques a l’empresa constructora per tal que porti a terme les seves obligacions en matèria de prevenció de riscos professionals, sota el control del Coordinador de Seguretat i Salut, d’acord amb el Reial Dectret 1627/1997, de 24 d’octubre.

Es tindrà que formar a tot el personal que treballi en l’obra sobre les mesures de seguretat contingudes en el present estudi.

J.5. DADES DEL PROJECTE I L’OBRA

<table>
<thead>
<tr>
<th>Tipus d’obra:</th>
<th>Rehabilitació d’una nau industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situació:</td>
<td>Comarca de la Selva (Catalunya)</td>
</tr>
<tr>
<td>Població:</td>
<td>Anglès</td>
</tr>
<tr>
<td>Titular:</td>
<td>Albert Furtià Puig</td>
</tr>
<tr>
<td>Projectista:</td>
<td>Norbert Furtià Romero</td>
</tr>
<tr>
<td>Coordinador de Seguretat i Salut en fase del projecte:</td>
<td>Albert Furtià Puig</td>
</tr>
</tbody>
</table>
J.6. FASES D’EXECUCIÓ DE LES OBRES

L’execució de les obres per a la rehabilitació de la nau industrial es diferenciarà en 5 fases.

- Resolució de Patologies (Tancaments de façana i estructura metàl·lica)
- Enderroc (Retirada de la coberta i plaques translúcides del tancament de façana; enderroc dels edificis 2 i 3; enderroc paret divisòria).
- Tancament de coberta.
- Tancament translúcid de façana de les dents de serra.
- Revestiment del paviment.

Cal especificar que aquestes fases no s’hauran de dur a terme en l’ordre preescrit, i es diferenciaran per subcapítols. Per exemple: En primera instància es considera adient solucionar les patologies del tancament de façana (ruptures, esquerdes, etc.). Tanmateix, es recomana eliminar l’oxidació de l’estructura metàl·lica i aplicar-li la protecció contra l’oxidació i el foc, una vegada retirada la coberta i plaques translúcides, ja que així es facilitarà la feina.
J.7. MESURES PREVENTIVES

J.7.1. Mesures preventives generals

- S'establiràn al llarg de l'obra rètols divulgatius i senyalització dels riscos (atropellament, col·lisió, caiguda en altura, corrent elèctric, perill d'incendi, materials inflamables, prohibit fumar, etc.), així com les mesures preventives previstes (ús obligatori del casc, ús obligatori de les botes de seguretat, ús obligatori de guants, etc.).
- S'habilitaran zones o estades per a l'apilament de material i eines.
- Es procurarà que els treballs es realitzin en superfícies seques i netes, utilitzant els elements de protecció personal, fonamentalment calçat antilliscant reforçat per a protecció de cops en els peus, casc de protecció per al cap i roba de treball.
- El transport d'elements pesats es farà sobre carretó de mà i així evitar sobreesforços.
- La distribució de màquines, equips i materials en els locals de treball serà l'adequada, delimitant les zones d'operació i pas, els espais destinats a llocs de treball, les separacions entre màquines i equips, etc.
- L'àrea de treball estarà a l'abast normal de la mà, sense necessitat d'executar moviments forçats.
- Es vigilaran els esforços de torsió o de flexió del tronc, sobretot si el cos estan en posició inestable.
- S'evitaran les distàncies massa grans d'elevació, descens o transport, així com un ritme massa alt de treball.
- Les vies i sortides d'emergència haurien de romandre expedits i desembocar el més directament possible en una zona de seguretat.
- En cas d'avaria del sistema d'enllumenat, les vies i sortides d'emergència que requereixin il·luminació haurien d'estar equipades amb il·luminació de seguretat de suficient intensitat.
- Serà responsabilitat de l'empresari garantir que els primers auxilis puguin prestar-se en tot moment per personal amb la suficient formació per a això.

J.7.2. Mesures preventives específiques

S'hauran d'adoptar mesures preventives per les operacions o activitats en que els treballadors estiguin en contacte amb materials que continguin amiant. Aquest es el cas de la fase d'Enderroc, concretament en la retirada de la coberta de la nau industrial i edifici 2.

A continuació, s’adjunten les mesures preventives específiques per aquesta subfase de l’enderroc.

J.7.2.1. Manipulació del material

- Manipular el material amb amiant el mínim possible i amb cura.
- Evitar la ruptura del material amb amiant. Desmontar les plaques de fibrociment senceres, evitant trencaments. Caldrà retirar els ganxos d'ancoratge amb molta cura, començant per la zona més elevada.
- Evitar la dispersió dels materials friables mitjançant tècniques d'injecció amb líquids humectants que penetrin en tota la massa.
- Usar eines que generin la mínima quantitat de pols i amb aspiradors; són preferibles les manuals. Si s'han de tallar les subjeccions per retirar les plaques de la coberta s’ha d’evitar l’ús de les màquines rotatives per l'elevada emissió de pols que ocasionen.
- Treballar en humit, evitant la utilització de pressió en l'aplicació d'aigua que puguin provocar la dispersió de fibres. Per retirar les plaques tan envellides, prèviament se n'haurà d'impregnar la superfície amb una solució aquosa de líquid encapsulant, per evitar l'emissió de fibres d'amiant causada pel moviment o el trencament accidental de les plaques.
- Treballar amb sistemes d'extracció localitzada d'aire usant filtres absoluts.

J.7.2.2. Mesures d’embalatge del material

S'embalaran les plaques amb plàstic de prou resistència per evitar-ne el trencament i se senyalitzaran amb el símbol de l'amiant.
J.7.2.3. Mesures preventives de terminació

Finalitzada la retirada de les plaques es procedirà a la neteja de tota l'estructura de suport de la coberta, per aspiració amb filtres absoluts.

El Pla de Treball ha de contemplar que, un cop acabats els treballs d'enderroc o de retirada de l'amiant, és necessari assegurar que no existeixen riscos deguts a l'exposició a l'amiant al lloc de treball.

J.7.2.4. Mesures preventives de coordinació

Durant l’activitat de retirada de la coberta no es durà a terme cap altra activitat, ni hi haurà personal no autoritzat dins l’obra.

J.7.2.5. Mesures de Eliminació dels residus

En aquest punt, les plaques esdevindran residus d'amiant, en el moment que el seu posseïdor i productor tingui la necessitat o l'obligació de desprendre-se’n. Els residus d'amiant es recolliran sempre separats de la resta de residus que es puguin generar en els enderrocs, les reparacions i les operacions de retirada de materials amb amiant.

Cal especificar que tot material contaminat amb amiant (filtres, granotes, mascaretes, draps humits, etc.) eliminable es considera a tots els efectes residu d'amiant, i haurà de ser gestionat com a tal.

J.7.2.6. Mesures en el trasllat dels residus

Pel que fa al trasllat de residus d'amiant es tindrà en compte que el transportista necessàriament

- Ha d'estar autoritzat per l'Agència de Residus de Catalunya
- Ha d'estar inscrit al RERA, ha de disposar del corresponent pla genèric d'amiant aprovat per l'Autoritat Laboral
- Ha d'atendre l'especificat de la reglamentació per al transport per carretera de mercaderies perilloses ADR

J.7.2.7. Abocador de residus específic

La destinació final dels residus amb amiant és l'abocador de residus perillosos. En l'actualitat Catalunya disposa d'un abocador d'aquestes característiques a la població de Castellolí.
J.8. IDENTIFICACIÓ, VALORITZACIÓ DELS RISCOS I MESURES PREVENTIVES ESPECÍFIQUES

J.8.1. Identificació i valorització dels riscos

L’objectiu d’aquest apartat és la identificació dels factors de risc, els riscos d’accident en el treball i/o malaltia professional derivades del mateix, procedint a la seva posterior avaluació, de manera que serveixi de base a la posterior planificació de l’acció preventiva en la qual es determinaran les mesures i accions necessàries per a la seva correcció.

La metodologia utilitzada consisteix en identificar el factor de risc i associar-li els riscos derivats de la seva presència. En la identificació d’aquests riscos s’ha utilitzat la llista de “Riscos d’accident i malaltia professional “, basada en la classificació oficial de formes d’accident i en el quadre de malalties professionals de la Seguretat Social.

Els riscos associats a cada fase de l’obra s’identificaran en funció de la probabilitat d’originar-se i el seu grau de severitat. A partir d’aquests dos paràmetres es valorarà el grau dels riscos associats a cada fase de l’obra.

J.8.1.1. Probabilitat del risc

La probabilitat d’origin del risc es valora tenint en compte les mesures de prevenció existents i la seva adequació als requisits legals, a les normes tècniques i als objectes sobre pràctiques correctes. A continuació es defineixen els diferents probabilitats de risc.

- Alta: Quan la freqüència possible estimada del mal es elevada.
- Mitja: Quan la freqüència possible estimada es ocasional.
- Baixa: Quan la ocurrència es rara. S’estima que pot succeir el mal però es difícil que passi.

J.8.1.2. Grau de severitat

La severitat es valora en base a les més provables conseqüències d’accident o malaltia professional. Els nivells alts, mig i baix de severitat poden assimilar-se a la classificació A, B i C dels perills, molt utilitzada en les inspeccions generals. A continuació es defineixen els diferents graus de severitat.
- (Alt) Perill de Classe A: condició o pràctica capaç de causar incapacitat permanent, pèrdua de la vida i/o una pèrdua material molt greu.

- (Mig) Perill de Classe B: condició o pràctica capaç de causar incapacitats transitòries i/o una pèrdua material greu.

- (Baix) Perill de Classe C: condició o pràctica capaç de causar lesions lleus no incapacitants, i/o una pèrdua material lleu.

J.8.1.3. Grau de risc

Per a l’avaluació dels riscos s’ha utilitzat el concepte de “ Grau de Risc ” obtingut de la valoració conjunta de la probabilitat de que es produeixi el mal i la severitat de les conseqüències del mateix.

A continuació, s’adjunta la taula 1, la qual mostra els diferents graus de risc, a partir de les diferents combinacions de probabilitat i severitat, i es defineixen

Taula1. Determinació del grau de risc

<table>
<thead>
<tr>
<th>GRAU DE SEVERITAT</th>
<th>GRAU DE RISC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta</td>
<td>MOLT ALT</td>
</tr>
<tr>
<td>Mitja</td>
<td>ALT</td>
</tr>
<tr>
<td>Baixa</td>
<td>MODERAT</td>
</tr>
</tbody>
</table>

Essent:

- MOLT BAIX: No es requereix acció específica.

- BAIX: Es requereixen comprovacions periòdiques per assegurar que es manté l’eficàcia de les mesures de control.

- MODERAT: S’han de fer esforços per reduir el risc, determinant les inversions precises. Les mesures per reduir el risc han d’implantar-se en un període de temps determinat.

- ALT: Pot ser que es requereixin recursos considerables per controlar el risc. Quan correspongui a un treball que s’està realitzant, caldrà actuar immediatament.

- MOLT ALT: No ha de començar ni continuar la feina fins que es redueixi el risc. Si no és possible reduir-lo, fins i tot amb recursos il·limitats, el treball ha de prohibir-se.
Taula 2. Identificació i valorització dels riscos en la fase Resolució de patologies.

<table>
<thead>
<tr>
<th>RESOLUCIÓ DE PATOLOGIES</th>
<th>PROBABILITAT</th>
<th>SEVERITAT</th>
<th>GRAU DE RISC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caigudes de persones a diferent nivell</td>
<td>Alta</td>
<td>Mitja</td>
<td>ALT</td>
</tr>
<tr>
<td>Caigudes de persones al mateix nivell</td>
<td>Mitja</td>
<td>Baixa</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caigudes de persones al buit</td>
<td>Alta</td>
<td>Alta</td>
<td>MOLT ALT</td>
</tr>
<tr>
<td>Mal als ulls per arc elèctric (soldadura o d’altres)</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Mal a les extremitats</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caigudes d’objectes per ensorrament</td>
<td>Alta</td>
<td>Alt</td>
<td>MOLT ALT</td>
</tr>
<tr>
<td>Caiguda d’objectes en manipulació</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Trepitjades sobre objectes</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops contra objectes immòbils</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops contra objectes mòbils</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops per objectes i eines</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Projecció de fragments i partícules</td>
<td>Alta</td>
<td>Mitja</td>
<td>ALT</td>
</tr>
<tr>
<td>Bastides i escales</td>
<td>Mitja</td>
<td>Alta</td>
<td>ALT</td>
</tr>
<tr>
<td>Exposició de sorolls</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Talls a les mans manipulant cables (tallant o pelant)</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Atrapament per o entre objectes</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Atrapament per bolcada de màquines, tractors o vehicles</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Sobreesforços</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MITJA</td>
</tr>
<tr>
<td>Factors atmosfèrics</td>
<td>Baixa</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Contactes tèrmics</td>
<td>Mitg</td>
<td>Alta</td>
<td>ALT</td>
</tr>
<tr>
<td>Exposició a contactes elèctrics</td>
<td>Mitg</td>
<td>Alta</td>
<td>ALT</td>
</tr>
<tr>
<td>Cremades</td>
<td>Mitg</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Explosions</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Incendis</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Posada en tensió de zones llunyanes</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Atropellament o cops amb vehicles</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Ventilació</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Dones embarassades o mares lactants</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>E.P. produïda per agents físics</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Afeccions respiratòries derivades de pols, corrents d’aire, etc.</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Instal·lacions de subministrament d’energia</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Il·luminació</td>
<td>Baixa</td>
<td>Baixa</td>
<td>MOLT BAIX</td>
</tr>
</tbody>
</table>
J.8.1.4.2 Enderroc

Taula 3. Identificació i valorització dels riscos en la fase Enderroc.

<table>
<thead>
<tr>
<th>Risc</th>
<th>Probabilitat</th>
<th>Severitat</th>
<th>Grau de Risc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caigudes de persones a diferent nivell</td>
<td>Alta</td>
<td>Mitja</td>
<td>ALT</td>
</tr>
<tr>
<td>Caigudes de persones al mateix nivell</td>
<td>Mitja</td>
<td>Baixa</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caigudes de persones al buit</td>
<td>Alta</td>
<td>Alta</td>
<td>MOLT ALT</td>
</tr>
<tr>
<td>Mal als ulls per arc elèctric (soldadura o d’altres)</td>
<td>Alta</td>
<td>Mitja</td>
<td>ALT</td>
</tr>
<tr>
<td>Mal a les extremitats</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caigudes d’objectes per ensorrament</td>
<td>Alta</td>
<td>Alt</td>
<td>MOLT ALT</td>
</tr>
<tr>
<td>Caiguds d’objectes en manipulació</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Trepitjades sobre objectes</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops contra objectes immòbils</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops contra objectes mòbils</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops per objectes i eines</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Projecció de fragments i partícules</td>
<td>Alta</td>
<td>Mitja</td>
<td>ALT</td>
</tr>
<tr>
<td>Bastides i escales</td>
<td>Mitja</td>
<td>Alta</td>
<td>ALT</td>
</tr>
<tr>
<td>Exposició de sorolls</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Talls a les mans manipulant cables (tallant o pelant)</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Atrapament per o entre objectes</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Atrapament per bolcada de màquines, tractors o vehicles</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Atrapament per eslavissament de terres</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Sobreesforços</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MITJA</td>
</tr>
<tr>
<td>Factors atmosfèrics</td>
<td>Baixa</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Contactes tèrmics</td>
<td>Mitg</td>
<td>Alta</td>
<td>ALT</td>
</tr>
<tr>
<td>Exposició a contactes elèctrics</td>
<td>Mitg</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Cremades</td>
<td>Mitg</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Explosions</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Incendis</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Posada en tensió de zones llunyanes</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Atropellament o cops amb vehicles</td>
<td>Alt</td>
<td>Alta</td>
<td>MOLT ALT</td>
</tr>
<tr>
<td>Ventilació</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Dones embarassades o mares lactants</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>E.P. produïda per agents físics</td>
<td>Alta</td>
<td>Baixa</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Afeccions respiratòries derivades de pols, corrents d’aire, etc.</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Instal·lacions de subministrament d’energia</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Il·luminació</td>
<td>Baixa</td>
<td>Baixa</td>
<td>MOLT BAIX</td>
</tr>
</tbody>
</table>
J.8.1.4.3 Tancament de coberta i tancament translúcid de façana de les dents de serra

Taula 4. Identificació i valorització dels riscos en la fase de Tancament de coberta i tancament translúcid de les dents de serra.

<table>
<thead>
<tr>
<th>RISC</th>
<th>PROBABILITAT</th>
<th>SEVERITAT</th>
<th>GRAU DE RISC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caigudes de persones a diferent nivell</td>
<td>Alta</td>
<td>Mitja</td>
<td>ALT</td>
</tr>
<tr>
<td>Caigudes de persones al mateix nivell</td>
<td>Mitja</td>
<td>Baixa</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caigudes de persones al buit</td>
<td>Alta</td>
<td>Alta</td>
<td>MOLT ALT</td>
</tr>
<tr>
<td>Mal als ulls per arc elèctric (soldadura o d’altres)</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Mal a les extremitats</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caigudes d’objectes per ensorrament</td>
<td>Baixa</td>
<td>Alt</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caiguda d’objectes en manipulació</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Trepitjades sobre objectes</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops contra objectes immòbils</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops contra objectes mòbils</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops per objectes i eines</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Projecció de fragments i partícules</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Bastides i escales</td>
<td>Mitja</td>
<td>Alta</td>
<td>ALT</td>
</tr>
<tr>
<td>Exposició de sorolls</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Talls a les mans manipulant cables (tallant o pelant)</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Atrapament per o entre objectes</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Atrapament per bolcada de màquines, tractors o vehicles</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Atrapament per esllavissament de terres</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Sobreesorços</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MITJA</td>
</tr>
<tr>
<td>Factors atmosfèrics</td>
<td>Baixa</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Contactes tèrmics</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Exposició a contactes elèctrics</td>
<td>Mitja</td>
<td>Alta</td>
<td>ALT</td>
</tr>
<tr>
<td>Cremades</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Explosions</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Incendis</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Posada en tensió de zones llunyanes</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Atropellament o cops amb vehicles</td>
<td>Mitja</td>
<td>Alta</td>
<td>ALT</td>
</tr>
<tr>
<td>Ventilació</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Dones embarassades o mares lactants</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>E.P. produïda per agents físics</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Afeccions respiratòries derivades de pols, corrents d’aire, etc.</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Instal·lacions de subministrament d’energia</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Il·luminació</td>
<td>Baixa</td>
<td>Baixa</td>
<td>MOLT BAIX</td>
</tr>
</tbody>
</table>
J.8.1.4.4 Revestiment del paviment

Taula 5. Identificació i valorització dels riscos en la fase de Revestiment del paviment.

<table>
<thead>
<tr>
<th>RISC</th>
<th>PROBABILITAT</th>
<th>SEVERITAT</th>
<th>GRAU DE RISC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caigudes de persones a diferent nivell</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Caigudes de persones al mateix nivell</td>
<td>Mitja</td>
<td>Baixa</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caigudes de persones al buit</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Mal als ulls per arc elèctric (soldadura o d’altres)</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Mal a les extremitats</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caigudes d’objectes per ensorrament</td>
<td>Baixa</td>
<td>Alt</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Caiguda d’objectes en manipulació</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Trepitjades sobre objectes</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops contra objectes immòbils</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Cops contra objectes mòbils</td>
<td>Baixa</td>
<td>Baixa</td>
<td>MOLT BAIX</td>
</tr>
<tr>
<td>Cops per objectes i eines</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Projecció de fragments i partícules</td>
<td>Alta</td>
<td>Mitja</td>
<td>ALT</td>
</tr>
<tr>
<td>Bastides i escales</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Exposició de sorolls</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Talls a les mans manipulant cables (tallant o pelant)</td>
<td>Mitja</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Atrapament per o entre objectes</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Atrapament per bolcada de màquines, tractors o vehicles</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Atrapament per eslavissament de terres</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Sobreesforços</td>
<td>Mitja</td>
<td>Mitja</td>
<td>MITJA</td>
</tr>
<tr>
<td>Factors atmosfèrics</td>
<td>Baixa</td>
<td>Baixa</td>
<td>BAIX</td>
</tr>
<tr>
<td>Contactes tèrmics</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Exposició a contactes elèctrics</td>
<td>Mitg</td>
<td>Alta</td>
<td>ALT</td>
</tr>
<tr>
<td>Cremades</td>
<td>Mitg</td>
<td>Mitja</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Explosions</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Incendis</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Posada en tensió de zones llunyanes</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Atropellament o cops amb vehicles</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Ventilació</td>
<td>Baixa</td>
<td>Mitja</td>
<td>BAIX</td>
</tr>
<tr>
<td>Dones embarassades o mares lactants</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>E.P. produïda per agents físics</td>
<td>Baixa</td>
<td>Baixa</td>
<td>MOLT BAIX</td>
</tr>
<tr>
<td>Afeccions respiratòries derivades de pols, corrents d’aire, etc.</td>
<td>ALT</td>
<td>Baixa</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Instal·lacions de subministrament d’energia</td>
<td>Baixa</td>
<td>Alta</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Il·luminació</td>
<td>Baixa</td>
<td>Baixa</td>
<td>MOLT BAIX</td>
</tr>
</tbody>
</table>
J.8.2. Mesures preventives específiques

Després de l’anàlisi de les característiques de risc de les diferents fases de l’obra i del personal exposats als riscos, s’estableixen les mesures i accions necessàries per donar a lloc per part de les empreses contractades, per tractar cada un dels riscos d’accident en el treball i/o malaltia professional detectats.

A continuació, s’adjunta la taula 6, on s’indiquen les mesures preventives i proteccions tècniques i/o individuals en funció de cada tipologia de risc.

Taula 6. Mesures preventives i proteccions per a cada risc.

<table>
<thead>
<tr>
<th>RISCOS</th>
<th>MESURES PREVENTIVES</th>
<th>PROTECCIONS TÈCNIQUES I/O INDIVIDUALS</th>
</tr>
</thead>
</table>
| Caigudes de persones a diferent nivell | - Plataformes de 60 cm. d’amplada i bastides a més de 2 metres d’alçada, amb barana de 90 cm., barra intermitja i entornpeu de 15cm.
- Escales ben afermades
- Els forats de les portes fins a la seva col·locació es protegiran mitjançant baranes i entornpeus ben fixats. | - Botes de seguretat amb puntera de ferro i sola antilliscant.
- Casc de seguretat homologat.
- Arnès de seguretat subjecte a estructures estables que permeti una caiguda màxima de 1,5 m. |
| Caigudes de persones al mateix nivell | - Tenir l’obra el màxim d’ordena possible, deixant ben definides les zones de pas, evitant així el risc d’ensopegada.
- Zones de treball ben il·luminades. | - Botes de seguretat amb puntera de ferro i sola antilliscant. |
| Caigudes de persones al buit | - Plataformes de 60 cm. d’amplada i bastides a més de 2 metres d’alçada, amb barana de 90 cm., barra intermitja i entornpeu de 15cm.
- Els forats de les portes fins a la seva col·locació es protegiran mitjançant baranes i entornpeus ben fixats. | - Botes de seguretat amb puntera de ferro i sola antilliscant.
- Casc de seguretat homologat.
- Arnès de seguretat subjecte a estructures estables que permeti una caiguda màxima de 1,5 m. |
| Mal als ulls per arc elèctric (soldadura o d’altres) | | - Pantalla de protecció contra raigs UV pel soldador i l’ajudant. |
| Mal a les extremitats | | - Guants de protecció mecànica. |
| Caigudes d’objectes per ensorrament | - Impedir el pas sota llocs on hi hagi risc de caigudes d’objectes.
- Col·locar xarxes de seguretat.
- El terra de les plataformes i bastides sense forats o esceletxes que permetin la caiguda d’eines o d’altres objectes.
- Bastides amb entornapecs.
- Comprovar l’estat de les càrregues.
- Comprovar l’estat de ganxos, cables, grillons o qualsevol altre mitjà auxiliar d’elevació.
- Tenir l’obra el màxim d’ordenada possible. | - Casc de seguretat homologat. |
| Caiguda d’objectes en manipulació | - Manipulació correcte dels objectes. | - Casc de seguretat homologat.
- Botes de seguretat amb puntera de ferro. |
| Trepitjades sobre objectes | - Tenir l’obra el màxim d’ordenada possible, deixant ben definides les zones de pas, evitant així el risc d’ensopagada. | - Botes o calçat de seguretat. |
| Cops contra objectes immòbils | - Protecció segons la normativa de cada cas. | - Botes de seguretat amb puntera de ferro.
- Casc de seguretat homologat.
- Ulleres de seguretat. |
| Cops contra objectes mòbils | - Protecció segons la normativa de cada cas.
- Conductors i/o operaris especialitzats. | - Botes de seguretat amb puntera de ferro.
- Casc de seguretat homologat.
- Ulleres de seguretat. |
| Cops per objectes i eines | - Protecció segons la normativa de cada cas. | - Botes de seguretat amb puntera de ferro.
- Casc de seguretat homologat.
- Ulleres de seguretat. |
| Projecció de fragments i partícules | - Protecció segons la normativa de cada cas. | - Casc de seguretat homologat.
- Ulleres de seguretat. |
| Bastides i escales | - Utilització de bastides i escales homologades i reglamentàries. | - Cinturó de seguretat.
- Botes o caçat amb sola antilliscant. |
| Exposició de sorolls | - | - Orelleres protectores |
| Talls a les mans manipulant cables (tallant o pelant) | - | - Guants de protecció mecànica. |
| Atrapament per o entre objectes | - Manipulació correcte. | - |
| **Atrapamiento per bolcada de màquines, tractors o vehicles** | - Utilització correcte.
- Abalisme de les zones d’abast de les parts mòbils de les màquines.
- Utilitzar sistemes antiatrapament. |
| **Atrapamiento per esllavissament de terres** | - Estrebar rases de més de 1,6 m de fondària o de menys si el terreny està poc compactat. |
| **Sobreesforços** | - Limitació de pesos i aixecament correcte.
- Faixa lumbar. |
| **Factors atmosfèrics** | - Prohibició de treballar en cas de pluja o vent fort.
- Vestit i botes impermeables. |
| **Contactes tèrmics** | - Compliment del R.E.B.T. i normes de seguretat.
- Roba de treball.
- Casc de seguretat.
- Guant de lona i pell. |
| **Exposició a contactes elèctrics** | - Compliment del R.E.B.T.
- Utilitzar sistemes de bloqueig de les connexions amb la senyalització corresponent per evitar posades en càrrega inadvertida.
- Cables en altura i en bon estat
- Roba de treball.
- Casc de seguretat.
- Guants de lona i pell.
- Perxes protectores de tensió. |
| **Cremades** | - Guants antitèrmics. |
| **Explosions** | - Prohibició de fer foc i fumar.
- En presència d’atmosferes inflamables, ús de dispositius antideflagrants.
- Roba de treball.
- Casc de seguretat.
- Guants de lona i pell. |
| **Incendis** | - Prohibició de fer foc i fumar.
- Roba de treball.
- Casc de seguretat.
- Guants de lona i pell.
- Extintor mòbil de 6 Kg a menys de 15 metres del lloc de treball. |
| **Posada en tensió de zones llunyanes** | - Comunicació entre llocs llunyans (extrems de línies en proves)
- Botes de seguretat amb puntera de ferro.
- Casc de seguretat homologat. |
| **Atropellament o cops amb vehicles** | - Protecció segons la normativa de cada cas.
- Conductors i/o operaris especialitzats.
- Utilitzar senyals acústics als equips de moviments de material per evitar atrapaments. |
<table>
<thead>
<tr>
<th>Primers auxilis</th>
<th>- Cartell amb telèfon i nom del servei d’urgències i evacuació.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dones embarassades o mares lactants</td>
<td></td>
</tr>
<tr>
<td>E.P. infecciosa o parasitària</td>
<td>- Higiene personal</td>
</tr>
<tr>
<td>E.P. produïda per agents físics</td>
<td></td>
</tr>
<tr>
<td>Afeccions respiratòries derivades de pols, corrents d’aire, etc.</td>
<td>- Local amb les portes tancades per evitar moviments bruscos de l’aire. - Màscares buconasals.</td>
</tr>
<tr>
<td>Instal·lacions de subministrament d’energia</td>
<td>- Instal·lació d’acord amb la normativa. (R.E.B.T.)</td>
</tr>
<tr>
<td>Il·luminació</td>
<td>- Instal·lació d’acord amb la normativa. (R.E.B.T.) - Lluminàries fixes i portàtils.</td>
</tr>
</tbody>
</table>
J.9. EQUIPS DE PROTECCIÓ

Els equips de protecció a utilitzar durant les diferents fases de l’obra, seran els descrits a continuació.

J.9.1. Col·lectiva

- Es tancarà el recinte d’obra, i als accessos a l’obra es col·locaran de forma ben visible els senyals normalitzats "PROHIBIT EL PAS A TOTA PERSONA ALIENA A L’OBRA", "ÚS OBLIGATORI DE CASC PROTECTOR" i "RISCOS DE CAIGUDA D’OBJECTES". Els treballs de construcció de la tanca d’obra, també es senyalitzaran amb tanques mòbils i senyalització de trànsit.
- En tot moment es mantindran les zones de treball netes i ordenades.
- Per damunt d’alçàries de treball superiors als 2 metres, la bastida, en cas de que n’hi hagi, ha d’estar proveïda de barana de 0,90 metres d’alçada mínima, amb protecció intermèdia i entornpeu, que sigui capaç de suportar una empenta tangencial de 150 Kg/ml, i l’accés a les plataformes de treball es faran sempre amb escala interior.
- Es farà ús dels mitjans de extinció d’incendis del col·legi per a atacar el foc, extintors i BIE’s.
- S’haurà de donar les instruccions precisas al personal de les normes d’evacuació en cas d’incendi i serà necessària la existència de personal entrenat en el maneig de mitjans d’extinció d’incendis.
- Compliment de les normes de circulació.
- No apilar materials en zones de circulació o trànsit.

J.9.2. Equips de protecció individual

J.9.2.1. Protectors del cap

- Cascs de seguretat homologats, no metàl·lics, classe N, aïllats per a baixa tensió, amb la finalitat de protegir als treballadors dels possibles xocs, impactes i contactes elèctrics.
- Protectors auditius homologats (acoblades o no als cascos de protecció).
- Ulleres homologades de muntura universal contra impactes i antipols.
- Mascaretes antipols amb filtres protectors.

J.9.2.2. Protectors de mans i braços

- Guants homologats contra les agressions.
- Canelleres.
- Mànc aïllant de protecció en les eines.

J.9.2.3. Protectors de peus i cames

- Calçat homologat proveit de sola i puntera de seguretat contra les agressions mecàniques.
- Botes de protecció impermeables.
- Genolleres.

J.9.2.4. Protectors del cos

- Crema de protecció i pomades.
- Armilles, jaquetes i mandrils de cuir per a protecció de les agressions mecàniques.
- Vestit impermeable de treball.
- En tots els treballs d’alçada on no es disposi de protecció de baranes o dispositius equivalents, es farà servir l’arnès de seguretat, per al qual obligatòriament s’hauran previst punts fixos d’ ancoratge. Tot degudament homologat, cinturó i arnès.
- Faixes i cinturons antivibracions.
- Llantera individual de situació.

J.9.2.5. Equips de protecció especials

Els equips de protecció especials seran els utilitzats en les operacions en que els treballadors estiguin en contacte amb materials que continguin amiant. Aquest és el cas de la fase d’Enderroc, concretament en la retirada de la coberta de la nau industrial i edifici 2.

- Mascaretes autofiltrants FFP3 o mascaretes amb filtres contra partícules tipus P3.
- Granota de treball de protecció química contra partícules d’un sol ús amb caputxa.
- Roba de protecció tipus T4, amb protecció hermètica i cubrecalçat.
- Arnès de seguretat ancorat a una línia de vida.
- Roba de protecció tipus T4
- Ús de guants, cascs i calçat de seguretat.
J.10. ELEMENTS INDISPENSABLES QUE HA DE DISPOSAR L’OBRA

Els elements indispensables que ha de disposar l’obra són els següents:

J.10.1. Farmaciola

L’obra disposarà d’una farmaciola amb tots els elements indispensables per efectuar les cures d’urgència en cas d’accident. La situació d’aquesta serà coneguda per a tots els treballadors i estarà en una zona de fàcil i ràpid accés. A més a més, la farmaciola estarà a càrrec d’una persona capacitada designada per l’empresa constructora.

J.10.2. Senyals

A l’entrada de la nau industrial es disposarà la corresponent senyalització d’obligat compliment en l’obra en general, així mateix es podrà dotar de senyalització els indrets que presentin un especial risc.

A continuació s’adjunta una representació gràfica, conjuntament amb breu descripció, de les senyals de prohibició mínimes que ha de disposar l’obra.

J.10.2.1. Senyals d’advertència

![Senyals d’advertència](http://ferranruiz.net/guia-tecnica-para-la-elaboracion-de-un-plan-de-autoproteccion/?lang=ca)
J.10.2.2. Senyal de prohibició

Figura 2. Senyal de prohibició d’entrada de persones no autoritzades a l’obra
Font. http://ferranruiz.net/guia-tecnica-para-la-elaboracion-de-un-plan-de-autoproteccion/?lang=ca

J.10.2.3. Senyals d’obligació

Figura 3. Senyals d’obligació en obres
Font. http://ferranruiz.net/guia-tecnica-para-la-elaboracion-de-un-plan-de-autoproteccion/?lang=ca
J.10.3. Senyals manuals i de circulació de vehicles

Igualment s’haurà de dotar d’un cartell amb la simbologia que s’utilitza per guiar als vehicles, ja que, la manca de visibilitat del conductor es pot compensar amb l’ajut d’un operari encarregat de portar a terme les instruccions de guiatge dels vehicles, ja siguin camions, excavadores, retroexcavadores, etc. (veure taula adjunta).

Per altra banda, es convenient dotar els vehicles destinats a realitzar tasques a l’obra, de sistemes sonors i/o lluminosos quan realitzin maniobres concretes (ex: marxa enrere, gir sobre un eix, etc.).

![SENYALS GESTUALS](http://ferranruiz.net/guia-tecnica-para-la-elaboracion-de-un-plan-de-autoproteccion/?lang=ca)

Figura 4. Senyals manuals i de circulació de vehicles
J.10.4. Telèfons de contacte

L’obra disposarà d’una llista telefònica per els primers auxilis. La situació d’aquesta serà coneguda per tots els treballadors i estarà en una zona de fàcil i ràpid accés. Aquesta llista de telèfons haurà de tenir, com a mínim, els números indicats a la taula 7, adjunta a continuació.

Taula 7. Telèfons de primers auxilis en cas d’emergència.

<table>
<thead>
<tr>
<th>TELÈFONS EN CAS D’EMERGÈNCIA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergències</td>
<td>112</td>
</tr>
<tr>
<td>Centre d’Atenció Primària (C.A.P de Anglès)</td>
<td>972 421 498</td>
</tr>
<tr>
<td>Creu Roja</td>
<td>972 222 222</td>
</tr>
<tr>
<td>Institut Català de la Salut</td>
<td>061</td>
</tr>
<tr>
<td>Bombers</td>
<td>085</td>
</tr>
<tr>
<td>Mossos d’esquadra</td>
<td>088</td>
</tr>
<tr>
<td>Policia Local (Anglès)</td>
<td>972 422 452</td>
</tr>
<tr>
<td>Guardia Civil</td>
<td>062</td>
</tr>
<tr>
<td>Cos nacional de policia</td>
<td>091</td>
</tr>
</tbody>
</table>
J.11. PLA DE SEGURETAT I SALUT EN EL TREBALL

En aplicació de l’Estudi Bàsic de Seguretat i Salut, el contractista, abans de l’inici de l’obra, elaborarà un Pla de Seguretat i Salut en el que s’analitzin, estudiïn, desenvolupin i completin les previsions contingudes en aquest Estudi Bàsic i en funció del seu propi sistema d’execució d’obra. En aquest Pla de Seguretat s’inclouran, en el seu cas, les propostes de mesures alternatives de prevenció que el contractista proposi amb la corresponent justificació tècnica, i que no podrà implicar una disminució dels nivells de protecció previstos en l’Estudi Bàsic.

El Pla de Seguretat i Salut haurà de ser aprovat, abans de l’inici de l’obra, pel Coordinador en matèria de Seguretat i Salut durant l’execució de l’obra. Aquest podrà ser modificat pel contractista en funció del procés d’execució de la mateixa, de la evolució dels treballs i de les possibles incidències o modificacions que puguin sorgir al llarg de l’obra, però sempre amb l’aprovació expressa del Coordinador. Quan no fos necessària la designació del Coordinador, les funcions que se les atribueixi seran assumides per la Direcció Facultativa.

Les persones que intervinguin en l’execució de l’obra, així com les persones o òrgans amb responsabilitats en matèria de prevenció en les empreses que intervinguin en la mateixa i els representants dels treballadors, podran presentar per escrit i de manera raonada, els suggeriments i alternatives que estimin oportunes. El Pla estarà a l’obra i a disposició de la Direcció Facultativa.
J.12. PLA DE TREBALL ESPECÍFIC

Les plaques de fibrociment estan compostes per amiant no friable, un material potencialment perillós, causant de diferents malalties específiques provocades per la inhalació de les seves fibres. Per aquest motiu l’empresa contractada o subcontractada per aquesta demolició haurà d’estar inscrita a la RERA (Registre d’empreses amb risc per amiant), complir la normativa vigent, i realitzar la demolició amb personal especialitzat i amb el corresponent pla de treball aprovat per l’autoritat laboral.

Abans de començar el procés d’enderroc de la coberta i es necessària la realització d’un pla de treball segons indica l’article 11 del Reial Decret de 396/2006, de 31 de març, i s’haurà de presentar a l’autoritat laboral corresponent al lloc de treball per rebre la seva aprovació.

El pla de treball haurà d’especificar les següents:

- Descripció de la tasca que s’ha de dur a terme amb especificació del tipus d’activitat corresponent.
- Tipus de material que hi ha d’intervenir.
- Ubicació de l’activitat a realitzar.
- Inici i durada de la tasca prevista.
- Relació nominal dels treballadors implicats directament en la feina o en contacte amb el material que conté amiant, així com les categories professionals, formació i experiència.
- Procediments que s’han d’aplicar i les particularitats que es requereixen per adeguar aquests procediments.
- Mesures preventives previstes per limitar la generació i dispersió de fibres d’amiant en l’ambient i les mesures adoptades per limitar l’exposició dels treballadors a l’amiant i d’altres persones que estiguin al lloc on s’efectuï la tasca i en la seva proximitat.
- Equips utilitzats per a la protecció dels treballadors, amb especificació de les característiques i el nombre de les unitats de descontaminació i el tipus i manera d’ús dels equips de protecció individual.
- Les mesures per eliminar els residus d’acord amb la legislació vigent, amb indicació de l’empresa gestora i abocador.
- Les mesures destinades a informar els treballadors sobre els riscos a què estan exposats i les precaucions que ha de prendre.
- Recursos preventius de l’empresa, amb indicació, en cas que siguin aliens, de les activitats concertades.
- Procediment establert per avaluar i controlar l’ambient de treballs d’acord amb el que preveu aquest Reial decret.

Recordar que el termini per emetre resolució i notificar-la és de quaranta-cinc dies, a comptar de la data en què la sol·licitud hagi tingut entrada en el registre laboral competent; si transcorregut el termini, no s’ha notificat un pronunciament exprés, el pla de treball es considerarà aprovat.

En la tramitació de l’expedient s’ha de sol·licitar l’informe de la Inspecció de Treball i Seguretat Social i dels òrgans tècnics en matèria preventiva de Catalunya, en aquest cas.

Quan l’autoritat laboral que aprovi un pla de treball sigui diferent de la del territori on l’empresa està registrada, ha de remetre una còpia de la resolució aprovatòria del pla a l’autoritat laboral del lloc on figuri registrada.

Es realitzaran també mesuraments ambientals, un cada quinze dies i un altre una vegada hagi finalitzat la primera fase d’enderroc, per tal d’assegurar que no s’alliberen fibres d’amiant en l’ambient.

Les zones de treball amb risc d’exposició a l’amiant hauran d’estar clarament delimitades i senyalitzades.

Durant la realització d’aquesta fase d’enderroc no es podrà realitzar cap altra activitat en paral·lel fins la finalització de la mateixa, tampoc podrà haver-hi personal aliè a l’empresa especialitzada.
J.13. OBLIGACIONS DE CONTRACTISTES I SUBCONTRACTISTES

El contractista i subcontractista estaran obligats a aplicar els principis d’acció preventiva que es recullen en l’Article 15 de la Llei de Prevenció de Riscos Laborals i en particular:

- El manteniment de l’obra en bon estat de neteja.
- L’elecció de l’emplaçament dels llocs o àrees de treball, tenint en compte les condicions d’accés i la determinació de les vies o zones de desplaçament o circulació.
- La manipulació de diferents materials i la utilització de medis auxiliars.
- El manteniment, el control previ a la posta en servei i control periòdic de les instal·lacions i dispositius necessaris per l’execució de les obres, amb objecte de corregir els defectes que puguin afectar a la seguretat i salut dels treballadors.
- La delimitació i acondicionament de les zones d’emmagatzematge i dipòsits de materials, en particular si es tracta de matèries perilloses.
- L’emmagatzematge i evacuació de residus i runes.
- La recollida de materials perillosos utilitzats.
- L’adaptació del període de temps efectiu que s’haurà de dedicar als diferents treballs o fases del treball.
- La cooperació entre totes les persones que intervenen a l’obra.
- Les interaccions o incompatibilitats amb qualsevol altre treball o activitat.

Obligats també a:

- Complir i fer complir el que s’estableix en el Pla de Seguretat i Salut.
- Informar i proporcionar les instruccions adequades als treballadors autònoms sobre totes les mesures que s’hagin d’adoptar en matèria de seguretat i salut.
- Atenir-se a les indicacions i complir les instruccions del Coordinador en matèria de seguretat i salut durant l’execució de l’obra.
- Ser responsables de l’execució correcta de les mesures preventives fixades en el Pla i en allò relatiu a les obligacions que corresponguin directament o, en el seu cas, als treballadors autònoms contractats per ells. A més a més respondran solidàriament de les conseqüències que es derivin del incompliment de les mesures preventives en el Pla.
Les responsabilitats del Coordinador, Direcció Facultativa i el Promotor no eximiran de les responsabilitats als contractistes i als subcontractistes.

J.14. OBLIGACIONS DELS TREBALLADORS AUTÓNOMS

Els treballadors autònoms estaran obligats a aplicar els principis d’acció preventiva que es recullen en l’Article 15 de la Llei de Prevenció de Riscos Laborals i en particular:

- El manteniment de l’obra en bon estat de neteja.
- L’emmagatzematge i evacuació de residus i runes.
- La recollida de materials perillosos utilitzats.
- L’adaptació del període de temps efectiu que s’haurà de dedicar als diferents treballs o fases del treball.
- La cooperació entre totes les persones que intervenen a l’obra.
- Les interaccions o incompatibilitats amb qualsevol altre treball o activitat.

Obligats també a:

- Ajustar la seva actuació conforme als deures sobre coordinació de les activitats empresarials previstes en l’Article 24 de la Llei de Prevenció de Riscos Laborals, participant en particular en qualsevol mesura de la seva actuació coordinada que s’hagués establert.
- Complir amb les obligacions establertes pels treballadors en l’Article 29, apartats 1 i 2 de la Llei de Prevenció de Riscos Laborals.
- Utilitzar equips de treball que s’ajustin a lo disposat en el Reial Decret 1215/1997.
- Elegir i utilitzar equips de protecció individual en els termes previstos pel Reial Decret 773/1997.
- Atenir-se a les indicacions i complir les instruccions del Coordinador en matèria de seguretat i salut durant l’execució de l’obra.

Els treballadors autònoms hauran de complir tot allò establert en el Pla de Seguretat i Salut.
J.15. **LLIBRE D’INCIDÈNCIES**

En cada centre de treball existirà, amb finalitats de control i seguiment del Pla de Seguretat i Salut, un llibre d’Incidències que constarà de fulles per duplicat i que serà facilitat pel Col·legi professional al que pertanyi el tècnic que hagi aprovat el Pla de Seguretat i Salut.

Aquest llibre haurà de mantenir-se sempre a l’obra i en poder del Coordinador. Tindran accés al llibre les següents persones:

- La Direcció Facultativa
- Els contractistes i els subcontractistes
- Els treballadors autònoms
- Les persones amb responsabilitats en matèria de prevenció de les empreses que intervenen
- Els representants dels treballadors
- Els tècnics especialitzats de les Administracions públiques competents en aquesta matèria, els quals podran fer anotacions en el mateix

(Només es podran fer anotacions en el Llibre de Incidències qüestions relacionades amb el Pla)

Efectuada una anotació en el Llibre d’Incidències, el Coordinador estarà obligat a remetre en el període de 24 hores una copia de la Inspecció de Treball i Seguretat Social de la província que es realitzi l’obra. Igualment notificarà aquestes anotacions al contractista i als representants dels treballadors.
J.16. PARALITZACIONS DELS TREBALLS

Quan el Coordinador i durant l’execució de les obres, observa incompliment de les mesures de seguretat i salut, advertirà al contractista i deixarà constància de l’incompliment en el Llibre d’Incidències, quedant facultat per, en cas de risc greu o imminent per la seguretat i salut dels treballadors, disposar la paralització d’una part o, en el seu cas, de la totalitat de l’obra.

Així mateix, notificarà d’aquest fet als efectes oportuns, a la Inspecció de Treball i Seguretat Social de la província en què es realitza l’obra. Igualment notificarà al contractista, i en el seu cas als subcontractistes i/o autònoms afectats de la paralització i als representants dels treballadors.

J.17. DRETS DELS TREBALLADORS

Els contractistes i subcontractistes tindran que garantir que els treballadors rebin una informació adequada i comprensible de totes les mesures que s’hagin d’adoptar en el matèria de seguretat i salut en l’obra.

Una copia del Pla de Seguretat i Salut i de les seves possibles modificacions, a efectes dels seus coneixements i seguiment, serà facilitada als representants dels treballadors en el centre de treball.

J.18. DISPOSICIONS MÍNIMES DE SEGURETAT I SALUT QUE TENEN QUE APLICAR-SE A LES OBRES

Les obligacions previstes en les tres parts de l’Annex IV del Reial Decret 1627/1997, pel que s’estableixen les disposicions mínimes de seguretat i salut en les obres de construcció, s’aplicarà sempre que ho exigeixin les característiques de l’obra o de l’activitat, les circumstancies o qualsevol risc.
J.19. NORMATIVA D’APLICACIÓ

J.19.1. Normativa legal d’aplicació general

- Ley 31/1995 de Noviembre de 8 de Noviembre. Ley de Prevención de Riesgos Laborales.
- Real Decreto 39/1997 de 17 de Enero. Reglamento de los Servicios de Prevención.
- Reial Decret 171/2004 que desenvolupa el art. 24 de la LPRL en matèria de coordinació de activitats empresarials.
- Ley 54/2003 de 12 de Diciembre. Reforma del marco normativo de prevención de riesgos laborales.
- Real Decreto 604/2006, de 19 de mayo. Modificación del RD 39/1997, de 17de enero, Reglamento de los Servicios de Prevención y el Real Decreto 1627/1997, de 24 de octubre, por el que se establecen las disposiciones mínimas de seguridad y salud en las obras de construcción.
- Convenio Colectivo General del Sector de la Construcción.
- Conveni específic de l’empresa, en tot el referent a Seguretat e Higiene en el Treball.
- Prescripciones de Seguridad en la Industria de la Edificación Convenio O.I.T.
- R.D. 555/1986 de 21 de Febrero. Implantación de la obligatoriedad de elaborar Estudios y Planes de
- Legislació en matèria de Seguretat i Salut de les de la Comunitat Autònoma de Catalunya i Ordenances Municipals.

J.19.2. Condicions Ambientals dels Llocs de Treball

- R.D. 1311/2005, de 4 de noviembre. Protección de los Trabajadores frente a los riesgos derivados de la exposición a ruido durante el trabajo.
J.19.3. Utilització dels equips de treball

- R.D. 1215/97 de 18 de Julio. Disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de Equipos de Trabajo.
- RD 2177/2004 de 12 de Noviembre, sobre disposiciones mínimas de seguridad y de salud para la utilización por los trabajadores en el trabajo de los equipos de trabajo en materia de trabajos temporales en altura.
- UNE EN 363. Equipos de protección individual contra la caída de alturas, sistemas anticaídas.

J.19.4. Equips de Protecció Individual (EPI’s)

J.19.5. Senyalització

- Real Decreto 485/1997 de 14 de Abril. Disposiciones mínimas en materia de señalización de Seguridad en el trabajo.
J.19.6. Activitats especifiques

- Real Decreto 386/2006, de 31 de marzo, por el que se establecen las disposiciones mínimas de seguridad i salud aplicables a los trabajos con riesgo de exposición al amianto.
- Real Decreto 842/2002 de 2 de Agosto. Reglamento Electrotécnico de Baja Tensión e Instrucciones Técnicas Complementarias.
- Real Decreto 487/1997 de 14 de Abril. Manipulación individual de cargas.
- NTP 207 Plataformas eléctricas para trabajos en altura.
- UNE EN 363. Equipos de protección individual contra la caída de alturas, sistemas anticaídas.
- Directiva 89/392/CEE modificada por la 91/368/CEE para la elevación de cargas y por la 93/44/CEE para la elevación de personas.
- Ordenanza de Trabajo para las industrias de la Construcción, Vidrio y Cerámica (O.M. 28-08-70, O.M.28-07-77, O.M. 4-07-83, en los títulos no derogados).
- Código Técnico de la Edificación (CTE) y Normas Técnicas.

J.19.7. Varis

PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIA D’ANGLÈS.

- ANNEX J. ESTUDI BÀSIC DE SEGURETAT I SALUT

Norbert Furtià Romero

Anglès, 4 de setembre de 2015
SUMARI. JUSTIFICACIÓ DE PREUS

K.1. FONT D’OBTENCIÓ DEL PREUS ... 2
K.2. MÀ D’OBRA ... 3
K.3. MÀQUINARIA.. 3
K.4. PARTIDES D’OBRA COMPOSTES ... 4
 K.4.1. Resolució de Patologies ... 4
 K.4.2. Enderroc ... 10
 4.2.1 Retirada coberta i plaques translúcides del tancament de façana 10
 4.2.2 Enderroc de l’edifici 2 i 3 ... 14
 4.2.3 Enderroc de la paret divisòria ... 17
 K.4.3. Tancament de coberta .. 19
 K.4.4. Tancament translúcid de façana de les dents de serra 21
 K.4.5. Revestiment del paviment ... 22
K.1. FONT D'OBTENCIÓ DEL PREUS

Els preus de les unitats de mà d’obra i maquinaria, així com les partides d’obra compostes per generar el pressupost d’aquest projecte, s’han obtingut del banc de preus BEDEC de l’Institut de Tecnologia de la Construcció (ITEC) i també mitjançant el generador de preus CYPE. Ingenieros, S.A.

Cal especificar però, que tan el banc de preus BEDEC, com el generador de preus CYPE, en alguns casos no tenen en compte les magnituds d’amidament de les partides d’obra compostes. Per la qual cosa, depenent de la magnitud d’amidament prevista es poden obtenir valors imprecisos de la partida d’obra. Per aquesta raó, en algunes de les partides d’obra s’ha modificat el rendiment de les partides simples per generar tal partida, adequant els valors per obtenir un pressupost exacte o proper al preu d’execució del material real.

Per tal d’obtenir aquest valor aproximat real, s’ha tingut en compte els pressupostos rebuts per les diferents empreses, ajuntes a continuació.

- Aida Elias Mateu, de l’empresa NOU AMBIENT (Campllong). Pressupostos per a l’eliminació de patologies de façanes.
- Agustí Carreiras, de l’empresa CONSTRUCCIONS CARREIRAS S.L. Pressupostos d’enderroc pels edificis 2 i 3.
- Empresa GERMANS CAÑET XIRGÚ S.L. Pressupost de retirada de plaques de fibrociment, desamiantatge, cost de transport i cànon d’eliminació.
- Joan Ruiz Casals, comercial de ACH PANELES A.I.E. Pressupostos d’adquisició i instal·lació de plaques de poliuretà de 30mm d’espessor.
- Miquel Suárez, de l’empresa RESIFLOOR S.L. Pressupostos d’execució d’un revestiment al paviment multicapa i d’un revestiment antiestàtic per una superfície de 1000 m².
K.2. Mà d’Obra

<table>
<thead>
<tr>
<th>UA</th>
<th>DESCRIPCIÓ</th>
<th>PREU (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Oficial 1ª construcció</td>
<td>23,30</td>
</tr>
<tr>
<td>h</td>
<td>Peó especialitzat construcció</td>
<td>20,15</td>
</tr>
<tr>
<td>h</td>
<td>Peó ordinari construcció</td>
<td>19,47</td>
</tr>
<tr>
<td>h</td>
<td>Oficial 1ª revocador</td>
<td>23,30</td>
</tr>
<tr>
<td>h</td>
<td>Peó especialitzat revocador</td>
<td>20,55</td>
</tr>
<tr>
<td>h</td>
<td>Oficial 1ª pintor</td>
<td>22,37</td>
</tr>
<tr>
<td>h</td>
<td>Ajudant pintor</td>
<td>19,86</td>
</tr>
<tr>
<td>h</td>
<td>Oficial 1ª muntador de tancaments industrials</td>
<td>24,08</td>
</tr>
<tr>
<td>h</td>
<td>Ajudant muntador de tancaments industrials</td>
<td>20,68</td>
</tr>
<tr>
<td>h</td>
<td>Oficial 1ª enrajolador</td>
<td>23,30</td>
</tr>
<tr>
<td>h</td>
<td>Ajudant enrajolador</td>
<td>20,68</td>
</tr>
<tr>
<td>h</td>
<td>Tècnic especialista redactor de plans de treball</td>
<td>46,25</td>
</tr>
<tr>
<td>h</td>
<td>Oficial 1ª electricista</td>
<td>23,12</td>
</tr>
<tr>
<td>h</td>
<td>Oficial 1ª soldador</td>
<td>22,74</td>
</tr>
</tbody>
</table>

K.3. Màquinaria

<table>
<thead>
<tr>
<th>UA</th>
<th>DESCRIPCIÓ</th>
<th>PREU (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Plataforma elevadora telescòpica articulada, autopropulsada amb motor de gasoil de 20 m d'alçària màxima de treball i 9,8 en horitzontal, de 227 kg de càrrega útil, de dimensions 700x245x245 cm en repòs i 10886 kg de pes buida, amb cistella de dimensions 150x75 cm</td>
<td>38,5</td>
</tr>
<tr>
<td>h</td>
<td>Equip d'injecció manual de morters fluids i resines</td>
<td>1,54</td>
</tr>
<tr>
<td>h</td>
<td>Retroexcavadora sobre pneumàtics de 8 a 10 tones</td>
<td>7,15</td>
</tr>
<tr>
<td>h</td>
<td>Equip de raig d'aigua a pressió</td>
<td>5,15</td>
</tr>
<tr>
<td>h</td>
<td>Grup electrogen insonoritzat, trifàsic, de 45 kVA de potència</td>
<td>4,81</td>
</tr>
<tr>
<td>h</td>
<td>Equip de raig d'aigua a pressió, amb adaptador per a llança d'aigua</td>
<td>5,41</td>
</tr>
<tr>
<td>h</td>
<td>Camió grua per elevació dels panells</td>
<td>61,73</td>
</tr>
<tr>
<td>h</td>
<td>Compressor amb dos martells pneumàtics</td>
<td>15,95</td>
</tr>
<tr>
<td>h</td>
<td>Pala excavadora giratória</td>
<td>105,79</td>
</tr>
<tr>
<td>h</td>
<td>Pala carregadora sobre pneumàtics de 8 a 14t</td>
<td>71,05</td>
</tr>
<tr>
<td>h</td>
<td>Equip i elements auxiliars per a tall oxiacetilènic</td>
<td>6,99</td>
</tr>
<tr>
<td>h</td>
<td>Material de preparació del paviment (Fresadora amb disc de diamant, Equip de granallatge o Fresadora manual) i aspiradora</td>
<td>5,65</td>
</tr>
</tbody>
</table>
K.4. PARTIDES D’OBRA COMPOSTES

K.4.1. Resolució de Patologies

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Codi</th>
<th>UA</th>
<th>DESCRIPCIÓ</th>
<th>Unitats</th>
<th>Preu unitari (€)</th>
<th>Preu partida</th>
<th>Import (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>EFY025</td>
<td>m³</td>
<td>Reparació d’element estructural de fàbrica de maó ceràmic, mitjançant la substitució de peces.</td>
<td>216,45</td>
<td>0,27</td>
<td>58,44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ut Maó ceràmic (buit), per revestir, 29x14x10 cm, segons UNE-EN 771-1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m³</td>
<td>Aigua</td>
<td>0,04</td>
<td>1,50</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>t</td>
<td>Morter industrial per a obra de paleta, de ciment, color gris, categoria M-5, subministrat a granel, segons UNE-EN 998-2</td>
<td>0,23</td>
<td>29,50</td>
<td>6,73</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h</td>
<td>Mesclador continu amb sitja, per a morter industrial en sec, subministrat a granel</td>
<td>0,99</td>
<td>1,73</td>
<td>1,71</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h</td>
<td>Plataforma elevadora telescopica articulada, autopropulsada amb motor de gasoil de 20 m d'alçària màxima de treball i 9,8 en horitzontal, de 227 kg de càrrega útil, de dimensions 700x245x245 cm en repòs i 10886 kg de pes buida, amb cistella de dimensions 150x75 cm</td>
<td>7,30</td>
<td>38,50</td>
<td>281,03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h</td>
<td>Oficial 1ª construcció</td>
<td>8,00</td>
<td>23,30</td>
<td>186,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h</td>
<td>Peó ordinari construcció</td>
<td>8,83</td>
<td>19,47</td>
<td>171,92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses auxiliars</td>
<td>2,00</td>
<td>706,29</td>
<td>14,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost directe</td>
<td></td>
<td>720,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses indirectes</td>
<td>6,00</td>
<td>720,41</td>
<td>43,22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost execució</td>
<td></td>
<td>763,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>NA001</td>
<td>m²</td>
<td>Arranjament del despreniment del revestiment de façana. Repicat del revestiment, neteja de la zona afectada i arrebossat amb morter de calç o polímeric amb resines sintètiques.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m³</td>
<td>Aigua</td>
<td>0,02</td>
<td>1,50</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kg</td>
<td>Morter tècnic de calç o polímeric amb resines sintètiques</td>
<td>3,20</td>
<td>0,52</td>
<td>1,66</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h</td>
<td>Oficial 1ª revocador</td>
<td>0,16</td>
<td>23,30</td>
<td>3,80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h</td>
<td>Peó especialitzat revocador</td>
<td>0,08</td>
<td>20,55</td>
<td>1,69</td>
<td></td>
</tr>
</tbody>
</table>
Plataforma elevadora telescòpica articulada, autopropulsada amb motor de gasoil de 20 m d'alçària màxima de treball i 9,8 en horitzontal, de 227 kg de càrrega útil, de dimensions 700x245x245 cm en repòs i 10886 kg de pes buida, amb cistella de dimensions 150x75 cm.

| % Despeses auxiliars | 2,00 | 122,68 | 2,45 | Cost directe 125,13 |
| % Despeses indirectes | 6,00 | 125,13 | 7,51 | Cost d'execució 132,64 |

B3 EFY020 m Reparació esquèda en estructura de fàbrica de maó de ceràmic amb grapes metàl·liques

kg Morter de resina epoxi amb sorra de sílice, d'enduriment ràpid, per a rebler d'encoratges	3,50	5,00	8,50
kg Acer en barres corrugades, UNE-EN 10080 b 500S, elaborat en taller industrial, diàmetres varis	0,50	0,91	1,41
h Equip d'injecció manual de morters fluids i resines	0,34	1,54	1,88
Ut Filtre d'injecció per a equip d'injecció manual de morters fluids i resines	3,81	0,46	4,27
h Oficial 1ª construcció	1,06	23,30	24,36
h Peó ordinari construcció	1,06	19,47	20,53

| % Despeses auxiliars | 2,00 | 60,95 | 1,22 | Cost directe 62,17 |
| % Despeses indirectes | 6,00 | 62,17 | 3,73 | Cost d'execució 65,90 |

B4 NA002 m Reparació esquèrda en blocs de formigó del mur de contenció amb mortar estructural.

kg Geomorter mineral monocomponent Geolite de Keracoll	1,47	23,50	24,97
kg Mapegrout T-40	16,25	0,65	16,90
m³ Àigua	0,02	1,50	1,52
h Oficial 1ª construcció	1,06	23,30	24,36
h Peó ordinari construcció	1,06	19,47	20,53
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D’UNA NAU INDUSTRIAL EXISTENT

<table>
<thead>
<tr>
<th>% Despeses auxiliars</th>
<th>2,00</th>
<th>88,28</th>
<th>1,77</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Despeses indirectes</td>
<td>6,00</td>
<td>90,05</td>
<td>5,40</td>
</tr>
<tr>
<td>Cost directe</td>
<td></td>
<td>90,05</td>
<td></td>
</tr>
<tr>
<td>Cost d’execució</td>
<td></td>
<td>95,45</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>88,28</td>
<td></td>
</tr>
</tbody>
</table>

ANNEX K

<table>
<thead>
<tr>
<th>B5</th>
<th>1D5A1240</th>
<th>m</th>
<th>Drenatge perimetral</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Retroexcavadora sobre pneumàtiques de 8 a 10 tones</td>
<td>0,12</td>
<td>7,15</td>
</tr>
<tr>
<td>m³</td>
<td>Reblert de rasa o pou amb graves per a drenatge de pedra calcària, en tongades de 25 cm com a màxim</td>
<td>0,59</td>
<td>42,83</td>
</tr>
<tr>
<td>m²</td>
<td>Capa de neteja i anivellament de 10 cm de gruix de formigó HL-150/P/20 de consistència plàstica i grandària màxima del granulat 20 mm, abocat des de camió</td>
<td>0,59</td>
<td>10,58</td>
</tr>
<tr>
<td>m²</td>
<td>Geotèxtil format per feltre de polièster no teixit lligat mecànicament de 140 a 190 g/m², col·locat sense adherir</td>
<td>1,42</td>
<td>5,75</td>
</tr>
<tr>
<td>m</td>
<td>Drenatge amb tan ranurat de PVC de D=125 mm</td>
<td>0,62</td>
<td>6,98</td>
</tr>
<tr>
<td>h</td>
<td>Oficial 1ª construcció</td>
<td>0,79</td>
<td>23,30</td>
</tr>
<tr>
<td>h</td>
<td>Peó ordinari construcció</td>
<td>0,79</td>
<td>19,47</td>
</tr>
<tr>
<td>% Despeses auxiliars</td>
<td>2,00</td>
<td>78,66</td>
<td>1,57</td>
</tr>
<tr>
<td>% Despeses indirectes</td>
<td>6,00</td>
<td>80,23</td>
<td>4,81</td>
</tr>
<tr>
<td>Cost directe</td>
<td></td>
<td>80,23</td>
<td></td>
</tr>
<tr>
<td>Cost d’execució</td>
<td></td>
<td>85,05</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>78,66</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B6</th>
<th>RYP110</th>
<th>m²</th>
<th>Doll d’aigua sobre el parament de façana (inclou plataforma elevadora)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Equip de raig d’aigua a pressió.</td>
<td>0,10</td>
<td>5,15</td>
</tr>
<tr>
<td>h</td>
<td>Grup electrògen insonoritzat, trifàsic, de 45 kVA de potència</td>
<td>0,10</td>
<td>4,81</td>
</tr>
<tr>
<td>h</td>
<td>Plataforma elevadora telescopica articulada, autopropsada amb motor de gasoil de 20 m d'alçària màxima de treball i 9,8 en horitzontal, de 227 kg de càrrega útil, de dimensions 700x245x245 cm en repos i 10886 kg de pes buida, amb cistella de dimensions 150x75 cm</td>
<td>0,01</td>
<td>38,50</td>
</tr>
<tr>
<td>h</td>
<td>Peó especialitzat construcció</td>
<td>0,12</td>
<td>20,15</td>
</tr>
<tr>
<td>h</td>
<td>Peó ordinari construcció</td>
<td>0,12</td>
<td>19,47</td>
</tr>
<tr>
<td>% Despeses auxiliars</td>
<td>2,00</td>
<td>5,97</td>
<td>0,12</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>5,97</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Code</td>
<td>Description</td>
<td>Quantity</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>%</td>
<td>Despeses indirectes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Despeses auxiliars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Despeses indirectes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B7 FZC020 m² Neteja química de façanes amb llança d'aigua i fungicida

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Cost</th>
<th>%</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solució d'aigua i lleixiu al 10%</td>
<td>0,11</td>
<td>l</td>
<td>0,42</td>
<td>0,05</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>m³</td>
<td>Aigua</td>
<td>0,33</td>
<td>m³</td>
<td>1,50</td>
<td>0,50</td>
<td>0,42</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Emprimació fungicida per a l'eliminació de floridures, fongs i algues, d'aplicació en façanes i paraments interiors</td>
<td>0,11</td>
<td>l</td>
<td>13,81</td>
<td>1,52</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Equip de raig d'aigua a pressió, amb adaptador per a llança d'aigua</td>
<td>0,09</td>
<td>h</td>
<td>5,41</td>
<td>0,48</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Oficial 1ª construcció</td>
<td>0,41</td>
<td>h</td>
<td>23,30</td>
<td>9,58</td>
<td>0,41</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Peó especialitzat construcció</td>
<td>0,41</td>
<td>h</td>
<td>20,15</td>
<td>8,28</td>
<td>0,41</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Plataforma elevadora telescòpica articulada, autopropulsada amb motor de gasoil de 20 m d'alçària màxima de treball i 9,8 en horitzontal, de 227 kg de càrrega útil, de dimensions 700x245x245 cm en repós i 10886 kg de pes buida, amb cistella de dimensions 150x75 cm</td>
<td>0,01</td>
<td>h</td>
<td>38,50</td>
<td>0,39</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>20,78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B8 K8B11A00 m² Trançament de protecció del parament vertical exterior amb pintura de polisiloxans, a base de resina de silicona hidrófoga, amb excel·lent transpirabilitat, adherència, hidrorepelència i protecció contra floridures, raigs UVA i contra incendis de classe M1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Cost</th>
<th>%</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Oficial 1ª pintor</td>
<td>0,15</td>
<td>h</td>
<td>22,37</td>
<td>3,36</td>
<td>0,15</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Ajudant pintor</td>
<td>0,02</td>
<td>h</td>
<td>19,86</td>
<td>0,30</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>Pintura de polisiloxans</td>
<td>0,26</td>
<td>kg</td>
<td>7,59</td>
<td>1,94</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>22,47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Procés constructiu de la rehabilitació d'una nau industrial existent

ANNEX K

<table>
<thead>
<tr>
<th>Plataforma elevadora telescòpica articulada, autoproptulsada amb motor de gasoil de 20 m d'alçària màxima de treball i 9,8 en horitzontal, de 227 kg de càrrega útil, de dimensions 700x245x245 cm en repòs i 10886 kg de pes buida, amb cistella de dimensions 150x75 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Despeses auxiliars</td>
</tr>
<tr>
<td>% Despeses indirectes</td>
</tr>
</tbody>
</table>

Subtotal: 5,97
Cost directe: 6,09
Cost d'execució: 6,46

B9 K8741120 m²
Neteja superficial de perffils metà·lics en estructures d'acer.

<p>| Oficial 1a construcció | 0,44 | 23,30 | 10,28 |</p>
<table>
<thead>
<tr>
<th>Plataforma elevadora telescòpica articulada, autoproptulsada amb motor de gasoil de 20 m d'alçària màxima de treball i 9,8 en horitzontal, de 227 kg de càrrega útil, de dimensions 700x245x245 cm en repòs i 10886 kg de pes buida, amb cistella de dimensions 150x75 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Despeses auxiliars</td>
</tr>
<tr>
<td>% Despeses indirectes</td>
</tr>
</tbody>
</table>

Subtotal: 10,28
Cost directe: 10,48
Cost d'execució: 11,11

B10 K8B71C25 m²
Pintat d'estructures d'acer amb sistemes de protecció amb grau de durabilitat H, per a classe d'exposició C2, segons UNE-EN ISO 12944, format per 2 capes, capa d'imprimació de 80 µm i capa d'acabat de 80 µm, amb un gruix total de protecció de 160 µm, aplicat de forma manual

<p>| 1 Pintura epoxi bicomponent amb fosfat de zinc, per a sistemes de protecció de l'acer | 0,10 | 6,50 | 0,67 |
| 1 Pintura de poliuretà bicomponent o acrílica, per a sistemes de protecció de l'acer | 0,12 | 7,50 | 0,92 |</p>
<table>
<thead>
<tr>
<th>Kg</th>
<th>Revestiment intumescent, en emulsió aquosa color gris, amb acabat mat llis, aplicat amb pistola d'alta pressió o brotxa</th>
<th>1,32</th>
<th>11,85</th>
<th>15,64</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Plataforma elevadora telescòpica articulada, autopropulsada amb motor de gasoil de 20 m d'alçària màxima de treball i 9,8 en horitzontal, de 227 kg de càrrega útil, de dimensions 700x245x245 cm en repòs i 10886 kg de pes buida, amb cistella de dimensions 150x75 cm</td>
<td>0,03</td>
<td>38,50</td>
<td>1,16</td>
</tr>
<tr>
<td>H</td>
<td>Oficial 1ª pintor</td>
<td>0,41</td>
<td>22,37</td>
<td>9,17</td>
</tr>
<tr>
<td>H</td>
<td>Ajudant pintor</td>
<td>0,05</td>
<td>19,86</td>
<td>0,94</td>
</tr>
</tbody>
</table>

% Despeses auxiliars 2,00 28,49 0,57
% Despeses indirectes 6,00 29,06 1,74

Subtotal 28,49
Cost directe 29,06
Cost d'execució 30,81
K.4.2. Enderroc

4.2.1 Retirada coberta i plaques translúcides del tancament de façana

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Codi</th>
<th>UA</th>
<th>DESCRIPCIÓ</th>
<th>Unitats</th>
<th>Preu unitari (€)</th>
<th>Preu partida</th>
<th>Impor t (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>L1A5101</td>
<td>Ut</td>
<td>Visita prèvia a una reparació d'una teulada o coberta per a fer la previsió de l'accés, i dels materials per a la reparació</td>
<td>1</td>
<td>23,3</td>
<td>23,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oficial 1ª construcció</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses auxiliars</td>
<td>2.00</td>
<td>23,30</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses indirectes</td>
<td>6.00</td>
<td>23,77</td>
<td>1,43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td></td>
<td>23,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses auxiliars</td>
<td>2.00</td>
<td>369,96</td>
<td>7,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses indirectes</td>
<td>6.00</td>
<td>377,36</td>
<td>22,64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost directe</td>
<td></td>
<td>377,36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost executió</td>
<td></td>
<td>400,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E2 E002 Ut Redacció del pla de treball

			Tècnic especialista redactor de plans de treball	8	46,245	369,96	
			% Despeses auxiliars	2.00	369,96	7,40	
			% Despeses indirectes	6.00	377,36	22,64	
			Cost directe		377,36		
			Cost executió		400,00		

E3 DQC030 m² Desmuntatge de cobertura de plaques de fibrociment amb amiant de la coberta

| | | | Desmuntatge de cobertura de plaques de fibrociment amb amiant i elements de fixació, subjecta mecànicament sobre corretja estructural a menys de 20 m d'altura, en coberta inclinada a dues aigües amb un pendent mitjà del 30%, per a una superfície mitjana a desmuntar d'entre 2001 i 5000 m²; plastificat, etiquetat i paletitzat de les plaques amb mitjans i equips adequats, i càrrega mecànica del material desmuntat sobre camió. | 1 | 12,39 | 12,39 | |
Procés constructiu de la rehabilitació d’una nau industrial existent

| ANNEX K |
|------------------|------------------|------------------|------------------|
| % Despeses auxiliars | Despeses auxiliars | Cost directe | Cost execució |
| 2,00 | 12,39 | 12,64 |
| % Despeses indirectes | Despeses indirectes | Cost directe | Cost execució |
| 6,00 | 12,64 | 13,40 |

E4 DQN020 m² Retirada de placa o panell d’aillament en coberta inclinada, amb mitjans manuals, i càrrega manual d’enderrocs sobre camió o contenidor.

Subtotal	12,39		
% Despeses auxiliars	Despeses auxiliars	Cost directe	Cost execució
2,00	12,39	12,64	
% Despeses indirectes	Despeses indirectes	Cost directe	Cost execució
6,00	12,64	13,40	

E5 E005 Ut Mesuraments ambientals

<table>
<thead>
<tr>
<th>Ut Mesurador de partícules d’amiant</th>
<th>1,00</th>
<th>314,00</th>
<th>314,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Despeses auxiliars</td>
<td>Despeses auxiliars</td>
<td>Cost directe</td>
<td>Cost execució</td>
</tr>
<tr>
<td>2,00</td>
<td>0,98</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>% Despeses indirectes</td>
<td>Despeses indirectes</td>
<td>Cost directe</td>
<td>Cost execució</td>
</tr>
<tr>
<td>6,00</td>
<td>1,00</td>
<td>1,06</td>
<td></td>
</tr>
</tbody>
</table>

E6 E006 m² Desmuntatge de cobertura de plaques de polièster reforçat amb fibra de vidre del tancament de façana.

<table>
<thead>
<tr>
<th>Desmuntatge de cobertura de plaques de polièster reforçat amb fibra de vidre del tancament de façana.</th>
<th>1</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Despeses auxiliars</td>
<td>Despeses auxiliars</td>
<td>Cost directe</td>
<td>Cost execució</td>
</tr>
<tr>
<td>2,00</td>
<td>4,00</td>
<td>4,08</td>
<td></td>
</tr>
<tr>
<td>% Despeses indirectes</td>
<td>Despeses indirectes</td>
<td>Cost directe</td>
<td>Cost execució</td>
</tr>
<tr>
<td>6,00</td>
<td>4,08</td>
<td>4,08</td>
<td></td>
</tr>
</tbody>
</table>
E7 GCA010 m³

Classificació a peu d'obra dels residus de construcció i/o demolició, segons el Reial Decret 105/2008, separant-los en fraccions (formigó, ceràmics, metall, fustes, vidres, plàstics, papers o cartons i residus perillosos), dins de l'obra en la que es produeixin, amb mitjans manuals.

<table>
<thead>
<tr>
<th>m³</th>
<th>Classificació a peu d'obra de residus</th>
<th>1</th>
<th>2,39</th>
<th>2,39</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Sense descomposició)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal 2,39

<table>
<thead>
<tr>
<th>%</th>
<th>Despeses auxiliars</th>
<th>2,00</th>
<th>2,39</th>
<th>0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost directe</td>
<td></td>
<td>2,44</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>Despeses indirectes</th>
<th>6,00</th>
<th>2,44</th>
<th>0,15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost execució</td>
<td></td>
<td>2,58</td>
<td></td>
</tr>
</tbody>
</table>

E8 GEB020 m³

Transport d'elements de fibrociment amb amiant procedents d'una demolició, a abocador específic, instal·lació de tractament de residus de construcció i demolició externa a l'obra o centre de valorització o eliminació de residus, prèviament plastificats i paletitzats.

<table>
<thead>
<tr>
<th>m³</th>
<th>Transport de plaques de fibrociment amb amiant, procedents de la demolició d'una coberta, a abocador específic, instal·lació de tractament de residus de construcció i demolició externa a l'obra o centre de valorització o eliminació de residus, prèviament plastificades, paletitzades i carregades sobre camió, considerant l'anada, descàrrega i tornada.</th>
<th>1</th>
<th>92,5</th>
<th>92,5</th>
</tr>
</thead>
</table>

Subtotal 92,50

<table>
<thead>
<tr>
<th>%</th>
<th>Despeses auxiliars</th>
<th>2,00</th>
<th>92,50</th>
<th>1,85</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost directe</td>
<td></td>
<td>94,35</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>Despeses indirectes</th>
<th>6,00</th>
<th>94,35</th>
<th>5,66</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost execució</td>
<td></td>
<td>100,01</td>
<td></td>
</tr>
</tbody>
</table>

E9 E009 t

Cànon d’abocament per lliurament a gestor de residus perillosos (ACITRE), d’elements de fibrociment amb amiant procedents d’una demolició.
<table>
<thead>
<tr>
<th>t</th>
<th>Cànon d'abocament per lliurament a gestor de residus perillosos (ACITRE), d'elements de fibrociment amb amiant procedents d'una demolició. (Sense descomposició)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120,79</td>
</tr>
<tr>
<td>%</td>
<td>Despeses auxiliars</td>
</tr>
<tr>
<td></td>
<td>Cost directe</td>
</tr>
<tr>
<td>%</td>
<td>Despeses indirectes</td>
</tr>
<tr>
<td></td>
<td>Cost execució</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E10</th>
<th>K2R641J</th>
<th>m³</th>
<th>Càrrega amb mitjans manuals i transport de residus inerts o no especials a instal·lació autoritzada de gestió de residus, amb contenidor de 9 m³ de capacitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m³</td>
<td>Càrrega amb mitjans manuals i transport de residus inerts o no especials a instal·lació autoritzada de gestió de residus, amb contenidor de 9 m³ de capacitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>26,53</td>
<td>26,53</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Despeses auxiliars</td>
<td>2,00</td>
<td>26,53</td>
</tr>
<tr>
<td></td>
<td>Cost directe</td>
<td>27,06</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Despeses indirectes</td>
<td>6,00</td>
<td>27,06</td>
</tr>
<tr>
<td></td>
<td>Cost execució</td>
<td>28,68</td>
<td></td>
</tr>
</tbody>
</table>
4.2.2 Enderroc de l’edifici 2 i 3

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Codi</th>
<th>UA</th>
<th>DESCRIPCIÓ</th>
<th>Unitats</th>
<th>Preu unitari (€)</th>
<th>Preu partida</th>
<th>Import (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>E11 K12GG000 Ut Anul·lació d’instal·lació interior elèctrica, a la sortida dels quadres elèctrics o de l’escomesa, per a subministrament a baixa tensió 200 kVA, com a màxim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h Oficial 1ª electricista</td>
<td>9,39</td>
<td>23,12</td>
<td>217,04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses auxiliars</td>
<td>2,00</td>
<td>217,04</td>
<td>4,34</td>
<td>221,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses indirectes</td>
<td>6,00</td>
<td>221,38</td>
<td>13,28</td>
<td>234,67</td>
</tr>
</tbody>
</table>

E12	K2112695 m³		Enderroc d’edificació entre mitgeres, de 30 a 250 m³ de volum aparent, de 4 m d’alçària, amb estructura d’acer, sense enderroc de fonaments, solera ni mitgeres, sense separació, transport ni gestió de residus ni residus especials, amb mitjans manuals i mecànics i càrrega mecànica de runa sobre camió o contenidor				
			h Oficial 1ª construcció	0,04	23,30	0,93	
			h Peó ordinadi construcció	0,16	19,47	3,12	
			h Compressor amb dos martells pneumàtics	0,04	15,95	0,64	
			h Pala excavadora giratòria	0,03	105,79	3,27	
			h Pala carregadora sobre pneumatics de 8 a 14t	0,05	71,05	3,20	
			h Equip i elements auxiliars per a tall oxiciacetilènic	0,04	6,99	0,28	
			Subtotal	11,43			
			% Despeses auxiliars	2,00	11,43	0,23	
			% Despeses indirectes	6,00	11,66	0,70	

| E13 | K2192913 m² | | Enderroc de solera de formigó lleugerament armat, de fins a 15 cm de gruix, amb compressor i càrrega manual de runa sobre camió o contenidor | | | | |
| | | | h Compressor amb dos martells pneumàtics | 0,12 | 15,95 | 1,91 | |
ANNEX K

| h | Peó especialitzat construcció | 0,26 | 20,15 | 5,17 |
| h | Peó ordinadi construcció | 0,12 | 19,47 | 2,34 |

| % | Despeses auxiliars | 2,00 | 9,42 | 0,19 |
| % | Despeses indirectes | 6,00 | 9,61 | 0,58 |

h	Enderroc de fonament en pous de formigó armat, a mà i amb compressor i càrrega manual de runa sobre camió o contenidor			
h	Compressor amb dos martells pneumàtics	2,00	15,95	31,90
h	Equips i elements auxiliars per a tall oxiacetilènic	0,94	6,99	6,56
h	Oficial 1ª soldador	0,94	22,74	21,32
h	Peó especialitzat construcció	3,80	20,15	76,57
h	Peó ordinadi construcció	3,80	19,47	73,99

| % | Despeses auxiliars | 2,00 | 210,33 | 4,21 |
| % | Despeses indirectes | 6,00 | 214,54 | 12,87 |

| kg | Terra adequada d'aportació | 1 | 5,14 | 5,14 |

| % | Despeses auxiliars | 2,00 | 5,14 | 0,10 |
| % | Despeses indirectes | 6,00 | 5,24 | 0,31 |

E16 K2R24200 m³

Classificació a peu d'obra de residus de construcció o demolició en fraccions segons REAL DECRETO 105/2008, amb mitjans manuals

| h | Peó ordinadi construcció | 0,90 | 19,47 | 17,54 |

Subtotal 17,54
<table>
<thead>
<tr>
<th>%</th>
<th>Despeses auxiliars</th>
<th>2,00</th>
<th>17,54</th>
<th>0,35</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost directe</td>
<td></td>
<td>17,89</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Despeses indirectes</td>
<td>6,00</td>
<td>17,89</td>
<td>1,07</td>
</tr>
<tr>
<td></td>
<td>Cost execució</td>
<td></td>
<td>18,97</td>
<td></td>
</tr>
</tbody>
</table>

E17 K2R641J0 m³ Càrrega amb mitjans manuals i transport de residus inerts o no especials a instal·lació autoritzada de gestió de residus, amb contenidor de 9 m³ de capacitat

<table>
<thead>
<tr>
<th>m³</th>
<th>Càrrega amb mitjans manuals i transport de residus inerts o no especials a instal·lació autoritzada de gestió de residus, amb contenidor de 9 m³ de capacitat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>Despeses auxiliars</th>
<th>2,00</th>
<th>26,53</th>
<th>0,53</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost directe</td>
<td></td>
<td>27,06</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Despeses indirectes</td>
<td>6,00</td>
<td>27,06</td>
<td>1,62</td>
</tr>
<tr>
<td></td>
<td>Cost execució</td>
<td></td>
<td>28,68</td>
<td></td>
</tr>
</tbody>
</table>
4.2.3 Enderroc de la paret divisòria

<table>
<thead>
<tr>
<th>Núm</th>
<th>Codi</th>
<th>UA</th>
<th>DESCRIPCIÓ</th>
<th>Unitats</th>
<th>Preu unitari (€)</th>
<th>Preu partida</th>
<th>Import (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E18</td>
<td>DPT010</td>
<td>m²</td>
<td>Demolició de partició interior de fàbrica vista, formada per bloc de formigó de 20 cm d'espessor, amb mitjans manuals o martell pneumàtic, i càrrega manual d'enderrocs sobre camió o contenidor.</td>
<td>h</td>
<td>0,56</td>
<td>19,47</td>
<td>10,87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>10,87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>Despeses auxiliars</td>
<td>2,00</td>
<td>0,22</td>
<td>11,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>Despeses indirectes</td>
<td>6,00</td>
<td>0,67</td>
</tr>
<tr>
<td>E19</td>
<td>K2R2420</td>
<td>m³</td>
<td>Classificació a peu d'obra de residus de construcció o demolició en fraccions segons REAL DECRETO 105/2008, amb mitjans manuals</td>
<td>h</td>
<td>0,90</td>
<td>19,47</td>
<td>17,54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>17,54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>Despeses auxiliars</td>
<td>2,00</td>
<td>0,35</td>
<td>17,89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>Despeses indirectes</td>
<td>6,00</td>
<td>1,07</td>
<td>18,97</td>
</tr>
<tr>
<td>E20</td>
<td>GRA010</td>
<td>Ut</td>
<td>Transport de residus inertes de formigons, morters i prefabricats produïts en obres de construcció i/o demolició, amb contenidor de 7 m³, a abocador específic, instal·lació de tractament de residus de construcció i demolició externa a l'obra o centre de valorització o eliminació de residus.</td>
<td>Ut</td>
<td>0,00</td>
<td>101,73</td>
<td>101,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>101,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>Despeses auxiliars</td>
<td>2,00</td>
<td>2,03</td>
<td>103,76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>Despeses indirectes</td>
<td>6,00</td>
<td>6,23</td>
<td>109,99</td>
</tr>
</tbody>
</table>
E21 GRB010 Ut Cànon d'abocament per lliurament de contenidor de 7 m³ amb residus inertes de formigons, morters i prefabricats produïts a obres de construcció i/o demolició, en abocador específic, instal·lació de tractament de residus de construcció i demolició externa a l'obra o centre de valorització o eliminació de residus

<table>
<thead>
<tr>
<th>Ut</th>
<th>Cànon d'abocament</th>
<th>1,00</th>
<th>50,20</th>
<th>50,20</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Despeses auxiliars</td>
<td></td>
<td>2,00</td>
<td>50,20</td>
<td>1,00</td>
</tr>
<tr>
<td>% Despeses indirectes</td>
<td></td>
<td>6,00</td>
<td>51,20</td>
<td>3,07</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>50,20</td>
</tr>
<tr>
<td>Cost directe</td>
<td></td>
<td></td>
<td></td>
<td>51,20</td>
</tr>
<tr>
<td>Cost execució</td>
<td></td>
<td></td>
<td></td>
<td>54,27</td>
</tr>
</tbody>
</table>
K.4.3. Tancament de coberta

<table>
<thead>
<tr>
<th>Núm</th>
<th>Codi</th>
<th>UA</th>
<th>DESCRIPCIÓ</th>
<th>Unitats</th>
<th>Preu unitari (€)</th>
<th>Preu partida</th>
<th>Import (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>QTM01</td>
<td>0</td>
<td>Coberta inclinada de panells sandvitz de 5 greques amb aïllament de poliuretà (PUR). Inclús p.p dels accessoris, mà d'obra i mitjans auxiliars. Totalment acabat i instal·lat.</td>
<td>m²</td>
<td>12,00</td>
<td>12,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m³</td>
<td></td>
<td>Panell sandvitz de 5 greques de 30 mm d'espessor i 1000 mm d'amplada, format per dos xapes d'acer prelacades de 0,4 mm, amb aïllament incorporat de poliuretà (PUR) de densitat mitjana 40 kg/m³, i accessoris.</td>
<td>0,10</td>
<td>12,00</td>
<td>12,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ut</td>
<td></td>
<td>Accessoris d'instal·lació, cargols, volanderes, remats, espumes neutres, etc.</td>
<td>1,00</td>
<td>0,53</td>
<td>0,53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h</td>
<td></td>
<td>Camió grua per elevació dels panells</td>
<td>0,15</td>
<td>61,73</td>
<td>9,26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h</td>
<td></td>
<td>Oficial 1ª muntador de tancaments industrials</td>
<td>0,24</td>
<td>24,08</td>
<td>5,83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h</td>
<td></td>
<td>Ajudant muntador de tancaments industrials</td>
<td>0,24</td>
<td>20,68</td>
<td>5,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>32,62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>Despeses auxiliars</td>
<td>2,00</td>
<td>32,62</td>
<td>0,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>Despeses indirectes</td>
<td>6,00</td>
<td>33,27</td>
<td>2,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>QTE01</td>
<td>0</td>
<td>Formació de la canal doble amb xapa d'acer galvanitzada i aïllament de llana de vidre.</td>
<td>m</td>
<td>4,84</td>
<td>5,1788</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m</td>
<td></td>
<td>Xapa plegada d'acer, amb acabat galvanitzat, de 3 mm d'espessor, de 103,2 mm de desenvolupament i 4 plecs, per acabat interior del canaló.</td>
<td>1,07</td>
<td>4,84</td>
<td>5,1788</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ut</td>
<td></td>
<td>Cargol autoroscant de 6,5x130 mm d'acer galvanitzat, amb volandera.</td>
<td>8</td>
<td>0,32</td>
<td>2,56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m²</td>
<td></td>
<td>Placa semirrigida de llana de vidre de 25 mm d'espessor</td>
<td>1</td>
<td>2,67</td>
<td>2,67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m³</td>
<td></td>
<td>Placa semirrigida de llana de vidre 12,5 mm d'espessor</td>
<td>1</td>
<td>1,73</td>
<td>1,73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h</td>
<td></td>
<td>Oficial 1ª muntador de tancaments industrials</td>
<td>0,24</td>
<td>24,08</td>
<td>5,82736</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h</td>
<td></td>
<td>Ajudant muntador de tancaments industrials</td>
<td>0,24</td>
<td>20,68</td>
<td>5,00456</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>22,97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>Despeses auxiliars</td>
<td>2,00</td>
<td>22,97</td>
<td>0,46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19
<table>
<thead>
<tr>
<th>%</th>
<th>Despeses indirectes</th>
<th>6,00</th>
<th>23,43</th>
<th>1,41</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost directe</td>
<td>23,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost execució</td>
<td>24,84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
K.4.4. Tancament translúcid de façana de les dents de serra

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Codi</th>
<th>UA</th>
<th>DESCRIPCIÓ</th>
<th>Unitats</th>
<th>Preu unitari (€)</th>
<th>Preu partida</th>
<th>Import (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>QTF030</td>
<td>m²</td>
<td>Tancament de plaques translúcides de policarbonat cel·lular de 10 mm d'espressó fixades mecànicament.</td>
<td>1,00</td>
<td>13,61</td>
<td>13,61</td>
<td></td>
</tr>
<tr>
<td>Ut</td>
<td>Placa plana translúcida de policarbonat cel·lular de 10 mm d'espressó i estructura de 5 parets, amb una transmissió del 90% i protecció UV.</td>
<td>1,00</td>
<td>2,27</td>
<td>2,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Perfil base d'alumini anoditzat .</td>
<td>1,00</td>
<td>2,27</td>
<td>2,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Perfil tapa d'alumini anoditzat.</td>
<td>1,00</td>
<td>2,27</td>
<td>2,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Perfil goma universal trapezoïdal per assegurar estanqueïtat.</td>
<td>4,00</td>
<td>0,65</td>
<td>2,60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ut</td>
<td>Cargols per a la unió entre perffils del suport.</td>
<td>1,00</td>
<td>0,35</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ut</td>
<td>Cargol autotaladrant per a la fixació de plaques a l'estructura metàl·lica.</td>
<td>2,00</td>
<td>0,35</td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ut</td>
<td>Volanderes de goma.</td>
<td>3,00</td>
<td>0,05</td>
<td>0,15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Cinta adhesiva llisa d'alumini per garantir estanqueïtat i segellar les plaques.</td>
<td>1,00</td>
<td>0,02</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Cinta adhesiva perforada d'alumini per evitar condensacions.</td>
<td>1,00</td>
<td>0,02</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Peces de remat (superior, inferior i perimetral).</td>
<td>2,00</td>
<td>1,32</td>
<td>2,64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>Silicona d'unió.</td>
<td>0,10</td>
<td>1,00</td>
<td>0,10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Oficial 1ª construcció.</td>
<td>0,07</td>
<td>23,30</td>
<td>1,68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Peó ordinari i construcció.</td>
<td>0,07</td>
<td>19,47</td>
<td>1,41</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal 27,82

% Despeses auxiliars 2,00 27,82 0,56
Cost directe 28,37

% Despeses indirectes 6,00 28,37 1,70
Cost execució 30,08
K.4.5. Revestiment del paviment

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Codi</th>
<th>UA</th>
<th>DESCRIPCIÓ</th>
<th>Unitats</th>
<th>Preu unitari (€)</th>
<th>Preu partida</th>
<th>Import (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>0BC090</td>
<td>Ut</td>
<td>Obertura i tancament de cala de 60x60 cm en paviment, per a inspecció de l’estructura.</td>
<td>m²</td>
<td>0,64</td>
<td>24,00</td>
<td>15,36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>m² Demolició del pavement amb mitjans manuals i martell pneumàtic, inclòs reposició dels materials demolits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h Oficial 1ª construcció.</td>
<td>h</td>
<td>1,31</td>
<td>23,30</td>
<td>30,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h Peó ordinari construcció.</td>
<td>h</td>
<td>1,32</td>
<td>19,47</td>
<td>25,64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td>%</td>
<td>2,00</td>
<td>71,52</td>
<td>1,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses auxiliars</td>
<td>%</td>
<td>6,00</td>
<td>72,96</td>
<td>4,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses auxiliars</td>
<td>%</td>
<td>2,00</td>
<td>4,57</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost directe</td>
<td>%</td>
<td>6,00</td>
<td>4,66</td>
<td>0,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost execució</td>
<td></td>
<td></td>
<td></td>
<td>4,94</td>
</tr>
<tr>
<td>H2</td>
<td>RSK052</td>
<td>m²</td>
<td>Preparació del sòl (Desbast mecàníc amb disc de diamant, granallat o fresat mecàníc)</td>
<td>m²</td>
<td>0,14</td>
<td>5,65</td>
<td>0,79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h Material de preparació del pavement (Fresadora amb disc de diamant, Equip de granallatge o Fresadora manual) i aspiradora</td>
<td>h</td>
<td>0,06</td>
<td>23,30</td>
<td>1,40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h Oficial 1ª construcció.</td>
<td>h</td>
<td>0,06</td>
<td>20,15</td>
<td>1,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h Peó especialitzat construcció</td>
<td>h</td>
<td>0,06</td>
<td>19,47</td>
<td>1,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
<td>%</td>
<td>2,00</td>
<td>4,57</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Despeses auxiliars</td>
<td>%</td>
<td>6,00</td>
<td>4,66</td>
<td>0,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost directe</td>
<td>%</td>
<td>6,00</td>
<td>4,66</td>
<td>0,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost execució</td>
<td></td>
<td></td>
<td></td>
<td>4,94</td>
</tr>
<tr>
<td>H3</td>
<td>RSN010</td>
<td>m²</td>
<td>Revestiment continu llis a base de morters de resina amb silici de quars de granulometria especial, inclou la capa d'imprimació i un acabat final pintat. Inclou part revestiment antiestàtic</td>
<td>m²</td>
<td>1,08</td>
<td>11,36</td>
<td>12,27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kg Morters amb resina de silici de quars de granulometria especial.</td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Procés constructiu de la rehabilitació d’una nau industrial existent

ANNEX K

kg Pols d’alumini per a morter antiestàtic 0,10 2,00 0,20
m Cintes de coure 60,00 0,01 0,60
kg Pintura bicomponent a base de poliuretà. 0,20 12,29 2,46
h Oficial 1ª construcció. 0,13 23,30 3,03
h Peó especialitzat construcció 0,16 20,15 3,22
h Peó ordinari construcció. 0,16 19,47 3,12

Subtotal 24,90
%
Despeses auxiliars 2,00 24,90 0,50
Cost directe 25,39
%
Despeses indirectes 6,00 25,39 1,52
Cost execució 26,92

H4 RAG011 m² Enrajolat sobre suport interior de fàbrica

m³ Morter de ciment CEM II/B-P 32,5 N tipus M-5, confeccionat en obra con 250 kg/m³ de ciment i una proporció en volum 1/6 0,03 115,30 3,46
m Cantonera de PVC en cantonades enrajolades. 0,50 1,32 0,66
m² Rajola ceràmica de gres esmaltat 1/0/-/-, 30x30 cm, 8,00€/m² 1,05 8,00 8,40
m³ Beurada de ciment blanc BL 22,5 X 0,001 157,00 0,16
h Oficial 1ª enrajolador 0,45 23,30 10,49
h Ajudant enrajolador 0,45 20,68 9,31

Subtotal 32,47
%
Despeses auxiliars 2,00 32,47 0,65
Cost directe 33,12
%
Despeses indirectes 6,00 33,12 1,99
Cost execució 35,10
PROCÉS CONSTRUCTIU DE LA REHABILITACIÓ D'UNA NAU INDUSTRIAL EXISTENT AL PARATGE RECLAVIDIA D'ANGLÈS.

- ANNEX K. JUSTIFICACIÓ DE PREUS

Norbert Furtià Romero

Anglès, 4 de setembre de 2015