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„And during this trip I was fascinated by two amazing eddies:  

 

One was very intermittent, but splendorous while here. Brighter than 

most, I could not stop watching it, captivated by the light until suddenly, its 

existence weakened. Weakened so as almost to disappear… but no, it returned 

and showed its light once again. It was spectacular. Then one day it decided not 

to come. I do miss it a lot from here. 

The other is still near. Strengthened over time. I feel its power; it is 

beautiful and majestic. I see the light shinning through and I am overjoyed to 

see its brilliance grow everyday. Maybe something is feeding it….‟ 

 

To my parents, with love 
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ABSTRACT 

 

Turbulence intermittency in natural waters is particularly relevant as it 

influences so many different processes on a wide range of scales, consequently 

affecting the transport of mass, moment and solutes. Measuring turbulence in 

natural water systems is still difficult to perform however, and even more so 

when focusing on intermittency which, depending on the scales, is defined as 

external (large scales) or internal (small scales). In this work, and based on two 

different experimental datasets suitable for describing both types of 

intermittency, we sought to enhance the knowledge regarding each of these two 

views independently.  

The study of external intermittency attempts to broaden the actual state 

of knowledge by analysing turbulent events in a situation which has yet to be 

studied in depth. We present the analysis of new measurements taken in Lake 

Banyoles during the summer and in light wind conditions (<3 ms-1).  Powerful 

wind gusts (wind speeds above 6 ms-1) of an episodic nature which occurred 

during the study period were also analysed. Turbulent patches were detected 

by using a new methodology based on small-scale measurements of 

temperature and shear. Patches were determined based on inspection of pairs 

of Thorpe displacement and shear profiles, and criteria related to accuracy of 

the sensors and noise level of the signal. Then, the analysis using Thorpe scales 

was performed within the patch, which in turn provided new and far more 

realistic results in comparison to other studies.  

We mainly focused on the thermocline of the lake, where shear-induced 

turbulence is patchy. Data confirmed that the distribution of the patch size hp is 

log-normal with the mean and median values being 0.69 m and 0.50 m, 

respectively. The distribution of the patch Thorpe LTp scale within the patches 

also fits to a log-normal model. However, the probability distribution of the 

normalized Thorpe pTp hL  scale is better approximated by the Weibull 

probability model with a shape parameter cw 2, and also by the beta 
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probability distribution which coincides with the Weibull model for the upper 

95% of the entire data set. For hp > 25 cm, the ratio  pTp hL  depends on the 

patch Richardson and the mixing Reynolds numbers following the 

parameterization proposed by Lozovatsky and Fernando (2002) for patches 

detected in ocean and marine coastal waters.  

Based on the patch analysis, the averaged vertical diffusivities in the 

thermocline were found to range from ~110-4 m2s-1 to ~510-5 m2s-1, depending 

on the phase of the dominating internal wave mode on the lake. Episodic wind 

gusts transfer ~1.6% of the wind energy to the thermocline and ~0.7% to the 

bottom layer, thus generating large microstructure patches with hp of several 

meters. 

 On the other hand, internal intermittency has been analyzed based on 

velocity data. Measurements were taken above the bottom in a shallow reversal 

tidal flow on the continental shelf of the Yellow Sea using an Acoustic Doppler 

Velocimeter. To the best of our knowledge, this is the first time that this type of 

analysis using this instrumentation has been performed. The order of 

magnitude of the mean dissipation rates during measuring ranged between 10-7 

and 10-5 Wkg-1. 

Structure functions of the vertical component of the velocity and moments 

of the small-scale dissipation field have been used to characterize internal 

intermittency. The exponents of the structure functions have been fitted to the 

log-Lévy and log-normal multifractal models. For energetic episodes (flooding 

tidal phases) the values of the intermittent parameters are ~  ≈ 0.24, 1C
~

 ≈ 0.15 

and ~  ≈ 1.5, i.e. close to the expected values for fully developed turbulence. 

However, for relatively low Reynolds numbers the intermittency parameters 1C  

and   deviate from the previous classical values and increase their values up to 

1C ~0.25-0.35 and  ~0.5-0.6.  

These same dependencies in the intermittency parameters of the Reynolds 

number, i.e.  , 1C   decreasing with high Reynolds and  decreasing,  are also 

observed from the analysis of the scaling exponents of the moments of the 
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small-scale dissipation rate . A possible explanation for different values 

obtained from the two methodologies might be related to the estimation of the 

the small-scale dissipation rate (isotropy). 

The large departure of the intermittency parameters from the universal 

turbulent regime at lower Reynolds number observed in both methods could be 

attributed to the intermittency of underdeveloped turbulence.  

The multifractal analysis using the SF method gives asymptotic values of 

0 1.5, 0

1C 0.13 and 23.00   which are close to the results expected for fully 

developed turbulence, i.e. very high Reynolds numbers. However, the 

multifractal analysis for the small-scale dissipation field ,  calculated by its 

isotropic formula, gives asymptotic values that are a little higher; 0

 1.6, 

0

1C 0.20 and 34.00  . However, it is important to note that the datasets for 

the estimation of intermittency parameters using the small-scale dissipation 

field is smaller than that in the SF method and the Reynolds number range is 

narrow. It could explain the discrepancies observed in both methods.  
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RESUM 

 

En els sistemes aquàtics naturals el comportament intermitent de la 

turbulència és d‟una gran importància ja que condiciona molts dels processos 

que s‟hi produeixen i a més en un ventall d‟escales molt ampli, afectant al 

transport de massa, de moment i de soluts. Malgrat tot, en aquests sistemes les 

mesures de turbulència són encara difícils de realitzar i més encara si es té en 

compte la intermitència, que segons a les escales que afecti pot ser externa 

(escales grans) o interna (escales petites). En aquest treball s‟ha volgut 

aprofundir en el concepte d‟intermitència, en el seu sentit més genèric. Per fer-

ho, s‟han utilitzat dos conjunts de dades experimentals que han permès tractar 

de manera independent aquestes dues visions que es té del fenomen de la 

intermitència.  

L‟estudi realitzat sobre intermitència externa pretén ampliar el 

coneixement que se‟n té actualment, analitzant episodis turbulents en una 

situació que fins ara no havia estat estudiada en detall. En el treball es presenta 

l‟anàlisi de noves mesures preses a l‟Estany de Banyoles durant l‟estiu amb 

presència de vents febles sota règim de marinada ( < 3 ms-1). Durant la 

campanya es van detectar cops de vent forts esporàdics (amb velocitats 

superiors a 6 ms-1) detectats durant la campanya i que també han estat 

analitzats en detall. Els claps turbulents a la columna d‟aigua s‟han detectat 

utilitzant un nova metodologia, basada en mesures de microestructura 

(temperatura i cisallament).  Els claps s‟han determinat mitjançant l‟anàlisi 

simultània de perfils de desplaçaments de Thorpe i de cisallament,  així com 

criteris relacionats amb la precisió dels sensors i el nivell de soroll al senyal. Un 

cop detectats, s‟ha fet l‟anàlisi de les escales de Thorpe en els claps, cosa que ha 

permès obtenir uns resultats més reals si es comparen amb aquells obtinguts en 

altres treballs. 

L‟estudi s‟ha centrat en l‟estudi dels claps turbulents en el termoclina de 

l‟estany, on aquests es produeixen per cisallament. Les dades han confirmat que 
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la distribució de la mida dels claps, hp, és log-normal amb valors de la mitjana i 

de la mediana per hp de 0.69 m i 0.5 m respectivament. L‟escala de Thorpe, LTp, 

avaluada en els claps, també s‟ajusta a una distribució log-normal. En canvi, la 

distribució de l‟escala normalitzada de Thorpe, pTp hL , s‟aproxima millor a la 

distribució de Weibull amb paràmetre de forma cw 2 i també a la distribució 

beta; les dues s‟ajusten molt bé a aquestes distribucions per a un       95% del 

rang de les dades. A més, per claps de mida hp > 25  cm, aquesta escala 

normalitzada, i.e. pTp hL , segueix bé la parametrització proposada per 

Lozovatsky i Fernando (2002) determinada partir de claps detectats a l‟oceà  i a 

zones marines i costeres. 

El valor promig de la difusivitat avaluat en el termoclina i calculat 

mitjançant l‟anàlisi de claps dona valors que oscil·len entre ~ 110-4 m2s-1 i           

~ 510-5 m2s-1  depenent de la fase del mode dominant de l‟ona interna present a 

l‟estany. A més, s‟ha determinat que els cops de vent forts i esporàdics 

observats durant la campanya transfereixen ~ 1.6 % de l‟energia del vent a la 

termoclina i ~0.7 % de la seva energia a la capa de fons, generant claps de 

microstructura d‟uns quants metres dins la columna d‟aigua. 

D‟altra banda també s‟ha analitzat la intermitència interna a partir de 

dades d‟un corrent de fons de marea en una zona somera de la placa 

continental al Mar Grog (nord-est del Mar de la Xina). Les dades han estat 

obtingudes mitjançant la instrumentació ADV („Acoustic Doppler 

Velocimeter‟), essent la primera vegada que nosaltres coneguem que es realitza 

una anàlisi d‟aquest tipus en aquests sistemes i amb aquesta instrumentació. 

L‟ordre de magnitud de les dissipacions oscil·lava entre 10-7 i 10-5 Wkg-1. 

En l‟estudi s‟han utilitzat les funcions d‟estructura calculades a partir de la 

component vertical de la velocitat així com els moments de la dissipació 

d‟energia cinètica turbulenta a petita escala per tal de caracteritzar la 

intermitència interna. Així els exponents de les funcions d‟estructura s‟han 

ajustat als models multrifactal basat en la distribució de log-Lévy i al model  

log-normal. Per aquells casos d‟episodis molt energètics, corresponents a les 

fases de plenamar, els valors dels paràmetres d‟intermitència són ~   ≈  0.24,   
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1C
~

 ≈ 0.15 and ~  ≈ 1.5, molt propers als esperats per turbulència completament 

desenvolupada. En canvi, per nombre de Reynolds relativament baixos, els 

paràmetres d‟intermitència 1C  i  es desvien dels valors esperats, augmentant 

fins a valors de 1C  ~ 0.25 - 0.35 i   ~ 0.5 - 0.6.  

Aquestes mateixes dependències per als paràmetres d‟intermitència 

s‟han observat a partir de l‟anàlisi realitzat amb els exponents d‟escalatge 

obtinguts per als moments de la dissipació d‟energia cinètica turbulenta a petita 

escala (disminució de   i 1C  i augment de  quan augmenta el nombre de 

Reynolds). Una possible explicació per a les diferències observades en els valors 

dels paràmetres d‟intermitència obtinguts pels dos mètodes podrien estar 

relacionats amb l‟ús d‟aproximacions (isotropia) en el càlcul del camp de 

dissipació de l‟energia cinètica turbulenta a escala petita 

Les desviacions dels parametres d‟intermitència respecte als valors 

universals observades que s‟han observat per nombre de Reynolds baixos es 

podrien atribuir al fet que s‟estudia intermitència per al cas de turbulència que 

no està completament desenvolupada.  

De l‟anàlisi multifractal obtingut mitjançant les funcions d‟estructura 

s‟observa que els valors asimptòtics per als paràmetres d‟intermitència 

tendeixen a 0 1.5, 0

1C 0.13 i 23.00  , essent valors molt propers als 

esperats per turbulència completament desenvolupada (és adir, pel cas de 

nombres de Reynolds molt alts). En canvi, fent-ho a partir dels moments de la 

dissipació a petita escala, estimada assumint isotropia,  s‟obtenen uns valors 

que són una mica superiors: 0

 1.6, 0

1C 0.20 i 34.00  . Cal tenir en compte 

però que el conjunt de segments utilitzats en aquest darrer cas és més reduït i el 

rang de possibles valors per al nombre de Reynols és més petit, cosa que podria 

explicar aquestes discrepàncies observades. 
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RESUMEN 

 

En los sistemas acuáticos naturales el comportamiento intermitente de la 

turbulencia es de gran importancia ya que condiciona muchos de sus  procesos 

que se producen en él y además en un rango muy amplio de escalas, afectando 

el transporte de masa, momento y solutos. No obstante, las medidas de 

turbulencia en estos sistemas son aún difíciles de realizar y todavía más si se 

considera el efecto de la intermitencia, que según las escalas a las que afecte se 

identifica como externa (escalas grandes) o interna (escalas pequeñas). Este 

trabajo pretende profundizar en el concepto de la intermitencia, en su sentido 

más genérico. Con este fin se han utilizado dos conjuntos de datos 

experimentales distintos, que han permitido analizar estas dos visiones que se 

tiene del fenómeno de la intermitencia y de manera independiente.  

El estudio realizado sobre intermitencia externa pretende ampliar el 

conocimiento que se tiene actualmente del fenómeno, analizando los episodios 

turbulentos en  una situación que hasta ahora no se había estudiado con detalle. 

En el trabajo se presentan y analizan nuevas medidas realizadas en el Lago de 

Banyoles durante el verano y bajo el régimen de brisas suaves (< 3 ms-1). Esto 

incluye también el análisis de ráfagas fuertes de viento y de corta duración (con 

velocidades superiores a 6 ms-1) observadas durante la campaña. Los parches 

de turbulencia se han identificado en la columna de agua mediante una nueva 

metodología basada en datos de microstructura (temperatura y cizallamiento). 

Estos parches se determinaron mediante el análisis simultáneo de perfiles de 

desplazamientos de Thorpe y de cizallamiento, así como usando criterios 

relacionados con la precisión de los sensores y el nivel de ruido observado en 

los datos registrados. A partir de éstos se ha analizado la escala de Thorpe en 

estos parches, que da un enfoque más real a los resultados en comparación con 

los obtenidos en otros estudios. 
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El estudio se ha centrado en el estudio de los parches de turbulencia en la 

termoclina del lago, donde éstos se generan por cizallamiento. Los datos han 

confirmado que la distribución del tamaño de los parches, hp, es log-normal 

(con media y mediana de valor  0.69 m y 0.5 m respectivamente). La escala de 

Thorpe, LTp, se ajusta también a una distribución log-normal. No obstante, la 

distribución de la escala normalizada de Thorpe pTp hL se aproxima mejor a 

una distribución de Weibull con parámetro de forma  cw 2 y también a una 

distribución beta (las dos ajustan bien para un 95 % del conjunto de los datos). 

Para parches con tamaño hp > 25 cm, la escala pTp hL presenta un buen ajuste a 

la parametrización propuesta por Lozovatsky y Fernando (2002), determinada a 

partir de parches detectados en el océano y en zonas marinas costeras.  

Mediante el análisis de parches de turbulencia se ha calculado el valor 

promedio de la difusividad en la termoclina y se han obtenido valores que 

oscilan entre ~110-4 m2s-1 y  ~510-5 m2s-1, dependiendo de la fase del modo 

dominante de la onda interna presente en el lago. Además, se ha determinado 

que las ráfagas esporádicas de viento transfieren ~1.6 % de la energía del viento 

a la termoclina y ~0.7 % de su energía a la capa de fondo, generando episodios 

turbulentos que abarcan unos cuantos metros en el interior de la columna de 

agua. 

La intermitencia interna ha sido analizada a partir de los datos de una 

corriente de fondo de marea obtenidos en una zona poco profunda de la placa 

continental en el Mar Amarillo (noreste del Mar de la China). Los datos se han 

registrado mediante instrumentación ADV („Acoustic Doppler Velocimeter‟) 

siendo la primera vez, según nuestro conocimiento, que un análisis de este tipo 

realiza en estos sistemas y con este tipo de instrumentación. El orden de 

magnitud de las estimaciones de la disipación de la energía cinética turbulenta 

osciló entre 10-7 y 10-5 Wkg-1. 

Para caracterizar la intermitencia interna se han analizado las funciones 

de estructura calculadas a partir de la componente vertical de la velocidad así 

como los momentos para la disipación de la energía cinética turbulenta a 

escalas pequeñas. Los exponentes de las funciones de estructura se han ajustado 
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a los modelo multifractal basados en las distribución de log-Lévy y al modelo 

log-normal. Para casos de episodios muy energéticos (fases de pleamar), se han 

encontrado valores de los parámetros de intermitencia de ~  ≈ 0.24, 1C
~

 ≈ 0.15 y 

~  ≈ 1.5, muy cercanos a los esperados para el caso de turbulencia 

completamente desarrollada. Por el contrario, cuando el número de Reynolds es 

relativamente pequeño, los parámetros de intermitencia 1C  y  se desvían de 

los valores esperados, y se obtienen valores de 1C ~0.25-0.35 y ~0.5-0.6.  

Estas mismas dependencias de los parámetros de intermitencia se han 

observado a partir del análisis realizado con los exponentes de escalado 

utilizando los momentos de la disipación a escala pequeña (disminución de   y 

1C  y aumento de  cuando aumenta el número de Reynolds). Una posible 

explicación a las diferencias observadas para los valores de los parámetros de 

intermitencia obtenidos mediante los dos métodos podría tener su origen en el 

uso de aproximaciones (isotropía) en el cálculo de la disipación de la energía 

cinética turbulenta a escala pequeña. 

 Las desviaciones de los parámetros de intermitencia respecto a los 

valores universales para números de Reynolds pequeños podrían atribuirse a 

que la turbulencia no está completamente desarrollada.  

Los valores asintóticos de los parámetros de intermitencia obtenidos 

mediante el ajuste a una función de los exponentes de las funciones de 

estructura tienden a 0 1.5, 0

1C 0.13 y 23.00  , valores que son muy 

cercanos a los esperados en el caso de turbulencia completamente desarrollada 

(correspondientes a números de Reynolds elevados). No obstante, cuando se 

utilizan los momentos de la disipación a pequeña escala, calculada asumiendo 

isotropía, se obtienen unos valores que son un poco superiores: 0

 1.6, 0

1C

0.20 y 34.00  . No obstante, cabe remarcar que el conjunto de segmentos 

utilitzados en este último caso es más reducido y el rango de posibles valores 

para el número de Reynolds es también más pequeño, cosa que podría explicar 

las discrepancias observadas en los dos métodos. 
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 General Introduction 1.
 

 The scope of the thesis 1.1.

 

Turbulence is ubiquitous in Nature. Being present on such an enormous 

range of scales, from the smallest to the largest, it influences a vast many 

aspects of our lives. For example, those motions we observe when mixing milk 

into our coffee or when our bodies move through the water are turbulent. 

Turbulence exhibits chaotic, unpredictable and highly non-linear behavior 

resulting in characteristic structures (eddies) responsible for high levels of 

mixing, diffusion and dissipation. Generally speaking, turbulence involves a set 

of eddies that move and interact with each other in a flow. 

In a turbulent flow, turbulent motions do not completely fill all of its volume 

but rather they are clustered in turbulent regions (patches). They appear 

episodically at different locations of the flow, alternating with laminar or 

quiescent regions (Mahrt, 1989; Gavrilov et al., 2005; Cava and Katul, 2009). 

Such behaviour is usually known as external or mesoscale intermittency. In 

addition, inside these so-called patches, the energy or the scalar dissipation 

rates demonstrate strong fluctuations concentrated in small subregions 

(Anselmet et al., 1984; Meneveau and Sreenivasan, 1991; Zhou et al., 2005). They 

are attributed to the random inhomogeneous spatial distribution of vortex 

filaments where they stretch and dissipate energy in isolation (Kuo and Corrsin, 

1971). This phenomenon is usually referred to as internal or small-scale 

intermittency. Then in its broadest sense, intermittency involves two aspects: 

one is related to the clustering of turbulence, while the other is related to 

amplitude of small-scale fluctuations inside those clusters. 

Geophysical environments such as oceans, seas, lakes and reservoirs are 

usually stratified systems where advection often results in varying degrees of 

turbulence. In theses systems, intermittency is a characteristic phenomenon. In 



Intermittency of Turbulence in Natural Waters 

 

 

 - 6 - 

recent decades intermittency has received a great deal of attention because of its 

influence on energy, heat, mass, nutrients and oxygen fluxes through the water 

column (Seuront et al., 1999; Seuront et al., 2001; Tweddle et al., 2013). For 

instance, wind energizes basin-scale surface and internal wave fields (Imberger,  

1998; Wüest et al., 2000) creating shear instabilities and internal wave breaking 

which, in turn, favor the formation of patches of turbulence (Nishri et al., 2000; 

Staquet and Bouruet-Aubertot, 2001; Etemad-Sahidi and Imberger, 2006)  

Furthermore, inside these patches small-scale turbulent oscillations affect other 

processes such as chemical reactions (Seuront and Schmitt, 2005) or 

aggregation, incubation and foraging processes of small-scale planktonic 

organisms (Druet, 2003). 

As described above, winds contribute to the onset and persistence of 

turbulent patches. However, small and medium-size basins are exposed to low 

winds most of the time (Kocsis et al., 1998; Wüest et al., 2000; Gale et al., 2006) 

so, although studies of mixing under low wind regimes are rare, such studies 

are imperative for those systems. Recently, the importance of ocean dynamics 

under low winds has been also stated (Hood et al., 2010). Wind gusts can 

generate intense but short-lived turbulent patches in inner stratified layers 

which influence the biochemical and physical processes occurring in the water 

body (Lozovatsky et al., 2005; Evans et al., 2008). 

Turbulent events become especially relevant in the thermocline as they 

drive any exchange between the interior and the upper surface layer (Washburn 

and Gibson, 1984; Rosenblum and Marmorino, 1990; Saggio and Imberger, 2001; 

MacIntyre et al., 2009). Their frequency of occurrence, i.e. the degree of 

intermittency,  is important in phytoplankton productivity (Moreno-Ostos et al., 

2006; Hendelman, 2009). Therefore in order to better understand the fluxes 

between the layers it is crucial to question how often turbulence occurs in the 

thermocline and under what conditions.  

Turbulence in the thermocline is patchy, mostly triggered by shear and 

internal wave breaking and often not very energetic (Imberger and Paterson, 

1990; Gibson, 1991b). It has been studied in more controlled stratified systems 
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such as in laboratory experiments (De Silva et al., 1996; Wells and Helfrich, 

2004) and numerical modeling (Smyth et al., 2001; Inoue and Smyth, 2009) but 

the application to field experiments still remains an open question. 

Inside the patches intermittency is relevant in different small-scale 

processes such as the viscous dissipation of energy, biochemical processes, 

thermal convection and the redistribution of salinity concentration or 

multi/double diffusive convective fluxes (Sanchez and Roget, 2007). Other 

physical processes, such as the propagation of light and sound (Tyson, 1991; 

Colosi et al., 1999), are also influenced by turbulent small-scale fluctuations.  

When applied to aquatic ecosystems, strong small-scale fluctuations affect 

the encounter rates of small-sized predators and their prey (Delaney, 2003; 

Rhodes and Reynolds, 2007) as well as ingestion rates (Shimeta et al., 1995; Saiz 

et al., 2003), particle aggregation and disaggregation (Jago et al., 2006) and 

small-scale patchiness of nutrients (Seuront et al., 2001; Schernewski et al., 

2005). Also small-scale intermittency affects phyto and zooplankton species less 

than several millimeters in size (Peters and Marrase, 2000), or more specifically, 

floating microscopic algae that are responsible for photosynthesis in coastal 

oceans (Margalef, 1987). However, zooplankton larger than ~1 cm does not 

usually react to small-scale intermittency (Squires and Yamazaki, 1995). In 

particular, studies on phytoplankton patchiness found that it substantially 

increased the predator-prey encounter rate (Seuront et al., 2001). In addition, 

the patchiness of small-scale phytoplankton distribution in a tidal current 

increased with decreasing turbulence intensity and varied depending on the 

phase of tidal cycle (Seuront and Schmitt, 2005).  

A complete description of intermittency requires a statistical analysis of 

turbulent variables such as turbulent scales, fluctuations of dissipation or other 

scalar fields which should be performed in appropriate turbulent segments. 

Although traditional methods have been working with equal-distance 

segmentation (Lorke and Wüest, 2002; Lozovatsky et al., 2008c; Paka et al., 

2013), more recent research has employed analysis procedures inside well-

defined, bounded turbulent regions (Piera et al., 2002; Fer et al., 2004; Preusse et 
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al., 2010). Different studies found in the literature have demonstrated that the 

statistics of the vertical and horizontal sizes of the turbulent patches are 

subjected to specific features (Lozovatsky et al., 1993; Stansfield et al., 2001; 

Lorke and Wüest, 2002). In particular, the probability distributions of turbulent 

scales are found to be clearly skewed towards high values and have been well 

approximated to log-normal distributions (Wijesekera et al., 1993; Lozovatsky 

and Fernando, 2002; Thompson et al., 2007). This information has revealed a 

useful tool for modeling, where turbulent scales are introduced as parameters 

in closures (Piera et al., 2006; Klymak et al., 2010), and in the calculation of  

biochemical quantities. An example of this latter case is the estimation of 

photosynthetic rates, which requires the parameterization of the vertical 

movement of phytoplankton usually performed with the help of turbulent 

scales and vertical diffusivities (Lande and Lewis, 1989; Yamazaki and 

Kamykowski, 1991).  

Alternatively, Kolmogorov (1941) described the statistics of small-scale 

turbulence, whereby for homogeneous and isotropic turbulence, the moments 

of order p of the velocity increases between two points separated by a distance r 

(structure functions) scale on r, with scaling exponents  p  = 3p . However, 

to account for the effects of strong fluctuations in the TKE dissipation rate, 

Kolmogorov modified his original idea and postulated the refined similarity 

hypothesis (RSH). In this theory, the structure functions in the inertial subrange 

were conditioned on the local averages of the energy dissipation rate, r , over a 

sphere of radius r, with  r <<L, where L is the characteristic scale of the energy 

input. In this model, the variability of r was considered as log-normally 

distributed and characterized by the parameter , which is known as the 

intermittency exponent and related to the stretching of the distribution of the 

logarithm of r . Later, the log-normal model was formalized by Monin and 

Yaglom (1967) in their multiplicative turbulent cascade model of r  for fully 

developed turbulence. However, the log-normal approach has been questioned 

by many researchers, who, in the inertial subrange, explored the dependence on 
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r of the statistics of velocity differences and dissipation rates so as to provide a 

more convincing explanation for intermittency (Frisch et al., 1978; Benzi et al., 

1984; Frisch and Parisi, 1985; Yamazaki, 1990). Recent models have been 

working within a multifractal framework (Schertzer and Lovejoy, 1987; Schmitt 

et al., 1994; Seuront et al., 2005), where the log-normal distribution is a 

particular case. However, there is still debate as to whether dissipation and 

scalar rates are log-normally distributed or fit better in a universal multifractal 

context.   

The abovementioned phenomenological models of turbulence are based 

on the fact that, at high Reynolds numbers, the small scales in the inertial 

subrange are statistically independent of the large scales. Under this premise,  

the intermittency exponent   is assumed to be a universal constant. In the 

particular case of the energy dissipation field, extensive research has been done 

into atmospheric, laboratory and numerical simulations (Sreenivasan and 

Antonia, 1997, Lauren et al., 2001; Zhou et al., 2006.), which have reported 

values of  ~ 0.25 for fully developed turbulence.  It is worthy noting that this 

has not been extensively studied in natural waters, such as within the turbulent 

patches of the thermocline or in the boundary layers. In particular, Wijesekera 

et al. (1993) found higher values of   ( ~ 0.4) when analyzing internal 

intermittency within the turbulent patches in the pycnocline of the ocean. 

Because patch turbulence is usually associated with moderate and low 

Reynolds numbers, this has raised concerns as to how that exponent behaves in 

such conditions. Nevertheless, it not only has to be performed in a specific 

aquatic environment, but also cover a wide range of those numbers, which, to 

the best of our knowledge,  has not yet been explored.  

 

 Goals 1.2.

 

Our aim is to provide a statistical description of the intermittency of 

turbulence  that would contribute to a better understanding of both internal and 
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external intermittency in natural waters. In this work, we present a discussion 

on the intermittency of turbulence by considering two specific environs: i) the 

thermocline of a small stratified lake and ii) the bottom boundary layer in a 

shallow tidal sea.  

The first goal of this study was to analyze the external intermittency  of 

turbulence based on patchiness statistics in a stratified water environment. We 

proposed analyzing the probability distributions of relevant turbulent scales 

and estimating effective turbulent diffusivities and associated buoyancy fluxes 

caused by intermittent mixing events.  For this study, measurements were taken 

during the summer at Lake Banyoles, a small sheared strongly stratified lake, in 

order to obtain a representative sampling of patches.  

The second goal was to investigate the internal intermittency of turbulence 

within the turbulent regions of a specific environment. Unfortunately, the 

turbulent patches detected in the thermocline of Lake Banyoles were too small 

(patch size mean ~ 0.5 m and maximum sizes ~ 3 m) and the surface and 

bottom layers were too thin to perform accurate statistical analysis of internal 

intermittency.   

Internal intermittency was analyzed in the bottom boundary layer of a tidal 

flow based on the analysis of the velocity field and also the turbulent energy 

dissipation rates estimated from these velocity data. To the best of our 

knowledge is the first time that this study had ever been done. We analyzed the 

possible dependence of the intermittent parameters on the microscale Reynolds 

number. Measurements for this study were obtained from a field campaign 

carried out in a tidal flow on a shallow shelf located on the north-east coast of 

China. 

  Outline 1.3.

 

This thesis has been divided into eight chapters. The first three chapters 

focus on researching  external intermittency in the thermocline of a small lake 

under low winds. The following three chapters ( Chapters 5, 6 and 7) deal with 
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internal intermittency in the bottom layer of a non-stratified tidal flow. Both 

case studies follow the same structure, with the first chapter providing an 

overview of the phenomenon, the second chapter describing the measurements 

and data processing and finally, the third chapter showing the results and 

centering on the discussion. Conclusions and the bibliography make up the 

final two chapters of the thesis. To provide an overall outline of the thesis, a 

brief description of each chapter is detailed next. 

  In Chapter 2 we review the phenomenon of external intermittency by 

focusing on stratified natural waters. This includes the basic concepts of 

stratified shear-induced turbulence, a review of the experimental research on 

turbulent patches and a description of procedures for patch identification.  

Chapter 3 focuses on the measurements taken in Lake Banyoles, (a 

stratified small lake), using a free-falling microstructure profiler. It also includes 

the CTD data processing required to characterize the water column structure 

and the microstructure measurements which enable the turbulent parameters 

for the patches to be evaluated. 

In Chapter 4 we show the results for the external intermittency in the 

lake and under low winds. First we describe and apply the new methodology 

for patch identification and then we present the basic characteristics of 

stratification, internal seiches and turbulence in the lake. Next, we present the 

statistics of the turbulent scales in the thermocline (patch sizes, Thorpe scales 

and normalized Thorpe scales within the patches) and we test a possible 

parameterization for the ratio normalized Thorpe scale. Finally, we estimate the 

effective diffusivities and buoyancy fluxes across the thermocline.  

In Chapter 5 we compile the conceptual framework of the internal 

intermittency of turbulence. Focusing on the universal multifractal model, we 

describe several techniques of analysis that will be used later in the study.  

Chapter 6 describes the measurements of a shallow tidal flow which were 

taken near the bottom of a coastal zone in the Yellow Sea and obtained using an 

Acoustic Doppler Velocimeter (ADV). Furthermore, the data processing for 
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obtaining the turbulent energy dissipation rate, mean and small-scale values, is 

presented. 

In Chapter 7 we show the results for internal intermittency of near-bottom 

turbulence. We present and compare the intermittent parameters estimated 

using the velocity field directly and using the dissipation rate field. 

Furthermore, the dependence of previous parameters on the internal flow 

parameters (turbulent Reynolds number) is discussed. The summary and 

conclusions are also given in Chapter 8.  In Chapter 9 the bibliography used for 

our work is presented.  

Complementary material is provided in the Appendixes: Appendix A is 

related to the basic aspects of turbulence and the estimation of turbulent kinetic 

energy rates and vertical diffusivities. In Appendix B we describe the basic 

properties of the log-normal distribution. Appendix C offers a review of 

different improvements made to several of the multiplicative energy cascade 

models described in the work. In Appendix D a basic description of the fractal 

dimension is given, while a description of the multifractal behavior is provided 

in Appendix E. General properties for the scaling exponent of the moments can 

be found in Appendix F. Finally, detailed descriptions of Lévy and log-Lévy 

distributions are presented in Appendix G. 
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 Overview of External Intermittency: 2.
Patchiness in Stratified Flows 

 

 Stratified aquatic systems and turbulent patches 2.1.

 

In aquatic systems, solar radiation creates the thermal stratification of the 

water column. On the other hand, wind and heat fluxes at the surface create 

water motion in the upper part which in turn produces energetic turbulence 

and reduces stratification that leads to quasi homogeneous mixed surface 

layers. Below the surface mixed layer, strong thermal and density gradients 

persist in the thermocline which separates the surface layer from the cold 

bottom layer , also weakly stratified. Thus, the presence of strongly stratified 

systems substantially affects the vertical motions and strongly influences the 

nature of turbulence and mixing (Peters et al., 1994; MacIntyre et al., 2006; 

Katsev et al., 2010).   

 

 
Fig. 2.1  Schematic plot of the mixing processes in natural waters. (from 
Geophysical Fluid Dynamics Laboratory, 2014).  
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Thermoclines play not only an essential role in the hydrodynamics, but 

also in the water quality of basins. Thermoclines are high stable regions that act 

as effective barriers resistant to any wind-induced mixing or exchange of water 

masses between upper and bottom layers. However, they are not complete 

barriers. Vertical mixing can occasionally occur due to the presence of velocity 

gradients (shear); usually related to the internal wave field forced by wind. 

These episodes are responsible for transferring dissolved gases, chemical 

compounds and suspended solids across the layer.  

In lakes, wind excites standing waves (seiches) that can be traced for hours 

and even days after the wind dies down and finally ceases (Roget et al., 1997; 

Rueda et al., 2003; Valerio et al., 2012). So, although medium-sized and small 

lakes are exposed to low winds most of the time (Kocsis et al., 1998; Wüest et 

al., 2000; Gale et al., 2006) shear induced mixing at the thermocline owing to 

internal waves becomes relevant because of their persistence. Field 

measurements have shown that although the frequency of turbulence events in 

the thermocline is low they have a relevant impact on the lake, i.e. being 

substantially affected by sudden changes of wind velocity, such as storms and 

wind gusts (Hendelman, 2009; Wain and Rehmann, 2010; Cousins et al., 2010). 

This is why the analysis of turbulence is essential in quantifying the magnitude 

of the mixing as well as identifying which mechanisms control the generation, 

decay or enhancement of the turbulence (see in Fig. 2.1).  

Observations carried out in the ocean thermocline also show that 

turbulence is extremely intermittent in time and space. Grant et al. (1968) 

reported for the first time the presence of „well-bounded‟ turbulent regions 

close to the coast of British Columbia, which extend hundreds of meters on a 

horizontal scale and a few meters on a vertical scale. This was later 

corroborated by Nasmyth (1970) who detected thin, pancake-like layers 

(„patches‟) of only a few meters in size and separated by regions of strong 

density gradients.  Nasmyth revealed that turbulence in stratified layers was 

confined to patches with small aspect ratios which could be caused by strong 

fluctuations of the vertical shear (stratified shear-induced turbulence). 
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Fig. 2.2  Shear instabilities observed in the Mediterranean thermocline obtained using dye 
tracers and diving techniques (from Woods, 1968).  

Mixing models have been used to simulate patch turbulence in the ocean 

thermocline (Dewitt et al., 1990; Hirabayashi and Sato, 2010; Mosaddad and 

Delphi, 2013). In these models, the passage of internal waves propagating along 

the thermocline produces shear perturbations within the layer. If the ratio 

between the inertia and buoyancy forces exceeds a critical value, these 

disturbances become unstable; they grow, sharpen, turn over and finally break 

creating a turbulent patch, as described in detail in Turner (1973). These 

disturbances intermittently appear in the layer. Woods (1968) was the first to 

produce evidence of this by photographing the breaking of internal waves in 

the summer thermocline in the Mediterranean Sea, near Malta (see images in 

Fig. 2.2). Later, flow observations have also corroborated this type of behaviour 

(Alford and Pinkel, 2000; Ledwell et al., 2004; Smyth and Thorpe, 2012). 

As described above, experimental work shows that patchiness in the 

thermocline is produced by breaking internal waves. However, this is not the 

only factor and several studies have revealed that different types of local 

instabilities can also occur through other mechanisms, such as reflection on 

sloping boundaries (Lorke, 2007; Aghsaee et al., 2010; Bastida et al., 2012) and 

local topography radiating high frequency waves (Thorpe et al., 1996; 

Nikurashin and Ferrari, 2010; Venayagamoorthy and Fringer, 2012), among 
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others. However, when these kinds of internal waves interact with the 

background shear where they propagate, they can be amplified and favor shear 

instability as the primary breakdown mechanism (see Fig. 2.3). 

Fernando (1991) pointed out that although different types of instabilities 

can form in sheared stratified layers, shear instabilities of the Kelvin-Helmholtz 

type are the most relevant ones. This concurs with theoretical analyses, 

numerical simulations and experimental research done in stratified shear-

driven turbulence (Strang and Fernando, 2001; Patterson et al., 2006; Brucker 

and Sarkar, 2007; Smyth and Moum, 2012). 

Observations in lakes (Imberger, 1994; Wüest and Lorke, 2003; Pannard et 

al., 2011) have also confirmed that local shear associated with the basin-scale 

seiche field can be strong enough to cause shear instabilities. Laboratory 

experiments show that energy can be transferred from large to small-scale 

mixing under different scenarios, such as solitons, bores and billows (Horn et 

al., 2001; Boegman et al., 2005; Fructus et al., 2009). However, strong shearing 

seiches generate shear-induced instabilities which lead to the formation of 

Kelvin-Helmholtz billows which in turn disintegrate into patches of high 

 

 
 

Fig. 2.3  Example of Kelvin-Helmholtz billows generated by current shear obtained close 
to the Oregon coast. (Moum et al., 2003). Arrows indicate the phase speed of the train of 
solitary waves, cw, and 5a and 5b depict the different stages of the Kelvin-Helmholtz 
billows. 
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dissipation and mixing (Cisneros-Aguirre et al., 2001; Troy and Koseff, 2005; 

Stashchuk et al., 2005).   

 Mixing in a turbulent patch 2.2.

 

Estimates of mixing properties within a patch require not only knowledge 

of the breaking process itself, but also the evolution of the combined effect of 

different (possibly interacting) physical mechanisms in the mixing region of the 

system. In recent decades, laboratory experiments and numerical modeling 

have been used as helpful tools for understanding, simulating, testing and 

predicting vertical transport associated with isolated, intermittent patches. 

However, there is still much debate over whether or not these results can be 

extrapolated to field experiments.  

Controlled laboratory experiments in stratified fluids have provided 

extensive information about the time-space features of velocity and temperature 

fields on a small-scale for an isolated overturning patch. Analysis of turbulence 

in a uniformly stratified flow, with and without background shears, was first 

reported in the pioneering works of Van Atta and co-workers (Rohr et al., 1984; 

Itsweire et al., 1986; Lienhard and Van Atta, 1995). Later, patch turbulence  was 

studied in stratified flow containers and was induced by different external 

source mechanisms such as oscillating grids (Fernando, 2003; Qiu et al., 2009; 

Stretch et al., 2010) and rotating tanks (Wells and Helfrich, 2004; Praud et al., 

2006; Sangrà et al., 2011) or by internal instability mechanisms such as breaking 

internal waves (Dauxois et al., 2004; Chen, 2012; Gorogetska et al., 2012) and 

intrusions (Lowe et al., 2002; Sutherland et al., 2004; Munroe et al., 2009).  

The aforementioned experiments show that when background shear is 

present, a turbulent patch grows rapidly due to the inertia forces associated 

with the turbulent energy source and engulf non-turbulent parcels of fluid until 

be reaching a state of quasi-steady equilibrium (critical size of the patch). At this 

point the turbulence has destroyed the background stratification and the 

production of turbulent kinetic energy is balanced by the dissipation rate and 
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the rate of increase of potential energy: the turbulent patch is in an „active‟ 

stage. Turbulent motions capture kinetic energy from the mean flow, which is 

responsible for sustaining turbulence. The evolution of a turbulent patch is 

shown in Fig. 2.4. In contrast, without any source of energy (shear free 

turbulence), the turbulent patch, affected by stratification, will, once a period of 

time has elapsed, quickly decay.  

Numerical simulations of the evolution of turbulent patches show that 

they are bounded by thin interfaces of high stratification above and below and 

turbulence destroys the density gradients inside.  Thus, their evolutionary state 

can be specified by the strength of the background (external) conditions and 

also by internal parameters which control the dynamics within the patches 

(Smyth et al., 2005; Inoue  and Smyth, 2009; Rahmani et al., 2014).  

Laboratory experiments have provided useful information about the 

evolution of a turbulent patch, but extrapolation to field measurements has 

 

 
 

 
Fig. 2.4 Direct numerical simulation of the evolution of a turbulent patch (here salinity 
field is represented) across an interface in the ocean. Colors indicate intermediate values 
of salinity found in the interfacial layer (Smyth et al., 2005). 
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been controversial.  The use of free-falling profilers introduces limitations to the 

vertical direction of the sampling process. Also, following the evolution of a 

single event just seems rather impossible timewise.  With no knowledge of its 

three-dimensional structure and evolution stage it is thus necessary to make 

assumptions to correctly interpret the measurements. For example, some 

authors have argued that there is no necessary connection between geophysical 

flows and laboratory processes; the nature and intensities of the turbulent 

sources in environments are not known and could be quite different than the 

known energy sources in the laboratory (Gibson, 1980; Gibson et al., 2006; 

Leung, 2011). On the other hand, others believe that there is no reason not to 

apply the results obtained in laboratory experiments directly to the field 

(Gregg, 1980; Wijesekera and Dillon, 1997; Smyth et al., 2001).  

A complete description of patch turbulence inferred from field 

measurements would require the ability of sampling the same patch in time and 

under the same conditions. Further, when detecting the patch for a second time, 

the effects of the stirring from the profiler during the first measurement could 

change these conditions (Dillon, 1982). However, this effect is expected to be 

local, as sampling exactly at the same place within the patch is highly 

improbable. Note that the abovementioned low aspect ratio of patches in 

stratified flows allows the same patch to be sampled at different locations. On 

the other hand, sampling a large number of patches which cover the different 

stages of evolution is also an alternative when studying the properties of 

turbulent patches. 

 Relevance of patch analysis 2.3.

 
Given the fact that turbulent events do not fill the interior  of natural water 

systems, turbulent patches become relevant in the study of mixing in these 

bodies. Accordingly, identifying turbulent patches and defining their statistics 

are the up and coming areas in the study of turbulence. Different 

methodologies have been proposed to identify turbulent patches from those 
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artificially created by noise. Further discussion on this topic is addressed in the 

following subsection. 

Analysis of specific turbulent scales has been revealed as a useful tool to 

investigate mixing in a body of water. In fact, the energy dissipation rate   and 

the vertical eddy diffusivities K , both of which are basic turbulent parameters, 

can be inferred from those scales obtained from standard finescale CTD profiles 

when microstructure measurements are not available and information about the 

velocity field is not known (Smyth et al., 2001; Cisewski et al., 2005; Frants et al., 

2013). Evaluation of the turbulent scales has been traditionally done using fixed 

segmentation of the water column. However, given the intermittent character of 

patch turbulence, oriented analysis becomes a powerful alternative (Roget et al., 

2006).   

To estimate previous turbulent parameters, it is important to be familiar 

with three turbulent scales: the Thorpe TL  scale, the maximum Thorpe max,TL  

scale and the Ozmidov OL  scale.  For patch analysis, patch thickness ph , which 

corresponds to the vertical extension of the turbulent patch, is also an important 

scale to take into account.  The three turbulent scales are described below: 

 The Thorpe TL  scale is defined as the root mean square of the Thorpe 

displacements  zdT
  within a depth range of the water column (Thorpe, 

1977). Thorpe displacements  zdT
  correspond to the vertical distances 

that fluid particles need to be moved in order to obtain a stable density 

profile. Thus, it is expressed as 

 

 

where angular brackets denote ensemble averaging.  

In a general way, Thorpe displacements  zdT
  can be estimated 

from density profiles using a reordering routine which converts the 

density into a sorted profile. In this procedure, it is assumed that parcels 

of water have been displaced vertically by turbulence during the 

sampling. If salinity does not play a relevant role in the density 

   2

1
2

zdL TT
  (2.1) 
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computation, temperature profiles can also range used instead of density 

profiles.  

Thorpe displacements can be interpreted in energetic terms. The 

sorted profile corresponds to the minimum state of available potential 

energy which could be obtained from the rearrangement of the observed 

profile. Then, Thorpe displacements  zdT
  represent the distances 

travelled by water parcels to obtain a stable profile and can be related to 

the available turbulent potential energy, i. e. the energy released if a 

water parcel returns to its reference sate (Dillon, 1984). 

 An example of a turbulent patch detected in the pycnocline of the 

Mediterranean Sea is shown in Fig. 2.5. Measurements were taken during 

a field campaign in a coastal zone over the continental shelf close to the 

Ebro Delta in order to analyze mixing in that area and which has been 

discussed in Bastida et al. (2012).  

 The maximum LT,max Thorpe scale corresponds to the maximum value 

of the Thorpe displacement  zdT
  observed within a segment or 

patch,  

 

 

 The Ozmidov OL  scale is defined as   

 

 

 

where N  is the buoyancy frequency, and   the dissipation rate of 

turbulent kinetic energy (Ozmidov, 1965). The Ozmidov OL  scale 

indicates the vertical extension where turbulent eddies start to be 

affected by background stratification.  

In fact, it has been found that TL and OL  are highly correlated, being 

proportional, with TLcL 0   and c ~ 1 (Dillon, 1982; Ferron  et al., 1998; Fer et 

al., 2004). 

     LT,max =   zdT
max  (2.2) 

    
2

1

3




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 Thus, we obtain 

and considering that  

2NK    

(Appendix A), thenSometimes the 

maximum Thorpe max,TL scale is 

considered instead of the Thorpe TL  

scale (Gibson, 1999), because it 

represents the maximum 

displacement obtained in the patch 

or the segment being studied, its 

estimation does not depend on 

averages of vertical displacements. 

Several studies based on patch 

analysis show that both scales are also proportional and it has been stated that 

max,TL ~ 2.5 TL  (Moum, 1996; Lorke and Wüest, 2002). Based on measurements, 

when max,TL  and TL  are calculated at equal-distance segments (larger than max,TL

) it is found that the linear regression becomes a power function similar to max,TL

~ 85.0

TL (Lorke  and Wüest, 2002). Our previous work also obtained similar 

results to these (Planella-Morato, 2007); as can be seen in Fig. 2.6a. However, 

when TL  is computed within each patch, the relation between max,TL  and  TL  

becomes almost linear with a constant factor of 2. This can be observed in Fig. 

2.6.b where the dependence between max,TL  and  TL  for all microstructure 

patches is presented on a logarithmic scale. From the regression shown in the 

plot, 1.21093.0/ 32.0

max, TT LL  is obtained. This  

  32
NcLT  (2.4) 

 

Fig. 2.5 An example of a turbulent patch detected 
in the pycnocline on the inner shelf of the 
Mediterranean Sea.  Temperature signal is on the 
left and the Thorpe displacements are shown to the 
right. 

  

  NcLK T

2
   (2.5) 
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indicates the relevance of addressing the analysis of patches in order not 

to introduce bias in the estimation of   due to methodological procedures. 

The analysis of normalized scales has also revealed interesting features of 

mixing in an isolated patch. This analysis has been performed based on 

laboratory experiments and numerical simulations (Smyth et al., 2001; Pham 

and Sharkar, 2010; Mater et al., 2013). They show that normalized turbulent 

scales look promising as age indicators of the patch, as is the case of the 

normalized Thorpe pTp hL scale. Although it is extremely difficult to follow the 

evolution of an isolated patch in the thermocline, the statistics of pTp hL  

provide information about the state of turbulence. It can help modelling the 

turbulent mixing in stratified flows which use empirical closures. Lozovatsky 

and Fernando (2002) suggest a parameterization of pTp hL based on a number 

of external and internal parameters which were successfully tested in the ocean. 

Here, we will test it in a stratified lake under low wind conditions. 

 

 

  

 

Fig. 2.6 Plots of the maximum Thorpe scale as a function of the Thorpe scale. Turbulent 
scales are calculated based on (a) fixed segmentation analysis and (b) patch analysis. 
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 Turbulent patch identification 2.4.

 

A customary method to detect turbulent patches in the environment is 

based on the procedure as reported by Thorpe (1977). This compares the 

observed and the sorted profiles of density (temperature) and computes the 

Thorpe displacements  zdT
 . Different methods based on Thorpe displacements 

have been used not only to identify turbulent patches in the ocean and lakes 

(Ferron et al., 1998; Piera et al., 2006; Gargett and Garner, 2008), but also in the 

atmosphere (Gavrilov et al., 2005; López  et al., 2008; Wilson et al., 2011). 

 Initial studies on patch turbulence based on Thorpe analysis applied 

simple algorithms. That was the case of Dillon (1982) who isolated vertical 

overturns from surrounding regions with null displacements or by not 

exceeding a predetermined value. According to his definition, the patch 

thickness hp was calculated as the difference between the upper and lower limits 

of the region wherein    0zdT .  

Subsequent work has been focused more on dealing with noise. Noise can 

induce spurious overturns when a measured profile is analyzed, especially for 

weakly stratified layers, which in turn can lead a substantial increase in the 

percentage of turbulent events in the layer under study being obtained and 

consequently a considerable overestimation of the mixing. Dillon (1982) did not 

give any details about the noise threshold in his work, but Thorpe (1977) had 

set  zdT
 =0 if Thorpe displacements had values less than or equal to noise 

resolution or noise standard deviation. Although subsequent studies have 

shown that this methodology is effective (Lorke and Wüest, 2002; Preusse et al., 

2010; Coman and Wells, 2012), this constrain could be too restrictive and may 

eliminate valid displacements. 

Moum (1996) developed a procedure to detect turbulent patches in 

stratified layers where turbulent patches were bounded by well-defined limits, 

and which requires pmax,T hL  and    0zdT . Furthermore, Ferron et al. (1998) 

and Gargett and Garner (2008) developed another approach to reduce the 
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effects of noise which consists of pre-processing the measured signal. Then, an 

intermediate density (temperature) profile is constructed so that the differences 

between the successive points in the profile are greater than a predefined noise 

threshold related to the accuracy or its standard deviation.  

Instrumental noise and systematic errors have been also analyzed in the 

work of Galbraith and Kelley (1996) from measurements taken in the ocean. 

They estimate the minimum size of the turbulent patches which can be detected 

from profiles based on the instrumentation noise level and the density gradient. 

They suggest the minimum thickness of resolvable patches is 

0
2

2





N

g
L  , (2.6) 

where   is the density resolution and 0  is the mean density. It can also be 

seen as a constraint on the Thorpe scale (Moum, 1996).  

 Galbraith and Kelley (1996) proposed two tests, the run length test and 

the water-mass test, to discriminate between real and artificial overturns from 

CTD density profiles. In the run-length, a „run‟ was defined as the number of 

points (n) with consecutive positive values of  zdT
  in the patch. If patches are 

generated by an uncorrelated random series of displacements, the probability of 

observing positive and negative n values must be the same. Hence, the 

probability density function (pdf) of the run-length of a random variable n is 

  nnP  2  (2.7) 

(Larsen and Marx, 1986). The pdf of Td   would be expected to follow (2.7), if 

noise were a source of inversion in temperature profiles. The test identifies a 

minimal acceptable run-length as the point where the experimental pdf of the 

run-length intersects double the pdf of the noise (i.e. (2.7)). Thus, a safety 

margin of 2r  is taken for noise-induced overturns. Following this 

methodology, Timmermans et al. (2003) analyzed possible values of r by 

comparing their run-length to those expected from the Bernouilli trials 

described by (2.7). They found a slightly higher, value of r, ~r 2.45, associated 

with the root mean square of the expected noise. 
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To detect statistically stationary segments Imberger and co-workers 

(Imberger and Ivey, 1991; Saggio and Imberger, 2001; Etemad-Sahidi and 

Imberger, 2006; Yeates  et al., 2013) applied new segmentation algorithms to the 

temperature gradient signal. These algorithms include autoregressive models 

and thresholds to select only those segments that are stationary. After this, 

mean dissipation rates   were then estimated for each segment and used to 

disregard those segments generated by temperature fluctuations below the 

temperature resolution.  

Piera et al. (2002) showed that noise can be efficiently removed using 

wavelet denoising. In this technique, the measured signal is decomposed into 

frequency subbands and higher frequencies are smoothed out using a 

thresholding procedure (most of the information about noise is contained 

there). After wavelet denoising, the displacements were compared to the 

potential error, obtained from a theoretical model, and then validated if their 

value was smaller than this error. Next, the ratio of the validated displacements 

to the potential error is used as the acceptance index for turbulent patches. 

Although this method was only tested in freshwater, it has also been applied 

successfully in other environments and sometimes complemented by other tests 

which are described next (Peters and Johns, 2005; Piera et al., 2006; Evrendilek 

and Karakaya, 2014). 

The work of Galbraith and Kelley (1996) also included a second test, the 

water-mass test, for those density overturns which have passed the run length 

test.  These were once again inspected to eliminate those structures that could 

come from mismatches in time response of temperature and conductivity 

sensors. For each overturn, density points within each reordering region were 

fitted by linear regressions to those of temperature or salinity. The errors, 

defined as the normalized differences between the observed density profile  

and the resulting values of the fitted densities against the respective Thorpe 

scales, were taken as a measure of the tightness of the T-S relationships. After 

visual inspection of the T-S plots, errors greater than 0.5 were required for any 

overturns to be accepted as turbulent patches. Gargett and Garner (2008) 
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introduced a more sophisticated two-parameter water test to avoid false 

overturns and salinity spikes in weakly stratified layers. Alford and Pinkel 

(2000) proposed a method based only on accepting as turbulent overturns those 

inversions present simultaneously in density, conductivity and temperature 

signals. However, Galbraith and Kelley tests, hereafter referred to as GK tests, 

have became popular among researchers as a useful tool in detecting turbulent 

patches in water bodies (Ullman et al., 2003; Martin and Rudnick, 2007; 

Thompson et al., 2007). 

The previously described methods of patch identification are based on 

the fact that instrumental noise introduces random errors in the sorted signal. 

However, Johnson and Garret (2004) have shown that if noise is important in 

the profile, the Thorpe displacements do not display the same behavior as 

random series.  Johnson and Garret (2004) analyzed the effect of noise in the 

run-length tests and concluded that they were dependent on two relevant 

parameters: the amplitude of the scaled amplitude Q of the noise over the 

turbulent patch and the number of data points n  within it. The scaled 

amplitude Q of the noise is related to the background stratification and is 

defined as 

Q = 

ph
dz

d







 


, 

(2.8) 

where hp is the patch height,   the accuracy of the density and dzd  the 

background stratification computed using the sorted density profile. Taking 

density profiles with added random and uncorrelated noise, Johnson and 

Garret (2004) plotted r for  zdT
  as a function of Q and n; hereafter referred to as 

JG plots. These plots show that Thorpe displacements do not behave as a 

random uncorrelated series. Thus, to specify a safety margin they suggested 

first finding the Q and n parameters from a set of experimental data and then 

using the JG plots to assess the noise threshold for the measured displacements.
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 Observations of External Intermittency: 3.
New Measurements in a Stratified Lake 

under Low Winds 
 

 Study site and experimental setup 3.1.

 

Lake Banyoles (42º 7’N, 2º 45’E) is the largest of a series of five lakes (some 

intermittent) located in the same hydrographic karstic basin in Catalonia 

(North-eastern Spain), and the second largest natural lake in Spain. The area is 

very unstable and last lake was only formed in 1978.  

The lake (Fig. 3.1) is a multi-

basin water body, covering 1.12 

km2 and the maximum depth is 45 

m (mean depth is ~15 m) with the 

surface located at 172 m above sea 

level. From the surface it appears 

to be formed by two main lobes, 

the northern and the southern 

lobes, which are connected by a 

narrow neck.  

Planella-Morato et al. (2007) 

reviewed the extensive studies, 

which are related to its main 

features and hydrodynamics, 

about the lake. In terms of water 

inflows, seven streams come into 

the lake from its western zone, 

although most of its water enters 

the lake through twelve warm 

 
Fig. 3.1  Bathymetric map of Lake Banyoles 
(from Moreno-Amich and Garcia-Berthou, 
1989). Distance between the isobaths is 5 
m. The main basins (C-I to C-VI) are 
shown on the map. Point A indicates the 
measurement site and point B the location 
of the meteorological station.  
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underground springs (~95% of the total inflow). By considering their 

distribution the lake can be divided into six different subbasins (labeled as letter 

C in Fig. 3.1). Two of them are located at the southern lobe (mean depth of ~10 

m) and the remainders are in the northern lobe (mean depth of ~18 m). About 

95% of the total underground inflow enters the lake from the southern lobe 

(~90% through basin C-I) and a minimum quantity, less than 5% of the total 

inflow, comes from the northern lobe (Roget et al., 1994). The lake also has five 

outflow streams, located in the eastern part of the southern lobe and which 

cross the town of Banyoles before coalescing to form the Terri River. 

The hydrodynamics of the lake includes several physical processes, of 

which the main mechanisms are shown in Fig. 3.2. Heat inflows, hydrodynamic 

plumes, baroclinic circulation and internal seiches are examples of these 

relevant processes, all of which have been analyzed in detail in different studies 

(Roget and Colomer, 1996; Colomer et al., 2001; Serra et al., 2005; Sanchez and 

Roget, 2007). 

Heavy stratification in Lake Banyoles occurs in late spring and at the 

beginning of summer, when weakly stratified surface (epilimnion) and bottom 

(hypolimnion) boundary layers are separated by a wide thermocline 

 
Fig. 3.2 Representation of the main physical processes present in Lake Banyoles (from 
Casamitjana et al.,2006).  
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(thermocline), which occupies about one third of the mean depth of the entire 

lake (Roget et al., 1997).  

From April to October, mild winds with mean speeds below 2 ms-1 are 

frequently observed over the lake area due to a sea breeze regime (the 

Mediterranean coast is about 30 km to the southeast). As a response to the 

breeze forcing, a quasi-stationary internal seiche field is established in the 

thermocline with wave amplitudes of about one meter or even higher (Roget et 

al., 1993). As described in Chapter 2, seiches influence vertical mixing and play 

an important role in transferring energy to the bottom layer, thereby 

influencing the transport of biological and chemical patterns (plankton, 

suspended sediments and nutrients among others), which are sensitive to 

small-scale patchiness.  

Internal seiches in lakes are often dominated by high vertical modes 

(Perez-Losada et al., 2003). This is the case with Lake Banyoles, where a 

dominant second vertical first horizontal mode is easily excited (Roget et al., 

1997).  

In order to analyze shear-induced turbulence in a stratified system and 

under low winds, we planned the field campaign for summer. To clearly 

separate shear-induced turbulence mechanism from other possible mechanisms 

present in the lake, the experimental site was chosen in the western part of the 

northern lobe of the lake, far away from the main water inflows and outflows 

located in the southern lobe. Furthermore during the summer season the flow 

of surface streams is very low. The measurements were taken over four days in 

June-July 2009 (see Chapter 4, Table 4.1) at a gently sloping site, see point A 

located in the C-IV basin in Fig. 3.1. The test site ( 12 m depth) was exposed to 

a south-easterly breeze with a fetch of  2 km. The lake is surrounded by hills 

on all sides except the southeast, where a plain extends toward the 

Mediterranean Sea. Although the site is near to several underwater springs in 

basin C-IV, Casamitjana and Roget (1987) have shown that these inflows are 

small and drop to almost zero in summertime.  
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The wind was measured at a meteorological station (Davis Vantage Pro 

6150C) located l km to the southeast of the test site (see point B in Fig. 3.1). The 

wind speed and wind direction were averaged over 30-minute periods. The 

atmospheric forcing over the lake during the observation period was 

dominated by north-westerly and south-easterly winds up to ~ 3 ms-1. Irregular 

wind gusts (up to ~6-15 ms-1) lasting only a few minutes originated 

episodically over the lake due to the uneven heating of the lake surface and 

surrounding mountains.  

Microstructure and classical CTD data were recorded by profiling the 

measurements which were taken every day as soon as the breeze reached the 

test site (usually about 2 pm). We used the Sea and Sun Microstructure 

Turbulence system (MSS 90 Profiler) (Prandke and Stips, 1998) at a sinking 

speed of 0.85 ms-1. The profiler was equipped with microstructure temperature 

and shear sensors. It had a fast response thermistor (FP07) with a sensitivity of 

0.001ºC and time response of 7 ms, leading to a vertical resolution of 0.6 cm. The 

resolution of the small-scale airfoil shear probe was 2 cm (Prandke et al., 2000). 

The conductivity, temperature, and depth (CTD) package contained a 

thermistor with a sensitivity of 0.001ºC and a time response of 160 ms, a 

conductivity cell with a sensitivity of 0.001 mSms-1 and a time response of 100 

ms, and a pressure gauge with a sensitivity of 100 Pa and a time response of 30 

ms. Vertical resolution of the CTD profiles was  14 cm.  

The individual casts were launched from the lake surface to the very 

bottom of the lake approximately every two minutes for ~ 2 hours. Basic 

information about the measurements is given in Chapter 4, Table 4.1. The total 

number of profiles is 373. Reliable data were obtained from 2 m below the lake 

surface down to about 0.5 m from the bottom. 
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 Data processing 3.2.

 
Data obtained from meteorological station were used to compute the 

wind stress, 10 , at 10 m above the surface level. This was calculated using the 

bulk formulas for light winds (Wu, 1994) and 30-minute averaged wind speed 

10U  . 

For the CTD datasets, an exponential recursive filter (Middleton and 

Foster, 1980; Fozdar et al., 1985; Lueck and Picklo, 1990) was applied to the 

conductivity signal to minimize spikes in salinity and density profiles caused 

by the different time responses of the temperature and conductivity sensors. 

Potential density was calculated based on the UNESCO routines (Chen and 

Millero, 1986). The equation of state for fresh water (Fofonoff and Millard, 1983; 

Chen and Millero, 1986) was used, taking the concentration of suspended solids 

into account (Sanchez and Roget, 2007). Since the vertical resolution of the CTD 

profiles was 14 cm at best, we averaged temperature T and potential density s  

to acquire a standard vertical resolution z = 0.2 m with which to analyze 

background stratification. The buoyancy frequency
z

g
N s

s









2 , where g is 

gravity, was calculated using sorted density profiles s (Thorpe, 1977).  

A microstructure shear signal was used to estimate the turbulent kinetic 

energy (TKE) dissipation rate, . Empirical spectral densities of a small-scale 

shear signal were fitted to an analytical form of the transversal Panchev-Kesich 

shear spectrum along the lines of Roget et al. (2006) (Appendix A). The 

dissipation in patches was well resolved by the airfoil sensor (Wüest et al., 1996; 

Kocsis et al., 1999), at between 10-4 and 10-9 Wkg-1.  

We also calculated the patch buoyancy Reynolds number, 2NReb  , in 

order to evaluate turbulence activity in stratified layers. Gibson (1991a) argued 

that turbulence is active when bRe  > 30. Rohr et al. (1984) suggested critical   

bRe  = 10 – 16, which is in agreement with direct numerical simulations of 

homogeneous turbulence in stratified shear flows (Itsweire et al., 1993). 
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Analyzing data obtained in Knight Inlet (Vancouver, Canada), Gargett et al. 

(1984) proposed a wide range of critical bRe  from 18 to 165. Stillinger et al. 

(1983) noted that the high critical values of bRe  reported by Gargett et al. (1984) 

correspond to very active turbulent regions that are less influenced by regular 

internal waves but are associated with topographic lee waves accompanied by 

shear instabilities.  
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 Results and Discussion on              4.
External Intermittency 

 

 Patch identification 4.1.

 

In this work, we develop a new patch detection procedure using several 

tests (as described in in Chapter 2, subsection 2.4) combined with an inspection 

of the microstructure shear signal. This procedure was to be tested in Lake 

Banyoles; a shallow lake whose waters have very low conductivity. Since 

density in fresh water is almost completely determined by temperature, 

temperature profiles are commonly used to compute LT in lakes (Piera et al., 

2002; Lozovatsky et al., 2005; Lorke et al., 2008; Pernica et al., 2014). Then, 

individual temperature profiles are used to identify microstructure patches 

based on the computation of their respective Thorpe displacement profiles 

 zdT
 .  

 New method for turbulent patch identification 4.1.1.

 

The procedure of turbulent patch identification follows the procedure 

described in Galbraith and Kelley (1996) and introduces not only the corrections 

for the run-length as suggested by Johnson and Garrett (2004) (see in Chapter 2, 

subsection 2.4), but also the inspection of the microstructure shear signal. The 

proposed method has two basic steps: identify overturns and decide if they 

meet the requirements to be accepted as turbulent patches. These two steps are 

detailed below. 

i. Identification of overturns: Temperature profiles are averaged over a 

specific distance to eliminate the smallest scales which are not 

resolved by the sensor. Then, in our work, complete microstructure 

overturns are identified automatically as segments with   0 zdT  and 
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  0 zdT  (Dillon, 1982). Next, numerous pairs of small-scale shear 

 zu z
  and  zdT

  profiles will be visually inspected to determine 

whether different overturns belong to the same structure or not. 

Thus, a criterion based on microstructure signal is applied to combine 

segments into one overturn.  

ii. Acceptance criteria for turbulent patches: To accept overturns as 

turbulent patches, we develop an algorithm which considers not only 

the nominal accuracy of the sensors, but also takes into account the 

actual noise level of the signal. In this way, overturns are accepted as 

turbulent patches based on two criteria: Firstly, since instrumental 

noise imposes a constraint on the thickness of detectable patches, the 

smallest sizes based on the value of the Thorpe scale within the patch 

are evaluated  rewriting (2.6) in terms of the temperature 

minTpL =
2

2
N

Tg
, (4.1) 

where   is the thermal expansion coefficient. Here, the subscript  ‟p‟ 

is introduced to indicate that turbulent scales will be evaluated inside 

the patches. Finally, we implement a statistical run-length test 

(Galbraith and Kelley, 1996; see Chapter 2, subsection 2.4) to 

differentiate turbulent patches and noise segments. Following 

Galbraith and Kelley (1996), we added the root mean square of the 

run-lengths of series r to (4.1) in order to accept a patch.  However, to 

specify a safety margin we introduce the suggestions of Johnson and 

Garrett (2004) and inspect the plots of the scaled amplitude Q of the 

noise against the number of points n . Considering only temperature 

as a main contribution of density, the scaled amplitude Q of the noise 

can be expressed as 

Q = 

ph
dz

dT

T











, 

(4.2) 
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where hp is the patch 

height, T  the resolution 

of the temperature sensor 

and dzdT  the 

background temperature 

gradient computed using 

the reordered 

temperature profile. 

Once the Q and n 

parameters of a set of 

experimental data are 

found, these plots will be 

used to assess the noise 

threshold r  for the 

measured displacements. 

The maximum value of r 

is added as the cut-off 

value for the run-length test. Then, the results of the run-length 

impose another constraint for the Thorpe displacements to accept 

segments as microstructure patches. 

 Application to our measurements 4.1.2.

 

Following the methodology described above, the temperature profiles were 

first averaged over   = 0.8 cm to avoid false displacements resulting from 

noise. This averaging also eliminated scales that could not be resolved due to 

the time response of the temperature sensor. Then, complete microstructure 

overturns were detected automatically from Thorpe displacements  zdT
 . After 

that, they were visually inspected together with the microstructure shear signal 

 zu z
  in order to check the criteria for patch identification. One such example is 

 
 
Fig. 4.1 Thorpe signal (on the left) and small-
scale signal (on the right) obtained in the 
thermocline of Lake Banyoles on June 23. Note 
the difference of the microstructure signal 
within and outside the patch.  
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shown in Fig. 4.1. Two segments corresponding to two independent overturns 

are clearly visible from the plots of  zdT
  profiles, between 3.8 and 5.4 m depth. 

First, one is found at depths between 3.90 and 4.17 m in the water column. The 

other is located 4 cm below with its upper boundary located at 4.21 m and the 

lower at 5.23 m. Small-shear signal also show signatures between 3.9 m and 5.2 

m, which appear to be different from the signal outside this region. This 

indicates that they possibly belong to the same patch and they should be put 

together. After the inspection of the different pairs of Thorpe displacements 

 zdT
  and microstructure shear  zu z

  profiles, we concluded that segments 

separated by distances less than 6 cm could be combined into one single patch. 

Selected patches of size hp 

were used to evaluate the Thorpe 

scale TpL , defined as root-mean-

square of Td   (see Chapter 2, 

subsection 2.3). We implemented 

the statistical run-length test, to 

differentiate turbulent patches 

and noise segments. Following 

Galbraith and Kelley (1996), we 

added a safety margin r to the 

noise pdf (see (2.7)), evaluated 

from the plots suggested by 

Johnson and Garrett (2004). The 

non-dimensional parameter Q 

was calculated, plotted as a 

function of n and compared with 

the JG plots.The maximum r appeared to be 1.2, which is the factor to be added 

to the cut-off value. The result of the run-length test is given in Fig. 4.2 which 

shows n = 5 as an estimate of the cut-off run-length. Thus, the  zdT
  with hp < 

5  = 4 cm segments were not accepted as microstructure patches. 

 
Fig. 4.2 The probability density functions of the 
Thorpe run-lengths for different profiles. The 
pdfs of random, uncorrelated noise (thick line) 
and of the noise factor 1.2 (dashed line). The 
intersection between the measured and noise 
pdfs indicates the cutoff run-length equals 5. 
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The resolution of the microstructure temperature sensor, T  0.001ºC, 

imposed an additional constraint on the smallest sizes of detectable patches 

based on the value of the Thorpe scale within the patch minTpL . For 2N  in the 

range  53 10105    s-2, minTpL  varies between  1 and 7 cm. Combining the 

constraints imposed by vertical and temperature resolutions and following Lee 

et al. (2009), we used an intermediate condition for patch detection. As a result, 

no segments with hp < 4 cm and TpL 4 cm were considered as turbulent 

patches. 

Table 4.1 summarizes the results of the displacement analysis including 

the number of detected and accepted patches and the number of patches with         

hp > 25 cm, which were used to estimate the mean kinetic energy dissipation 

rate from a small-scale shear within the patch height.  

 Patch location in the water column 4.2.

 

The generation of turbulence in water‟s interior and boundary layers is 

usually governed by different processes. Roget et al. (2006), examining the 

Session 
Time  

(h) 

Number 

profiles 

10U  

(m s
-1

) 

U 

(m s
-1

) 

Umax 

(m s
-1

) 

10  10
-3

  

(N m
-2

) 

Patches 

detected 

Patches 

accept 

Patches   

hp > 25 cm 

23 Jun 

2009 
1.71 81 0.77 0.42 4.03 0.94 659 373 196 

25 Jun 

2009 
2.07 102 3.20 3.20 13.90 12.53 1005 448 326 

27 Jun 

2009 
1.72 98 <0.50 

no 

data 
1.30 < 0.37 774 450 323 

01 Jul 

2009 
1.80 92 0.60 2.20 4.47 0.54 880 512 283 

 
Table 4.1  Characteristics of the field campaign, wind speed U10, wind stress 10, and 
microstructure patches. 
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statistics of eddy diffusivities on a shallow shelf of the Black Sea, analyzed the 

importance of addressing processes orientated to domain averaging in order to 

interpret adequately the state of mixing in different layers. Then, previous to 

the analysis of patch turbulence, identifying the layers which divide the lake 

water column is indispensable. This allows characterizing which mechanisms 

are present in each layer and separately analyzing the statistics of patches.  

 Identification of layers in our measurements 4.2.1.

To identify the layers in our measurements, the temperature, T (z,t), and 

squared buoyancy frequency, 2N (z,t), have been analyzed. The corresponding 

contour plots are shown in Fig. 4.3 for the measurements taken under moderate 

winds conditions (June 25), and in Fig. 4.4  and Fig. 4.5 in light winds (June 27 

and July 1, respectively). Based on the plots shown in Fig. 4.3 - Fig. 4.5, three 

major layers of the water column were specified.  

We consider the surface layer (SL) , as the layer between the lake surface 

and the depth where 2N  sharply exceeds 10-3 s-2. This layer was directly 

influenced by wind stress and heat fluxes. The depth of this layer varied 

between 2.5 and 4.5 m, depending on the atmospheric forcing prior to and 

during the observational periods. Stratification in the SL increased                         

( 42 10N s-2 ) during periods of low winds ( 10U < 0.5 m·s-1 on June 27 and       

July 1).  

     

 
 

 

 

Fig. 4.3  The contour plot of temperature T (a) and the logarithm of squared buoyancy 
frequency log10 (N

2) (b) for June 25 (N is in s-1). 
 

a. b. 

Time(h) 
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The thermocline (TH), starts immediately below the SL. It was strongly 

stratified (with a highest mean of 2N   10-2 s-2) and its thickness varied between 

4 and 6 m in the depth range below the SL, with z ~ 8.5 m occupying ~ 35-55% 

of the water column.  

 

 

 

Fig. 4.4  The contour plot of temperature T (a) and the logarithm of squared 
buoyancy frequency log10(N

2) (b) for June 27 (N is in s-1). 

Internal waves in the thermocline are easily recognizable in Fig. 4.5a. The 

opposite direction of the vertical displacements of the upper and lower 

boundaries of the thermocline (Fig. 4.5a, dashed lines) points to a dominant 

second mode of internal seiche. The direction for the horizontal velocity within 

each layer depends on the phase of the seiche oscillation, but the relative 

vertical structure of this horizontal velocity between layers remains the same. 

An example of horizontal velocities in each layer, identified by the white 

arrows, is shown in Fig. 4.5a. A two-dimensional three-layered hydrodynamic 

model (Münnich et al., 1992) was used to simulate the dynamics of internal 

seiches in the lake for the stratification observed on July 1. It was found that the 

period of the second vertical first horizontal internal mode (V2H1) was about 12 

h, which is in agreement with the results obtained previously for similar 

atmospheric conditions and stratification in the lake (Roget et al., 1997). Field 

measurements on June 25 and 27 started two hours later than on July 1 and 

were therefore affected by a different phase shift in the V2H1 seiche mode, 

which followed from the time evolution of the isotherm depths shown in Fig. 

4.3 and Fig. 4.4. 

Time(h) 

a. b. 
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The bottom layer (BL), extended from the base of the TH (z  8.5 m) down 

to the bottom of the lake. The BL thickness was about 3 m with 2N  varying 

from 10-5 to 10-3 s-2. A thin ( 1 m wide) temporal weakly stratified ( 52 105 N  

s-2) sublayer was located at z ~ 10 m (Fig. 4.3b and Fig. 4.4b). 

 Stability of the water column 4.2.2.

 

Shear flows in stratified systems are characterized by two relevant 

parameters: vertical shear Sh  and buoyancy frequency N . Formally, vertical 

shear is defined as 222

zz VUSh  , where zUU z   and zVVz   are the 

vertical gradients of the orthogonal components, U  and V , of the horizontal 

velocity. On the other hand, the buoyancy frequency N  corresponds to the 

frequency of oscillation at which a vertically displaced parcel will oscillate 

within a statically stable environment. The ratio between inertia (destabilizing) 

to buoyancy (stabilizing) forces is called the Richardson number Ri , i.e. 

22 ShNRi  . In fact, it represents the capacity of the shear flow to destroy the 

density gradients. Large values of Ri  indicate that the water column is very 

stable; high stratification suppresses turbulence. To the contrary, the water 

column is unstable for low values of Ri . The transition takes place at the critical 

 

 

 

Fig. 4.5  The contour plot of temperature (a) and  log10 (N
2) (b) for July 1. The opposite 

slopes of the upper and lower boundaries of the thermocline marked by dashed lines 
point to the dominant second mode of the internal seiche. The directions of flow in each 
layer are shown in panel (a) by white arrows. 

b. 

 Time(h) 

a. 
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value of cRi ~1. It is usually accepted that the critical value for shear instability 

is 25.0cRi .  

To obtain a clearer view of the vertical structure of the horizontal 

velocity in the TH, we calculated the normal modes for a characteristic 2N (z) 

profile shown in Fig. 4.6 (central panel) using a discretized version of the 

Taylor-Goldstein equations (Thorpe, 2005). The vertical profile of the horizontal 

velocity u of the dominant second vertical mode was used to estimate the shear  

profile of the internal seiche and the corresponding „seiche Richardson number‟, 

with a vertical step z = 0.5 m. In Fig. 4.6, the horizontal velocity and the 

Richardson number are shown on the left and right panels, respectively. Low Ri 

values are concentrated near the upper and lower boundaries of the TH, where 

the internal-seiche shear is high (the value of Ri = 1 is indicated in Fig. 4.6 by a 

dashed line). Depending on the seiche phase and mode structure, turbulence in 

 
Fig. 4.6  The horizontal velocity profile of the second vertical mode of internal seiche u    
(a) calculated for a characteristic N2

 profile (b) and the resulting profile of  log10 (Ri) (c). 

 

c. a. b. 
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the thermocline can be generated by seiche-induced shear instability (Münnich 

et al., 1992). 

The calculation of Ri at 15 min time intervals throughout the entire 

period (12 h) of the seiche dominant V2H1 mode allowed for the simulation of 

the cumulative distribution function (CDF) of Ri in the thermocline, which is 

shown in Fig. 4.7.The Richardson number was less than critical for shear-

induced turbulence (Ri < 0.25) approximately 25% of the time and in about 55% 

of cases it was below 1. It is important to emphasize that the vertical shear 

associated with the oppositely directed internal-seiche induced currents can 

episodically create shear instability in the thermocline and hence generate 

smaller scale internal waves and turbulent patches. 

It should be noted that the TH periodically contained several sublayers. 

For example, on June 27 when the wind speed was less than 0.5 m s-1 during the 

entire observational period, the TH (z =  2.5 - 8.5 m) contained three 

definitive sublayers. A 1 m wide diurnal thermocline (Imberger, 1985) underlay 
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Fig. 4.7  The cumulative distribution function (CDF) of the simulated seiche Richardson 
numbers Ri in the thermocline. See insertion for the histogram of Ri. 
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the SL where   32 1051 N  s-2. Below it, a less stratified inner layer          ( 2N  

< 10-3 s-2) was observed down to z  4.5 m. Finally, the most strongly stratified 

sublayer extends down to the lower boundary of the TH (z =   4.5 - 8.5 m 

with 32 105 N s-2). The same sublayer structure in the TH was found on July 

1 when the wind speed was also low (see Fig. 4.5b). The depths of the sublayers 

varied over time due to the influence of internal waves. In contrast, on June 25 

when higher winds preceded the microstructure measurements, the TH did not 

contain any sublayers and the SL deepened to z ~ 4.5 m.  

 Patch location 4.2.3.

 

The contour plots of the dissipation rate  tz,  are shown in Fig. 4.8 

together with the locations of turbulent patches with hp > 25 cm (see subsection 

4.1.2, Table 4.1).  

It appears that the different patterns of the dissipation field generally 

correlate well with the locations and sizes of the microstructure patches. From 

these plots, it can be seen that wind forcing sustains turbulence in the SL and it 

is characterized by 8105   Wkg-1. In the TH, turbulence was patchy, with 

several episodes of large overturns. On June 27 and July 1, when three 

sublayers were clearly visible, the less stratified inner layer appears partially 

filled by turbulent patches; some with a  height of    5·10-6 W kg-1. However, 

the majority were generally small and weak. Plots also reveal the existence of 

microstructure patches within the other sublayers, but of a lesser percentage 

and less energetic than before. Finally, in the BL several episodes of relatively 

strong turbulent events with 8105   Wkg-1 were observed. The rest of the 

BL was filled with microstructure patches with a relatively low dissipation rate, 

some most probably associated with a slow moving intrusion from a remote 

region of the lake (Planella et al., 2009). 
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 Wind gusts and turbulent events  4.2.4.

 

Powerful wind gusts lasting several minutes episodically passed over the 

lake in the late afternoon. We were lucky to measure a series of five consecutive 

 
 

Fig. 4.8  Alignment of microstructure patches (vertical lines) in the background of        

log10 ( ) for June 25 (a), June 27 (b) and July 1 (c). The dissipation rate is in Wkg-1. The 
arrow in panel (a) points to the turbulent event induced by the wind gust. 
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casts that embraced one of these events (marked by an arrow in Fig. 4.8a). Its 

evolution can be analyzed based on the Thorpe displacement  zdT
  and small-

scale shear  zu z
  profiles; both of which are shown in Fig. 4.9. The event was 

captured on June 25 when a maximum wind speed of 7.7 ms-1 was recorded 

during the meteorological data sampling time. The first cast in this series was 

taken at 19:00 and shows a weakly-turbulent SL 4.5 m in depth. The 

corresponding Thorpe displacements depict a classic Z-shape segment (Gibson, 

1987). The averaged dissipation rate in the SL was relatively low, 8

SL 1082  .~  

Wkg-1, and the corresponding buoyancy Reynolds number was 2NReb   

900. No microstructure patches were detected in either the TH or BL during this 

cast. 

   
Fig. 4.9  A series of Thorpe displacements dT’(z) (a) and small-scale shear u'z(z) profiles (b) 
taken on June 25 during the passage of a wind gust (see text for details). 
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The thickness of the SL in the next profile (19:02 h) increased to z = 5 m 

and the averaged dissipation rate went up by about two orders of magnitude, 

6

SL 1032  .~  Wkg-1 (Reb  4800). A large new turbulent patch emerged below  

z = 6.15 m, with 6

BP 1021  .~  Wkg-1 and bRe   900. The third profile in the 

series, taken at 19:03:30 h, shows that the thickness of the SL (4.7 m) and 

6

SL 1022  .~  Wkg-1 was almost the same as during the second cast, but the 

amplitudes of Thorpe displacements and the dissipation within the large patch 

had decreased slightly ( 7

BP 107 ~  Wkg-1 and Reb  450). The following profile 

taken at 19:05:30 h demonstrates active turbulent mixing in the SL with a mean 

dissipation of 610SL
~  Wkg-1 (Reb  1500) and the depth increased to  5.5 m 

due to entrainment at the SL base. However, as the wind stress on the surface 

weakens, several microstructure patches still exist in the TH and BL, with 

7

BP 102 ~  Wkg-1 and Reb  300. One and a half minutes later, at 19:07 h, the 

fifth cast in the series shows a similar microstructure profile in the SL and no 

patches in the either TH or BL  as observed in the first cast.  

We also analyzed the evolution of turbulence in the surface layer based on 

the pTp h/L  ratio, which is supposed to decrease with time as turbulence ceases 

in a patch (Smyth  et al., 2001). It was found that pTp h/L  decreased from ~ 0.2 to 

 0.1 between 19:00 h and 19:02 h. Over the following three and a half minutes 

pTp h/L  decreased only slightly, remaining close to 0.1. The observed evolution 

of pTp h/L  is consistent with direct numerical simulations of a shear-driven 

overturn as it becomes turbulent (Smyth  et al., 2001, their Fig. 4a).  

 Statistics of turbulent scales 4.3.

 

In this subsection, results and discussion of the statistical analysis 

performed in the thermocline of the Lake Banyoles are presented. Our study 

analyzes the probability distribution function of the patch size hp, the patch 
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Thorpe LTp scale and the normalized patch Thorpe pTp hL  scale. Finally, a 

possible parameterization for pTp hL  is also tested in the lake.  

The total number of patches in the TH (subsection 4.1.2) was 315. Rare large 

turbulent events detected in the TH, generated mostly by short, powerful wind 

gusts (described in previous subsection), will belong to a different statistical 

population than the main population of regular sheared TH patches and were 

excluded from the analysis. In fact, the box plot distribution of hp was inspected 

before performing the statistical analysis and these patches were identified as 

outliers.  It was found that the outliers were outside the 2nd and 98th percentile, 

i.e. hp  [0.10, 3.5] m, so we did not use these samples for any further analysis. 

The statistical independence of the remaining patches was analyzed for a 

complete set of the profiles as well as for the three subsets containing every 

second, third, and fourth profile. It appears that the complete dataset (315 

patches) can be considered as a series of statistically independent samples. 

 The patch size  4.3.1.

 

The cumulative distribution function (CDF) of the sizes of the 

microstructure patches hp detected in the МТ is shown in Fig. 4.10a. The plot 

shows that about 95% of the empirical cumulative distribution function          

F(hp = 0.14 - 2.15 m) can be approximated by log-normal distribution 

 
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where erfc is the complimentary error function (Crow and Shimizu, 1988) and 

the parameters of the fit  phlog = - 0.65  0.08 and  
2

log Ph  = 0.75  0.05. The 

corresponding mean and median values are ph = 0.69 m, med (hp) = 0.50 m. The 

Kolmogorov-Smirnov test (Ayyub  and McCuen, 1996) of the goodness of the fit 

suggests that (4.3) cannot be rejected as a probability model for the empirical 
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CDF (p-value = 0.89; K-S statistics are 0.032, which is less than the K-S critical 

value of 0.076 at the 95% confidence level). 

Log-normal distribution has been used as an approximation of patch sizes 

in various regions of ocean and coastal marine waters (Lozovatsky et al., 1993; 

Pozdynin, 2002). Stansfield et al. (2001) reported that the probability 

distribution of patch sizes in the ocean pycnocline can be considered as log-

normal for 70% of their data (1 m < hp < 15 m). Yamazaki and Lueck (1987) in 

turn suggested Gamma (or a simpler exponential) distribution as a possible 

approximation of F(hp). Our analysis of TH patches in Lake Banyoles confirms 

the log-normality of hp distribution in the range ~ 0.14 m < hp < 2.15 m.  

Lozovatsky and Fernando (2002) pointed out that the probability 

distributions of the sizes of turbulent regions as well as other properties of 

turbulence, such as turbulent scales and patch-averaged dissipation rates, are 

expected to be log-normal due to the similarity between the breakdown of 

turbulent eddies and the sizes of particles resulting from a series of successive 

statistically independent breakdowns, which is considered as asymptotically 

log-normal (Kolmogorov, 1941c).  

 

 

 

 

 

 

Fig. 4.10 The cumulative distribution functions (CDF) of the patch sizes hp in the 
thermocline (a) and the patch Thorpe scale LTp (b) fitted by log-normal model (dashed 
lines). The CDF of the normalized patch Thorpe scale (c) is approximated by the Weibull 
(solid line), and beta (dashed line) distributions. 

b. aa. c. 
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 The Thorpe scale within patches 4.3.2.

 

The probability distribution of the Thorpe scale F(LT) has been analyzed in 

different aquatic environments mainly based on equal-distance segmentation of 

the Thorpe displacement profiles. Alford and Pinkel (2000) found that for LT  

1.5 m (CTD measurements in the thermocline of the Pacific Ocean) the tails of a 

log-normal distribution fit the empirical data well. Stansfield et al. (2001) also 

reported that based on CTD measurements the log-normal model to be an 

appropriate fit for F(LT) in the pycnocline of the Juan de Fuca Strait. Kitade et al. 

(2003) and Huzzey and Powell (2005) showed histograms of LT  that are clearly 

skewed to high values. The authors stated that the distributions were definitely 

not normal, but no formal approximation was suggested. All of these results 

were obtained for LT larger than 0.4 m. It should be noted that the Thorpe scale 

in all the publications referred to was calculated at fixed, equally distant 

segments of the water column. For such LT data, Lorke and Wüest (2002) found 

exponential rather than log-normal distribution to be the best fit for F(LT). Their 

measurements were taken in Lakes Baikal (Russia), Neuchâtel (Switzerland), 

and Müggelsee (Germany). The exponential model can be appropriate for F(LT) 

when LT is calculated at the segments of  zdT
  profiles with arbitrary (usually 

equal) length and where the probability of zero LT is not zero. For 

microstructure patches, however, the exponential model cannot be applied 

because F(LTp = 0) must be zero, since 0TpL  contradicts the definition of a 

patch. 

In this study, we calculated the Thorpe LTp scales inside the microstructure 

patches. The CDF of the Thorpe scale for the TH patches F(LTp) shown in Fig. 

4.10b can be fitted by log-normal distribution in the range 0.05 m < LTp < ~ 0.4 

m, which covers ~ 85% of the data. The parameters of the distribution are 

 TpLlog  = - 2.46  0.05 and 
TpL = 0.52  0.04. The mean value TpL = 0.10 m and 

the median value med(LTp) = 0.08 m. The K-S test for log-normal models, 
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however, is very close to its critical value at a level of 95%, and the goodness of 

the fit for LTp is lower than that for hp.  

 The normalized Thorpe scale  4.3.3.

 

The CDF of the normalized patch Thorpe pTp hL  scale is plotted in Fig. 

4.10c for the patches detected in the TH. Therefore, we explored several 

statistical models for the probability distribution of pTp hL . One such model is 

the Weibull (1951) distribution, which was suggested by Lozovatsky and 

Erofeev (1993) as a way of approximating the CDFs of the fine-structure 

inhomogeneities of 2N  on the assumption that stratification has the highest 

probability of being destroyed by turbulence in those layers of random 

thickness with the lowest 2N . Using the analogy between breaking events and 

turbulent overturns responsible for random generation of quasi-homogeneous 

(mixed) fine-structure layers and the generation of turbulent patches, we can 

apply this approach to the distribution of pTp hL . 

The Weibull distribution 
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is specified by the scale w and shape cw parameters, which are related to the 

mean pTp hL  and root mean square (rms) 
pTp hL  values of pTp hL  through the 

Gamma function   dtetx tx 






0

1  as follows, 

  wpTp hL  ,  where  
wc

1
1   (4.5) 

and 

     22

whL pT
 ,  where  

wc

2
1  (4.6) 

It should be noted that the Gamma function in (4.5) and (4.6) depends only on 

the shape parameter cw.  
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The Weibull model fits the empirical F( pTp hL ) well in the range 0.07 < 

pTp hL < 0.5, which covers  95% of the distribution, leaving out only 5% of the 

smallest pTp hL  (Fig. 4.10c, solid line). The maximum likelihood estimates of 

the scale and shape parameters with 95% confidence intervals are w = 0.21  

0.02 and cw = 1.94  0.16. It is evident that Weibull distribution is a good 

estimator of the normalized patch Thorpe scale in the thermocline. 

The Weibull model has also been applied to the distribution of the Thorpe 

scale in a weakly stratified surface layer of the Boadella reservoir (Catalonia, 

Spain) during a period of wind-induced turbulence (Roget et al., 2006). Because 

the entire surface layer was turbulent during the period of measurements, its 

depth could be considered as hp and it is therefore possible to compare the 

distributions of pTp hL in the Boadella reservoir and Lake Banyoles. Although 

the scale parameters of the corresponding Weibull approximations for Boadella 

and Banyoles are very different, the shape parameters cw appear to be almost 

the same. In Boadella, cw = 2.0 with a 95% confidence interval between 1.74 and 

2.30; in Banyoles, cw = 1.94  0.16. This might be a coincidence, but it is also 

possible that the value cw ~ 2 of the shape parameter is related to the nature of 

the turbulence, which is associated with shear instability in both cases. When LT 

was analyzed in two double-diffusion convective layers with constant but 

different thicknesses hp (Sanchez and Roget, 2007), it was found that the 

distributions of pTp hL  could be approximated with a 95% confidence level by 

the Weibull model with cw = 4.2 for both layers. This may indicate that the 

shape parameter of the Weibull distribution of the normalized patch Thorpe 

scale can characterize different mechanisms in the origin of the microstructure.  

Since the patch Thorpe scale cannot exceed the size of a patch (specifically 

for turbulent events related to individual overturns) the probability distribution 

of pTp hL  has to be defined on a finite domain [a, b], where a = 0 and b are its 

lower and upper boundaries. One of the continuous distributions that satisfy 

this condition is the beta distribution, whose principle features can be found in 
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many statistical books (Mood et al., 1974; Evans et al., 2000; Bean, 2001; Forbes 

et al., 2011). Its probability distribution function (pdf) is defined as follows 

 
 

  1

11

, 

 


qm

qm

bqm

xbx
xpdf


 ,      0 < x < b,  (4.7) 

where m and q are positive parameters of the beta function 

    dtttq,m
qm


 

1

0

11 1 .      (4.8) 

The beta distribution fit shown in Fig. 4.10c coincides with the Weibull 

CDF for the upper 95% of the entire data set. Parameters of the model are m = 

2.56  0.47 and q = 10.65  2.07 (b = 1), and the mean value pTp hL = 0.19. 

The Weibull and beta approximations were tested using Kolmogorov-

Smirnov statistics with a 95% confidence level. In the case of the Weibull 

distribution, the p-value, the K-S statistics and its critical value are 0.21, 0.060, 

and 0.076 respectively; while for the beta model they are 0.35, 0.052, and 0.076. 

In both cases, K-S statistics are less than the critical value, so neither 

distribution can be rejected as a probability model for the empirical CDF at the 

95% confidence level. The p-value shows that the probability is higher for the 

beta model than for the Weibull distribution. If we run the test for an 80% 

confidence level then the Weibull model should be rejected, but the beta one 

should not. It should be noted that the upper limit of the random variable for 

the beta model is 1, although max( pTp hL )  < 1.  

 Global statistics 4.3.4.

 

Table 4.2 summarizes parameters of the probability distributions of hp, TpL , 

and pTp hL /  separately for the entire set of patches (very small patches of LTp < 4 

cm were not considered due to noise restrictions) and also for patches of hp > 25 

cm, where the calculation of   was possible. The goodness of the fits and the 

appropriate range of the corresponding variables for the proposed CDFs are 

shown in Table 4.2. 
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For the entire dataset, the empirical CDF of patch sizes can be well fitted by 

a log-normal model deviating from log-normality by only CDF(hp) < 0.03 and 

CDF(hp) > 0.97. When small patches (hp < 25 cm) are not included in the analysis 

of the CDF, the lower tail starts to deviate from the log-normal distribution at a 

much higher CDF(hp) ≈ 0.15 (see Table 4.2).  

A sharp cut in the lower tail of the TpL distribution is also observed for 15% 

of our data, which could be a result of the constraints of the patch identification 

method ( TpL  > 4 cm). When only patches with hp > 25 cm were analyzed, the 

range of validity for the log-normal fit to the empirical CDF(LTp) extended from 

an initial 15% to 8%.  

Based on the general results summarized in Table 4.2, it can be seen that the 

lack of vertical resolution, which prevents the identification of small patches, 

may explain the sharp cuts in the tails of the log-normal model for the patch 

size ph as reported by several authors (Lozovatsky et al., 1993; Stansfield et al., 

2001). Insufficient resolution of profiling measurements may also explain sharp 

tails at small scales of LT probability plots (Alford  and Pinkel, 2000; Stansfield 

et al., 2001) and the difficulties with fitting data to log-normal distribution 

reported by Kitade et al. (2003) and Huzzey and Powell (2005). It is worth 

noting, however, that small patches do not substantially modify the parameters 

of TpL  distribution, because large eddies dominate the Thorpe scale values 

(Stansfield et al., 2001; Lorke and Wüest, 2002). 
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(b)                                           Statistical parameters of the probability distribution of the patch Thorpe LTp scale 

                                   Log-normal distribution K-S goodness-of-fit test 

Parameters CDF  TpLlog

 

 TpLlog  med(LTp) (m) TpL  (m) p-value K-S statistics
* 

Range of validity (m) 

Entire data set  (LTp > 4 cm) -2.46 0.52 0.08 0.10 0.053 0.074 < 0.076  0.05 < LTp < 0.40  (15-99 % of data) 

 Patches with hp > 25 cm -2.39 0.51 0.09 0.11 0.51 0.051 <  0.083 0.044<  LTp < 0.36 ( 8-99  % of data) 

 (c)                                           Statistical parameters of the probability distribution of normalized Thorpe scale LTp/hp 

                Weibull distribution K-S goodness-of-fit test 

Parameters CDF w cw p-value K-S statistics
* 

Range of validity 

Entire data set  (LTp > 4 cm) 0.21 1.94 0.21 0.060 < 0.076 0.07 < LTp/hp < 0.5 (5-99 % of data) 

 Patches with hp > 25 cm 0.19 1.99 0.21 0.065 < 0.083 0.05 < LTp/hp < 0.4 (8-97 % of data) 

                           Beta distribution               K-S goodness-of-fit test 

Parameters CDF m q b p-value K-S statistics
* 

Range of validity 

Entire data set  (LTp > 4 cm) 2.56 10.65 1 0.35 0.052 < 0.076 0.05< LTp/hp< 0.5 ( <5-99 % of data) 

 Patches with hp > 25 cm 2.80 13.81 1 0.38 0.056 < 0.083 0.04<  LTp/hp  < 0.4 (<5-97 % of data) 

 Table 4.2 Statistical parameters of log-normal distributions of hp (a) and LTp (b), and the Weibull and beta distributions of LTp/hp (c) in patches from the 

thermocline. *K-S statistics value is compared to the critical value of the test.

(a)                                               Statistical parameters of the probability distribution of patch size hp 

                                    Log-normal distribution K-S goodness-of-fit test 

Parameters CDF  phlog   phlog  med(hp) (m) ph  (m) p-value K-S statistics
* 

Range validity  (m) 

Entire data set (LTp > 4 cm) -0.65 0.75 0.50 0.69 0.89 0.032 < 0.076 0.14 < hp< 2.15 (3-97 % of data) 

 Patches with hp > 25 cm -0.42 0.60 0.62 0.78 0.19 0.066 < 0.083 0.35 <  hp < 2.00 (15-95 % of data) 
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 Parameterization of the normalized Thorpe scale 4.3.5.

 

The Thorpe TL  scale, can serve as a good estimator of a characteristic 

turbulent scale that is used in semi-empirical closures of turbulent mixing in 

stratified flows. If TL  can be related to the patch size ph , then the analysis of 

patch turbulence can be simplified by employing the algorithm of patch 

identification in a particular layer. As was shown in subsection 4.2.4, the ratio 

pTp h/L  varied in the SL depending on the state of turbulence, which is related 

to the age of the patch (Smyth and Moum, 2000; Smyth et al., 2001). The median 

value of pTp h/L  in the TH of Lake Banyoles was 0.18, which is more than twice 

the med( pTp h/L ) = 0.07 reported by Moum (1996) for large ocean patches 

detected in the upper part of the thermocline. The size of the oceanic patches 

ranged between 3 and 15 m, while the lake patches detected in the TH are much 

smaller (the largest being hp < 4 m). The background stratification in the ocean 

(a characteristic N ~ 0.005 s-1) was much weaker than in the lake. Also, ocean 

patches selected for the analysis were large and not very energetic (with  less 

than 10-8 Wkg-1 in more than 50% of cases). Therefore, the median of the ratio 

of pTp hL /  was small, suggesting that those patches were probably observed at a 

later stage of their evolution compared to the patches in the lake. 

In general, the value of pTp h/L  is determined by a number of external 

and internal parameters, which include time at the initial stages of pTp h/L  

evolution, but which could be governed by a balance between buoyancy and 

inertial forces if turbulence in a patch is sustained by, let us say, ambient shear. 

For such environments, Lozovatsky and Fernando (2002) introduced a 

parameterization of pTp h/L  taking into account its dependence on the so-called 

patch Richardson number,
242

ppp KhNRi  , and the patch mixing Reynolds 

number, pmp KR  , where the buoyancy frequency of the background 
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stratification is  2N , diffusivity is pK , and molecular viscosity is  . On physical 

grounds, the patch Richardson number reflects the balance between buoyancy 

and small-scale shear inside patches. This shear is an integral of the dissipation 

spectrum between the lowest wave number proportional to ph2  and the 

highest possible wave number specified by the shear signal. The diffusivity pK  

is a measure of this shear and the powers of N, pK and hp follow the 

requirement to make the combination non-dimensional. For geophysical flows 

(specifically the Black Sea coastal zone) it was found that  

 

(4.9) 

where x is the non-dimensional argument,  max

pTp hL  is an asymptotic constant 

that was estimated to be equal to 0.3, and pcRi  and mpcR  are characteristic 

values of pRi  and mpR  equal to 60 and 150, respectively. Note that the ratio 

pTp hL  decreases with Rip, because the patch Richardson number is an analog of 

the inverse Ozmidov scale   2/131 ~ NLO

 . 
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Fig. 4.11  The normalized patch Thorpe scale as a function of the patch Richardson and 
mixing Reynolds numbers (see text for details). 



4. Results on External Intermittency 

 

- 59 - 

 

We tested (4.9) for TH turbulent patches in Lake Banyoles and only 

considered patches of ph  > 25 cm. The total number of such patches was 281. 

For about 90% of the patches, the buoyancy Reynolds number exceeded 30, 

signifying active turbulence. The bin-averaged values of pTp h/L  are shown in 

Fig. 4.11 and compared with (4.9) using  max

pTp hL  = 0.45 rather than the 

original 0.3 of Lozovatsky and Fernando (2002). Although the Banyoles samples 

sit slightly above the line specified by (4.9) for low values of the argument x, 

they are consistent with previous observations of patch turbulence in the ocean 

(Dillon, 1982; Gibson et al., 1993), and marine coastal waters (Lozovatsky and 

Fernando, 2002). It should noted that the modified value of  max

pTp hL   = 0.45 in 

(4.9) is close to  max

pTp hL = 31  = 0.57, which is the case for a single Z-shaped 

inviscid overturn without mixing (Gibson, 1987). Smyth et al. (2001) also 

indicated that  max

pTp hL  is close to 0.5 for a young overturn. Based on 

geometry, Gibson (1987) also proposed a slotted Z-model for an isolated 

turbulent mixing event where  max

pTp hL  = 0.41, but De Silva and Fernando 

(1992) argued that this model is only valid for the initial stages of mixing. Their 

laboratory experiments with sustained grid turbulence showed that pTp h/L  

increases with time during the growing phase of a turbulent patch, which is 

consistent with the direct numerical simulations (DNS) of Smyth et al. (2001), 

but in this case  max

pTp hL  tends to a constant value  0.27. A similar result, 

 max

pTp hL  0.29, was obtained by De Silva et al. (1996) when they were 

studying the cores of collapsed billows in a series of laboratory experiments. 

The asymptotic value of  max

pTp hL  may depend slightly on the turbulence 

generation mechanism, but it is safe to suggest that it is confined to between 

0.25 and 0.5. For our data, the best estimate of  max

pTp hL  is 0.45. General 

dependence of the normalized Thorpe scale on the parameters of background 

stratification and patch turbulence, which is given by (4.9), agrees well with 
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microstructure measurements in deep and coastal oceans and is now also 

supported by the data obtained in a small lake.  

 Mean turbulent buoyancy fluxes by intermittent 4.4.
mixing 

 

In this subsection we calculate the vertical mixing across the thermocline 

of the lake based on turbulent patchiness detected within the layer. Firstly, we 

evaluate the effects of the internal wave field across the thermocline. This is 

done through the computation of eddy diffusivities. Furthermore, the mixing 

effect of wind gustiness is also analyzed. 

 Diffusivities and buoyancy fluxes at the thermocline  4.4.1.

 

The vertical mixing across the thermocline will be determined based on  

the diffusivity parameterization 
2NK p   (Osborn, 1980) in stratified lakes 

and by considering the dissipation rate  and the buoyancy frequency N, which 

are calculated for individual patches (larger than 25 cm) rather than at equally 

segmented individual profiles. The mixing efficiency  = 0.2 for active 

turbulence (Oakey, 1982) was used. 

We calculated the averaged diffusivity i

THK  for every  i profile taking into 

account that intermittent mixing episodes occupied only a specific fraction of 

the thickness of the TH. By averaging a large number of turbulent patches over 

a specified domain (the TH in our case) during relatively long-standing stable 

background conditions (Nash and Moum, 2002) a representative estimate of 

THK  can be deduced. In our case, a number of daily measured profiles were 

obtained under light breezy winds. Hence, the profile averaged diffusivity is 

calculated as follows, 

  i
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where the superscript i represents the number of the profile, 
i

pH  is the fraction 

of the TH occupied by turbulent patches, i

THH  is the mean thickness of the TH, 

j

ph  and j

pK  are the thickness and diffusivity of the individual patch j, and 

7104.1 TK  m2 s-1 is the molecular diffusivity.  

Only patches with 25j

ph  cm were used due to the limitations of the  

calculation. It should be noted that large patches mostly contribute to the total 

mixing rate in pycnoclines (Gregg et al., 1986; Yamazaki and Lueck, 1987). The 

total number of TH patches with hp > 25 cm was 281, which is  90% of the total 

number of detected patches.  

The state of turbulence in the patches was also evaluated using the 

buoyancy Reynolds number bRe . It was found that for 90% of the patches Reb > 

30, which indicates active turbulence (see Chapter 3, subsection 3.2). The mean 

Reb for all patches was 2400, and the median 645.  

By averaging i

THK  over the 

chosen number of profiles i = 2, 3, 

…281, a characteristic THK  can be 

obtained for a specific time period. 

It is important to note that THK  

represents the mean vertical 

diffusivity across the TH only for 

relatively stable background 

conditions (light afternoon winds) 

observed in mid-summer during 

the period of field measurements. 

The histogram of the distribution of 

log10(Kp.) for all turbulent patches is 

shown in Fig. 4.12. The diffusivities 

ranged between 7106.7  and 2104.1  m2s-1 with a median value of 1.29·10-4 

m2s-1. The distribution is slightly skewed towards high values, with the 

 

 
Fig. 4.12  The histogram of the logarithm 
of turbulent diffusivities in microstructure 
patches for the entire dataset of 281 
patches. 
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skewness S equaling - 0.20. For approximately symmetric distributions (where 

the skewness is between - 0.5 and 0.5 (Bulmer, 1979) the mean value of Kp can 

be estimated as the geometric mean pK̂  (Borradaile, 2003). We calculated this 

value using the bootstrap method (Efron and Tibshirani, 1993). The bootstrap 

samples used for the averaging were ten times the actual number of samples. 

The campaign averaged pK̂  = 1.03·10-4 m2s-1 with 95% of bootstrapped 

confidence limits of 8.5010-5 m2s-1 and 1.22·10-4 m2 s-1. 

The estimate of effective mean diffusivity in the thermocline i

THK  

computed using (4.10) for the entire period of observations (i = 281 profiles) was 

THK  = 7.03·10-5 m2s-1, which corresponds well to the averaged vertical 

diffusivities in stratified interiors of lakes and oceans (Ledwell and Watson, 

1991; Alford and Pinkel, 2000;  Sharples et al., 2001; Etemad-Sahidi and 

Imberger, 2006). Values ranging between 10-4 - 10-5 m2s-1 were reported by 

Roget et al. (2006) for measurements on a shallow stratified shelf. The estimate 

of THK  obtained, however, may be subject to relatively high variability 

considering the rather short period of our observations and temporal variations 

in the internal seiche characteristics in the lake.  

In order to characterize vertical transport across the TH we first 

computed the buoyancy flux for each detected patch as Jbp = Kp 
2

pN  and then 

averaged it over the entire dataset, in the same way as for Kp (4.10), to provide 

the buoyancy flux for non-turbulent segments 2

ntTbnt NDJ  . The probability 

distribution of log10 (Jbp) can be considered approximately normal, with the 

skewness S equaling -0.38. The geometrically averaged bpĴ was (2.290.46)10-7 

Wkg-1. The effective mean buoyancy flux THJ  across the thermocline computed 

similarly to i

THK  (4.10) and when averaged for the entire period of observations 

(i = 281) was found to be 1.90·10-7 Wkg-1. 

We analyzed the role of internal seiches as the major source of vertical 

mixing in the thermocline, comparing the distributions of Kp for June 25 and 
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July 1 when the measurement site was affected by internal seiches in different 

phases. The histograms of two distributions of log10 (Kp) are shown in Fig. 4.13. 

It should be noted that for July 1 the histogram is relatively symmetric, but not 

for June 25. About 60% of the data show log10(Kp) < -4, despite several large 

diffusivity values in  the  record. The number of turbulent patches detected   on  

June 25 (55) was significantly 

fewer than on July 1 (87). 

Temporal variations in the 

thermocline displacements 

were small (of only a few  

centimeters) on June 25, but 

on July 1 they were large 

(maximum values of about     

 0.5 m), as can be seen in Fig. 

4.3 and Fig. 4.5. Note that 

large temporal variations in 

the vertical displacements 

correspond to a seiche phase 

with high horizontal velocities and maximum vertical shear. The seiche 

dynamics were similar on June 27. The mean patch diffusivities for June 25 and 

July 1 were estimated as (4.58  1.71)10-5 and (3.65  0.80)10-4 m2s-1 

respectively, with the diffusivities differing by an order of magnitude 

depending on the phase of the internal seiche. The values obtained on June 25 

are close to those reported by Etemad-Sahidi and Imberger (2006) in Lake Biwa 

and Lake Kinneret.  

The mean diffusivities for June 25 and July 1 were computed using only 

turbulent fractions, which on July 1 occupied about 19% of the TH compared to 

10% on June 25. The mean diffusivities across the TH were 1.61·10-4 m2s-1 and 

5.73·10-5 m2s-1 respectively. Similar values were obtained for June 23 and June 

27 (where the vertical displacements were small) with mean diffusivities of 

5.57·10-5 m2s-1 and 8.1·10-5 m2s-1 respectively. 

 

 
Fig. 4.13 The histogram of the logarithm of 
turbulent diffusivities in microstructure patches 
for July 1 (grey bars) and June 25 (open bars). 
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The effective buoyancy flux across the TH was   1.72·10-7 Wkg-1 on June 25, 

which is approximately half its estimate (4·10-7 Wkg-1) for July 1. The difference 

is attributable to the variation in vertical shear in the TH, which is controlled by 

different phases of the internal seiche. The same conclusions can be drawn from 

June 23 and June 27 (1.39·10-7 Wkg-1 and 2.11·10-7 Wkg-1). 

 Impact of turbulent gusts on internal mixing 4.4.2.

 

To evaluate the impact of wind gusts on internal mixing, the wind 

energy flux at 10 m above the lake‟s surface was calculated (Lombardo and 

Gregg, 1989), 

with the air density air, and the drag coefficient 10C  computed following Wu et 

al. (1994). For 10U = 7.7 ms-1, 10P = 0.44 Wm-2.  

The integrated dissipation P
~

 in a specific layer of the water column 

(between z1 and z2) can be evaluated (Wüest et al., 2000) as 

 
2

1

~
z

z

w dzzP  , (4.12) 

where  z  is zero for non-turbulent segments and equal to the mean 

dissipation for each patch within the layer. Since wind gusts directly influenced 

the second, the third and the fourth profiles shown in Fig. 4.9, we estimated P
~

 

in the SL, TH and BL by averaging the dissipation rate measured between 

19:02:00 h and 19:05:30 h. In the SL, SLP
~

 = 7.1·10-3 Wm-2, which is about 1.6% of 

10P . In the lake‟s interior, inP
~

 = 3.1·10-3 Wm-2, equal to  0.7 % of 10P .  

Wüest et al. (2000) reported that in Lake Alpnach about 1.5% of the wind 

energy dissipated in the surface layer and less than 0.7% in the stratified 

interior of the lake. The much lower values of SLP
~

 in lakes (Wüest  and Lorke, 

2003; Folkard et al., 2007) compared to the ocean, where Lozovatsky et al. (2005) 

found 7310 PP
~

 % for moderately high winds, are related to wind work 

10P = 3

1010 UCair   (4.11) 
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lasting a short time during the passage of wind gusts. The transfer of potential 

energy from wind gusts to the SL and TH can increase the instabilities of the 

internal wave field, and pressure fluctuations could also transport energy to the 

interior of the water. 
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 Overview of Internal Intermittency: 5.
Intermittency at Small Scales of 

Turbulence 
 

 Approach to internal intermittency 5.1.

 Kolmogorov’s Similarity Hypothesis 5.1.1.

 

Internal intermittency has its roots in the 1941 contributions of 

Kolmogorov to the classical theory of turbulence. At that time, Richardson 

(1922) had successfully introduced the „energy cascade‟ model for turbulence. In 

that picture, energy was injected on the largest scales and it was transferred to 

successively smaller scales until being dissipated at the smallest ones, where 

turbulent energy was converted into heat by molecular viscosity.  

Inspired by the Richardson‟s idea, Kolmogorov postulated the existence 

of an eddy hierarchy in any fully-developed turbulent flow with universal 

characteristics. As a new point of view, Kolmogorov (1941) assumed that 

information about the largest scales (energy containing range) is gradually lost as 

energy is transferred to the smaller scales. Then, there is a  range of small scales 

at which turbulent motions are not dependent on the external forcing and can 

be considered in statistical equilibrium (equilibrium range). Consequently, this 

range of scales is isotropic, homogeneous and has a universal structure. Then, 

as Kolmogorov said in his first similarity hypothesis (Kolmogorov, 1941a; 

Kolmogorov, 1941b), turbulence in the equilibrium range is determined by the 

rate at which eddies receive energy from the larger scales and the energy 

dissipated in the eddies. 

The Kolmogorov scales for time, length and velocity are indicators of the 

smallest scales at which the energy is dissipated. The Kolmogorov length scale 

is  4
1

3 ~ K  . Several works have shown that scales with the maximum of 
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dissipation are in a range of [5, 50] K  (Stewart and Grant, 1962; Panchev and 

Kesich, 1969; Monin and Yaglom, 1975; Arneodo et al., 1996; Roget, 2013). In 

Fig. 5.1 the maximum dissipation scale is shown for the Panchev and Kesich 

(1969) model which is located at a length scale of 50 K (Appendix A). Therefore, 

it is also observed that scales of about  ~ [3, 100] K  are responsible of the major 

part of the turbulent transport of particles in a flow (MacIntyre, 1993). In Fig. 5.1 

the Batchelor microscale B  which is an indicator of the smallest scales for 

scalar fluctuations until being dominated by molecular diffusion is also 

presented. Also, depending on  , the scale where the variance of temperature 

fluctuations is higher according to the Batchelor model is shown.  

For fully-developed turbulence and within the equilibrium range the 

small-scale range of strong dissipation (dissipation subrange) is expected to be 

well away from the larger scales. This leads to the development of a transitional 

region, the inertial subrange, where dissipation will be neglected if compared to 

the energy transferred through smaller scales, as shown in Fig. 5.2. 

In the inertial subrange, processes of turbulence production and 

dissipation are not important and there is a balance between the rate at which 

 
Fig. 5.1 Representation of Kolmogorov (solid line) and the Batchelor (dashed line) 
microscales, in logarithmic scale depending on ε, the rate of dissipation of the turbulent 
kinetic energy. The Batchelor microscale is an indicator of the smallest scales for scalar 
fluctuations until being dominated by molecular diffusion (Roget, 2013). 
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energy is transferred and the rate at which it is dissipated at smallest scales. 

Hence, the energy spectrum in the inertial subrange will be independent of   

and only have dependence on  , which was postulated by Kolmogorov (1941) 

in his second hypothesis. Since energy spectrum  kE has units of     23 
 TL , 

dimensional analysis shows that, in the inertial subrange, it can be expressed as 

 where CK is a constant with a value of CCK 5518  for the longitudinal 

velocity component and CCK 5524  for the transversal one, and 6.1C  is 

the Kolmogorov constant (Srenivasan, 1995). The equation                                                         

(5.1) is usually known as the Kolmogorov‟s ‘five-thirds law’.  

Another consequence of the second self-similarity hypothesis is that, 

under assumptions of local homogeneity and isotropy, the velocity differences 

v


  at two neighbouring points located at 1r


 and 2r


 respectively, i.e. 

   t,rvt,rvv 21


 , are invariant under rotations and reflections. Including also 

  3

5

3

2


 kCkE K                                                           (5.1) 

 

 
Fig. 5.2  Representative scheme of the energy spectrum of turbulence in a logarithmic 
scale. The inertial subrange is delimited by vertical dotted lines (adapted from Seuront et 
al., 1999). 
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stationarity, the velocity differences only depend on r


, with 12 rrr


 . Also, 

under these assumptions the Navier-Stokes equations are invariant to scaling 

transformations in the inertial subrange (Frisch and Parisi, 1985).  

The fluctuations of any component of the velocity field v  (longitudinal, 

and transverse direction as seen in Fig. 5.3), can be written as 

      rvxvrxvrv   (5.2) 

with x  indicating the spatial direction chosen and r  the distance between the 

two points.  

The p-order moments, usually called velocity structure functions of order p, 

for any component of the velocity field v


  (Fig. 5.3) are defined as 

  p

rp vrs   (5.3) 

The angular brackets indicate an average over the distance x .  

According to Kolmogorov‟s second hypothesis, the form of  rs p  in the 

inertial subrange must be of the form 

   3

p

p r~rs   (5.4) 

because the only possibility of removing the viscosity parameter  is if  rs p ~

3pr (Pope, 2000; Hinze, 1975). Note that for p = 2, the expression of   32

2 ~ rrs , 

known as the Kolmogorov‟s ‘two-thirds law’ for isotropic turbulence. If this 

expression is transformed in the Fourier space, the ‘five-thirds law’ for the energy 

spectrum is recovered (Tennekes  and Lumley, 1972).   

 

Fig. 5.3  Geometries of the components of the velocity field: longitudinal (left) and 
transverse (middle and right) directions. 
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In a general form, the equation (5.4) is usually written as a function of the 

scaling exponents  p   

   pp

rp rvrs   (5.5) 

with  p  = 3p , which is known as Kolmogorov‟s scaling. 

Experimental values obtained for the second order structure function 

follow the 2/3 value predicted by Kolmogorov scaling theory well (i.e.

  32

2

/rrs  ). It was successfully tested for the first time by Grant et al. (1962) 

based on turbulence generated in a tidal stream between Vancouver and the 

Quadra Islands, in British Columbia (Canada).  Although initial work 

confirmed this scaling in laboratory and field experiments (Gibson, 1963; 

Sanborn and Marshall, 1965; Kistler and Vrebalovich, 1966; Uberoi and 

Freymuth, 1969), subsequent work has shown discrepancies between the 

Kolmogorov prediction and the scaling exponents for higher order structure 

functions (Van Atta and Chen, 1970; Anselmet et al., 1984; Meneveau and 

Sreenivasan, 1991; Benzi et al., 1995; Zhou et al., 2005). This is the so-called 

„anomalous scaling’: as the higher the scaling exponent, the greater the deviation 

is. 

 The Refined Similarity Hypothesis 5.1.2.

 

Previous results show that something was going wrong in the 

Kolmogorov theory of 1941. In fact, Kolmogorov had assumed in his theory that 

the energy dissipation rate   was uniform in the space and constant in time, i.e. 

 ~ , with ~  the mean dissipation rate. Soon he received several comments 

and evidences that questioned this idea.  For example, Batchelor and Townsend 

(1949) found that turbulence tends to form isolated regions of concentrated 

vorticity showing intermittent character. Also Landau had objected that theory, 

as Kolmogorov noted in the famous International Turbulence Colloquium held 

in Marseille in 1961, and pointed out that   is a function of position and time 

with  t,r


  : in regions where    ~, tr


, the energy cascade would proceed 
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more vigorously, and an intermittent distribution of  t,r


  should be expected 

(internal intermittency). As Moffatt (1981) said in his article, there was „a 

problem that was to seriously affect the credibility of Kolmogorov‟s theory; this 

was the problem of intermittency. […]. Gone was the beautiful simplicity of the 

earlier theory: from 1961 on, no aspect of turbulence would be simple‟.  

In the Marseille meeting in 1961, Kolmogorov argued during his 

presentation that  t,r


  would be log-normally distributed and showed that, 

although the effect on the energy spectrum should be small, the higher orders 

could be seriously affected by small-scale intermittency. One year later, 

Kolmogorov (1962) and Obukhov (1962) suggested the Refined Similarity 

Hypothesis (RSH) according to which the velocity increment rv  over a 

separation distance r is specified not by the mean dissipation rate ~  but rather 

by the dissipation rate r  averaged over a specific volume of radius r < L and 

defined by 

   ydVt,yx
r

V

r  






34

3
 (5.6) 

which, instead of (5.4) and (5.5),  leads to the following scaling relation  

    3/
~

p

r

p

rp rvrs   (5.7) 

where the dissipation rate r  can be also understood as the energy flux between 

eddies.  

If r  is log-normally distributed, they showed that the moments of r  

scale as (Appendix B) 

 
2

1

~~











pp

p

p

r

r

L





            rK  (5.8) 

with   a positive constant. And for  2p  we obtain 



 









r

L
Ar

22 ~  (5.9) 

The variance of r  can be also expressed as 











r

L
A

r
log2

log    (5.10) 
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where A  depends on the large-scale motions and  is the so-called intermittency 

exponent, which accounts for the intermittency effects (Monin and Yaglom, 1975; 

Frisch, 1995). 

The RSH leads to the question about the statistics of r , which is assumed 

to be log-normal without any theoretical considerations. However, this has 

opened the door to allow turbulence to be interpreted from a different 

perspective, one where r  the key descriptor is associated with a random 

variable and has specific characteristics. In the following subsections the 

fundamentals of the turbulent energy cascade models are detailed. 

 Multiplicative energy cascades  5.1.3.

 

The starting point of most energy cascade models developed until now is 

that proposed by Gurvich and Yaglom (1967) who theoretically derived an 

explicit cascade model to take intermittency into account. They introduced a 

discrete procedure in scale wherein the transfer of kinetic energy down the 

cascade occurs with the breakdown of turbulent eddies. Since their basic idea of 

breakage is the same as for the other models presented in the section, it is 

worthwhile describing them next. 

The model begins by considering a domain Q  with energy-containing 

eddies of size L  ( 3LQ  ) that will be successively divided into subdomains iq  

of characteristic length ir  ( 3

ii rq  ). Let us consider  x  as a non-negative 

quantity defined only by local properties and which represents the dissipation 

rate on the smallest scales, i.e. the rate of energy transfer on those scales. The 

energy dissipation rate i  and the volume iq  is given by 

 

i

q

i
q

dxx

i






  (5.11) 

Here, the quantity i  is a random variable that represents an average in the 

volume iq , associated with the eddy of size ir . Consider the fact that it breaks 
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down successively into a smaller volume 1iq   and is characterized by the length 

scale 1ir . The scale ratio b between two successive breakages is a constant, 

1


i

i

b
r

r
 . Then, the values of i  are related through the random breakage 

coefficient  

i

i
1iW



 1
  ,       i=1,2,…,K (5.12) 

and up to some stage K; the number of breakage processes where the values of 

i  do not fluctuate anymore. Therefore, the average value  x  in the entire 

volume which contains the breakage process Q  is 

 

Q

dxx
Q






~  (5.13) 

and the scale ratio   after i iterations is defined as 

i

b

ir

L
   (5.14) 

Considering that the random variables i  are mutually independent and 

identically distributed, then the value of   in any specific volume at resolution 

scale  can be determined by the density function W  (Seuront et al., 2005) 





i

j

jW
1

~  (5.15) 

The expression is transformed into 

     



i

j

jW
1

log~loglog   (5.16) 

The moment of the dissipation rate j  after j steps can be written as  

 
i

pp
i

j

p

j

p

p
i

j

j

pp WWW 













 




~~~

11

 (5.17) 

because they are independent variables.  

On the other hand,  p

r  scale as      pKp

r rL~  (see (5.8) for example), 

then (5.17) can be expressed as 
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 pKp ~  
 (5.18) 

where  pK  is the scaling exponent of the moments of order p for the energy 

dissipation rate and so, using (5.14)  

   p
WlogpK

b
  (5.19) 

The conservation of the energy implies that 1W , and then   01 K .  

According to the RSH, the structure function can be rewritten in terms of 

  for any step of the cascade 

    33
~ ppp

v     (5.20) 

where now    xvrxvv   with rL  so values of are always positive. 

Because the velocities‟ differences are defined positive, now the structure 

functions can be calculated for orders either fractional or integer and they are 

defined as1 

         ppp

p rxvrxvrS    (5.21) 

where  p is the same as (5.5). 

Considering (5.5), (5.10) and (5.20), the relation between the scaling 

exponents of the structure functions of order p,  p  and the moment function 

of the energy dissipation rate,  pK  is 

  









33

p
K

p
p  (5.22) 

Following                                                         (5.1), the energy spectrum  kEv  of 

the velocity fluctuations in the     k-space is  

  B

v kkE  3

2

  (5.23) 

and by definition (Monin and Yaglom, 1975) it can be obtained as an integration 

of the second-order structure function  rS2  in the k-space (see (5.22)). Then, it is 

found that 

                                                 
1
 Experimental data shows that scaling exponents for the structure functions sp(r) can be estimated for 

those obtained from the absolute values, Sp(r) (Benzi et al., 1984). 
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Note that for Kolmogorov scaling shown in (5.4)   322   and then 35B , 

which is the five-thirds Kolmogorov law. 

 The log-normal model 5.1.4.

 

The works of Gurvich and Yaglom detailed above assumed that the 

distribution of  Wlog  was normal, i.e. the logarithms of the dissipation rate 

were also normal distributed. In fact, if K  and L are the smallest and the largest 

scales for which W follows the breakage model, the ratio  LK  is large enough 

that the sum in (5.16) can be approximated to a Gaussian distribution according 

to the Central Limit Theorem (Evans and Rosenthal, 2003). In this case, W  obeys 

a log-normal law and the expression of the scaling exponents of the p-order 

moments  pK  in (5.18) is quadratic in form, i.e. 

    21 pppK  , (5.25) 

(see also (5.8)), giving the intermittency exponent  2K .  

As a first approach, the intermittency exponent   is considered as 

universal, but there is considerable uncertainty about its value. This value of  , 

which has been reported in several works, varies depending on the type of the 

flow. For example, Monin and Yaglom (1975) reported a value of   0.5. 

However, for well-developed turbulence in the laboratory it has been found 

that 25.0  (Sreenivasan and Kailasnath, 1993). In atmospheric turbulence,  

ranges between 0.2 and 0.5 (Anselmet et al., 1984; Schmitt et al., 1992; 

Chiriginskaya et al., 1994).  

The scaling exponents )( p  for the log-normal model are calculated using 

(5.22) and (5.25) 

)3(
183

)( pp
p

p 


  (5.26) 

so that internal intermittency account for a departure 18)3()( ppp     

from the Kolmogorov scaling.  

Using the expression (5.24) the exponent of the spectrum, B,  is 

 21 B  (5.24) 
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 21 B = 1 + (2/3 +/9) =5/3 + /9 (5.27) 

 which is slightly steeper ( 9B ) than Kolmogorov‟s 5/3 law. 

Although log-normal approximation was proposed as a good solution for 

the problem of intermittency, several works have questioned its application. 

Then, some attempts to improve the log-normal model have been suggested to 

take into account the weight of the outliers in the distribution of r , i.e. the 

relevance of strong fluctuations in the dissipation field; as in the case of the 

Yamazaki model (Appendix C). However, the application of the multifractal 

theory was the next step in understanding and quantifying the phenomenon of 

internal intermittency (Novikov, 1971; Schertzer and Lovejoy, 1987; Schmitt et 

al., 1994). Its description and application to different turbulence models is 

analyzed in the following subsection.  

 Fractal modeling for turbulence 5.2.

 General description of fractals 5.2.1.

 

The word „fractal‟ (from the Latin „fractus‟ or broken) was introduced by 

Mandelbrot (1975) to describe complicated geometric shapes which cannot be 

represented by classical geometry.  These kinds of objects are characterized by 

the repetition of geometric structures at ever smaller levels of resolution. Their 

general description has been reviewed in many books on fractals (Feder, 1988; 

Barnsley, 1988; Falconer, 1990; Solé and Bascompte, 2006) and some of them are 

detailed below.  

The basic property of fractals is that they exhibit the same shape when the 

scale is changed (scale-invariance). Following Mandelbrot (1982), a fractal is 

defined as „a rough or fragmented geometric shape that can be split into parts, 

each of which is a reduced-size copy of the whole‟. From this definition two 

more properties can be drawn: first, they have fine structure, with their details 

present on small scales; second, they are self-similar being exactly, 

approximately or statistically similar to a part of itself. 
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Self-similarity allows classified fractals to be categorized into two types 

depending on their construction (Falconer, 1990). If these rules of construction 

are deterministic, they are called deterministic fractals; if their construction is 

related to a random variable, they are called stochastic fractals. If all the pieces 

are identical, the fractal is considered as a monofractal. On the other hand, if the 

pieces are not identical then it is a multifractal. 

Fractals are also characterized by their fractal dimension (Mandelbrot, 1967), 

which represents a measure of how the fractal fills the embedded space just as it 

is re-scaled to smaller and smaller scales. In contrast with the integer values of 

the dimensional topological dimensions (i.e. lines, areas and volumes), fractal 

dimensions are fractional (Appendix D). If the fractal is scaled successively with 

a scale ratio  , then the number of copies n  that an object contains of itself can 

be related to its fractal dimension D  through the power law 

  D
n


   (5.28) 

and the fractal dimension is 

Note that it also works for any of the topological dimensions. For example, if 

the scale ratio  is 21  , a cube can be cut into 8 half-sized cells. Using (5.29) it  

gives 3D  (Appendix D).  

 The monofractal case: The -model 5.2.2.

 

Fractal structures, defined by their fractal dimension, are scalar-invariant 

and exhibit power-law behavior. For turbulence, the equations of Navier-Stokes 

are scale-invariant in the inertial subrange (Frisch and Parisi, 1985) and this 

suggests that fractal framework can be appropriate for modeling that process. 

Thus, it is expected that if eddies can be described as fractal objects, their 

statistical properties will depend on the scale ratio by a power law. 

 
















1
log

log n
D  

(5.29) 
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 The first (and also the simplest) model of multiplicative process based on 

fractal considerations was the -

model.  Introduced by Frisch et al. 

(1978), but previously presented by 

Mandelbrot (1974) as a „black and 

white‟ model, it follows an original 

scheme proposed by Novikov and 

Stewart (1964). 

The basic idea of the model is 

that at each stage of the energy 

cascade turbulent eddies occupy 

only a fraction of the available 

volume. Thus, intermittency is 

considered leaving eddies to be 

either ‘alive’ (active) or ‘dead’ 

(inactive).  Turbulent activity is 

controlled by a factor  10, , which 

determines the fraction of available 

volume occupied by „alive‟ eddies 

from one generation to the next and is an adjustable value of the model.  Since 

at any stage of the cascade eddies have the same intensity, the  -model is a 

monofractal model, see in Fig. 5.4. 

 To describe the model and the parameters involved, consider the      

(i+1)-th step of the cascade.  In the model the factor   can be expressed as  

3

3

1

i

i

r

rn 
  (5.30) 

where n is associated with the space filled by active eddies of size 1ir  at the 

considered step of the cascade. The breakage coefficient 1 iib rr  can be also 

related to the fractal dimension D  using (5.28) and D

bn  , with   1b  

 

Fig. 5.4  Examples of isotropic turbulent 
cascades. On the left, the homogeneous case 
(i.e. non-intermittent cascade process). On the 

right, the „-model‟ (monofractal case) 
represented by subeddies that do not fill the 
whole space. In this latter case, the fractal 
dimension D = log(3)/log(2) ~ 1.58 (Seuront 
et al., 1999) 
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The codimension c  represents the non-turbulent region present in the 

available space and is defined as  

Ddc   (5.31) 

where d  is the dimension of the embedding space d and D  the fractal 

dimension. This is a measure of the sparseness of the fractal set. Then, the factor 

  can be rewritten using the codimension c as  

  c

b

Dd

bd

b

D

b

d

b

n 
 






  

 
(5.32) 

 

From (5.30), the fraction ip  of the whole space occupied active eddies is 

  c
i

j

j

ip 



 
1

 (5.33) 

and   is the scale ratio defined by (5.14). The random breakage coefficient iW  in 

(5.12)  can be written as 

Note that the active region is decreasing by a factor  ( ii  1 ) at each stage 

of the breakage process. Since the mean value of the energy is conserved, this 

represents that the value of the energy in the active cells is increasing by a factor 

1 .  

Recalling that i

b   and using (5.33)  the probability of the two possible 

values of the normalized dissipation rate  
~  at scale ratio   can be 

expressed as 

In this expression we have used a normalized quantity, hereafter symbolized by 

a star superscript, to better indicate fluctuations above and below the mean  ~ . 

For a non-normalized quantity, the same expression is valid but  c 
  must be 

replaced by c
~ .  

 

(5.34) 














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)Pr(

)Pr(








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Equation (5.35) shows that the conservation of the energy is respected       

( 1

 ), with c    which corresponds to a boost ( 

  > 1).  

Because normalization does not affect the scaling exponents of the p-

moments  pK of the dissipation rate, they can be calculated as 

Using (5.18) we obtain the scaling exponent of the p-order moment of    

If the intermittency exponent   is determined as )2(K , see in (5.25), then 

(5.40) gives that   is equal to the codimension c . Thus,  

From (5.22) the scaling exponent of the p-order structure function  rS p  

According to (5.24), the power-spectrum exponent   has the value of  

 
33

5
21


 B  (5.40) 

The experimental results for high orders of  p  reported by Anselmet et 

al. (1984), concluded that the model was not satisfactory as a model for 

turbulence because experimental scaling exponents did not exhibit a linear 

behavior, as theoretically predicted in the  -model. Consequently, several 

corrections to the  -model were suggested, such as the random  -model or the 

bifractal model, until the multifractal formalism was introduced (see details in 

Appendix C). 

 Multifractals 5.2.3.

 

Fluctuations of turbulent quantities generally span a wide range of scales 

and exhibit different levels of intensity. Thus, it seems reasonable to think that 

       1
2

1





 pcc

k

pc*

k,

p*

k,

p* )(p·     (5.36) 

   1 pcpK  (5.37) 

   1 ppK   (5.38) 

  







 1

33

pp
p   (5.39) 
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the previous monofractal description based only on one single fractal 

dimension, i.e. the trivial „dead‟ or „alive‟ event choice, should not be the 

general case. In the multifractal framework, turbulent eddies can be described 

as a set of local fractals, each of which is associated to the different levels of 

intensity. While the multifractal term was introduced by Frisch and Parisi 

(1985), the same idea had been analyzed previously in other works (Hentschel 

and Procaccia, 1983; Grassberger, 1983; Schertzer and Lovejoy, 1984). In this 

case, the multifractal theory does not work with only one scaling exponent as a 

monofractal does, but rather with multiple scaling.  

Extending the monofractal formalism to the multifractal theory, the whole 

space is covered by an infinite number of sets, namely jS  (  ,...,j 1 ). In each 

of these sets, the (normalized) dissipation rate *

j,  will scale as (Schertzer and 

Lovejoy, 1987) 

j

j



  ~*

,   (5.41) 

and the exponent is knows as the singularity j  of the set jS .  

The value of the singularities   represents the intensity level of 

turbulence on the scale of observation  . In fact, as is described in Tessier et al. 

(1993), when   increases, larger values of 
*


 appear (higher activity) and these 

are also concentrated in smaller and smaller regions. 

 If a set jS  has a fractal dimension  
jD  , the codimension of the set  

jc   

can be defined following (5.31) as  

   
jj Ddc    (5.42) 

 The probability distribution of the dissipation rate 
*

j,  can be expressed as

 jc 



, see (5.33). To calculate the scaling exponents for the p-order moments of 

the dissipation rate  p*

 , the contribution of the each set jc  must be 

multiplied by their probability 
 jc 




, and finally add up to all the sets 

      





j

cp

j

cpp* jjjj 

   (5.43) 
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 These basic  ideas of the multifractal theory are explored in the next subsection, 

where the -model, a multifractal model, is described in detail.  

  The -model 5.2.3.1.

The -model  (Schertzer and Lovejoy, 1983) overcomes the dichotomy of 

„dead‟ or „alive‟ present in the -model, thus allowing the eddies to be either 

„more active‟ (strong) or „less 

active‟ (weak) by being associated 

with the values   and   

respectively. This is controlled by a 

random variable W   according to 

the binomial distribution proposed 

in (5.34) for the -model 

 

where c

b

  , as is shown in 

(5.32). 

At any stage of the cascade, 

different sets exhibit activity 

whose intensity is modulated by 

the random multiplicative factor 

c

b

 , as it is shown in Fig. 5.5 in 

comparison with the monofractal model. 

Here, the singularities   , (Fig. 5.6) can be rewritten as a function of 

the codimension of the fractal set c  and other parameters ',  such that 

with 00  ,c  and 0 .  

 
 

Fig. 5.5 On the left, the monofractal „ - 
model‟, which allows eddies to be „alive‟ or 

„dead‟. On the right, the „ - model‟, which 
allows eddies to be „more active‟ or „less 
active‟ (Seuront et al., 1999). 

 

 

                                                             (5.44) 
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The conservation of the energy at each step forces one of these 

parameters to be dependent on the other two because 

The moments of the dissipation rate   are obtained from (5.18) and (5.19) as  

For the scaling exponent for the structure functions  rS p  (see in (5.22)) 

   






































  33 1log
3

p

b

c

b

p

b

c

bb

p
p  (5.48) 

A detailed description about multifractal behavior for the  -model is 

provided in Appendix E. It can be seen that for a discrete cascade and after n 

steps n >> 1, the probability of the intensity level, i.e. singularity i , depends on 

its codimension ic  of the set as 

  ii c*

nPr


    (5.49) 

For a fully developed turbulence, i.e.  , the codimension can be 

considered a continuous function  c , and the discrete model is transformed 

into a continuous cascade model.  

 

Fig. 5.6 Example of „α-model‟ cascade, (a) the first step and (b) the second step generated 

by a „strong‟ subeddy associated with a singularity +
 > 0 and a „weak‟ subeddy 

associated with a singularity  - <  0 (Schertzer and Lovejoy, 1996). 

  

  

  b

c

bb

c

b 11*  (5.46) 

    
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  p

b
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For continuous cascade models, a fundamental multifractal relation 

exists (Schertzer and Lovejoy, 1987)  

  c*Pr   
  (5.50) 

For a multifractal cascade model, this expression links the function  c  to the 

intensity levels  ( *·~
   ) at scale ratio   through the singularities  . 

 Scaling exponent and codimension functions 5.2.3.2.

 

Multifractal processes are usually determined by the scaling exponents of 

the statistical moments, which can be expressed as functions for fully-developed 

cascades. In this latter case, interesting one-to-one correspondence can be 

established between moments, p, and the singularities,  . However, before 

delving deeper into this, it is important to describe the general properties of the 

scaling exponent function of the moments  pK  and the codimension function 

 c . 

The basic properties for the scaling exponent function  pK  are:   

   00 K : In multifractals the available space is filled by turbulent events 

associated with different intensities. On the contrary, for monofractals, 

  00  cK  and  pK  is a straight line. 

   01 K : This is a direct consequence of the conservation of the energy 

(subsection 5.1.3). 

  pK  is a convex function: For the case 10  p , the values of  p*

  

decrease; then,   0pK . On the other hand, for 1p  those values 

increase; this implies that   0pK .  

 When  : p

  when   0pK , which occurs for 1p : If the scale 

of resolution increases, it is possible to find larger and larger values of   

concentrated in smaller and smaller regions. The extreme case 

corresponds to a set formed by only a delta function  r


  randomly 
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localized in a region A of volume V  of the d-dimensional space. Then, 

 r


 





~lim  and  









Ar

Ard

r 




0

~

,


   (5.51) 

If it is distributed uniformly in the whole space, the moment of order p is 

calculated as 

 ;~ 1 pdddpp    (5.52) 

    1 if   lim1 


ppdpK p




  (5.53) 

which is known as the divergence of the moments.  

For the codimension function  c , the most relevant are: 

   0c : This is trivial from (5.50). 

  c  is an increasing function of   and must be convex:  If  increases, 

then the volume occupied by these active eddies decreases, and so the 

corresponding fractal dimension also decreases. From (5.42), its 

codimension increases.  

Schematic graphs for both functions are shown in Fig. 5.7 and Fig. 5.8. 

 The Legendre transformations (Appendix F) indicate that there is a value 

of the singularity p  associated with each value of the moment p  which 

maximizes the function   cp   (Lovejoy and Schertzer, 1990) 

         pKpmaxccpmaxpK p    (5.54) 

Using the definition of a maximum of a function we obtain from  c  

  
pp

d

dc
pcp

d

d











 0  (5.55) 

and from  pK  

  



p

p

p
dp

dK
pKp

dp

d
 0  (5.56) 
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From the dual Legendre transforms the basic properties of  pK  define 

other properties for the   c  function and vice versa (Tessier et al., 1993). These 

are given below and shown in Fig. 5.7 and Fig. 5.8 

 The y-intercept of the tangent 

line of the function  c  (or

 pK ) at each value p  (or p ) 

corresponds to the absolute 

value of the scaling exponent 

 pK  (or  c ). The slope of 

the tangent line of the 

function  c  (or  pK ) at 

each value p  (or p ) 

corresponds to the order of 

the moments p (or p ). 

 A value of 1C  exists and is 

known as the codimension of the 

mean process (see in Fig. 5.8) 

which in turn verifies   11 CCc  . 

This is derived from the energy 

conservation, i.e.   01 K , and 

from (5.55) there is a value of   

that satisfies   1 c . Then, the 

tangent of the function  c at a 

value 1C  is the bisecting line on the first quadrant, i.e.   11 CCc  . 

 Bare and dressed quantities 5.2.3.3.

 

The quantities involved in a real multiplicative cascade process go down to 

a scale resolution   and are known as „bare‟ quantities. However, in 

 

Fig. 5.7  Schematic plot K(p) vs. p. Properties 

detailed in the text are shown in the figure: 

K(1) =0 and K’(p)=p (Tessier et al., 1993). 

 

Fig. 5.8  Schematic plot of c() properties 
where they can be showed: 1) c(C1) = C1,2) 
c’(C1) =1. Note that the function is convex 
(Tessier et al., 1993). 

K(p) 

p=1 

p 

p 

p 
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experimental work, one is forced to use probes of a finite size and which is 

usually larger than the Kolmogorov scale K . These collect averaged data (in 

space or in time) for a quantity at the scale of device resolution  , which is less 

than the „inner‟ scale of the process   associated with the Kolmogorov scale K . 

These averaged quantities are called „dressed‟ quantities because they contain 

information about the small scales and, in some way, are dressed by them 

(Schertzer et al., 1993; Schmitt et al., 1994). Instrumentation usually measures 

dressed quantities (for microstructure probes for example they resolve scales of 

~ cm and K  is of ~ mm).  In general, dressed quantities are related to the 

resolution scale and their moments can diverge statistically. It will not happen 

with bare quantities whose moments can be calculated at each step of the 

cascade. Moreover, experimental datasets are finite and this constrains the 

number of turbulent events that can be explored, thus introducing an upper 

bound for the singularities. Both limitations, sample size and instrument 

resolution, influence the statistics of dressed quantities: bare and dressed 

quantities will be similar but not equivalent.   

Characteristic behavior of the scaling exponents  pKd  of the dressed 

moments and the dressed codimension  dc   are known as multifractal phase 

transitions, in a similar manner to statistical thermodynamics (Schertzer and 

Lovejoy, 1994; Schmitt et al., 1994). The subscript  „d ‟ indicates that they come 

from dressed quantities and should not be confused with the embedding 

dimension d (see for instance from (5.31) to (5.33)). Multifractal phase 

transitions are related to the combined effect of the instrument resolution and 

the sample size. The two possible cases, first and second order phase 

transitions, are described below. 

i. Second order multifractal transitions: 

Second order multifractal transitions are associated with the size of the 

sample. If all the realizations of the process are available, the whole set of the 

singularities   can be determined, but in nature samples are in fact finite. 

Then, it is only possible to observe singularities up to a maximum value max
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. This is known as the undersampling effect. In this case, for max   the 

values of empirical (dressed) and theoretical (bare) codimension functions 

are equal. Then,     ccd    for max  . 

Using the Legendre transform (5.54), the critical order of the moments sp  

is given by  maxcps
  and 

   maxmaxd cppK    (5.57) 

And the continuity condition at spp   yields  

     ssd pKpppK  max  (5.58) 

The scaling exponent of the dressed moments for a finite number of 

realizations is 

 
 

   








sss

s

d
pppKpp

pppK
pK

max
 (5.59) 

which leads to the well-known spurious linear behavior for spp  .Note that 

the slope of the line for spp   corresponds to the value of max  and the y-

intercept is  maxc  . 

If the number of samples (or sampling size) increases, high values of   

can be observed. Then, the dressed codimension  dc  becomes larger and 

the critical value of  maxcps
  increases. Hence, in the linear part of the 

graph of  pKd , its slope increases.  In the case of undersampling, the first 

derivative is constant at spp   whereas the second derivative is not, and 

this is known as a second order multifractal phase transition.  

 

 

Second order multifractal phase transitions verify that: 

  max' spK  (5.60) 

ii. First order multifractal transitions 

Dressed quantities can also diverge statistically due to the scale 

resolution. Following (5.52) and (5.53), there will be a critical order Dp   that 
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satisfies the condition    1 DD pdpK ; that  is the condition of divergence 

of the moments. However for finite samples, we have also discussed the 

existence of a maximum accessible value of  , max .  

Using the restriction for singularities in the Legendre transformations we 

obtain, 

   maxmax  cppK d   (5.61) 

And the continuity condition at Dpp   yields  

     DDd pKpppK  max  (5.62) 

which also leads to a spurious linear behavior for Dpp  . Then, the scaling 

exponent of the dressed moments for a finite number of realizations is 

 
 

   








DDD

D

d
pppKpp

pppK
pK

max
    (5.63) 

However, the critical order Dp  also defines a critical value for the 

singularities, namely D . The case max D  corresponds to the case 

described earlier for the second order multifractal transitions. On the other 

hand, if max D , then the Legendre transformations (5.54) and (5.56) yield 

        DDpK '   (5.64) 

Thus, the dressed codimension function  dc  takes a linear form, as can be 

seen in (5.54) 

   DDd pKpc    (5.65) 

and 

     DdDDd cpc    (5.66) 

 

      Then, 

 
 

   








DDDD

D

d
cp

c
c




                                     (5.67) 

Here the slope of the line for D   is Dp  and the y-intercept is  DpK . 

Note that if the number of realizations increases, it is possible to find higher 
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values of  . If so, the linear range of  dc  becomes larger but its slope does 

not change. On the contrary, the graph of  pKd  shows that although the 

critical order moment Dp  remains constant, the slope in the linear part 

increases. It also indicates that the moment function  pKd  is not derivable 

at Dpp  , then it is known as a first order multifractal phase transition.

 Using the continuity condition, first order multifractal phase transitions 

verify  

   DD pKpD 1  (5.68) 

and 

  max' DpK  (5.69) 

Note that when the number of samples is large enough, then divergence 

of the moments is observed and the limitation for the critical order will be 

Dp  instead of sp .  

The divergence of the moments can be also analyzed based on 

probability distributions,  as detailed in Appendix F. 

 Universal multifractals: The log-Lévy model 5.2.4.

 

Multifractal framework leads to scaling exponent  pK  and codimension 

 c  functions that must be increasing and convex. Because so many functions 

that fulfill these requisites exist, an infinite number of parameters are necessary 

to almost determine them. However, Schertzer  and Lovejoy (1987) overcome 

this problem by suggesting the existence of ‘universal‟ multifractals. In their 

work, Schertzer and Lovejoy (1987) assumed that for a given process there is a 

set of initial conditions (i.e. different realizations), also known as a basin of 

attraction, which will converge towards the same limit (stable attractor). This 

basic idea is illustrated in  

Fig. 5.9. The existence of universal multifractals has been tested in a great 

many different geophysical fields which have in turn reported empirical 
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evidence of this behavior (Pandey et al., 1998; Finn et al., 2001; Watson et al., 

2009;  Gires et al., 2013). 

In the universal multiplicative cascade models, the probability distribution 

of the sum of n independent and identically distributed random variables 

belong to a family of probability distributions which are stable and possess a 

domain of attraction. Then, the logarithms of iW ,  iWlog , tend to a stable 

distribution, also known as Lévy distributions. For log-additive processes, this 

distribution is the log-Lévy (log-

stable) distribution. We have 

described in detail the properties 

of Lévy and log-Lévy 

distributions in Appendix G. 

Log-Lévy distributions are 

characterized by four parameters: 

the index parameter, the 

skewness parameter, the scaling 

parameter and the location 

parameter. When the skewness 

parameter is -1, the moments of 

iW  are finite i.e. it ensures that 

the moments of all orders for 

exist. 

The moment scaling exponent  pK  for the universal and conservative 

multifractal model is (Appendix G) 

 
 

 












1

1
1

1

1








plogpC

pp
C

pK  (5.70) 

Using the Legendre transform we can derive the „universal‟ expression for the 

codimension function as is shown next 

        ***max pKpcppKpc
p

   (5.71) 

 

 
Fig. 5.9  Schematic plot of basins of attraction 
with their corresponding attractors. Possible 
trajectories for the processes are shown in the 
figure. 

Attractors  
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    *** pp
C

pc 








1

1  (5.72) 

Knowing the expression of the derivative of  pK  we can obtain the value of   

as 

   *pK  (5.73) 

  1
1

11 








 *p
C

 (5.74) 

Substituting   in (5.71) 

         
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C
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C
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111
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1

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
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
 (5.75) 

Isolating *p  from (5.74) and replacing it in (5.75) 
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where 1
11






.The same process can be done for 1 . Then, the 

parameterized form for the codimension function  c  is 

 






































11

1
1

1

1

1

1













C
expC
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c  (5.78) 

As can be observed for both functions, log-Lévy distributions for 

conservative fields are parameterized by only two parameters,  and 1C , which 

characterizes the intermittency of the field. As a summary, the parameters 

and 1C are described next, 

 The mean codimension 1C  of process: It can be understood as a measure of 

the „sparseness‟ (inhomogeneity) of a given field. High values of 1C  

indicate that the energy is concentrated in small volumes; the field is 

more intermittent.  For 01 C , the turbulent field becomes isotropic over 
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the whole space and then the turbulent field is non-intermittent; in other 

words, it is the homogeneous case. 

 The degree of multifractality : This is associated to the multifractal 

behavior of the cascade, i.e. how intense the fluctuations are that fill the 

available space. The multifractality parameter  is the Lévy index of the 

log-stable distribution of   and indicates the class to which the 

probability distribution belongs (Appendix G): 

-  = 2: Log-normal multifractal. This is obtained for the maximum 

value for  . 

- 21  : log-Lévy processes with unbounded singularities. 

-  = 1: log-Cauchy multifractals. 

- 10  : log-Lévy processes with bounded singularities. 

-  = 0 corresponds to the monofractal -model process. In this case, 

only one singularity exists and the -model is recovered.  

According to (5.22) the log-Lévy model derives that the scaling 

exponents  p  of the structure function  rS p  should be 

 











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


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


3313

1 ppCp
p




  (5.79) 

Seuront et al. (2005) suggested that C1 and  have universal values close to 0.15 

and 1.5, respectively, for very high Reynolds numbers.  

Using the (5.24) the power spectrum B is  

 
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








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2

13

5
21 1






C
B  (5.80) 

The intermittency parameter  , which corresponds to  2K  from (5.25), 

gives an intermittency parameter 12 C  for log-normal distribution ( 2 ) 

and 1651 C.  for log-Lévy distribution with 51. . 

 Critical orders for multifractal transitions can be also expressed in terms 

of C1 and   following (5.70) and (5.78) 
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 For first-order multifractal transitions, from (5.68), we can calculate the 

critical order Dp  associated to the divergence of the moments as 

             
 

1
1


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D

D

DD
p

pK
DpDpK  (5.81) 

 For second order multifractal transitions, the critical order sp  related to 

the finiteness of the sample can be obtained from  
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 Tools for multifractal analysis 5.3.

 

There are several techniques for analyzing the multifractal behavior of the 

field under study. In our work, we focus on three of these methods: the 

structure-function (SF) method, the Trace Moment (TM) method and the 

Double Trace Moment (DTM) method, which have been widely used by 

scientists. The first one deals directly with the calculation of the structure 

functions of the measured field. The other two methods work on the scaling 

exponents of a conservative field which is derived from the measured field.  

Next we describe in detail the three proposed methods. A summary of the 

steps for their application can be also found at the end of each subsection. 

 The structure-function (SF) method 5.3.1.

 

The SF method consists of computing the statistical moments of the 

fluctuations rv  of any component of the turbulent field v


 and determining the 

scaling exponents  p  according to the power law shown in (5.5) 

   pp

rp rvrs   (5.84) 
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Straight lines at any order p are expected for the logarithmic plots of  rs p  as a 

function of r and their slopes correspond to the scaling exponents  p . The 

intermittency parameters are found by fitting  p  to a theoretical model, for 

example   in the log-normal model or C1 and   for log-Lévy model (recall that 

log-normal is a particular case of the log-Lévy model with  =2).  

Previous to the application of the method, it is necessary to check if the 

presence of a power-law in the original records has been observed (   BffE ~ ). 

For turbulent flows this range is associated with the inertial subrange                    

( 3/5B ) which will be found at scales below the outer (integral) scale  0L  and 

down to the Kolmogorov scale K . Taking v  as the fluctuations of the velocity 

component v , the integral scale 0L  may be estimated (Tennekes and Lumley, 

1972)  as 

where  vrms   is the root-mean-square of v , ~  the mean dissipation rate of the 

velocity record and 0c  is a constant near unity.  

Usually inertial subrange is difficult to define exactly (Sreenivasan and 

Dhurva, 1998). Further, depending on the Reynolds number, the inertial 

subrange can expand only (roughly) one order of magnitude and sometimes 

less. Because short and inaccurate ranges can introduce uncertainties into the 

estimations of the exponents, Benzi et al. (1993) introduced the Extended Self-

Similarity (ESS) method to improve the quality of this scaling range. 

The ESS method consists of widening the region of scaling using the SF 

plots of any order against a structure function of another one.  The relative 

scaling exponent      qpqp  ,  is obtained. Since the shape of all structure 

functions is quite similar, the relative exponent  q,p  remains constant for a 

larger range and the scaling observed in the plots is much wider, regardless of 

the Reynolds Re  number (self-similarity can be extended);  several examples of 

ESS applications are shown in Fig. 5.10, which was extracted from Benzi et al. 

(1993). Taking as a reference the third-order  rs3  structure function and also  

   ~'vrmscL
3

00   (5.85) 
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recalling that   rrs 3  , (5.84) can be written as 

and the scaling exponents  p  can be inferred, with pA  being a set of 

constants. Note that although the ESS method extends the scaling range, its 

bounds  should be properly analyzed to reduce possible errors in the 

estimations of   p . 

The ESS methodology being works well if the absolute velocity 

increments  rS p  are considered instead of  rs p  (Benzi et al., 1993; Sreenivasan 

and Dhruva, 1998). Thus, for the structure functions  rS p  it is possible to write 

      p

pp rSBrS


3  (5.87) 

and the behavior of  rS p  and  rs p
 scales with the same power law.   

 

Next we summarize the steps for the application of the SF method: 

1) Determine the integral scale 0L   to define the possible range of scales to 

perform the analysis.  

2) Compute the velocity differences of the given velocity component field 

rv  for different values of the separation scale r . Calculate the structure 

    
 
        p

p

p

pp rsrsrsArs






3
3

3   (5.86) 

  

Fig. 5.10  Extended Self-Similarity applied to (a) <v(r)
2
> as a function of <|v(r)|

3
> and (b) 

<|v(r)|
6
> as a function of <|v(r)|

2
>. The plots show a good linear fit between both 

functions and it is valid for a wide range of scales (Benzi et al., 1993). 
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functions  rS p  of different orders p  for the absolute value of the rv  of 

the velocity field.  

3) Generate the logarithmic plots  rS p  as a function of  rS3  after 

inspection of the scaling range up to 0L  in the logarithmic plots of  rS p  

against r , and obtain the scaling exponents  p  as  slopes of the plot. 

4) Fit the empirical values of  p  to the log-Lévy model (log-normal 

model if 2 ) in order to obtain the intermittency parameters C1 and . 

Then, estimate the intermittency exponent  :  2K , see (5.25).  

 The Trace Moment (TM) Method 5.3.2.

 

The TM method (Schertzer and Lovejoy, 1987) allows the intermittency 

parameters ( , C1 and ) to be estimated using the scaling exponent  pK  

function of the p-order moments of a scalar field, which are evaluated at 

different scales of resolution. This has been successfully tested in different 

geophysical fields (Schmitt et al., 1992; Rodriguez-Iturbe and Rinaldo, 1997; 

Bernardara et al., 2007).  

As in the case of the SF method, the first step is to determine a suitable 

range of scales for the inertial subrange, which will be inside the interval 

defined by 0L (integral scale) and K  (Kolmogorov scale). However, if the 

highest achievable spatial resolution after data processing is 0r , the analysis will 

be performed over a range of scales of size  00 , Lrr   (Lovejoy and Schertzer, 

2010).  

The so-called small-scale dissipation field, i.e. a conservative field, is 

estimated from the data series of one component of the turbulent velocity field 

  N,....,i,vv i 21 , with N  being the number of points of the series according to 

the isotropic formula   25.7 dzdw    (Appendix A).  

The small-scale dissipation field is split up into subrecords A   of length 

 , where   is the lower power of 2 closest to the value of the ratio  00 rL . For 
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each subrecord, the field is normalized by the mean value in order to 

reconstruct the cascade. Normalizations can be performed over all the 

subrecords or over each subrecord in particular (Schmitt et al., 1994; Finn et al., 

2001). However, the former procedure allows for an estimation of the outer 

scale 0L  to be obtained (Lovejoy and Schertzer, 2013). The normalized field is 

marked with a star, i.e. *

 , as -introduced in subsection 5.2.2. As a result, we 

obtain a set of N  subrecords  iA  for the field *

 , with N,...,i 21  and 

 NN  .  

The next step consists of estimating the dissipation field in coarser scales 

 . Then, each subrecord iA   is degraded from the finest resolution scale     

to  1 . Intermediate scales    can be easily obtained taking all the powers of 

2 and satisfying   1   (i.e.,  00 Lrr   ).   

That is, starting from   , this process is carried out by dividing each 

subrecord iA  into n
 successive disjoint intervals 

iAB , , which contain   

points, with  n . This defines a subset of intervals   jB
iA,  with 

 nN,....,j  21  covering the subrecords A , where the small-scale dissipation 

rates *

  are averaged. Thus, at scale ratio  , the new field  j*

  for a particular 

interval  jB
iA,  of a subrecord iA  can be expressed (Lovejoy and Schertzer, 

2010) as 

Note the resulting dissipation field  
*

   represents the dressed (averaged) 

field at resolution scale  . 

To determine the moments of order  p, the values of dressed field *

  are 

raised to powers p and then ensemble averaged at different scales over the set

 iA , i.e. 

   p

pM *

    (5.89) 

    












 
n

k

** kjn
nN

j
1

1
1

 (5.88) 
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The multifractality of the process is investigated by plotting each of 

moments  pM  as a function of  . This allows the scaling regime to be 

identified: it is the range of scales   ,1  at which moments fit well to a power 

law, i.e. a straight  line in a logarithmic plot. Thus, the slopes of the logarithmic 

graphs in the scaling range are estimations of  pK  (note that it corresponds to 

dressed moments, symbolized previously as  pK d ). If   pK  is a linear function 

of p  and has 0)0( K , the process will be a monofractal process. From (5.37) 

  cpK   with 1Cc  ,  this is the codimension of the process.  In contrast,  for 

multifractals the graph of the function will be convex with 0)0( K . Also, the 

curve displays a linear part related to a critical value critp  ( Dp  or sp ) which is 

associated with  multifractal phase transitions.  

Finally, to estimate the multifractal parameters, 1C  and  , several 

procedures exist and two of them are detailed next: 

- Fit  pK  to the theoretical expression given in (5.70) with non-linear 

regression (usual methodology). The critical moment critp  is  

estimated from the regression.  

- Using the first and second derivatives of   pK  for 1p  they can be 

easily related to the multifractal parameters as follows: 

 
     11

1
1

11 
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pK 
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 (5.90) 
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and 

 

1

1

C

pK 
  (5.92) 

The intermittency exponent    is estimated as  2K   from (5.70). 

 In conclusion, we summarize the steps of the TM method which need to be 

applied to the turbulent field in order to obtain the parameters of the universal 

multifractal model (a schematic of the method is shown in Fig. 5.11). 
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1) Determine the integral scale 0L   and highest available resolution scale. 

This defines a suitable range of scales  00 , Lrr   with which to perform 

the analysis.  

2) Estimate the small-scale dissipation rate at the highest available 

resolution scale 0r . 

3) Split the small-scale dissipation field into subrecords A  of length  , 

where   is the power of 2 closest to the ratio of  00 rL  and normalized 

by the mean. The resulting field is symbolized by *

 . 

4) Degrade *

  to lower resolutions. To do this divide each subrecord iA  

into disjoint intervals  
iAB ,  which contain   points, with    a  power 

of 2 between 1 and  . The resulting field at a particular scale   is 

symbolized by *

 . Start the process with  =1, obtain the moments of 

order p  of *

 ,  pM , for  =1 by ensemble averaging and then 

continue the degradation process up to  = .  

5) Evaluate  pK  from the slopes of the straight line region (power-law 

fitting) present in the logarithmic plots of  pM  against  .  

6) Estimate the intermittent parameters 1C  and   (non-linear regression or 

derivative method) and the intermittency exponent as   2K .  
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for N subrecords (whole sample): 

Series of   kn    k = 1, 2 .... N  

Estimation of p-order moments 

(ensemble average): 

   ppM *

   

Fig. 5.11  Schematic application of the TM method for a specific value of . A similar 
procedure is applied to the field for the double trace moments (DTM method). Repeat 

degradation process for   up to .  
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 Double Trace Moment (DTM) Method 5.3.3.

 

Using the TM method the intermittency parameters  simultaneously fit 

the scaling exponent  pK  function by two parameters, which are correlated. 

The Double Trace Moment (DTM) method (Lavallée, 1991), which is a 

generalization of the Trace Moment (TM) method, allows the multifractal 

parameter   and then 1C   to be determined independently.  

 The DTM technique consists of the introduction of a second moment    

in order to estimate the parameter  . Firstly, the small-scale dissipation field 

  at the finest resolution scale   is raised to powers  , 
 . Then, following 

the same procedure as in the TM method, the new field is degraded on different 

scales   using a set of intervals   jB A,  for covering each subrecord A  

resulting in  a new field  






    being obtained. After this, 

  is normalized.  

The moments of order p for the new field 

*  are ensemble averaged 

over the set iA , i.e.: 

   p

pM *

,


    (5.93) 

which have the scaling property, 

   
  ,* pKp

  (5.94) 

Considering that the expression (5.93) can be expressed as 

       

 
   













 







 pKpK

Kp

pK

p

p
p

pM  *

,  (5.95) 

then, 

     pKpKpK  ,  (5.96) 

In the case of universality, 

   pKpK  ,  (5.97) 

which can be trivially deduced by substituting (5.70)  in  (5.96). 
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 To determine the multifractal parameters, each value of the scaling exponents 

of the double trace moments  ,pK  is calculated from the slope of the straight-

lined part (power-law fitting) of the logarithmic graph of   pM ,  against  . By 

applying logarithms to (5.97) this is transformed into:   

and the parameter   can be directly obtained by linear regression in the 

corresponding logarithmic plot for each moment p , as shown in Fig. 5.12.  

Breaks in the linearity, observed in Fig. 5.12, lead to the characteristic    

„S‟-shaped graph.  For high values of   the break in linearity is caused by the 

divergence of the moments ( Dp  ) or the sampling size ( sp ) of the datasets. On 

the other hand, for low values of   the sensor resolution and noise will also 

affect the signal. Furthermore, it breaks the linearity of the plot. Although the 

latter can be removed by data filtering, this should be done with caution 

because it could smooth the real structure of the signal.The range of   for the 

power-law fit to  ,pK  is done by detecting the two regions in which the 

       pKpK loglog,log    (5.98) 

 

Fig. 5.12  Graph of log(K(p,)) vs. log() for the DTM analysis. Determination of the 

intermittency parameter   is obtained based on the slope of the linear part of the 

logarithmic graphs between min and max at which the function flattens (marked by 

dotted lines). Only points inside the interval [min, max] are considered for the analysis. 
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function  ,pK  is practically constant, when it is plotted in logarithmic scale. 

Thus, the bounds for the range of  maxmin ,   correspond to those values of  

   associated with lower and upper empirical values of  ,pK  and denoted 

by  min,pK  and  max,pK . Once the interval is selected, parameter   is 

usually determined from a particular point *  maxmin ,  choosing one of 

three options: An intermediate point   whose ordinate corresponds to the 

mean value of the lower and upper values of  ,pK , that is 

    2

1

maxmin
,,),(  pKpKpK   (5.99) 

- The inflexion point  IP   of  log  ,pK   vs. log( ).  

- The point of abscissa  1a . 

After the point has been selected,  the intermittency parameter    is estimated 

by evaluating the slope at this point using a given number n of nearest 

discretized   values.  This number n of points is obtained by adding and/or 

removing nearest points until the goodness of the fit 2R  is less than a fixed 

threshold.   

The parameter 1C  can be estimated with the help of the y-intercept in 

(5.98), i.e.   0log  . Then, the fit should include the point of abscissa  1   to 

get reliable estimations of this parameter.  For a conservative field and 

assuming the universal multifractal model the parameter 1C  is 

  

pp

pK
C








 1,
1  (5.100) 

Finally, as we have also done in the previous  methods, the intermittency 

exponent  is estimated as    from (5.70). 

The DTM is a generalization of the TM method and some of the steps in 

both procedures are equal. Taking this in account, the basic steps of application 

of the DTM method are listed below:  

  2K
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1) Proceed in the same way as described in the TM method up to estimating 

the small-scale dissipation rate at the highest available resolution scale  

. 

2) Raise the small-scale dissipation field to powers . 

3)  Split it into subrecords  of length   , where    is the power of 2 close 

to  The resulting field is symbolized by 

 . 

4) Degrade the new field 
  to lower resolutions by following the TM 

method: use disjoint interval , which contains   points, to cover 

the set of subrecords  , with  a power of 2  between 1 and  . For 

each value  the resulting field is normalized by the mean and 

symbolized by .  

5) Obtain the moments of order p for , i.e. the double trace moments 

, by ensemble averaging for each step (each ) of the 

degradation process. 

6) Evaluate the scaling exponent 
 

from the slopes of the linear 

region present in the logarithmic plots of  against .  

7) Estimate the intermittency parameter  in the following way: 

i.  Determine an appropriate range for  .  The bounds are 

those values of  associated with the upper and lower values of the 

plateaus observed in the logarithmic plot of the function vs  .  

ii. Calculate   using one of three options: the intermediate 

point  whose ordinate corresponds to the mean value of the lower 

and upper values of  , the inflexion point    or   the point 

of abscissa 1a  

iii. Estimate  by evaluating the slope at  and adding and/or 

removing  nearest  points  until  the  goodness of the fit  is less 

than a fixed threshold.   

0r



A

00 rL

iAB ,

 iA 



*



*



  pM ,

 ,pK

  pM ,


  maxmin ,


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8) Estimate  by using the y-intercept of the logarithmic graph of   

as a function of  and the expression of the scaling exponent 

  for the universal multifractal model.  

9) Evaluate the intermittency exponent as  .  

 

  

1C  ,pK



   pKpK 1,

 2K
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 Observations of Internal Intermittency: 6.
Measurements in a Tidal Flow 

 

 Study site and experimental set up 6.1.

 

The northern part of the East China Sea (ECS), also known as the Yellow 

Sea (Fig. 6.1), is a partially enclosed sea bounded by the Chinese mainland to 

the west and north and by the Korean Peninsula to the east. The south is 

delimited by an imaginary line which connects the mouth of the Changjiang 

(Yangtze) river and the South Korean Cheju Island. Covering a total area of         

~ 295.000 km2, it is one of the largest continental shelves in the world.   

 The Yellow Sea is quite a 

shallow basin (a mean depth of 

~45 m) with a maximum depth 

of ~150 m. While slopes are 

gentle along the Chinese coast 

they increase sharply on the 

Korean Peninsula. Deep waters 

are mainly found in a narrow 

central region, increasing in 

depth from north to south 

through the long axis of the sea 

which extends from the ECS 

inland.  

The hydrodynamics of the 

Yellow Sea is governed by 

different processes such as 

atmospheric forcing, tides, 

freshwater discharges and 

 
 

Fig. 6.1   Bathymetric map of the Yellow Sea, 
located at the northwestern part of the East 
China Sea with the location of the mooring 
station (St. D). The surrounding area is 
enlarged in the insertion showing Jiaozhou Bay 
on the Chinese coastline. St. D was set up about 
2 km to the east of the mouth of the bay and 
1.2 km south of the northern coastline (adapted 
from Lozovatsky et al., 2008a). 

 

St. D 
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currents. Overviews of such processes can be found in Zhou et al.‟s book (1994) 

and have  also recently been analyzed in a number of different works (Ichikawa 

and Beardsley, 2002; Lozovatsky et al., 2008a; Lozovatsky et al., 2008b; Xu et al., 

2009; Xing et al., 2012). 

Tide forcing is a relevant factor in the dynamics of the sea. Despite high 

spatial and temporal variability of tides, they greatly impact the basin, 

prevailing over other currents in the absence of monsoons (Liu et al., 2007; 

Moon et al., 2009). Tides are mixed, with semidiurnal and diurnal constituents 

both being important, show complex spatial structure and are dominated by 

semidiurnal tides (Bao et al., 2001; Cui and Yanagi, 2007). They are particularly 

strong on the Korean coast, where the tidal range oscillates between 4 m and 8 

m; along the Chinese coast, ranges are from 1 to 3 m (Uda, 1966; Yanagi et al., 

1997). Tidal currents generated by tides are strong at the tip of the Korean 

Peninsula, reaching maximum speeds of ~5.5 ms-1 (King et al., 2001). However, 

their characteristic maximum speeds are about 1 - 1.5 ms-1 near the coastlines 

and ~ 0.5 ms-1 in the central basin (Teague et al., 1998; Zhao et al., 2011). Tidal 

flows can be also affected by the topography of the sea-floor or by coastal 

features: specifically, bays and narrow straits that force currents to flow in a 

rather directional direction, leading to the formation of reversible tidal flows 

which in turn can interact with other mechanisms (Xiaohui et al., 2004).  

The extensive work of Lozovatsky et al. (2008), shows that the dynamics of 

the shallow waters in the northwestern part of the Yellow Sea is mainly driven 

by tidal flows. In order to analyze the internal intermittency of turbulence in 

such conditions, we used the velocity time series obtained from a bottom-

mounted Nortek 6 MHz „Vector‟ Acoustic Doppler Velocimeter (ADV) 

deployed in the area during their field campaign. Measurements were 

conducted on December 14, 2005, about 1.2 km offs the northeastern coast of 

China (36.04°N, 120.32°E) at a water depth of 19 m. The measurement site (St. D 

in Fig. 6.1) is located 2 km from the mouth Jiaozhou Bay. The ADV was 

mounted looking down in order to measure at a height of 0.45 m above the 
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bottom (mab). Velocity data were recorded during 25 hours in a shallow-water 

tidal current and covered two complete semidiurnal tidal cycles. The ADV 

sampling rate was 16 Hz and data were recorded continuously during the 

observational period.  

A nearly unidirectional reversible tidal flow dominated the mesoscale 

dynamics at the test site; see Fig. 6.2 (adapted from Lozovatsky et al., 2008a). 

The amplitude of the west-directed flood current of ~ 0.35 - 0.42 ms-1 was twice 

that of the eastern ebb current. The amplitude of the transversal horizontal 

component was much smaller at ~ 0.05 ms-1. Strong winds blew in the area 

during the measurements, exciting seiche modes in the bay (Zhao et al., 2011). 

From the analysis of the flow dynamics, Lozovatsky et al. (2008a) showed that 

the reversing tidal flow was affected by seiches of a ~ 2.3 h period. The seiching 

modulation of zonal velocity during the ebb tide was comparable with the tidal 

magnitude. The shallow water column was well mixed due to winter cooling 

from the sea surface and tidal mixing in the bottom boundary layer (BBL). 

 

 

Fig. 6.2  Two ADV velocity current components, u (alongshore) and v (cross-shore), and 
the magnitude of the tidal current U observed at St. D at a height of 0.45 meters above the 
bottom (depth 18.5 m) observed during the observational period (25 h).  Note that, most 
of the period the flow is driven by the alongshore component u with maximum U speeds 

of ~0.45 ms-1.  
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 Data processing 6.2.

 

To analyze the internal intermittency of turbulence in a near-bottom tidal 

flow, the 25-hour velocity record was subdivided into 44 segments. Each 

segment contained 215=32628 individual samples, which corresponds to a time 

interval of ~ 34 min.  Thus, such segments are long enough to allow sufficient 

multiplicative assembly averaging to calculate the structure functions with an 

acceptable level of error. On the other hand, turbulent fluctuations in the 

segments should be relatively stationary to yield reliable spectra and structure 

functions, and to assume a turbulent frozen field which is measured during its 

advection. Our tests showed that a 34 minute segment is a good compromise 

between the two factors above which require opposite criteria. 

 Velocity spectra and the mean turbulent energy 6.2.1.
dissipation rate  

 

Spectral analysis of the ADV data enables estimations of the dissipation rate 

to be obtained. However, the sensor geometry of ADV probes introduces noise 

into those components of the velocity normal to the transmitter beam. This is 

due to the fact that ADV velocity measurements are referred to as bistatic axes 

which are slanted away from the beam transmitter (angle ) with the 

motion parallel being more sensitive to the transmitter axis than to the 

transversal ones (Roget, 2013). Several studies have been shown that sensor 

noise follows a white-noise type behavior, flattening the velocity data at high 

frequencies (Nikora and Goring, 1998; Voulgaris and Trowbridge, 1998; 

Hendricks, 2001). These features were also observed in our measurements of 

the horizontal components along and across the mean flow; as shown in the 

previous work of Lozovatsky et al. (2008b). However, analysis of , the 

velocity component along the transmitter beam, revealed that for this 

component most of segments were not affected by noise. If affected, data 

º15

 tw

 tw
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were less noisy than the horizontal velocity components whose spectra 

flattened above low frequencies  Hz. So, only the  records were 

used for further analysis. 

The mean dissipation rate  is evaluated through the spectrum of the 

transverse velocity component fluctuations , , with  the wave number 

expressed in cpm (Appendix A). Thus, w(t) at each segment is transformed into 

the respective spatial series w(x) using the Taylor‟s „frozen turbulence‟ 

hypothesis (Monin and Yaglom, 1975). Turbulent velocity, w’, corresponds to 

the fluctuations about the mean.  In this case, averaging over time is equivalent 

to averaging over the 

segments sampled with the 

moving sensor. Taylor‟s 

hypothesis can be used if 

the rate of change in eddies 

is small compared to the 

time that it takes to pass 

the sensor and so the 

turbulence field can be 

thought of as frozen. 

Considering that eddies 

will evolve faster in a more 

intense turbulent field, 

Taylor‟s frozen hypothesis is roughly tested by the ratio between the standard 

deviation of the turbulent velocity,    (  )  and the sensor velocity V. If the 

ratio    (  )  ⁄       , the turbulent field is considered as frozen. In the case 

presented here, the applicability of Taylor‟s hypothesis was tested by 

calculating the ratio    (  )  ⁄   for each segment and this never exceeded 2.5% 

at segments close to high and low tides (minimum advecting velocity) and 

mostly took values below 1%. 

32 f  tw

~

 kEw k

 

Fig. 6.3 Examples of compensated spectral 
densities k-5/3Ew(k). Horizontal lines depict inertial 
subranges. The 95% confident bounds (valid for 
every spectrum) are shown for the spectrum 8. 
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Fig. 6.3 shows the compensated spectrum   plotted as a function of 

the wave number  for each segment (Appendix A). Data were of high quality; 

thus, a despiking procedure was not applied and they were only detrended. 

The mean dissipation rate  was evaluated in the inertial subrange, which 

corresponds to the horizontal plateau in the graph. Four segments were 

excluded from the subsequent analysis because the inertial subrange was not 

clearly visible in the power spectral density plots (one of these is shown in Fig. 

6.3).  

 The small-scale dissipation field 6.2.2.

 

Estimations of the small-scale dissipation rate are required to resolve the 

small scales of turbulence (see Fig. 5.1). As ADVs sample small volumes, they 

are able to resolve small scales of turbulence under specific conditions         

(Durgesh et al., 2014), then, the first step is to investigate such conditions in our 

case. Taking in account that the Nyquist frequency of the ADV  is  = 8 Hz, 

this is able to resolve small scales of about ~2 cm for slow currents of                   

~ 20 cm·s-1. However, if the speed increases, the minimum spatial scale resolved 

by the ADV will also increase. Thus, this limits the range of the observed 

inertial subrange and then the calculation of the small-scale dissipation field.  

In our measurements, the magnitude of the tidal current  varies over a 

range of between 3 and 45 cms-1 (see in Fig. 6.2) and ~ 60 % of the segments (28 

segments) have speeds < 20 cm·s-1. Based on this criterion, a set of 28 segments 

was accepted for continuing the analysis with.  

The next step was to select those segments that allowed the small-scale 

dissipation rate field to be properly estimated. To do this, the peak of the 

maximum dissipation  evaluated from the PK69 spectrum (Appendix A) 

was compared to the minimum length scale   resolved by the ADV.  was 

calculated from the Kolmogorov scale  using the mean dissipation rate  

obtained in the previous subsection. Then,  for values of   <   estimations 

 kEk w

35
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of  using the variance method do not require corrections for variance loss 

(Roget et al., 2006) and the small dissipation rate can be directly estimated from 

the velocity gradients. Based on this criteria, we accepted only those segments 

which had smallest spatial scales  beyond the peak of maximum resolution 

.  

Analysis of our data shows that values of the mean dissipation rate  

vary in a range of between 10-7 - 10-4 W·kg-1. For values of  ~ 10-6 W·kg-1 and 

tidal currents of ~ 0.2 m·s-1, the Kolmogorov scale  was about  ~ 1.4 mm and 

 ~ 6.5 cm. The Nyquist length scale resolved by the ADV was  ~  2.5 cm 

(  =  8 Hz), which is about 2 - 3 times smaller than the spatial scale . 

Then, if there is no noise at high frequencies, the instrument will resolve the 

small scales of turbulence beyond the peak of the spectrum. After inspecting the 

segment set, 26 segments were accepted so as to calculate the small-scale 

dissipation field. 

Finally, we estimated the small-scale dissipation field as described in 

Appendix A. Briefly,  was calculated from the small-scale gradients of the 

vertical velocity component as 

 (6.1) 

Note that the assumption of Taylor‟s frozen hypothesis is required and which 

was satisfactorily tested previously in subsection 6.2.1. For those segments 

affected by noise data we averaged and resampled pairs of data points taken 

previous to application of (6.1). 

 Taylor microscale and microscale Reynolds turbulent 6.2.3.
number 

 

The microscale  and the turbulent Reynolds numbers  are important 

parameters in order to characterize turbulence in the inertial subrange. The 

Taylor microscale   is an intermediate length scale associated to the size of 
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the eddies in the inertial subrange, i.e. in which viscous forces affect the 

dynamics of the turbulent eddies in the flow. It is defined (Tennekes and 

Lumley, 1972) as 

 (6.2) 

Where  and  are the variances of the velocities and the velocity 

gradients, respectively. If  is the root-mean-square of the vertical 

velocity fluctuations, the turbulent Reynolds numbers  is defined (Pope, 

2000) as 

 (6.3) 

For the present measurements  is of about ~ 2 - 4 cm and  at the 

height of the boundary layer exhibit variations between ~ 50 and ~ 1100. 

Segments accepted after small-scale dissipation rate analysis are in a range  of 

. 
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 Results and Discussion on Internal 7.
Intermittency 

 

 Multifractal analysis based on the velocity field 7.1.

 Calculation of the structure functions  7.1.1.

 

The structure function of the vertical velocity, also called transverse 

structure function (TSF), is calculated using (5.3) as 

 (7.1) 

, where x is the along-flow distance and  fUnr   the sampling interval in the 

x direction, U is the magnitude of the mean velocity in every segment, f  the 

ADV sampling rate and n = 1, 2,… 32  determines the sampling interval r.  

To study the segments, the Reynolds number was calculated using two 

definitions: the near-bottom Reynolds number       and the integral turbulent 

Reynolds number     . The near-bottom Reynolds      was calculated 

(Lozovatsky et al., 2008b) as  

, with  the ADV velocity at h = 0.45 mab and L the characteristic scale in the 

layer (  where d the thickness of the layer and  the Von-Karman 

constant). Because it is specified by the mean flow velocity , this allows 

periods of tidal flooding (high ) and ebbing (low ) to be identified. On 

the other hand, the integral Reynolds number  was determined with 

reference to the integral scale  (Chapter 6, see subsection 6.2.3) as 

  (7.3) 

where  represents the fluctuations of the vertical velocity field. This is related 

to the energetics of tidal flow: high energetic tidal flow phases corresponds to 
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high . Both Reynolds numbers exhibit almost the same behavior during the 

time period analyzed (as is shown in the global analysis presented in Fig. 7.1). 

For the evaluation of  (see (5.84)) the ESS method described in 

Chapter 5, subsection 5.3.1 has been used. Examples of  against  

(plotted in Fig. 7.1) allow the “+ 1” subrange to be identified, which is larger for 

segments where Reynolds numbers (  and ) are also larger. 

The scaling of  vs.  instead of r, was applied in the range                 

 >  > , where  is the integral turbulent scale and  is the 

scale where the maximum rate of dissipation is reached (see in Chapter 5, 5.1.1). 

intR

)p(

 rSlog 3  rlog

nbRe intRe

 rS p  rS 3

intL r KL
intL KdsK cL 

 

Fig. 7.1  The third-order transverse structure functions for several segments. The „+1‟ 
subranges are highlighted by bold lines. The arrows correspond to the turbulent integral 
scale Lint. 

 

10-2 10-1        100  

r, [m]

10-8

10-7

10-6

10-5

10-4

S
3
(r

) 
, 

 [
(m

/s
)3

]

Segment

39

17

21

14

3

7

9

S
p
(r

) 
[(

m
 s

-1
)p

] 



7. Results and Discussion on Internal Intermittency 

 

 

- 119 - 

 

 

 

 

 

Fig. 7.2 Examples of TSF logarithmic plots showing Sp
(r) vs. S3(r) for high (a) 17 and (b) 39, 

(b) moderate (c) 35 and (d) 43 and low (e) 23 and (g) 33  Reynolds numbers . The well-fitted 
linear sections coincide with Lint  > r > LK range, highlighted by solid circles. 
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An approximate match between  and the low-wave number end of the 

inertial subrange was attained with co = 0.6. In our case, we took an 

intermediate value of = 15 (Monin and Yaglom, 1975) to fit the   

inside the inertial subrange (not necessarily covering all the scales ). 

Our tests with high-order  ( pmax = 14;  rmax =  ) showed 

that a confident linear fit in the range Lint > r > LK  can be applied to the plots of  

 vs.  functions at almost all observational segments and bearing in mind 

that  p < 7 – 8, see Fig. 7.2. Accordingly, to obtain confident scaling functions 

 for different tidal phases,  for all segments were calculated using the 

absolute values of increments of vertical velocity  for p = 1 – 7.  In         

Fig. 7.2, solid dots indicate the range where the linear fit was adjusted in 

order to obtain the scaling exponents . Note that final estimates of  at 

the largest separation scale  were obtained by averaging more than 1000 

individual samples of , ensuring a minimal statistical error of . 

Indeed, the error of the 7th order SF after averaging is equal to the error  of an 

individual original sample of w, namely .  

 Intermittency parameters  7.1.2.

 

After determination of the scaling exponents , intermittency 

parameters from the best fit are estimated to intermittency models. Several 

examples of  and their corresponding fits to multifractal and log-normal 

models (upper and lower panels, respectively) are shown in Fig. 7.3.  The right 

panel represents those segments with the highest . It can be seen that high 

orders  are below the expected values without intermittency, i.e. . 

For values of , these are above the value of  . Curves cross the 

intL
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value . If  decreases, graphs also show a more pronounced 

departure from the classical value of .  

The intermittent parameters ,  and  are represented  for the whole 

period of the experiments, in Fig. 7.4. Also in this same figure the near bottom 

and integral turbulent Reynolds numbers are presented. The intermittency 

parameters in the figure are shown with 95% confidence bounds. As observed 

in Fig. 7.4, the Reynolds numbers are mainly in phase with  and out of phase 

with C1 and . 

  13 
nbRe

3p

1C  





 

 

Fig. 7.3 Examples of the empirical scaling exponents for orders from 1 up to 7 in several 
segments (numbered in the inset) and their approximations with the multifractal (a,c) and 
the log-normal (b,d) models. The symbols show empirical results and the lines the fits to the 
model predictions. Best-fit values of models are given also in the insets. 
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 Interpretation of the results  7.1.3.

 

According to previous results, during energetic flooding tidal phases 

(high Reynolds numbers), the parameters of the intermittency models 

approached the mean values of  ≈ 0.24,  ≈ 0.15, and  ≈ 1.5; all of which 

are close to those that have been obtained in the laboratory and are accepted as 

the  

~ 1C
~

~

 

Fig. 7.4  Intermittency parameters obtained from multifractal model. The Reynolds 

numbers are in phase with  and out of phase with C1 and . The intermittency 
parameters are shown with 95% of confidence bounds. Two periods of flooding along 
with highest Reynolds numbers recorded are highlighted. 
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universal values for fully-developed turbulence, ,  and  

(Sreenivasan and Kailasnath, 1993). With the decrease of advection velocity, 

and C1 increased up to  ≈ 0.5 - 0.6 and C1 ≈ 0.25 - 0.35, but  decreased to 

about 1.4.  

These results can explain the reported disparities between the smaller 

universal values of the intermittency parameters  and C1 (mostly measured in 

laboratory and atmospheric high-Reynolds number flows) and those (  =  0.4 - 

0.5) reported for oceanic stratified turbulence in the pycnocline and which is 

associated with relatively low local Reynolds numbers. 

 Multifractal analysis based on trace moments 7.2.

 

Determination of the intermittency parameters based on the multifractal 

analysis of  is based on the 26 segments accepted (from the original 44) after 

the inspection of the small-scale dissipation rate described in Chapter 6, 

subsection 6.2.2. 

 Calculation of the trace moments  7.2.1.

 

As described in the procedure detailed in Section 5.3, the trace moments 

of  at its maximum achievable resolution  should be computed in a 

predefined range, i.e. . A possible choice of  is the integral scale  

(see Fig. 7.3 ), which, as mentioned, is an estimation of the size of the largest 

turbulent eddies in the inertial subrange. The plots of the spectral densities 

shown in Fig. 6.3 support this option as commented below. 

From the previous computation of the trace moments (as discussed in 

Chapter 5, subsection 5.3.2), we normalize the dissipation field using the 

average over all the subrecords. Then, we degrade (average)   to lower length 

 scales, i.e.   ( ). 
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In Fig. 7.5, the moments  for different values of (  =  0.8,  0.9, 

1.1 and 1.2) were calculated for moderate (Segment 44) and low (Segment 34) 

 and  plotted as a function of  in a double logarithmic plot. They exhibit a 

good linear trend in a logarithmic scale for small values of , while the slopes 

become flatter for larger scales thus, showing the possible presence of another 

scaling regime (energy-containing subrange). Similar behavior was also found 

by Lauren et al. (2001) in their work on multifractality for turbulent 

atmospheric surface-layer winds. Excluding the larger scales on the estimation 

of the scaling exponents, the corresponding linear regressions are drawn in Fig. 

7.6. 

For Segment 44 (Fig. 7.6a), the fitting range goes up to  cm with 

-values higher than 0.98. In Fig. 7.6b, the fitting range is very narrow (only 

three points), and moves up to 8.3 cm. In this case,  > 0.95 and so, the 

estimations of the slopes would be subject to higher uncertainty. Adding one 

more point to the fit the value of  substantially decreases, reaching close to 

0.9, which could be indicative of a possible break in the scaling range. Values of 
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Fig. 7.5  Plots of the trace moments Mp(r) of the normalized energy dissipation rate  as a 
function of r for (a) Segment 44 and (b) Segment 34, and for p = 0.8, 0.9, 1.1 and 1.2. The 
scaling range is marked by a dotted vertical line. Best fitting lines in the scaling range are 
indicated by dashed lines. 
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 are quite close to  as assumed at the beginning of this subsection. They 

also coincide with the upper bound observed in the velocity spectra shown in 

Fig. 6.3.  

Length scales shown in Fig. 7.6, indicate that ranges normalized by the 

Kolmogorov scale ,  extend over a range of  and 

 for segments 44 and 34, respectively. They agree well with the 

small scaling ranges found in different works on intermittency for relatively 

low Reynolds numbers and based on experimental data and numerical 

simulations (Watanabe and Gotoh, 2004; Zhou et al., 2005; Hao et al., 2008; 

Almalkie and Bruyn Kops, 2012). Meneveau and Sreevinasan (1991) reported 

larger scale ratios of (from  ~ 30 up to ) for higher Reynolds 

numbers in the atmospheric surface layer.  

Although the small number of points in the scaling range of our data, 

there are several works which successfully apply the trace moment techniques 

with the same number of points in the scale as we do in our work (Pecknold et 

al., 2001; Vidal-Vazquez et al., 2010; Gheidari et al., 2011). Further, in our case 

maxr intL

K K
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Fig. 7.6  Logarithmic plots of the trace moments Mp() against the scale ratio  (lower 

panel; horizontal axis) and within the scaling range for  . Also the scaling range r in 

meters is presented in upper horizontal axis. The trace moments Mp() have been 
plotted for (a) Segment 44 and (b) Segment 34, and for p =  0.6, 0.8, 0.9, 1, 1.2, 1.4, 1.6 and 
1.8. Best power-law fittings are indicated by solid lines. 
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data series are averaged over quite a large number of ensembles (~ 8000 points 

for ) and we can be confident about the estimations of the scaling exponents 

. 

Small scaling ranges impose a critical limitation on the multifractal 

analysis of turbulence. This can be improved by averaging over a large number 

of ensembles. Also in Sanchez-Martin et al. (2014, submitted) we have 

suggested the possibility of using overlapping subsegments. This is another 

possible option to increase the number of points in the fitting as the range over 

scales would not vary so much and in turn the value of the slope obtained from  

both cases, would not differ substantially. 

According to previous discussion, we applied the TM and DTM methods 

to the range . Fig. 7.6 shows several examples of trace moments of  

in the range  for segments 44 and 34. The field is degraded within 

subrecords  of length   over , varying from  to    ,  i.e. 

. In the upper axis we have represented the length scaling range  (in meters) 

and the lower axis is the corresponding scale ratio . They have both been 

plotted for eight different values of  p, with  p being between  0.4  to 2. For all 

the segments the scaling ranges are small. They typically have four points, with

, but even fewer, only three points, with , in several cases. This 

is the case for Segment 34 for example, which has a maximum value of  of  ~ 

8.5 cm. 

In the Fig. 7.7 and following the same criteria for the range (see Chapter 

5, subsection 5.3.2), the double-traced moments  are plotted vs. the 

corresponding scales  or  (upper or lower x-axis), in the same interval as the 

trace moments . Note that unique trace moments correspond to  

for . We show the power-law fits for  and , for segments 44 

(Fig. 7.7 a, b) and 34 (Fig. 7.7 c, d). The values of the first-order moment  are 

included in the top left-hand corner of the graph. Both fits have .  
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 Intermittency parameters 7.2.2.

 

The empirical functions obtained for  in previous sections, are plotted 

in Fig. 7.8 and fitted to the best linear curve using the toolbox available on 

Matlab software. The functions exhibit a non-linear behavior up to critical 

values of ; for segment 44,  and for segment 34, . 

This critical value indicates the existence of multifractal phase transitions ( or 
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Fig. 7.7  Logarithmic plots of Mp,() against the scale ratio  (lower panel; horizontal axis) 

and within the scaling range for  . Also the scaling range r (in m) is presented on the 

upper horizontal axis (upper panel). The trace moments Mp, () has been plotted for (a,b) 

Segment 44 and (c,d) Segment 34, for different values of  = 0.8 and 1.2 (indicated on the 
left side of each figure) and also for  p =  0.6, 0.8, 0.9, 1, 1.2, 1.4, 1.6 and 1.8. Best power-
law fittings are indicated by solid lines. 
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) as it was described in Chapter 5, subsection 5.2.3.3; it is addressed in the 

next subsection. 

Best fittings to a universal multifractal model allow intermittency 

parameters  and  to be estimated; the goodness-of-fit has values of  > 

0.999. Taking all the selected segments, the mean value of the intermittency 

parameters and its root-mean-square boundaries are = 0.26  0.02, 1.46   

0.05 and 0.42  0.03. Although  is slightly lower than that obtained using 

the SF method, the obtained values of  and  are higher than those 

predicted for the multifractal model. However, it is important to recall here that 

we have analyzed not all the set of subsegments available, just only those with 
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Fig. 7.8  Scaling exponents K(p) function for Mp() (a) for moderate (44) and (b) low (34) 

values of Rw .Best fits to the multifractal model are displayed at the top. Theoretical and 
empirical curves are in agreement up to p = pcrit. For larger moments, spurious linear 
behavior for K(p) is observed (multifractal phase transitions).  
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Alternatively, the 

values of the intermittency 

parameters are also 

evaluated using the DTM 

method. We chose the same 

values of  (first-order 

moment) as those used in the 

TM method and  

for that of the second- 

order. For each 

segment, the scaling 

exponents  of 

 are represented in a 

logarithmic plot as a function 

of . Plots in Fig. 7.9 display 

the characteristic „S‟ shape 

described in Chapter 5 

(subsection 5.3.2): for each 

value of , the functions of 

the scaling exponents flatten 

out for small and high values 

of . 

The break in the 

linearity for small  can be 

explained by the influence of 

noise: recall that the original data series has only been resampled in pairs when 

high-frequency noise was clearly visible. Thus, it is most likely that the presence 

of noise at highest frequencies affects the non-filtered original records and also 

those others which resampling failed to eliminate. On the other hand, the 
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Fig. 7.9  Scaling exponents of the double-

traced moments K(p,) against  for p = 0.6, 
0.8, 1.1, 1.4 and 1.6. Note the flattening for 

high and low . Power-law fits are shown in 
the figure.  

a. 

b. 
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deviation of the scaling exponents observed at high  are related to 

multifractal transitions. 

The central sections of the plots show linear trends, which are almost 

parallels and can be expressed as (5.98)  

Previous to power-law fitting (that it is linear in logarithmic scale), we 

exclude high and small  where the behavior is non linear and then evaluate 

the slopes at  in a large enough segment of nearest discretized  values 

with  (we take 10 points for the fitting). The set of slopes gives the 

mean value and rms boundaries of the parameter . For the examples given in 

Fig. 7.9, we obtain 1.46  0.02 for Segment 44 and 1.47  0.02 for 

Segment 34. Note that these values are practically the same, albeit a little bit 

higher, as obtained with the TM method and they fall within the interval 

defined by the standard deviation. 

To estimate the value of the codimension parameter , we compute the 

y-intercept for each of the fits with  

  

pp

pK
C








 1,
1  (7.5) 

As an example, for Segment 44 we obtain 0.25 0.02 and for Segment 34, 

0.28 0.02. The mean value of the intermittency parameters for all the 

possible subrecords is 0.26 0.02, 1.45  0.05 and 0.430.04. These 

values agree very well with those obtained the TM method, which indicates 

their robustness.  

For atmospheric flows, Sreenivasan and Kailashnath (1993) also analyzed 

the intermittency of the turbulent dissipation field. Data were obtained from 

high-frequency anemometers, which were able to capture most of the small-

scale velocity fluctuations. At high  (between 1500-2000), they suggested a 

universal value of  and which has been corroborated by results 

obtained in laboratory experiments and numerical simulations (Chen et al., 

 ,pK d 
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1997, Cleve et al., 2004, Zhou et al., 2005). Our results for and  depart 

considerably from the expected universal intermittency exponent . However, 

in stratified ocean turbulence,  are mostly less than those found in the 

atmosphere and this could affect the value of . In fact, several works have 

reported higher values of , ~0.4-0.5 in the ocean ( e.g. Wijesekera et al., 

1993;  Gibson, 1998). 

 Multifractal phase transitions 7.2.3.

 

As it has been described previously, the linear behavior exhibited by 

 pK  for critpp   in Fig. 7.8, indicates the presence of multifractal phase 

transitions. In that case, Then, the value of the critical order  (  or ) is 

the order at which  pK  shows a spurious linear behavior. Best fits for the  

curve in Fig. 7.8 give critical points  for segments 44 and 34 of (2.5, 

0.68) and (2.1, 0.51), respectively.  

The slopes of the linear section of  allow the value of the singularity 

 associated with (second-order phase transition) or  (first-order 

phase transition) to be estimated. The y-intercept of the line is related to its 

codimension, i.e. - . Linear fit equations, with their -value, are shown in 

the graphs (Fig. 7.8). We obtain values for the maximum singularities  of ~ 

0.64 and ~ 0.73 and for their respective codimensions  ~ 0.92 and ~ 1.04. 

Note the values of  are very close to the topological dimension of the 

space, which is one-dimensional, indicating that energy is concentrated in very 

small regions, i.e. the fractal dimension is 0D and codimension .  

In our case small scales have been resolved and it seems reasonable to 

think that the only restriction for  is the sampling size of the sample. To 

corroborate this assumption we have estimated the values of  in the case of 

sample size limitations ( , second-order phase transition) or divergence of the 

1
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moments ( , first-order phase transition). The maximum reachable critical 

orders  and for phase transitions (see Chapter 5, subsection 5.2.3.3) are 

 (7.6) 

and 

 (7.7) 

 

which gives  ~ 2.6,  ~ 8.06 for Segment 44 and  ~ 2.4,  ~ 6.57 for 

Segment 34. Note that, estimations of  are in agreement with those obtained 

from the best fitting curve of the scaling exponents . These values are 

smaller than the moment critical orders . Thus, we conclude that the linear 

behavior of the moment scaling function can be explained by the finite size of 

the sample. 

 Dependence on the turbulent Reynolds number   7.3.

 

The data contains turbulent episodes with different intensity depending 

on in the phase of tidal flow. This allows to analyze the variability of the 

intermittency parameters, depending on the characteristics of the flow instead 

of using their mean values. The parameters of  , 1C  and   will be plotted as a 

function of the turbulent Reynolds number wR . Recall that for the estimations 

using structure functions, the analysis is directly applied to the transverse 

velocity field; for trace moment methods, it is applied to the dissipation field 

constructed from the transverse velocity component under isotropy 

assumption. To facilitate further discussion, plots have been shown in two 

separate figures, Fig. 7.10 (SF method) and Fig. 7.11 (DTM method). In Fig. 7.10, 

the range of wR is large, up to values of wR ~1000; whereas this is not the case 

of Fig. 7.11, with maximum values of wR  of about ~300. 
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From the plots,   and 1C  show a tendency to increase as wR  decreases. 

Points have been fitted to power functions with corresponding equations and 

2R -values inserted in the plot. In Fig. 7.11 the values of wR  are not high, but 

the points fit well to a power law with high correlation between intermittency 

parameters and wR . Thus, we assume that the same trend holds for high values  

 
Fig. 7.10  The dependencies of intermittency parameters , C1 and   on the local 

turbulent Reynolds number Rw. The least-squared fits with 95% lower and upper 

confident bounds for    and  C1 are shown.  
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of wR (>300). The dotted lines marked in Fig 7.10a,b and Fig. 7.11a,b indicate 

the asymptotic values for  wR  and  wRC 1  dependencies.  
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Fig. 7.11 The dependencies of intermittency parameters ,  C1 and  on the local turbulent 

Reynolds number Rw based on the multifractal analysis (DTM method) of the dissipation 
field, under isotropic assumptions.. Best curve (linear) fits are shown (solid lines) and 
their equations are given in the figure. Error bars correspond to the rms boundaries for 
each value. 



7. Results and Discussion on Internal Intermittency 

 

 

- 135 - 

 

The best fitted curves for empirical data obtained from SF analysis is 

shown next 

90

w1 R19130C ...   , 080

wR840 ..    and 80

wR059230 ...    (7.8) 

,while those obtained from DTM method are 

11

w1 R68200C ...   , 060

wR071 ..    and 80

wR295340 ...    (7.9) 

Moreover, the exponents of the power laws for , and  obtained 

from (7.8) and (7.9) are similar for both the SF and DTM methods. Thus, these 

results suggest a possible influence of the turbulent Reynolds number on  

and . 

 From  , it can be seen that asymptotic values of the curves are attained 

for >500-700 with  and 0.13. Both curves show a dependence 

of  and  on , but it is statistically insignificant for  . The obtained 

estimates are close to the expected universal values  and . The value of  

was estimated as ~1.5 (Seuront et al., 2005), which approximates well to the 

mean value of  for high energetic segments. On the other hand, in Fig. 7.11, 

asymptotic values can be approximated by their values  and

, which are higher than those obtained from the analysis with structure 

functions. Lauren et al., (2001) found that , ,  when 

analyzing the dissipation field   from the isotropic approximation. However, 

these differ from other values obtained for the analysis of   for well developed 

turbulence in the atmosphere (Schmitt et al., 1992, Schmitt,t et al., 1993, 

Chiriginskaya et al., 1994) and they gave ,  and 

. Discrepancies may be related to the method used to reconstruct 

the field.  In this latter case, these works reconstruct the turbulent dissipation 

field using fractional derivatives and taking absolute values (because the data 

had coarse spatial resolution) instead of using squares of the velocity gradients, 

as we did. Furthermore, Lauren et al. (2001) uses the squares (   (    ⁄ ) ) in 

their estimations of the small-scale dissipation field and so the differences 

observed in our results may be attributed to small range in .  Note also that 
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ocean turbulence is usually not completely developed and consequently it is 

difficult to achieve very high values of . 

In order to compare intermittency parameters found in our study, we 

address to Hao et al. (2008), who extensively analyzed the scaling exponents for 

transverse and longitudinal structure and also for the energy dissipation field 

using different assumptions. The authors analyzed the turbulent velocity field 

in the centerline of a wake generated by a cylinder in a wind tunnel for different 

 between 120 and 320.  Hao et al. (2008) showed that the scaling exponents 

 of the moments calculated using the full expression of the dissipation field 

 are nearly constant ( ). However, a decreasing trend of  with 

the increase in R  was observed for the dissipation rate calculated using 

isotropic approximation; the authors found ~0.3 at ~300 which is 

consistent with previous results from Zhou et al. (2005). In our case, we observe 

a similar trend for   as Hao et al. (2008), but with values a little bit higher (

~0.4 at R ~300). The decrease of with the increase of R  has been also found 

in the work of Almalkie and Bruyn Kops (2012) who analyzed intermittency 

using numerical simulation of . For low , the behavior of the intermittent 

exponent was ~ 0.5 for ~250,  in other words, close to that obtained in our 

work. It appears that transverse velocity component is more intermittent than 

longitudinal velocity. 

We have also analyzed the intermittency of the dissipation field 

estimated from the transverse shear in Sanchez-Martin et al. (2014, submitted), 

with an ascending microstructure profiler in upper ocean. The results also 

suggested a possible dependency of the intermittent parameters on R . In Fig. 

7.12, we have plotted their bin-averaged results of  wR  and their rms 

boundaries jointly with our results. Despite the high scatter of the data, the 

values of   fit quite well to our results and also agree with the characteristic 

values for ocean turbulence. 
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Fig. 7.12  Comparison of the results for the intermittency parameter   obtained from 
ADV and a vertical microstructure profiler. Best curve fit of the results for our work is 
also plotted in the figure and its equation and R

2
-value shown on the top.  For 

microstructure profiler results, error bars indicate the rms boundaries of the values of the 

bin-averaged value of . 
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 Conclusions 8.
 

The aim of this work has been to investigate the intermittent behavior of 

turbulence in natural waters and is based on measurements obtained in two 

specific geophysical environments: the thermocline of a small stratified lake and 

the bottom boundary layer in a tidal flow. By using these two datasets, it has 

been possible to describe the phenomenon in its global sense,  which includes 

the two different views of intermittency, i.e. external and internal intermittency.  

This chapter summarizes the main points from our study and concludes 

the work. Possible future research directions are also presented in the final 

subsection of the chapter. 

 Analysis of external intermittency  8.1.

 

 External intermittency has been analyzed in a stratified shear flow under 

low winds. We carried out a field campaign in Lake Banyoles using a 

microstructure free-falling profiler equipped with precision and fast 

response CTD sensors and a small-scale shear probe. The water column 

shows the characteristic three-layered profile where there is the:  surface 

layer in the upper part, which  extended from the surface to a maximum 

depth at which , sharply exceeds 10-3 s-2 and, depending on the 

atmospheric forcing prior to and during the observations, results in a 

thickness of ~2.5 - 4.5 m.  Below this is the thermocline, a strongly 

stratified layer (   10-2 s-2) which occupies ~35 % - 55% of the water 

column. Finally, in the deepest part, there was the bottom layer, which 

was a weakly-stratified layer (10-5     10-3  s-2).  

 

 An internal seiche field with a dominant second vertical mode was 

identified in the lake. Vertical displacements of the thermocline showed 

that this mode oscillated in different phases depending on the day of 

2N

2N

2N
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measurements. This mode was also reproduced using a numerical 

model. 

 

 The „seiche Richardson number‟  has been computed at 15-min time 

intervals using the vertical profiles of the simulated horizontal velocity 

and the background stratification. The results have shown that the local 

vertical shear of the seiche field in the upper and lower part of the 

boundaries of the thermocline was strong enough to cause instabilities 

and generate turbulent patches.  

 

 A new methodology to identify turbulent patches was adopted. Patches 

were detected based on the standard computation of the Thorpe 

displacements profiles and also by monitoring the microstructure shear 

signal. Initially, profiles of small-scale shear were visually inspected 

together with the corresponding Thorpe displacement profiles to 

determine whether the consecutive overturns belong to the same 

structure or not. In our study, we concluded that segments separated by 

distances less than 6 cm formed part of the same patch.  

To avoid any noise effects when detecting the real overturns, a run-

length test was implemented in the Thorpe displacements profiles. The 

root-mean-square (rms) of the run length r  of Thorpe displacements 

obtained from linear profiles with added random noise is used as a 

safety margin in the PDFs of experimental run-lengths to be accepted as 

patches. The value of r  was obtained from the plots of the scaled noise 

amplitude Q , defined as   phdzdTTQ  , as a function of the number 

of points n  in  each overturn. The r  value was determined to be of r =1.2 

and was used to estimate the smallest thickness of detectable patches.  

Instrumental resolution also imposes a constraint on the identification 

of turbulent patches. Consequently, segments with 2

min 2 NTgLTp 

were selected as real overturns. In our analysis, and due to limitations in 

Ri
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the vertical and temperature resolutions, only those patches with a 

thickness of hp > 4 cm and Thorpe scales LTp > 4 cm were accepted as 

turbulent patches.  

The method detected 880 patches with 512 of them being considered 

acceptable. From the total number of accepted patches, 283 patches had a 

thickness  of hp > 25 cm, which is the minimum width needed to estimate 

the turbulent energy dissipation rate in a patch. 

 

 Locations and sizes of turbulent patches correlated well with the patterns 

of the dissipation rate  evaluated in 0.5-m segments during the 

observation period. Highly energetic turbulent regions with highest 

610 Wkg-1 were observed in the interior across almost the entire 

water column. Although the field campaign was performed under light 

winds (breeze regime), these events were associated with episodic 

powerful wind gusts lasting only a few minutes (speeds exceeding 6 ms-

1 and up to 15 ms-1). These gusts transferred   1.6% of the wind energy 

to the surface mixed layer and  0.7% to the stratified water interior, 

generating large (with hp sometimes reaching several meters) but rare 

microstructure patches in the bottom layer. Wind gusting possibly 

generates strong horizontal fluctuations of pressure that induce short-

lived strong horizontal and vertical shear instabilities that stir and mix 

the water interior. However, gust events have been disregarded for the 

patch analysis of turbulence under a low wind regime. 

 

 Microstructure patches were detected across the entire water column. 

However, statistical analysis has been focused on the thermocline far 

from the boundaries, where turbulence generated by seiche-induced 

shear was usually patchy. The number of patches accepted in this layer 

was  315. As mentioned above, large rare turbulent events detected in the 

layer and generated mostly by wind gusts were excluded because they 


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belong to a different statistical population rather than from regular 

patches. The patch size hp, the corresponding Thorpe LTp  scale and the 

normalized Thorpe    scale have been analyzed. Analysis has been 

performed for the entire data excluding the small patches (hp < 25 cm). 

The main findings for the statistical analysis are as detailed below: 

 

1) The empirical CDF of patch sizes hp has been fitted well by a log-

normal model with mean and median values of 0.69 m and 0.5 m, 

respectively. It deviates from log-normality by only CDF(hp) < 0.03 

and CDF(hp) > 0.97. When small patches (hp < 25 cm) have not been 

included in the analysis, the lower tail has deviated from the log-

normal distribution at a much higher CDF(hp)  0.15. The lack of 

vertical resolution has been suggested as a possible explanation to the 

sharp cuts observed in the tails of the log-normal model found in the 

relevant literature. 

 

2) The empirical CDF of the Thorpe LTp scale inside the patches F(LTp) 

have been well approximated by the log-normal distribution for       

LTp  [0.05, 0.4] m, and which covers  ~ 85 % of the data. The sharp cut 

in the lower tail of  LTp  can be attributed to the constraint in the patch 

identification method (LTp < 4 cm). If only patches hp > 25 cm are 

analyzed,  the fitting to the  log-normal model extends to  ~  92 % of 

the data. However, that the parameters of the log-normal distribution 

for both cases are shown to be practically the same. This would 

indicate that the statistics are not substantially affected by small 

patches. Finally, the presence of sharp tails at small scales of LTp 

probability plots and the difficulties in fitting the experimental data 

to the log-normal model as reported by various authors can be also 

associated with the insufficient vertical resolution of the 

measurements. In general these results are in accordance with the 

pTp hL


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log-normal distribution proposed by other authors, although none of 

the previous works were focused on low wind forcing in stratified 

lakes. 

 

3) The empirical CDF of  
 
 has been fitted well to the Weibull and 

beta distributions in a range covering about 95% of the data. The 

median value of  (0.17) appears to be about two times larger 

than that reported by Moum (1996) for a series of ocean patches 

detected in the main pycnocline of the North Atlantic (med( ) = 

0.07). A possible cause of this discrepancy is the different 

evolutionary state of the patches: microstructure patches in the lake 

were possibly observed at an earlier stage of their evolution 

compared to the ocean patches. 

 

4) The parameterization of the normalized Thorpe  scale 

proposed by Lozovatsky and Fernando (2002) for deep and coastal 

waters has been successfully tested for a small lake. In their 

parameterization, the normalized Thorpe  scale depends on 

the parameters of background stratification and patch turbulence, 

both of which can be combined into two non-dimensional numbers: 

the patch Richardson number  and the patch mixing 

Reynolds number  (the frequency of the background 

stratification is  , diffusivity is  , and molecular viscosity is . 

Then, it can be expressed as  
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where Ripc  and  Rmpc are characteristic values of Rip  and  Rmp  equal to 

60 and 150, respectively. The asymptotic value  is found to 

be 0.45, somewhat higher than the value obtained from Lozovatsky and 

Fernando (2002) for patches detected in ocean and marine coastal 

waters under moderate and strong winds ( from 3 ms-1 up to 15  ms-1).  

 

 Different phases of the oscillation cycle of internal seiches in the lake 

affected the vertical shear in the thermocline and, as the result, the 

generation of turbulent patches. The temporal variability of vertical 

mixing was analyzed based on the averaged vertical diffusivities 

estimated from the microstructure patches. When large vertical 

displacements of the isotherms (i.e. maximum vertical shear) were 

observed (July 1), we obtained an averaged diffusivity of (3.65  0.80)10-4 

m2s-1, higher than that in the phase of very low internal seiche amplitude 

(June 25), with its value of (4.58  1.71)10-5 m2s-1. This correlated well 

with the turbulent fraction of the thermocline observed for those days 

(19% on July 1 and  10 % on June 25). Buoyancy fluxes were estimated as 

410-7 Wkg-1 for July 1 and 1.7210-7 Wkg-1 on June 25.  Our results are 

close to the average diffusivities across the thermocline reported by 

Etemad-Shadidi and Imberger (2006) in Lake Biwa and Lake Kineret. We 

conclude that even under low wind, mixing across the thermocline in a 

lake is not negligible. 

 Analysis of internal intermittency 8.2.

 

 Internal intermittency was analyzed in a shallow tidal flow and based on 

velocity data recorded by an ADV deployed close to the bottom 

boundary layer. Their analysis has shown that measurements of the 

vertical velocity component w were high quality and barely affected by 

noise. Mean dissipation rate was evaluated using the compensated 

 max

pTp hL
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spectra of the fluctuations of the vertical velocity and gave estimations of 

~ 10-7 - 10-5  Wkg-1. 

 

 Under several flow conditions, the instrumentation was able to resolve 

small spatial scales beyond the peak of the maximum dissipation, 

evaluated from the Panchev-Kesich spectrum. It allows to estimate the 

the small-scale dissipation field has been calculated assuming isotropy 

and using the gradients of w.  

 

 The structure functions of the vertical velocity w (TSF) were computed in 

order to estimate their scaling exponents . It has been observed that 

for relatively low Reynolds numbers,    progressively deviate from 

the Kolmogorov scaling, i.e. = p/3. It is suggested that this can be 

attributed to the higher intermittency of underdeveloped turbulence.  

 

 The log-Lévy and log-normal multifractal models were applied for the 

scaling of the structure function exponents (SF method). The results have 

shown that for very high energetic segments, i.e. turbulent Reynolds 

number  > 500-700  which corresponds to high-speed flooding 

phases of tidal flow, the values of intermittency parameters are  ≈ 0.24,          

 ≈ 0.15, and  ≈ 1.5. These are close to the expected universal values 

obtained for fully developed turbulent flows at high Reynolds number in 

the atmosphere and in laboratory experiments. However, for relatively 

low turbulent Reynolds numbers , the intermittency parameters  

and  deviate from the previous classical values, increasing their values 

up to  ~ 0.25 - 0.35 and  ~ 0.5 - 0.6  when  drops below  ~ 100. 

 The analysis of the scaling exponents  of the p-order moments of the 

small dissipation field   have supported the earlier results obtained with 

the SF method: Although it was only possible to evaluate segments with 

~
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 up to ~310, the same tendency of  to increase and  to decrease 

for decreasing values of  has been observed. In fact, turbulence in the 

ocean is usually characterized by relatively low Reynolds numbers, i.e. 

not sufficiently developed with no clear cuts between ranges; contrary to 

what is found in the atmosphere where scaling ranges are easily 

identifiable and extend over a wide range of scales. Then, this could 

explain the fact that reported values of  for ocean turbulence are 

usually higher than those obtained in atmospheric turbulence, with 

values of ~0.4-0.5 (Gibson, 1998). 

 

 The relationships between ,  and  and  were approximated by 

power law functions. Their asymptotic values represent the expected 

values attained at very high Reynolds numbers. Concretely, it is found 

that: 

 

1) The multifractal analysis using the  SF  method gives a result of    

1.5, 0.13 and , which are in agreement with the 

expected values of ,  and  for fully developed 

turbulence as reported by different authors for other scalar fields 

(Schertzer et al., 1995; Seuront et al.,  2005).  

 

2) The multifractal analysis for the small-scale dissipation field  

calculated by its isotropic formula gives asymptotic values of 

1.6, 0.20 and . These are close to the values reported by 

Lauren et al., (2001), who found , ,  when 

analyzing the small-scale dissipation field obtained from surface 

layer turbulent winds at high Reynolds numbers. However, previous 

results differ from the values of ,  and

 obtained by other authors for well-developed turbulence 
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in the atmosphere (Schmitt et al., 1992; Chigirinskaya et al., 1994). A 

possible explanation of this discrepancy may be related to the method 

of reconstructing the field as in this latter case the turbulent 

dissipation field is reconstructed using fractional derivatives and 

taking the cube of the absolute values (data have coarse spatial 

resolution) instead of using squares of the velocity gradients as we 

did (see also Lauren et al., 2001).  

 

3) The trend of the intermittency parameters  and  to increase for 

low  observed from the multifractal analysis of   ( ~0.3 at 

~300) is consistent with other results obtained in laboratory and 

numerical simulations. In particular, the dependence of the 

intermittency exponent  on  obtained in the laboratory 

experiments of Hao et al. (2008) has shown that   tends to increase in 

 when obtained from the analysis of  is calculated assuming 

isotropy. They found  ~ 0.3 at  ~ 300  which in turn is consistent 

with the previous results of Zhou et al. (2005). From numerical 

simulations, Almalkie and Bruyn Kops (2012) also obtained an 

increasing trend for  (  ~  0.5 for ~250). 

 

 Our results are in accordance with the behavior of the distribution of 

patchiness of  small-scale phytoplankton for a tidal current as reported 

by Seuront and Schmitt (2005) who found increasing phytoplankton 

patchiness distributions when turbulence decreased along with 

variations related to the phase of the tidal cycle. These are directly 

consistent with the findings presented in this work. 
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 Suggestions for future work 8.3.

 

The analysis of intermittency carried out in this study provides many 

opportunities for extending this work in future research. Some of these 

directions are described next.  

A natural extension for the analysis of patch turbulence would be to 

implement our methodology in sea waters.  As salinity can be a significant 

parameter in  determining density profiles (intrusions, water of different origins 

etc.) the procedure presented in this work should be applied to the density 

profile. In this case, with the introduction of other tests to our methodology, 

spurious density overturns caused by mismatches in time response of sensors 

may well be eliminated . For example, the T-S plots described by Galbraith and 

Kelley (1996)  would be useful in avoiding these false overturns. The statistics of 

turbulent scales and mixing across different layers can help to corroborate the 

results of our study. Furthermore, the probability distributions of other 

turbulent scales, such as the distance between patches or the Thorpe 

displacements inside the patches, could be interesting variables to be analyzed. 

Large but rare turbulent events (we observed only ten of them) have been 

observed in the interior of the Lake Banyoles. These patches have been 

supposed to belong to a different statistical population from the regular patches 

observed in the thermocline and thus governed by different statistical 

probability distribution functions. Having a long series of wind induced large 

patches would make it possible to obtain valuable statistical characteristics of 

these rare events by analyzing their CDF and comparing it with the extreme 

value distribution model. In addition, a possible correlation between those large 

episodic events and a suitable parameter which could characterize the gustiness 

of the wind should also be analyzed in order to quantify the mixing caused by 

such gusts. Then this could be compared to the mixing generated by the shear 

of the internal seiche field analyzed in this work. Special long-term field 

measurements will be needed to shed light on this problem. 
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Another interesting line of research would be tot take measurements along 

horizontal transects using microstructure instrumentation. This would allow a 

complete description (vertical and horizontal) of turbulent patches to be made 

and their characteristics to be analyzed. Furthermore, from these data it may 

also be possible to study the influence of the turbulent Reynolds number on the 

scaling exponents for the small-scale dissipation field, which is expected to 

depend on the nature of the flow and anisotropy of turbulence. Further 

experiments to study  these effects and even the effect of the use of different 

components of the velocity field to compute the turbulent kinetic energy rate on 

the intermittency parameters would be also interesting.  
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A. Turbulent kinetic energy budget and 
calculations of the energy dissipation 

rate 

A.1. Navier-Stokes equations and turbulent kinetic 
energy budget 

The movement of any arbitrary parcel of water in a flow is governed by the 

Navier-Stokes equations, which takes into account three basic principles:  

- Newton‟s second law. 

- The constitutive law (Newton‟s law of viscosity), which relates the shear 

stress in a fluid to the rate of change of its deformation over time.  

- The conservation of mass (continuity equation). 

The Navier-Stokes equation for the velocity field  of an incompressible 

flow is expressed as (Kundu, 1990): 

Fu
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uu
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where P is the pressure, is the density, is the external force and  the 

kinematic viscosity.  

The presence of non-linear terms in the equation is responsible for 

turbulence. The transition from a „laminar‟ to „turbulent‟ regime is governed by 

a dimensionless parameter, called the Reynolds number, which measures the 

ratio between the inertial forces (non-linear advective term) to the viscous 

forces (linear viscous damping), i.e.  

 (A.2) 

with  and  being the characteristic length scale and velocity of the fluid. 

Although some exact solutions of the equations of the Navier-Stokes do exist     

( Poiseuille flow for example), they are very difficult to solve at high Reynolds 

numbers (fully developed turbulence) because of the large number of scales 

involved.  
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Turbulence can be also analyzed from a statistical approach. Considering 

the turbulent quantities as random variables, instantaneous values of these 

quantities are decomposed into their mean part and the fluctuations around the 

mean, the so-called Reynolds decomposition. Using this decomposition it is 

possible to obtain equations for the mean quantities and also for their 

fluctuations (variances).  

Following previous discussion, any component of the velocity field  

can be written using the Reynolds decomposition as , with  

being any of the space coordinates.  Combining the resulting equations, a 

general balance for the turbulent kinetic energy (TKE), defined as 

, is obtained. The TKE budget of a turbulent flow is expressed as 

 (A.3) 

with , known as the strain rate vector,  and  are, 

respectively, the mean velocity and its corresponding fluctuation for the 

component (i.e. also );  is the gravity vector,  the pressure fluctuations 

and  and  are, respectively, the mean value of the density and its 

fluctuation.  

 The physical meaning of each term is described next (Kundu, 1990): 

  Transport term (A): Three first terms are divergences (spatial gradients). 

They are neither sources nor sinks and represent the spatial transport of 

turbulent kinetic energy. If TKE is locally produced and dissipated, they 

can be neglected.  

  Shear production (B): This represents the loss of mean kinetic energy, i.e. 

the gain of turbulent kinetic energy due to the interaction of the 

Reynolds stress ( ) and the mean shear . 
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 Buoyant production (C):  This represents the loss of turbulent kinetic 

energy working against a stable stratification. However, in unstable 

conditions, this term also becomes a production term.  

 Kinetic energy dissipation rate (D): Symbolized by , it accounts for that 

part of the TKE which is converted into heat due to the viscous forces. It 

is of the order of the turbulent production terms and can be estimated by 

different direct or indirect methods.  

A.2. The kinetic energy dissipation rate 

 

Equation (A.3) of the TKE describes the balance between the terms of 

production, transport and destruction of TKE. Specifically, the instantaneous 

rate of the energy dissipation  of the TKE is defined as (Zhou et al., 2006) 
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where  represents the coordinate axes,  the velocity components of 

the velocity field, i.e. v,u  and , and  the respective spatial coordinates. The 

instantaneous dissipation rate  is generally decomposed into longitudinal, 

transversal and asymmetric components, which can be directly measured by 

instruments 
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For a practical point of view we are interested in the mean energy dissipation 

rate ~  , which is the average of the instantaneous energy dissipation rate, i. e. 

0
~   . In the experiments conducted in the field, determining the 

instantaneous dissipation rate  is a very complicated matter, because it is 

difficult to measure all the derivatives simultaneously. In fact, instruments 

allow derivatives to be obtained along a specific direction of the flow. For 

example, in aquatic systems, it is possible to compute longitudinal velocity 
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gradients with the help of hotwire and transverse probes, such as ADVs and 

vertical microstructure profilers. In this latter case, profilers include shear airfoil 

sensors which directly measure small-scale shear. Also, in the atmosphere, 

hotwire and sonic anemometers have been used to calculate the gradients of 

any component of the velocity field along the streamwise direction of the wind.  

The traditional way of estimating  is using only one derivative, which 

assumes homogenous isotropic turbulence. Then, the equation (A.5) for  can 

be expressed (Hinze, 1975) as 

 (A.6) 

where  represents any component of the velocity and  a direction normal to 

it.  Only if the distance between the points is small can the derivatives  

be approximated by their gradients, ji xu   , and the expression (A.6) is called 

for different authors as the small-scale energy dissipation field (Meneveau and 

Sreenivasan, 1991; Lauren et al., 2001; Zhou et al., 2006). Then, the mean 

dissipation rate  for a segment of interest corresponds to the variance of the 

velocity derivatives 

 (A.7) 

In addition, the variance can also be computed by integrating the measured 

transverse-shear spectrum: 

where the shear spectrum  is expressed as a function of the wave number 

 with   (rad·m-1) and  the wavelength, the representative measure 

of the size of the turbulent eddies. The upper and the lower integration limits 

correspond to the highest wave number not contaminated by noise and the 

upper limit for the inertial subrange (i.e. the external wave number), 
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respectively. This method is usually known as the variance method. However, if 

scales are far from the Kolmogorov scale, which is the case of very energetic 

segments or signals contaminated by noise on small scales, part of the total 

variance is lost. Therefore, different methodologies must be applied to properly 

estimate the value of the dissipation rate  (Prandke and Stips, 1998; Fer and 

Paskyabi, 2014).  

Another procedure to estimate the mean dissipation rate in a specific 

segment, widely used in oceanography, consists of obtaining the best fit of the 

measured shear spectrum to one of the universal forms derived theoretically 

(Panchev and Kesich, 1969, abbreviated as PK69) or analytically (Nasmyth, 

1970). During the last decade, our research group has been working on 

spectrum techniques, offering new formulas and improving fitting methods, 

which have been tested on field using microstructure profilers, in order to 

estimate  accurately (Roget et al., 2006; Sanchez et al., 2011; Roget, 2013). In 

this way, we have discussed several options to evaluate , using not only shear 

spectra, but also different temperature (scalar) ones (i.e. the Batchelor and 

Kraichnan spectra), as is detailed in Sanchez et al. (2011). In this latter case, the 

temperature spectra depend on two parameters, the temperature variance  

and the dissipation rate ,  which are required to estimate  in order to obtain 

. Next, we describe the method to directly obtain  from fitting the small-

scale shear to fitting the PK69 spectrum, developed by our group and as 

described in Sanchez et al. (2011). In the article, this procedure is also proposed 

in order to obtain  from the other spectra.  

  Values of mean dissipation rate are estimated by fitting the measured 

shear spectrum  k
~

Esh  to the analytical form of the one-dimensional PK69 

transverse spectrum , as given by Roget et al. (2006). Panchev and Kesich 

(1969) theoretically derived the expression for the three-dimensional spectrum 

of the velocity field in the equilibrium range (i.e. inertial and viscous 

subranges), but no analytical solution was possible for the one-dimensional 
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case. Thus, Roget et al. (2006) numerically integrated the three-dimensional 

PK69 spectrum and from the results they proposed the following formula for  

the one-dimensional case, 

 In this expression, the constant values are given by Roget et al. (2006) and 

Roget et al. (2007). Higher precision coefficient are given by Sanchez et al. 

 (A.9) 

 

 

 

Fig. A.1 (a) Non-dimensional 1D Panchev–Kesich transversal shear spectra and its 
cumulative integral, which is normalized along the lines of ε = 1, plotted as a function 

of the non-dimensional wave number knd . See the maximum of dissipation of ~ 50K 
(b) Several dimensional 1D Panchev–Kesich transversal shear spectra. Straight lines 
with 1/3 slopes corresponding to the inertial subrange are also indicated in the plot 
(extracted from Roget, 2013). 
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(2011), see in Fig. A.1a. In oceanographic units, (cpm = m-1) and the 

spectrum is expressed as . Different energetic levels for the 

theoretical one-dimensional spectrum  are shown in Fig. A.1b. 

The 1D spectrum  presents the following characteristics, which are 

also shown in Fig. A.1a:  

- It has a maximum of dissipation near the wave number k = 1/  with 

=   KK ~.  501302 . At this wave number the spectrum drops 

because of the molecular viscosity effects, which become important. 

- The integral of  up to wave number accounts for 90% 

of the total variance. If this is extended to the Kolmogorov wave number 

, the integral accounts for 99.8% of the total variance. 

The fitting of the measured shear spectrum to the model given by (A.9) is 

performed in a range of  maxmin k,kk . The lowest wave number 

corresponds to the smallest value that we could obtain from the size of the 

window used to compute the spectrum. On the other hand, the highest wave 

number  is usually determined at the intersection point between   kEsh  

and the proposed noise model. However, it is also possible to define  as the 

critical value at which the deviation of   kEsh  from noise exceeds a predefined 

threshold. Then, the lowest wave number is taken as the cut-off wave number 

to compute the best fit. The fitting is performed using the method of the maximum 

likelihood, as proposed by Ruddick et al. (2000). The method introduces the 

likelihood function which depends on the measured shear spectrum and 

parameter . From this function the value of the parameter has to be estimated. 

Specifically, the value of  that maximizes the likelihood function corresponds 

to the value that gives the best fit to the model.  Then, an iteration algorithm 

allows  to be determined accurately. As the likelihood function tends to the 

normal distribution, the error associated with  can be estimated from the 

standard deviation.  
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 The goodness of the fit is tested using three parameters: First, the mean 

absolute deviation (MAD), defined as the ratio between the experimental and the 

theoretical spectrum evaluated for a range of  where the noise is lower than 

the signal. Second, the signal noise ratio (SNR) which is the ratio between 

measured and noise signal. Finally, the likelihood ratio (LHR), defined as a 

parameter which evaluates whether the experimental spectrum better fits the 

PK69 model or a potential law. Based on measurements obtained from free-

falling microstructure profilers, we have proposed values of , 

 and  for the acceptance of the fit.  Specifically, the value of 

 is more restrictive than the value suggested by Ruddick et al. (2000).  This 

allows a more precise fit to be obtained and thus, a more accurate value of . 

 

Fig. A.2  (a) Measured shear profile and (b) the corresponding shear spectrum, plotted as 
a function of wave number k (cpm). The best fit of the spectrum to the PK69 model is 
marked as a solid line and the noise model as a dotted line. Vertical lines indicate the 
range of the wave numbers at which the fit is performed (Sanchez et al., 2011).  

 

 An example of a measured microstructure shear signal, for an 

accepted segment and its corresponding shear spectrum  kEsh  is shown in Fig. 

A.2. Data were obtained from a microstructure profiler during a field campaign 

carried out in Lake Banyoles, Catalonia (Spain); as described in detail in 

Chapter 3, subsection 3.1. The estimated value of  and its associated error are 

shown at the top of Fig. A.2b, along with the parameters of the test. 
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If velocity measurements are available, it is also possible to obtain the 

dissipation based on the Kolmogorov‟s „five-thirds law‟, which predicts that the 

one-dimensional velocity spectrum follows the expression  

 (A.10) 

where CCK 5518  is for longitudinal velocity component and CCK 5524  

for the transversal one,  is the Kolmogorov constant (Sreenivasan, 1995) 

and  the wave number (in rad·m-1). Expressed in oceanographic units, this 

equation can be rewritten as 

The slope of the logarithmic plot of  as a function of  allows the value of 

 to be estimated. However, it is usual to plot the compensated spectrum 

which is calculated multiplying the measured spectrum  by . If  

obeys the scaling range shown by (A.11),  the plot of the compensated spectrum 

 is independent of the wave number . Thus, it exhibits a flat behavior 

over scales in the inertial subrange and from (A.11) 

 If A is the constant value of the compensated spectrum   35kkE  estimated from 

the plot, it is possible to estimate the value of the mean dissipation rate  

through (A.12) 

 The same procedure can be also done with the wave numbers  and . 
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A.3. The vertical diffusivity K 

 

Another important parameter used to analyze turbulence in a water 

body is the vertical eddy diffusivity K . It characterizes the vertical transport of 

mass into the water column. It can be related to the vertical density flux   

using the expression 

 (A.14) 

where  is the buoyancy frequency. The vertical eddy diffusivity indicates 

how efficient the turbulent mixing is in the region of study.  

Also, the vertical diffusivities can be derived from the TKE budget, see 

equation (A.3). If the term of transport is neglected and stationarity is assumed, 

the expression for the vertical component  can be rewritten as 

 (A.15) 

Defining the flux Richardson number  as the ratio of energy suppressed by 

buoyancy forces to the TKE production by shear, then 

 (A.16) 

and the vertical eddy diffusivity  can be expressed as 

 (A.17) 

The first term is known as the mixing efficiency   

 (A.18) 

Although for fully-developed turbulence , several authors suggest 

that this parameter is not constant and depends on the state of turbulence (Ivey 

and Imberger, 1991; Smyth et al., 2001; Brucker and Sharkar, 2007). 
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B. The log-normal distribution 

 

Let  be a random variable defined in a domain  and its moment-

generating function , where . The statistical moments of , 

, can be calculated as 

 (B.1) 

Let   be a random variable log-normally distributed. Then, the variable 

, defined by the natural logarithm of , is a Gaussian distribution. 

The moment-generating function of ,  is 

 (B.2) 

Using (B.2), the statistical moments of the variable ,  , are calculated as 

 (B.3) 

This indicates that the statistical moments of Y  can be calculated from the 

moment-generating function of the random variable X ,  which corresponds to 

the normal distribution. The expression for  is calculated next.  

Suppose that  is a normal distribution  2,~ xxNX  . To begin, we first 

consider 0x  and 12 x ; this will then be generalized for the other cases. 

Consequently,  can be easily derived using the Gaussian probability 

distribution expression 

 (B.4) 

where the final result comes from the fact that the expression under the integral 

is the normal distribution  12  x,txN  , which integrates to unity. 
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using the standardization process 
x

xx
z




 . 

Substituting  in the (B.3), the statistical moments of the log-normal 

distribution , , are expressed as 
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Kolmogorov (1962) and Obukhov (1962) postulated in the Refined 

Similarity Hypothesis (RSH) that the local dissipation rate r  averaged over a 

distance Lr   is log-normally distributed. Then, the variable  *

rlog   , 

where rr

*

r
~   and r

~  is the mean value of r , i.e. ~ , is  Gaussian with a 

mean  m =   and variance 2
*
rlog 

 . 

Taking the expression (B.6), the statistical moments  are 
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where m and 2s  are the mean and the variance of  *

rlog  . Then, replacing m in 

the expression (B.7) and using (B.8) we obtain 
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Kolmogorov (1962) hypothesized mean-square fluctuations of the 

dissipation scale as 
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where C2  and   are positive constants. 
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Then, taking the expression of rr

*

r
~   the variance is expressed as 

 (B.11) 

Substituting (B.11) in equation (B.9) we obtain 
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C. Another multiplicative cascade models 

C.1. Beyond the log-normal model : The B-model 

The B-model (Yamazaki, 1990) was introduced as an improved version of 

the log-normal model. Considering that the smallest eddies are dissipated by 

viscosity, the probability distribution of the breakage coefficient , that it is the 

ratio between the size of „mother‟ and „daughter‟ eddies, is defined in a finite 

domain. Thus, the possible values of  satisfy the condition . The 

maximum value of the random variable  corresponds to case that all the 

energy was dissipated in one single cell (of volume V) among all the available 

cells (total volume ). If the scale ratio between two successive breakages is 

, then  is equivalent to  and shown as follows, 
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and then, 
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Yamazaki (1990) proposed the beta distribution as a suitable probability function 

because it has a finite domain (Evans et al., 2000). This distribution is 

parameterized in terms of three parameters, a, b, and   in the following way: 

  for  (C.3) 

with a, b being positive parameters, and   (Mood et al., 

1974). 

A conservative process satisfies . Then, taking the mean for the beta 

model distribution, it is possible to relate the parameter b to a and wmax 

 (C.4) 
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Taking the universal constants for this distribution as the mean and the 

variance of the natural logarithm of , i.e.  Wlog and   2
  Wlog ,the 

K(p) of the moments of order p of the energy dissipation rate p

   can be 

expressed as  

  (C.5) 

and the  scaling exponent  

 

(C.6) 

Considering the intermittency parameter , (C.5) leads to 

 
(C.7) 

The power-spectrum of the velocity fluctuations can be written as 

 
(C.8) 

For the B-model, the power-spectrum exponent is flatter than the „five-thirds 

law‟ predicted in the Kolmogorov theory of 1941. 

The model requires some parameters, which are then introduced into the 

model in order to calculate the other ones. Knowing that   is in a range 

between  0.2  and  0.5, Yamazaki (1990) took , which was the lowest prime 

number giving a value of   as less than 0.2. 

The B-model has several limitations in its application because it violates the 

condition , one of a few exact results obtained from the Navier-Stokes 

equation, and does not fit well to experimental results for low and high orders 

moments, eventually becoming negative in this latter case. This is also observed 

for the log-normal distribution and has no physical sense. 

C.2. Corrections to the -model 

C.2.1. The random -model 

 

The random -model (Benzi et al., 1984) considers that the value of the 

factor  in the -model, which represents the fraction of the space filled by 
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active eddies at any stage of the cascade, is not constant. Then, it can be selected 

in a random and independent way. Benzi et al. (1984) proposed a restricted 

choice with a single free parameter x,  with    being a random variable 

characterized by the following probability distribution function 

 

(C.9) 

The mean value of   is 

 

(C.10) 

Note that if , the mean value  is 1. Following the definition of  (see 

above), this means that energy flux is uniformly distributed over the whole 

fluid and the Kolmogorov prediction is recovered. On the other hand, if , 

then  = 0.5. Thus, in the formulation of the random -model, at least half of 

the whole volume shows turbulent activity. 

 Recalling the probability distribution function for the breakage 

coefficient  defined for the -model is 

 

(C.11) 

The expression for the scaling exponent of the moments of p

  can be 

calculated from the probability distribution function of  following (5.17). This 

yields 

 (C.12) 

And the scaling exponents  

 (C.13) 

For the exponents of  we obtain 
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 (C.14) 

The random -model fits well to the experimental data and for that 

reported by Anselmet et al. (1984) a good fit is obtained for . However, 

the application of random -model is controversial because the value of 

 and this contradicts the mathematical definition of the structure 

functions.  

C.2.2. The bifractal model 

 

A simple correction to the monofractal models (  and random  models) 

can be made if we imagine the whole space covered by two fractal sets,  and 

. In this way, bifractality (Frisch, 1995) introduces more elaborate models, 

which lie between the monofractal and the completely developed multifractal 

models.  

In the bifractal model the results obtained for the -model are extended to 

both sets.  If the codimensions of each of the sets are and  respectively, the 

probability distribution of the normalized dissipation rate  is defined as 

 (C.15) 

where the upper-index  indicates the respective sets which cover the 

space.  

Because of that, the dissipation rate  is related to the normalized one

 by the mean dissipation rate , i.e. , and the p-order moments of 

the dissipation rate  are  

 (C.16) 
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 (C.17) 

 Working along similar lines for the p-order structure function , the scaling 

exponents can be expressed as 

The expression obtained for exponents of the moments and structure 

functions can be interpreted as a superposition of two power-laws (Frisch, 

1995). In the inertial subrange (i.e. ), the power-law with the smallest 

exponent dominates. However, the dominance of the first or second term in 

 or  also depends on the value of p.  

C.2.3. The p-model 

 

In the p-model (Meneveau and Sreenivasan, 1987), the energy flux at any 

step of the cascade is binomially distributed in the whole space; instead of being 

concentrated in a fraction of the volume as it is the case in the monofractal 

models. 

The model starts with 

an initial eddy size of 

(i.e. the integral scale of 

turbulence) with a total energy 

flux ~ . It is broken into 

eddies of equal size , 

where  represents the spatial 

dimension and  the 

breakage scale ratio. Meneveau 

and Sreenivasan (1987) choose 

 = 2 and . The simplest 

nontrivial choice is that, in the 
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 (C.18) 

 

Fig. C.1  Schematic representation of the p-model, 
(one-dimensional cascade) where each breaking 
down into two new ones. The energy flux to 
smaller scales is divided into non-equal fractions p 
and 1-p until the Kolmogorov scale is reached. 
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breakage process, an energy fraction  is distributed equally among one half 

of the  new eddies, and the other, , is also distributed similarly 

among the other half (see Fig. C.1). The process is iterated until one reaches 

eddies the size of the Kolmogorov scale, .  

After n iterations we have  eddies of equal size . In this set 

of turbulent eddies, there will be  eddies with an energy flux density of 

, with n,....,,m 10 . As a result, the probability distribution of the 

dissipation rate  follows a binomial distribution and their statistical moments 

can be written as 
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with scaling exponents 

 (C.20) 

Taking in account that , the scaling exponent of the p-order 

structure function  is 

 (C.21) 

and the power-spectrum exponent  

 (C.22) 

Experimental data fit remarkably well for values of . Moreover, 

in their work Meneveau and Sreenivasan (1987) also included the possibility 

that eddies could also dissipate an amount of energy directly into the inertial 

subrange (i.e. ).  This gives a second free parameter . Meneveau 

and Sreenivasan (1987) obtained a reasonable fit to the curve of  for values 

of  and , which provides an illustration of the robustness of the 

model.
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D. Fractal dimension 
 

To properly understand fractional dimensions we start by describing the 

concept of measuring dimension and using topological dimensions (one, two 

and three dimensions). A line (dimension ) of unit length  is cut into  

segments. Thus, the scale ratio will be defined as . In Fig. D.1, the 

number of segments (copies)  per unit length and its line dimension are 

shown for the case  (i.e. half-sized figure). 

scale ratio  segments per unit length  dimension line  

1/1    n = 1 
 

1/2 n = 2  
 

1/4 n = 4  
 

Fig. D.1  Examples of the scale ratio for a line (1D space) and the relation between the 
number of copies required to obtain the original and its dimension. 

The relation between the number of segments n and the scale ratio  is 

obtained by raising the inverse of   to the appropriate dimension  as 

 (D.1) 

Taking the same process for squares , see in Fig. D.2 (this could 

also be done for cubes, ). 
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Fig. D.2  . Examples of the scale ratio for a square (2D space) and the relation between the 
number of copies required to obtain the original and its dimension. 
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  From expression (D.1), fractal dimension  can be calculated as 

 
(D.2) 

where  is the number of copies at every iteration and  the scale ratio. 

With the advent of fractal theory fractional dimensions have been able to 

be explored. Mandelbrot (1967) began his work on fractals by considering the 

question of „How long is the coast of Britain?‟ As the coast is so irregular, 

estimations with a ruler depended greatly on the scale of the map used. As scale 

decreases, more details of the coastline appear and the measured length is 

longer. Mandelbrot showed that the relation between the scale ratio  and the 

length of the coastline  follows a power law as indicated in (D.1) with a non-

integer value for the fractal dimension . 

Examples of fractal geometry are the Koch curve, the Monkey‟s tree and 

the Sierpinski triangle, among others (Baird, 2011). Here, we will develop in 

detail the first one of these, the 

Koch curve, which is one of the 

most well-known fractals. 

The Koch curve is made 

from a straight line of length , 

(called the initiator) which is then 

divided into three parts. The 

middle third is replaced with two 

lines, each of the same length (i.e. 

) and the other segments 

remain on each side of the figure. 

The new object is called the 

generator, see Fig. D.3. In the 

following steps, each line is 

replaced by the generator and 

each new line has a length of one third (     ⁄ ) of the original line. The result 
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Fig. D.3  The Koch curve. The generator is 
plotted at the top. Successive steps are plotted in 
the figure. The length of the curve at each step is 
shown on the right. 
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for the first few iterations is shown in Fig. D.3, and then it is clear that the figure 

is self-similar. Note that the length of the Koch curve increases as the resolution 

improves: at the jth-step of the construction, the unit length is   L
j

31 , but the 

total length has value of   L
j

34 .  

At the first level, the number of segments in the Koch curve is 4 (n = 4) 

and each line segment has been replaced by the generator scaled by . This 

can also be done with the other levels and using (D.2), the fractal dimension of 

the Koch curve is 

 

In classical geometry, the length of a curve remains the same independently 

of the level of resolution. Here, the fractal dimension indicates that the curve 

has a dimension higher than 1, because it effectively covers an area.
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E. Multifractal behavior of the -model 
 

To describe the multifractal nature of the  -model, different steps of the 

cascade are shown (Schertzer and Lovejoy, 1983; Tessier et al., 1993). For 

example, the second step of the cascade generates three possible intensity 

levels,  , (left) with probabilities (right) 
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Considering that the scale of resolution is , which is denoted by , 

then the probabilities for the dissipation rate are expressed as  
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 (E.2) 

Iterating this procedure, after n= n+ + n- steps, we find a hierarchy of 

singularities  with   where 

 with n
+
=1,…,n;  

 

(E.3) 

As a binomial process, the probability of the singularities is 

An example for two specific singularities  and is shown in Fig. E.1. 
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Fig. E.1  A schematic illustration of a multifractal field analyzed over a scale ratio , with 

two scaling thresholds  1  and  2  corresponding to two orders of singularity and with 1 

<2  (Schertzer and Lovejoy, 1993). 

We can replace the cascade of n iterations with scale ratio  at each step 

for a single step  process with 

a scale ratio   where the 

intensity levels  are associated to 

a value of singularity  with 

probability 

Here  represents the weights of 

each fractal set of codimension .  

A fully-developed cascade is 

reproduced by analyzing the limit 

of , i.e. . Several steps 

are shown in Fig. E.2. Then, the 

smallest values of  dominate in 

(E.5). Assigning  to 

every order  (E.5) is rewritten as
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Fig. E.2  Representation of the  - model for 
five steps, starting with a homogeneous 
function and being systematically reduced by 
successive factors of 4. The parameters are 
chosen in such a way that the area under the 
curve is maintained at any stage. The model 
generates peaks that increase at each step 
(Seuront et al., 1999). 
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F. Properties of the scaling exponent K(p) 
function 

F.1. Dual Legendre transforms 

 

For a fully-developed cascade, it is possible to relate  to the 

codimension . To deduce this, recall the moments of  scale as (see 

Appendix E) 

 (F.1) 

 and for   

 (F.2) 

Approximating the integral using the method of steepest descent (Strikwerda, 

2004)  it yields 

 (F.3) 

where  

 (F.4) 

The codimension  function can be obtained from (F.4) using the 

Mellin transformation  which is defined (Flajolet and Sedgewick, 1995) as 

 (F.5) 

and also its inverse,  

 (F.6) 

If the inverse Mellin transformation is taken,  is expressed as 
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These expressions show that  can be obtained from  and vice versa 
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which are known as dual Legendre transforms.  

From a graphical point of view, the Legendre transformations represent 

the value of  (or p) which maximizes the distance between the line p  which 

crosses at the origin, and the function (or ). Then,  can be 

interpreted as the envelope of tangencies of  and reciprocally. 

F.2. Divergence of the moments and probability 
distributions 

 

The moments of the dissipation rate  for a dressed quantity can be 

calculated as 

 (F.9) 

If the moments diverge, it is expected that there is a power-law upper tail in the 

probability distribution of  expressed as 

  with  (F.10) 

Since the extreme events contribute most to the moments, (F.9) can be written as 

From (F.11) it can be seen that there is a critical order  ( ) at which the 

moments diverge (Bernardara et al., 2007). Then, for  the moments are 

affected by the small-scale activity; for  the small-scale activity remains 

statistically negligible. Veneziano and Langousis (2010) showed that these 

upper tails of  became more difficult to observe as the scale resolution 

increases, and are negligible when  even when taking large samples. 
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G. Lévy and log-Lévy probability 
distributions 

G.1. Characteristic function of a random variable 

 

In probability theory, properties of random variables can be analyzed by 

their characteristic functions, which are also used to proof several probability 

laws. 

 Let us consider a random variable  with probability density function

. The characteristic function of is the inverse Fourier transform of the 

probability density function  defined as 

 (G.1) 

Thus, there is a one-to-one correspondence between  and .  

Considering the moment-generating function of ,  

 (G.2) 

this can be related to  using (G.1) as follows, 

 (G.3) 

Some of relevant properties for the characteristic functions are:  

 The characteristic function of the sum of independent random 

variables corresponds to the product of the characteristic function 

of each  of those variables, i.e. 

 (G.4) 

 If  and ℝ, then 

  (G.5) 

  (G.6) 

All these properties can be trivially deduced from the definition of  (see 

(G.1)). 
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G.2. Previous Theorems 

 

Let us consider a set of n random variables , ℕ which 

are identical, independent random variables equally distributed (iid) to a 

random variable X  with probability distribution . Then it is verified that 

 (G.7) 

 (G.8) 

and  (G.9) 

The averaged value of the set is 

 (G.10) 

The mean and the variance of  are 

 and   (G.11) 

and for  the sum     

 and   (G.12) 

If  is finite, then the Law of the Large Numbers (LLN) states that the average 

of  converges in probability to , i.e. 

 (G.13) 

Note that, no assumption for the variance  is required. Large or infinite 

variance will make the convergence slower, but the law of large numbers holds 

anyway. 

Suppose now that  and  from an arbitrary distribution  are well-

defined. Hence, from (G.7) and (G.8), the Central Limit Theorem (CLT) states that 

the mean and the sum of a random sample with sufficiently large size2 will be 

normally distributed.  

                                                 
2
  A value of n greater than 25 is usually more than enough in practice to provide good approximations 

using the CLT. 

 iX  nn,....,,,i 321

 xFX

XX i 

  2iXVar

   xFxF XiX i


X

n

S

n

X....X
X nn 


 1

X

XX   
n

XVar
2



XnSn    2nSVar n 

X

nSn X

 nX
n

S d
n

2

X 2 X



                                                                    G. Lévy and log-Lévy probability distributions 

 

 

- 217 - 

 

Using (G.11) and (G.12) we obtain 

 The sample mean  is normally distributed . 

As a standardized random variable, it can be also written as 

Then   as .  

 The sample sum  is normally distributed . 

As a standardized random variable, and it can be also written as 

  and  as . 

As a consequence, for idd random variables, the sample mean and the 

sample sum  belong to the domain of attraction of the normal distribution, which 

is known as an attractor distribution.  

G.3. Attractor distributions 

 

The form of CLT (as described above) is stated under specific conditions, 

that is, for finite values of  and . However, a more general form of CLT is 

defined to include other cases such as non-independent summands, non-

equally distributed summands or infinite variance. For this latter case, the 

generalized Central Limit Theorem states that the partial sum  of a large 

number of iid random variables  will approximate to a small set of limiting 

distributions   (attractor distributions) and  belongs to a domain of attraction if 

there are two real series,  and  ℝ,  such (Laha and Rohatgi, 1979) as 

      as       (G.14) 

 

Next, the generalized CLT is proven for two distributions: the Cauchy and the 

Gaussian distributions. 
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- Cauchy distribution: 

Let us consider a set of n iid random variables, each with a 

standard Cauchy distribution . Then, its density probability 

distribution is 

 (G.15) 

To prove the generalized CLT, the first step is to initially calculate the 

characteristic function of , which can be obtained from  (G.4) as 

      
 (G.16) 

Thus, it requires the characteristic function  for the Cauchy 

distribution. This can be obtained using (G.1) and the Fourier transform 

tables (Spiegel, 1982) as  

 (G.17) 

Then replacing (G.17) in (G.16), it yields 

 (G.18) 

From (G.18) the characteristic function of the sample mean  is  

 (G.19) 

and 

 (G.20) 

which is in accordance with the generalized CLT. 

 

- Normal distribution: 

Let us consider a set of n iid random variables normally distributed

. Following the same steps described in previous example for 

the Cauchy distribution, the characteristic function  is calculated 

from (G.3) and (B.4) in Appendix B as  
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 
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22
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X eet


  (G.21) 

Then, using (G.16),   is  

 (G.22) 

This equation allows us to determine the characteristic function of 

as 

 (G.23) 

And for large values of n we obtain 

 

 

 

 which is in agreement with the generalized CLT. 

G.4. Lévy distributions 

G.4.1. Infinitely divisible distributions 

 

A random variable  with a probability distribution  and 

characteristic function  is infinitely divisible (  is an infinitely divisible law) if 

  has the same distribution as the sum of an arbitrary number of n iid 

random variables. 

The Cauchy and the normal distributions are infinitely divisible, as shown 

next. 

 For Cauchy distribution: 

By taking (G.18), it is straightforward to derive that  also 

corresponds to the characteristic function of a Cauchy distribution 

  with     and    , i.e.  if the properties (G.5) and 

(G.6) are considered. 
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 For normal distribution: 

By taking (G.22), (G.3) and the expression of  for the general case of 

a variable  normally distributed (Appendix B), then 

I

t 

 and it is seen that  is also normally distributed . 

If  is normalized by a power of n, it has the same distribution as . 

Consequently, they are infinitely divisible.  

G.4.2. Lévy distributions 

 

Let us consider, for example, the standard Cauchy distribution

which is infinitely divisible with .  

The normalized sample sum  is an invariant under addition and has 

the same distribution as X, i.e. 

      as       (G.26) 

Then, 

    for all n   (G.27) 

A similar conclusion can be obtained if the standard normal distribution 

 is considered. In this case, the normalized sample sum  also 

shows invariance under addition: 

  (G.28) 

that is, 

   for all n       (G.29) 

Thus, both distributions have the same probability function . 

If other values of the power of n exist, (G.20) and (G.24) could be 

rewritten as 
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   for all n (G.30) 

and from (G.26) and (G.28) it appears to be reasonable to attempt a probability 

distribution whose characteristic function equals 

for    and     (G.31) 

which does not represent any characteristic function for any value . These 

are called symmetric stable distributions. 

In a more general way, the distribution of n iid random variables is stable 

if there is a series  and  such that  verifies that 

 
(G.32) 

It is strictly stable if  ,   ℕ. The constants    are also called 

scaling constants and the constants   are known as location constants.  

Stable distributions are also known as Lévy distributions. From (G.32) the 

variance of   for Lévy distributions can be expressed as  

The variance is finite (in the normal distribution case, see (G.29)) for values of cn 

equal to 

 
(G.34) 

In general, 

 (G.35) 

with infinite variance for  and only the case   is possible (Feller, 

1971). The index  is usually known as the index of stability or the characteristic 

exponent of the stable distribution. 

Stability ensures that the sum of any number of random variables has, 

after scaling and translation operations, the same distribution as the individual 

summands themselves. Then, according to the generalized Central Limit 

Theorem, Lévy distributions are the only possible limit distributions, i.e. posses 

a domain of attraction. In line with Feller (1971), the analysis of Lévy 
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distributions can be considerably simplified because, in practice, the location 

constants  may be disregarded. Thus, a Lévy distribution  with an 

exponent  can be centered in arbitrary manner and may be replaced by

, which is strictly stable, being  the centering constant. 

G.4.3. Characterization of Lévy distributions 

 

The condition (G.32) does not allow for an analytical parameterization 

for Lévy distributions to be found exception some special cases (for example, 

normal and Cauchy distributions). However, there is a concrete way to 

characterize these distributions based on the general characteristic function

, described below. 

 If a random variable  is stable, there is a random variable  which 

satisfies 

   ℝ    
(G.36) 

and has a characteristic function  defined by (Uchaikin and Zolotarev, 

1999) as 

 

 

 
(G.37

) 

 

where  is the sign function. Note that  depends on two parameters, 

that is, (the index of stability) and , known as the skewness parameter, which 

takes the asymmetry of the probability distribution into account. Because of the 

probability distribution,  is uniquely determined by its characteristic 

function  (see (G.1)), which also depend on two parameters,  and . 
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Using (G.36) and (G.37), the probability distribution of , , is 

obtained. This adds two more parameters, c and d , to completely determine 

, i.e. . These four parameters are detailed next: 

 

a) Location and scaling parameters: 

 

 The location parameter d  ℝ and  this shifts the distribution to the left or 

to the right. 

 

 The scaling (dispersion) parameter  and is a measure of the sparseness 

of the data. The extreme value      indicates that  is totally 

concentrated on  , i.e. only a single value exists (degenerate 

distribution). Note that the normalized variable  will have 

the same shaped distribution with d = 0 and c = 1, i.e. . 
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Fig. G.1 (a) Semi-logarithmic plot of symmetric Lévy distributions (=0) for  = 2 

(Gaussian distribution, in black), 1.8 (red), 1.5 (blue) and 1 (green) (b) Cumulative 

probability distribution plots for  = 2 (Gaussian distribution in black), 1.8 (red), 1.5 

(blue) and 1(green). Note that only   = 2 has exponential tails (from Borak et al., 2005). 
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b) Shape parameters: 

 The index of stability or characteristic exponent: This is directly related to 

the rate at which the tails of the distribution diminish (details are in the 

following subsection G.4.4., see also Fig. G.1) and . To 

summarize, if  the variance is infinite, whereas if  the mean is 

finite and equals (LLN, Section 

E.2) and if  the mean is 

infinite. 

  The skewness parameter: This 

parameter is a measure of the 

asymmetry of the distribution 

and . For , the 

distribution is symmetric for  

(normal and Cauchy distributions 

for example).  

For , the distribution is 

asymmetric: when   the 

distribution is skewed to the 

right; otherwise, it is skewed to 

the left (see Fig. G.2). For the 

extreme values , Lévy 

distributions are distributions 

whose domain is [d,+)( ) 

or (-, d] ( ). Otherwise, 

the domain of the probability 

distribution is the whole real 

line. 

  As  tends to 2, the 

effect of  vanishes and the 
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  Fig.G.2 Lévy PDFs for  = 1.2 and  = 0 
  (black), 0.5 (red), 0.8 (blue) and 1(green)  
  (Borak et al., 2005). 

 

Fig. G.3 Plots of PDFs for  = 2 

(Gaussian),  = 1 (Cauchy) and Lévy ( 

= 0.5,  = 1) for the case of d= 0. The 
latter is a totally skewed distribution, 

and its support is (0,+). For  = 1 (-1) 
the function is totally skewed to the 
right (left) ( from Borak et al., 2005) 
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distribution approaches normal distribution regardless of , see in Fig. 

G.3. Note also that from (G.37) they are symmetric if  and . 

Then, 

 (G.38) 

G.4.4. Asymptotic expressions for Lévy distributions  

 

One of the most important characteristics of Lévy distributions is the 

presence of power-law tails for values  of .  This property can be derived 

using the generalized CLT and is detailed next for  following Uchaikin and 

Zolotarev (1999) and Feller (1971) (the case for  can also be deduced 

following the same steps as for ). 

Let us consider a set of n iid random variables of a random variable 

with strictly stable distribution . Using (G.32) and (G.35), the sample mean 
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


1
1

, i.e. 

Xn
n

S d
n 




1
1

 (G.39) 

 Note that the left-sided expression tends to  for . This indicates 

that the sample mean  becomes considerably larger than any of the n terms 

 of the mean and this requires the existence of a maximum term  

 (G.40) 

which grows rapidly and dominates . 

The probability distribution  implies that 

 and because they are iid random variables, 

this can be expressed as 

 (G.41) 
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distribution , with , satisfy the following 

relation 

 for     (G.42) 

Since  is a random variable with a stable distribution, then 

 (G.43) 

and from (G.41) and (G.42): 

  can also be obtained (G.44) 

Then, 

 (G.45) 

which can be related to  using the variable change  as 

 (G.46) 

The solution for this equation is (with ) 

,    (G.47) 

and 

,  (G.48) 

which are known as hyperbolic tails. 

G.4.5. Statistical moments of Lévy distributions 

 

 The existence of hyperbolic tails can cause the divergence of the 

statistical moments of the random variable . Concretely, if  has a Lévy 

distribution with , its moments  diverge for  

 (G.49) 

 

which is trivially deduced from (G.2) and the behavior of  for  as 

expressed in (G.47) and (G.48). For the normal distribution,  all the p-order 

moments are well defined. 
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G.5. Log-Lévy distributions 

G.5.1. Statistical moments of log-Lévy distributions 

 

A random variable  has a log-Lévy distribution if the probability 

distribution of their logarithms, , follow a Lévy distribution.  

The statistical moments of order  〈  〉  can be expressed in terms of the 

moment-generating function of ,  as (Appendix B,  see (B.6)) 

  (G.50) 

which is the Laplace transform of ,ℒX . In turn, this is related to the 

characteristic function of , , see (G.3), as 

ℒX =  (G.51) 

Recalling (G.5) and (G.6),  can be expressed as (see (G.37))  
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The corresponding Laplace transform can be obtained by replacing 

. Note that the Laplace transform of is not finite unless  takes 

the extreme value .  

ℒX  with     (G.53) 

For , the integral diverges because the Lévy distributions are two-

sided heavy tailed (see subsection G.4.4) and, thus,  

(Note that ). On the other hand, if , Lévy 

distributions have only one hyperbolic tail, the left one, and the other decays 

exponentially. Then, , and the Laplace transform ℒX 

 is finite and statistical moments exist.  
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By replacing  and  in (G.52), it is possible to obtain the 

expression for ( ) as 

 

 

 

 

 

(G.54) 

 

And for    , it is then 

 

 

 

 

 

 

(G.55) 

And finally, 

=  

 

                        (G.56) 

G.5.2. Application of universality to scaling exponents   

Let us consider the multiplicative cascade model for a conservative field

. For the case , at scale , the moments of the variable  can be 

expressed as 
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which, in the multiplicative cascade framework, can also written as 
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where  is usually known as the generator of (Schertzer and 

Lovejoy, 1993). When comparing (G.58) to                                               (G.57), the 

scaling exponents  of p-order moments are 

 
(G.59) 

 

Recalling that  (conservative and space-filling field) and

, then  
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By taking the value of  and replacing this in the last equation we obtain a 

expression for the term , that is 
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