
Accepted Manuscript

Damage tolerance optimization of composite stringer run-out under tensile load

P. Badalló, D. Trias, E. Lindgaard

PII: S0263-8223(15)00569-3

DOI: http://dx.doi.org/10.1016/j.compstruct.2015.07.025

Reference: COST 6604

To appear in: Composite Structures

Received Date: 23 March 2015

Revised Date: 7 July 2015

Accepted Date: 12 July 2015

Please cite this article as: Badalló, P., Trias, D., Lindgaard, E., Damage tolerance optimization of composite stringer 
run-out under tensile load, Composite Structures (2015), doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers 
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and 
review of the resulting proof before it is published in its final form. Please note that during the production process 
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.compstruct.2015.07.025
http://dx.doi.org/http://dx.doi.org/10.1016/j.compstruct.2015.07.025


  

Damage tolerance optimization of composite stringer run-out under
tensile load
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Abstract

Stringer run-outs are a common solution to achieve the necessary strength, stiffness and ge-

ometric requirements of some structural solutions. The mechanical behaviour and complexity of

such design details requires careful and thorough studies to ensure the structural integrity of the

structure. The influence of some geometric variables of the run-out in the interface of the set

stringer-panel is crucial to avoid the onset and growth of delamination cracks. In this study, a

damage tolerant design of a stringer run-out is achieved by a process of design optimization and

surrogate modelling techniques. A parametric finite element model created with python was used

to generate a number of different geometrical designs of the stringer run-out. The relevant infor-

mation of these models was adjusted using Radial Basis Functions (RBF). Finally, the optimization

problem was solved using Quasi-Newton method and Genetic Algorithms. In the solution process,

the RBF were used to compute the objective function: ratio between the energy release rate and

the critical energy release rate according to the Benzeggagh-Kenane mixed mode criterion. Some

design guidelines to obtain a damage tolerant stringer-panel interface have been derived from the

results.
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1. Introduction

The benefits of composite materials in aircraft/aerospace structures have been demonstrated

in the last years. Stiffened panels are a common design strategy to obtain high stiffness in shell

structures, keeping the lightness of the component and ensure the required buckling strength of

the shell structure. As many others commonly used structural subcomponents these structures are

frequently analysed [1–4] using the so-called virtual tests, which aims to reduce the design cost

by reducing the number of test on real components.

One method to increase stiffness and buckling strength of shells is the use of stringers which are

efficient but requires careful analysis and design of the panel-stringer interface [5–7]. Additionally,

the geometric specification of the design sometimes requires a special termination of the stringer

named run-out, which is a cut-out showing a certain angle at the tip. This termination can be

classified to different types and geometries. Run-outs have been analysed by different authors [8–

12] to define the behaviours and the best design. Hence, virtual tests, sometimes accompanied by

experimental tests, have been deeply used to design and help to manufacture composite stringer

run-outs [13–17].

However, the use of virtual tests needs large computation time for complex models. This pre-

vents the use of optimization methods due to the necessity of generating a large number of different

design cases (geometric, load states, boundary conditions, etc.) and their high computational cost.

Metamodeling (or surrogate modeling) methods [18] are approximation techniques which can be

used to substitute partially the solution of a complete finite element model. The use of surrogate

models for design optimization or control of nonlinear systems has increased significantly in the

last decade. The idea of surrogate models is to alleviate the burden of performing many compu-

tationally expensive analyses on a detailed model by constructing an approximation model (the

surrogate model), that mimics the behaviour of the detailed simulation model as closely as possi-

ble while being computationally inexpensive to evaluate. Metamodeling may thus enable the use

of design optimization techniques of complex and numerically expensive systems [19, 20].

In the present study, an optimization process with the aim of obtaining a damage tolerant

design of run-out has been established and conducted. A parametric virtual test has been developed
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(Section 2) and Virtual Crack Closure Technique (VCCT) in the interface panel-stringer has been

implemented. The structural influence of the different geometric variables of a run-out have been

studied to choose the most significative ones (Section 3.1). The creation and verification of a

Radial Basis Function (RBF) to reduce the computational time has been achieved (Section 3.4).

Finally, optimizations of the RBF with Quasi-Newton method and Genetic Algorithms (GA) with

different variable intervals have been performed and compared (Section 4).

2. Virtual test

2.1. Specimen and test

The study carried out by Greenhalgh and Garcia [11] has been used to design the specimen

and virtual test. The specimen is a panel with an attached stringer run-out. This specimen was

also used in a previous work [21] by the authors of the present paper to analyse the mechanical

response of the different geometries and achieve a better understanding of the component and the

test. A displacement boundary condition δ is applied at the tip of the specimen (Fig. 1(a)). The

stringer run-out of this model is defined by four variables: the stringer rib angle α, the stringer base

angle β, the distance between the rib tip and the stringer base tip d, and the distance between the

stringer base and the point where the stringer rib angle starts Lro (Fig. 1(b)). In this study, python

code together with ABAQUSTM 6.12-1 Standard [22] have been used to create a parametric model

that automatically can be generated.

[Figure 1 about here.]

VCCT is used to determine the energy release rate of the existing initial crack (explained in

Section 2.2). Previous work [21] shows that the formation of a crack always appears in the tip

of the stringer base. For this reason, the initial crack is modelled in all the different cases at this

location, in the longitudinal midplane between the stringer and the panel.

The material for both the stringer and the panel is AS4/8552 and they are bonded using FM-

300K adhesive. All the material properties are described in Table 1.

[Table 1 about here.]
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2.1.1. Mesh

A comparative analysis was performed to determine the most appropriate element type. The el-

ements compared have been C3D8 (8-node linear brick three-dimensional solid element), C3D8R

(8-node linear brick three-dimensional solid element with reduced integration and hourglass con-

trol), C3D8I (8-node linear brick three-dimensional solid element with incompatible modes),

C3D20 (20-node quadratic brick three-dimensional solid element) and SC8R (8-node, quadrilat-

eral, first-order interpolation, stress/displacement continuum shell element with reduced integra-

tion). Solution time, reaction force and out-of-plane displacement have been compared through

mesh convergence studies (Table 2). All the element types have been compared with C3D20 ele-

ment because it is well suited for bending problems. In our case, the computation time of SC8R

element model is 100 times faster. The relative error is 0.14% and 1.69% in the reaction force and

out-of-plane displacement, respectively. Therefore, SC8R element was chosen to mesh the whole

model because it reduces the computational time and obtains reliable results.

[Table 2 about here.]

The model has been partitioned in three parts (Fig. 2) to control all the element sizes of the

mesh. These three parts are the stringer (without the crack zone), panel (without the crack zone)

and the crack zone. All the parts have been bonded using TIE constraints (Fig. 2). The distance

between the crack tip to the TIE zone has been analysed carefully to avoid interferences between

the TIE constraint and VCCT (contact constraint in ABAQUSTM).

[Figure 2 about here.]

Krueger [23] proposes some guidelines about mesh size for the correct application of the

VCCT (Section 2.2) in composite materials. The authors performed a sensitivity analysis con-

cerning the dependence of the total energy release rate (G) on the element length (△a). According

to Krueger, the element length (△a) should be compared with the ply thickness h. A stabiliza-

tion of the curve G vs. △a/h was achieved for about △a/h = 1, which meets the upper bound of

Krueger’s recommendation. Consequently, since h = 0.18mm, △awas set to 0.18mm in the crack

zone.
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In all the designed cases the mesh in the crack zone is controlled. Fig. 2 shows that the mesh

in this zone is regular with the needed size to guarantee the correct computation of the VCCT.

2.2. Virtual Crack Closure Technique

VCCT [23] is used to calculate the energy release rate (G ). This technique assumes that the

crack growth is self-similar. This means that if only the crack tip is observed, in the current step,

the crack shape (displacements) and the reaction forces at the crack tip are assumed identical to

those at the previous step.

The mixed mode fracture toughness, GC , has been calculated with the formulation of Benzeggagh-

Kenane [24].

GC = GIC + (GIIC − GIC) ·Bη (1)

where GIC and GIIC are the critical energy release rate in mode I (opening) and mode II (sliding),

respectively. η is the Benzeggagh-Kenane interaction parameter between modes andB is the shear

mode ratio calculated by:

B =
GII + GIII

G
(2)

where G is the total energy release rate, calculated as GI +GII +GIII, and GI, GII and GIII are fracture

energies in mode I, mode II and mode III (tearing), respectively.

3. Optimization

3.1. Design variables

The first model of the stringer run-out was defined with 4 parametric variables (Fig. 1): α, β, d and

Lro. In order to know if all these variables have a significant influence in the objective function, the

analysis of variance test (ANOVA) [25] was used. The purpose of this test is to determine if the

mean values of a group of data are significantly different to the values of another group of data. A

group of data is significant when the probability (p-value) is less than a threshold (normally fixed

between 0.05 and 0.01).
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In our case, a group of 150 different design cases has been used to apply the ANOVA test. The

results obtained are described in Table 3.

[Table 3 about here.]

The obtained results (Table 3) indicate that α and Lro are not significant for the value of the

objective function. For this reason, only β and d have been selected as design variables for the

optimization problem. The p-value computed for d is slightly greater than the threshold normally

accepted. However, this value is significantly lower compared with α and Lro . For this reason, d

is accepted like an influential variable on the objective function.

3.2. Optimization problem

It is nowadays well-known that damage tolerant design in brittle and quasi-brittle materials like

CFRP has to be based on fracture mechanical analysis, instead of using stress based criteria be-

cause of the difficulty of computing the stress field closes to the singularity (brittle materials) and

at the failure process zone (quasi-brittle materials) [26]. For this reason, when looking for an

optimal design in terms of damage tolerance, the objective function has to include some measure

of the capacity of a crack to grow under the specified load. The failure index (Eq. 3) used as

objective function in this study includes the current energy release rate normalized to the current

critical energy release rate both depending on the current mode-mixity.

FI =
G
GC

(3)

The objective of the optimization problem is to minimize the FI , that is FI(β, d). Stringer base

angle β and the distance d between the rib tip and the stringer base tip are the two design variables,

so the optimization problem is defined as:

Minimize FI(β, d)

Subject to 0 ≤ β ≤ 60

0 ≤ d ≤ 47

(4)
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A Quasi-Newton method and a Genetic Algorithm (GA) [27] have been used to carry out the op-

timization. Quasi-Newton method is implemented in the function fmincon of the Optimization

ToolboxTM of the commercial software MATLAB R⃝ [28]. A Non-dominate Sorting Genetic Al-

gorithm II (NSGA-II) [29] is the variant used to achieve the optimization (implemented in the

Optimization ToolboxTM of MATLAB R⃝ ). In a previous work [30] NSGA-II was determined as

one of the most effective algorithms.

3.3. Data sampling

The use of adequate “training” sample is crucial to obtain acceptable accuracy of the RBF (Section

3.4). For this reason, the correct distribution of the analysed cases has to be considered. In

this study a Latin Hypercube Sampling (LHS) [31] has been used to guarantee the random, but

uniform, distribution of points.

In our study the rate of change of the FI with respect to the design variables takes the largest

values when 0 6 β 6 30. Consequently, a more dense zone of points is established in this part

of the design space (subregion 1, 2, 3 and 4 in Fig. 3). On the other hand, in order to capture

the behaviour of the model in the extreme cases, a LHS has been used to distribute points in these

specific regions. These points mark the limit of the design space with four “sets” of points, which

are distributed in: (β = 0) ∧ (0 6 d 6 47), (β = 60) ∧ (0 6 d 6 47), (d = 0) ∧ (0 6 β 6 60)

and (d = 47)∧ (0 6 β 6 60) . Finally, a sample of 400 points is created with all these cases (Fig.

3).

[Figure 3 about here.]

3.4. Radial Basis Functions

The RBF [32] interpolation method constructs an approximation function ψ determining the coef-

ficient c0, c1 and λi to generate a metamodel.

ψ = c0 + c1x+
n∑

i=1

λiφ(∥x− xi∥) (5)

where n is the data sample size, φ is the radial function chosen, xi is the observed input point

and ∥ · ∥ is the Euclidean distance. In our case, we can define five different functions: Linear
7



  

φ = r, cubic φ = r3, thinplate φ = r2 ln (r + 1), gaussian φ = exp
(
− r2

2ϕ2

)
and multiquadrics

φ =

√
1 +

r2

ϕ2
. Where r = ∥x − xi∥ and ϕ is a constant close to the average distance between

interpolation points. In addition, smoothing of the values of the RBF in the input points can be

carried out to avoid possible input data noise. This smoothing does not force the RBF to obtain a

result equal of a specific point of the input data. Thus, the smoothing value acts like the maximum

absolute difference between the data point and the approximation provided by RBF. An example

of the smoothing is shown in Fig. 4. An optimization with Quasi-Newton method to obtain the

optimal smooth values for each radial basis function has been carried out. The smooth value is

computed to obtain the minimum RMAE (Section 3.4.2).

[Figure 4 about here.]

In order to reduce the total computational time of the optimization, the FE model has been replaced

by the RBF. The automatic parametric model created with python and ABAQUSTM generates the

“training” sample which is used to construct the RBF. Each model calculated by ABAQUSTM is a

input point of the RBF.

3.4.1. Subregion

Sometimes a unique RBF cannot capture the global behaviour of the FE model. For this reason, it

is necessary to divide the design space into subregions. Thus, the global RBF has been generated

by five smaller RBF.

As a results of a non-linearity observed when 0 6 β 6 30 the design space has been divided in

four subregions in that zone. Only one subregion has been created when 30 < β 6 60 as a result

of a correct behaviour of RBF in that subregion. It has been checked that the continuity across

regions is acceptable. All the different subregions are numbered in Fig. 3.

3.4.2. Accuracy metrics

The accuracy of a metamodel is fundamental to obtain results close to the real case. According

to [33, 34] cross-validation error is a common choice to measure the accuracy of the metamodel.

In order to compare the different RBFs, a sample of confirmation points is needed. To obtain an
8



  

acceptable result comparison, a large sample of confirmation points is generated. LHS is used to

distribute 1000 points around the design space which are calculated with the FE model. These

design points will be compared with the result of the same point predicted by the RBF. Two

performance measures have been used to determine the accuracy of the different RBFs:

(a) Relative average absolute error (RAAE)

RAAE =

n∑
i=1

|yi − ŷi|

n · STD
(6)

(b) Relative maximum absolute error (RMAE)

RMAE =
max (|y1 − ŷ1|, |y2 − ŷ2|, . . . , |yn − ŷn|)

STD
(7)

where yi is the FE value, ŷi is the value predicted by the RBF, n is the sample size and STD is the

standard deviation of the “training” sample.

RAAE is an indicator of the global accuracy of the RBF. On the other hand, RMAE is more

sensitive to error in a specific zone of the design space. Both errors indicate higher accuracy of the

metamodel when their results decrease.

3.4.3. Verification of the RBF results

Once the different RBFs have been compared (and selected), a verification of the results obtained

is needed. Thus, the sample of confirmation points created to obtain RAAE and RMAE has been

used to compute the accuracy of the RBF. The mean of the relative error εr and the standard devi-

ation of the relative error σεr have been calculated to achieve a general overview of the accuracy

of the RBF.

εr =

n∑
i=1

εr

n
; εr =

|yi − ŷi|
yi

(8)

where εr is the relative error.
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4. Results and Discussion

The error of the subregions has been compared to determine the most accurate function to create

the RBF. In our case, a total of ten different radial functions have been compared: the five function

described above and their smoothings. RAAE and RMAE have been calculated for each radial

basis function and their subregions. The most accurate results have been obtained by using linear

smoothing (LS) and multiquadrics smoothing (MS). In an optimization process a reduced value

of RMAE is desired, since a large local error in the fitting could lead to a wrong location of the

optimal value. According to the results shown in Table 4, LS obtains a 1.07% lower than MS of

the mean value of the subregions of RMAE. For this reason, LS has been selected to create the

RBF to optimize the run-out.

[Table 4 about here.]

Once the RBF has been chosen the εr and σεr have been calculated. The obtained results are listed

in Table 5. All the results of εr are similar or smaller than 5%. This indicates a correct fit of the

RBF and verifies that the RBF is suitable to use in an optimization process. At the same time, it

was verified that the RBF and the finite element solution follow the same trend. Results also show

that σεr is significant but indicates that 95% of the data (according εr ±2σεr) have an absolute error

less than 10%. Also, it is observed that the best results are obtained in subregion 5. This is a new

indicator that in this subregion of the design space the variation (or noise) of the data is small and

it helps to obtain a RBF more precisely.

[Table 5 about here.]

Regarding computational time, each finite element model created needs about 1 minute consider-

ing re-meshing and solution. On the other hand, an evaluation of the RBF is achieved in about

0.005 seconds. Therefore, an optimization with RBF has been finished with about 1 second.

Approximately 17 hours would have been required to carry out the optimization with finite ele-

ment models. The used computer is a HP Compaq dx2400 Microtower with an Intel R⃝ CoreTM 2

Quad CPU Q8200 with 2.33GHz, 4GB of RAM with Ubuntu 14.04 LTS 64-bits and ABAQUSTM
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6.12-1 Standard. Quasi-Newton method needed approximately around 60 function evaluations (it

depends on the specific interval). On the other hand, the GA needed 51 generations and 1040

function evaluations.

Two different types of problems have been solved. First, those problems in which β needs to be

restricted to a short interval of values because of design/manufacturing reason and d may take any

value between the global considered bounds (coded as BG). Next, problems in which d has to be

restricted because of design/manufacturing reasons and β may take any value between 0◦ and 60◦

(coded as DG). Intervals of 10◦ of β for BG and intervals of 10 mm of d for DG are set (except the

last one that is established in 7 mm, DG5 in Table 6). The optimization has been carried out with

these different intervals and multiple results of FI have been obtained. Furthermore, the same

intervals have been calculated by Quasi-Newton method and GA.

In table 6 the variables and results using Quasi-Newton method (βQN, dQN and FIQN) and GA

(βGA, dGA and FIGA) are given. In BG problems, the optimal value of β is always the minimum

value of the interval under consideration. Moreover, the optimal value of dQN is always 47 mm

(except in the interval BG1 where a value close to 0 is obtained). On the other hand, dGA gets

different scattered values in general close to the lower bound of d. This is due to the fact that

the objective function depends strongly on β and only slightly on d. Since the GA only performs

evaluations of the objective function without computing gradients, the precision of the obtained

solution is lower than that achieved with the Quasi-Newton method. With these specific results and

observing FIGA of BG we can conclude that the values of FI are similar for d ≃ 0 mm or d = 47

mm. However, in general, better results are achieved with d = 47 mm because we observed that

FIGA has a mean of difference of 5.86% higher than FIQN. If DG is analysed we can observe

that βQN = βGA = 0◦ is the result obtained in all the cases for Quasi-Newton method and GAs.

This behaviour certifies that the minimum value of β leads to a minimum outcome of FI . On the

other hand, for those intervals under consideration where d < 20mm (DG1 and DG2), the optimal

value of d corresponds to the lower bound of the interval. When considering d between 20 and 30

mm (DG3), the optimal value of d is found at an intermediate point of the interval. Finally, for

d > 30mm (DG4 and DG5), the optimal value of d is always the upper bound of the interval under

consideration. These intervals achieve the minimum result of FI with the maximum value of d .
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To understand this behaviour, in Fig. 5 the evolution of B respect to d when β = 0◦ (DG cases)

is shown, revealing that from a certain value of d (between 25 and 30 mm) the mixed mode ratio

decreases substantially leading to a decrease of the failure index FI . In this moment, a minimum

value of FI is obtained with a maximum value of d . In DG only a 0.07% of difference is obtained

between the results of FIQN and FIGA.

The global optimum, without intervals, is β = 0◦; d = 5.85 mm and FI = 4.53.

[Table 6 about here.]

[Figure 5 about here.]

Both ANOVA and optimization results show that the influence of the β in the results is clear. When

β = 0◦ the value of FI is the smallest. This is because the area in the stringer base edge (where

the crack appears) decreases as β increases. This part of the stringer base resists and transmits all

the tensile stress applied to the panel. For this reason, when this area increases the strength of the

interaction panel-stringer increases accordingly. Then, the influence of d is not as significant as

that of β .

In the previous work [21], more sophisticated finite element models were carried out. This model

was solved in ABAQUSTM 6.12-1 Standard in which mixed-mode improved cohesive elements

[35] were added in the joint between the panel and the stringer to simulate the adhesive. All the

results of the present work agree with the results computed in the previous work [21] and the

experimental tests carried out by Greenhalgh and Garcia [11]. Both conclude that the stringer run-

out with β = 0◦ and d = 47 mm is the best design with the highest failure load. Furthermore in

[21] it is determined that the second best design is achieved with β = 0◦ and d = 0 mm. Therefore,

the method used in the present work is reliable since it obtains the same results as experimental

tests and finite element models with cohesive elements.

5. Conclusion

A process to design a damage tolerance optimization of composite stringer run-out under tensile

load has been presented. A preliminary study of the design variables has been carried out in order
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to determine the more influential ones in the opening of the crack between panel and stringer.

Metamodelling in terms of Radial Basis Function (RBF) have been used to substitute the results

of a finite element model. Moreover, the results of Quasi-Newton method and GA have been

compared.

The proposed method involves some trial-and-error process to determine a RBF that properly fits

the finite element model results. This process needs of a considerable amount of finite element

models. On the contrary, when the RBF is created with an acceptable error, the computational time

can be reduces considerably. The authors conclude that the proposed method permits the calcula-

tion of a composite material structure with reliability and reduce computational time, discarding

some non-influential design variables.

The obtained results show that:

− α and Lro have a very low influence on FI .

− β has an important contribution on FI . On the other hand, d has an influence but it is not

relevant enough.

− To obtain better results of FI the lower possible value of β should be used. Regarding d,

d ≃ 0 mm or d ≃ 47 mm could be used. Even though the FI are similar for d ≃ 0 mm and

d ≃ 47 mm, the second ones gives slightly better results when β ̸= 0◦.

− When β ≃ 0◦ and d ≃ 0 mm the optimum damage tolerance design is obtained.

− RBF is an acceptable metamodeling method which could be useful for similar optimization

problems.

− The quality of the initial sampling is vital to create an accurate RBF.

− The optimization of the RBF carried out by Quasi-Newton method is faster and obtains

better results than GAs.
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[30] Badalló P, Trias D, Marı́n L, Mayugo JA. A comparative study of genetic algorithms for the multi-objective

optimization of composite stringers under compression loads. Composites Part B: Engineering 2013;47(0):130–

6.

15



  

[31] Mckay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input variables

in the analysis of output from a computer code. Technometrics 1979;42(1):55–61.

[32] Dyn N, Levin D, Ripa S. Numerical procedures for surface fitting of scattered data by radial functions. Journal

Scientific and Statistical Computing 1986;7(2):639–59.

[33] Jin R, Chen W, Simpson TW. Comparative studies of metamodelling techniques under multiple modelling

criteria. Structural and Multidisciplinary Optimization 2001;23(1):1–13.

[34] Arian Nik M, Fayazbakhsh K, Pasini D, Lessard L. A comparative study of metamodeling methods for the

design optimization of variable stiffness composites. Composite Structures 2014;107:494–501.

[35] Turon A, Camanho PP, Costa J, Renart J. Accurate simulation of delamination growth under mixed-mode

loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Composite Structures

2010;92(8):1857–64.
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Figure 1: Schematic representation of the test and the initial design variables.
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Figure 2: Details of the finite element model.
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Figure 3: Initial data sampling.

20



  

Figure 4: Exemple of smoothed RBF.
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Figure 5: B vs. d when β = 0◦.
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Material Property Value Units Description

AS4/8552⋆

Exx 135 GPa Young’s modulus in fiber direction.

Eyy 9.6 GPa
Young’s modulus in transversal
fiber direction.

Ezz 9.6 GPa
Estimated Eyy = Ezz.
(transversally isotropic material).

νxy 0.32 - Poisson’s modulus in XY plane.

νxz 0.32 -
Estimated νxy = νxz.
(transversally isotropic material).

νyz 0.487 - Poisson’s modulus in YZ plane.
Gxy 5.3 GPa Shear modulus in XY plane.

Gxz 5.3 GPa
Estimated Gxy = Gxz

(transversally isotropic material).
Gyz 3.228 GPa Shear modulus in YZ plane.
XT 2207 MPa Longitudinal tensile strength.
XC 1531 MPa Longitudinal compressive strength.
YT 80.7 MPa Transverse tensile strength.
YC 199.8 MPa Transverse compressive strength.
SLUD 114.5 MPa In-plane shear strength.
GIC

† 0.2839 N/mm Critical fracture energy in mode I.
GIIC

‡ 1.0985 N/mm Critical fracture energy in mode II.
ρ 1.59 ·10−9 T/mm3 Density.

FM-300K

GIC 1.084 N/mm Critical fracture energy in mode I.
GIIC 4.931 N/mm Critical fracture energy in mode II.

η 6.5687 -
Benzeggagh-Kenane interaction
parameter between modes.

⋆ Source: [36]
† Source: [37]
‡ Source: [38]

Table 1: AS4/8552 and FM-300K properties.

24



  

Element Computation Out-of-plane Reaction
type time [s] displacement [mm] force [N]

C3D8 756 5.569 153 177
C3D8I 1445 5.062 153 629
C3D8R 161 5.694 152 961
C3D20 3402 5.135 153 064

C3D20R 1783 5.135 153 058
SC8R 34 5.048 153 271

Table 2: Results of comparative study of the element type.
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Variable p-value
α 0.6300
β 2.5351 ·10−10

d 0.0624
Lro 0.6246

Table 3: Results of the ANOVA test.
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Error type RBF subregion
Linear Multiquadrics

smoothing smoothing

RAAE

1 0.3345 0.3037
2 0.3650 0.3203
3 0.6093 0.5803
4 0.6342 0.6281
5 0.2444 0.2163

RMAE

1 0.6812 0.6942
2 0.7420 0.8228
3 1.4112 1.3642
4 1.5559 1.6625
5 1.0094 0.9144

Table 4: Comparative error of RBF.
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Linear smoothing
RBF subregion εr [%] σεr

1 4.0970 2.2634
2 4.4413 2.5957
3 5.1949 2.6179
4 4.9158 3.0145
5 1.9518 1.8924

Table 5: Results of LS of the RBF.
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Code β interval [◦] d interval [mm]
Quasi-Newton method Genetic Algorithm

βQN [◦] dQN [mm] FIQN βGA [◦] dGA [mm] FIGA

BG1 0-10

0-47

0 5.85 4.53 0 5.85 4.53
BG2 10-20 10 47 7.56 10 2.73 7.69
BG3 20-30 20 47 8.17 20 0.66 8.75
BG4 30-40 30 47 8.51 30 5.87 9.30
BG5 40-50 40 47 9.48 40 4.64 10.29
BG6 50-60 50 47 10.32 50 15.13 10.82
DG1

0-60

0-10 0 5.85 4.53 0 5.85 4.53
DG2 10-20 0 10 5.07 0 10 5.07
DG3 20-30 0 23.5 4.59 0 23.5 4.59
DG4 30-40 0 40 5.54 0 39.37 5.55
DG5 40-47 0 47 5.51 0 45.77 5.52

Table 6: Interval optimums.
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