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The usual Hotelling 72 control chart is not appropriate for monitoring processes
where the quality characteristic is a mixture. The composition of mixtures are vectors
of positive elements that represent parts of a whole, to which standard multivariate
techniques are not appropriate due to their restricted sample space. There are many
applications where a mixture is monitored against time, such as in the chemical in-
dustry, product composition, impurity profile, or gas components analysis. In this
paper, a multivariate control chart for individual compositional observations based on
the T2 statistic is proposed and compared with the typical one in terms of ARL. We
show how results are more consistent with compositional data nature and illustrate

implementation in a real-world example.
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Introduction

In statistical process control, to monitor
simultaneously multiple quality character-
istics taking into account the correlation
among the variables, a Hotelling’s 72 con-
trol chart (CC) is commonly used. Expla-
nations on the use of the T2 statistic can be
found in Tracy et al. (1992), Kenett and
Zacks (1998) and Montgomery (2009).
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In a T? CC the following statistic is cal-
culated for each individual observation x in
RP:

TP=(—p)2x—p) (1)
Where x;, t = 1,..., m, are p-variate ob-
servations assumed to be mutually indepen-
dent and multivariate normally distributed
with mean g and covariance matrix 3.

In a first stage, called Phase I, the process
is brought into a state of statistical control
and the process parameters g and X are es-
timated from a sample of size m by the sam-
ple arithmetical mean X and the sample co-
variance matrix S, respectively. In a second
stage (Phase IT), the control scheme is devel-
oped and the estimates are used to compute
the upper control limit (UCL). At each ar-
rival of a new observation, the 7?2 is com-
pared with UC'L to verify if the in-control
state has changed. A discussion on how to
compute control limits in both phases can



be found in Tracy et al. (1992).

We consider the case in which the quality
characteristic being monitored is a mixture
or a compositional vector x = (x1,...,z,)
with non-negative elements that add to a
constant x (for simplicity, often taken to
be 1). Classical data units are weight or
volume percent, ppm or molar proportions.
Due to the constant sum, compositional
data (CoDa) live in a restricted sample
space of dimension p—1. It has already been
demonstrated (e.g., Aitchison and Egozcue
(2005) or Pawlowsky-Glahn and Buccianti
(2011) and references therein) that standard
multivariate techniques assuming that the
sample space is R? are not appropriate for
restricted spaces. Note that, in this article,
compositional data or composition refers to
the composition or components of a mix-
ture.

The sample space of CoDa is the Simplex
SP, where p represents the number of vari-
ables in the composition. When p = 3, the
composition lies in an equilateral triangle in
R3 (Figure la), although it is more common
to represent the data in the ternary diagram
(Figure 1b), which is an equivalent represen-
tation.

If a sample x = (x1,29,23) lies
near the center of the triangle (close to
(1/3,1/3,1/3) when xk = 1), the sample is
homogeneous, as all components are present
in a similar proportion. On the contrary,
if the sample is close to an edge or vertex,
there are one or two components, respec-
tively, that are present in minor quantity in
the composition.

Although the real space is a linear vector
space with Euclidean metric structure, the
typical geometry used therein (sum, multi-
plication, orthogonality...) is not appropri-
ate for CoDa (Bacon-Shone (2011)). To il-
lustrate this assertion, consider the pairs of
percentages 1-2% and 39-40%. The abso-
lute difference (Euclidean distance) in both
cases is 1 = 2—1 = 40—39. But a more ade-
quate measure to describe the way in which
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Figure 1: Two different but equivalent rep-
resentations of the Simplex with p = 3 in
R? (a) and in the ternary diagram (b).

they are unlike each other is to use the rel-
ative difference; thus, in the first case, the
relative increase is 100% and in the second
case is less than 3%.

It is possible to equip the Simplex with
the structure of a metric vector space with
specific operations that allow one to solve
compositional problems with its specific
algebraic-geometric structure.  However,
there is another approach based on log-ratio
transformations that enables a one-to-one
representation in an unconstrained space
where standard multivariate techniques can
be applied (Egozcue et al. (2003)). The
transformed variables are called coordinates.
We use the second approach here.

When the variable x is a composition, the
covariance matrix in Equation (1) is sin-
gular and thus cannot be inverted to com-
pute the T2 statistic. This is due to multi-
collinearity problem, always encountered in
CoDa, caused by the restricted sum of the
components. We have found in the litera-



ture three different scenarios when perform-
ing a T2 control scheme to compositional
variables:

1. Mason and Young (2001) suggest elim-
inating one of the variables involved in
the collinearity and then computing the
T?. Another suggestion is to rebuild
the covariance matrix by eliminating
the eigenvectors corresponding to the
near-zero eigenvalues thus to compute
the inverse of the covariance matrix
with the largest ones.

2. Measurement errors make the covari-
ance matrix near singular. Although
collinearity exists, it can remain unde-
tected. In that case, the T2 statistic
is severely distorted: signalling obser-
vations are no longer credible and the
control procedure does not make sense
(Mason and Young (2001)).

3. When only some parts of the whole
composition (subcomposition) are in-
cluded in the analysis, no collinear-
ity problem exists because no constant
sum is defined. This is the case in arti-
cles such as Mason et al. (1997), Mason
et al. (2001), Mason and Young (2001),
Ortiz-Estarelles (2001), Gonzalez-de la
Parra (2003), among others. In that
case, the T? statistic can be computed
without difficulties but the results may
not be coherent with the original data.

None of the above strategies take into ac-
count the peculiarity of CoDa, which is the
case in most of the literature reviewed. We
only found two articles where the distinc-
tiveness of CoDa is mentioned.

A first attempt to implement a CC for
compositional processes is made by Boyles
(1997). He develops a chi-square CC to
monitor multinomial and Dirichlet data.
The Dirichlet distribution has some very re-
strictive properties, such as complete sub-
compositional independence, which makes

it impossible to model any reasonable de-
pendence structure for CoDa. Boyles (1997)
uses simple descriptive graphs to compare
the x? chart with a T2 chart based on
a log-ratio transformation using as a divi-
sor the last component of the composition
(known as additive log-ratio transformation
- alr) with the main drawback that is a non-
isometric transformation. It is found that
the T chart based on log-ratios is more sen-
sitive than the x2, but the author states that
“the computational complexity of the opti-
mal approach [...] makes it impractical in
many shopfloor situations”. We consider
that the advantages of using the correct
“optimal approach” go beyond the “com-
putational complexity”, considering the re-
cent advances in automated manufacturing

(Stoumbos et al. (2000)).

Another proposal for monitoring compo-
sitional data is made by Yang et al. (2004),
where they control the quantity of different
sizes of aggregates for the asphalt industry.
They propose two ways of defining accep-
tance regions. The first one is by perform-
ing multiple univariate control charts, which
is not optimal when a multivariate qual-
ity control is desired (Montgomery (2009)).
The second method is based on an additive
approach (not log-ratio), thus not consistent
with CoDa nature.

In this paper, we demonstrate that ap-
plying a typical T? CC to CoDa in any of
the above-mentioned situations is not use-
ful, and propose an alternative methodology
based on a log-ratio approach. In the follow-
ing section, theory on CoDa is reviewed. In
Section the inconsistencies of typical solu-
tions are exposed through simple examples
and a new CC is proposed in Section . It
is compared in terms of ARL with the typi-
cal T? CC in Section and finally an example
from the industry is used to demonstrate its
applicability.



CoDa theory

The Simplex SP is defined mathematically
as 8P = {x € R?|z; > 0,%%_,x; = k}. Com-
positions provide information about rela-
tive values of components; its total sum is
not informative. Therefore, every statement
about a composition can be stated in terms
of ratios of components (Aitchison (1986)).

Aitchison observed that log-ratios are
more easily handled than standard ratios
and proposed a new methodology based on
the former. Those projections enable repre-
sentation of CoDa in the real space (coordi-
nates), where standard unconstrained mul-
tivariate statistics can be applied. Inference
therein is translatable back into composi-
tional statements.

Handling data with ratios enables work-
ing with different constant sums « or scaling
the composition to a given value (usually 1).
This operation is called closure and does not
affect the ratios between components:
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A subcomposition xg of a composition x is
obtained applying a closure operation to the
subvector [z;,, T4y, . .., x;,] of x. Subindexes
11,192, ...,1s tell which parts are selected in
the subcomposition.

There are three main transformations,
but the one that has better properties is
the ilr (isometric log-ratio) first presented
in Egozcue et al. (2003). The ilr transfor-
mation switches from compositions in the
Simplex SP to an orthonormal basis in the
real space RP~!. Unfortunately, there is no
unique basis in the real space. One method
for determining a basis is by using a se-
quential binary partition of the components
(Egozcue and Pawlowsky-Glahn (2005)),
known as balances. An explicit transforma-
tion formula for one such basis is:

ilr
Xx—=2z=_(21,...,2p-1)

(2)

1 Tit1
2 = log -
j=1Tj
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for e = 1,...,p — 1. The inverse trans-
formation, which recovers the composition
from its coordinates, is called ilr™'. Note
that zeros are not allowed in Equation (2).
Those elements must be previously replaced
with specific techniques that can be found
in Martin-Fernandez et al. (2011) and ref-
erences therein.

There are two main conditions that
should be fulfillled by any statistical analy-
sis applied to compositions: scale tnvariance
and subcompositional coherence (Aitchison
(1986)).

The scale invariance principle emphasizes
the idea that a composition provides infor-
mation only about relative values, so ratios
of components are the relevant entities to
study. In that case, the value of the con-
stant sum x is not relevant because the ratio
remains unchanged. In practical situations,
this means that analysis should be the same
whether the data set is in proportions, per-
centages or ppm.

The subcompositional coherence princi-
ple demands that, whenever working with
the full composition or with a subcompo-
sition, inference about relationships within
the common parts should be the same.
Working with ratios or, equivalently, log-
ratios, involves not only scale invariance
but automatically subcompositional coher-
ence because ratios within a subcomposition
are equal to the corresponding ratios within
the full composition.

Inconsistences of typical
T? applied to CoDa

In this section we show that the typical so-
lutions for the three scenarios described in



the introductory section are not consistent
with compositional nature because they fail
to fulfill the condition of subcompositional
coherence. We will not cover the principle
of scale invariance because it is not violated
by the typical T? statistic from Equation 1.
It can be proved with simple algebraic oper-
ations that the 72 value would be the same
whether the data units are, for example, in
proportions or percentages.

When one variable is deleted in order to
avoid collinearity, the resulting confidence
interval is an hyper-ellipse, which has to
be drawn in the Simplex. Hyper-elliptical
shapes have to be avoided in restricted
spaces because limits can easily drop out of
the sample space. We illustrate this with
two examples in S3.

We simulate 79 samples of a dataset that
we call “arch shaped” because of its contour
and another dataset called “vertex data”
of 48 samples near the vertex x;. Both
are drawn in Figure 2. As the variance-
covariance matrix is singular, we use only
the first two components to calculate the
T? statistic. Whatever variable is removed
from the composition, the value of the T2
statistic is going to be the same (Barceld-
Vidal et al. (1999)).

We set a control limit for Phase I with
unknown p and X as follows

vor — M-

—p—1
(5:5:™=2—)

Where B(a pomop-1) is the 1 —« percentile
of the beta dlstrlbutlon and the values m
and p are the sample size and the num-
ber of variables, respectively (Tracy et al.
(1992)). For o = 0.03 the control limits are
UCL = 6.788 and UCL = 6.641 for the
“arch shaped” and the “vertex data”, re-
spectively. It can be seen in Figure 2 that
the resulting contour ellipses fall out of the
sample space and do not follow the distri-
bution of the samples.

Many real datasets have this “arch
shaped” structure, such as the volcanic gas

Figure 2: Contour ellipses for the “Arch
Shaped” (dashed lines) and “Vertex data”
(dotted lines)

chemistry of a volcano system or the re-
action at equilibrium of hydrochloric acid
(Buccianti (2011)) or sediment samples at
different water depths and many others
from industrial and scientific applications
that are given in Aitchison (1986). Many
other datasets with non homogeneus com-
positions like “vertex data” can be found in
this same reference.

No satisfactory solution is obtained by
deleting from the covariance matrix the
eigenvector corresponding to the smallest
eigenvalue. In the “arch shaped” example,
data lives in R? in a plane perpendicular to
the vector (1,1,1). Performing a principal
component analysis retaining only the first
two components would be equivalent to se-
lect a plane intersecting the previous one.
A plane will never fit a data set with this
particular shape. A detailed study of this
effect is given in Aitchison (1986).

When the covariance matrix is near-
singular and collinearity is not detected, the
effect of computing the T statistic with the
corresponding covariance matrix is disas-
trous and the CC is no longer credible (Ma-
son and Young (2001)). If prior knowledge
about the nature of the data is available,
this situation can be settled with a simple
closure operation.



The third situation described in the intro-
ductory section, which consists on working
with subcompositions, is analysed through
a simple simulated example. We simulate
50 observations x = (z1,x2, z3) and add an
extra observation (square (m) in Figure 3),
which is an outlier. It can be seen from
Figure 3 that the outlier does not have an
extreme value of x; (the smallest x; is lim-
ited by the dashed line) and neither does
T (the smallest x5 is limited by the dotted
line). However, the outlier has a large value
of x3, as it is far from the solid line that lim-
its the highest x3 value from the dataset.

X3

X1 X2

Figure 3: Simulated dataset of 50 observa-
tions and an extra outlier (m) with limiting
lines for the smallest z; (dotted line), the
smallest o (dashed line) and the highest x3
(solid line).

If, instead of working with the full com-
position the practitioner only collects data
from the two first variables, then the dataset
is the result of the projection of the previ-
ous Simplex into the plane x5 = 0 in R2,
as shown in Figure 4a. When a contour re-
gion is settled in this plane (Figure 4b), it
can be seen that the outlier is also found to
be out-of-control. However, when attempt-
ing to identify the cause of the anomaly, it
can be interpreted that, given the value of
x1, the value of x, is not where it should be
(or vice versa). This conclusion is not co-
herent with original data, as we have seen
that the problem with this observation was
in the value of x3. So this approach is not
subcompositionally coherent.
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Figure 4: Working with the subcomposition
(1, 22) means projecting the dataset into
the plane z3 = 0 (a). The contour region of
the projection leads to a wrong conclusion
on the causes of the anomaly in the outlier

a (b).
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Figure 5: The closed subcomposition is
the result of the projection into the edge
(1, 22). Note how in this subcomposition,
sample m is not an outlier anymore.

If aware of the nature of the data, us-
ing a subcomposition would mean a closure
operation of the subvector of selected com-
ponents. In the example, the C(z1,x9) is
equivalent to project the dataset into the
edge x; + xo = 1 (Figure 5). In that case
the outlier is no longer atypical — it lies in
the middle of the dataset — which is consis-
tent with the whole original composition.

When analysing log-ratios between com-
ponents, the results must be the same
whether the whole composition or a sub-
composition is used (subcompositional co-
herence principle) or even if the subcompo-
sition is closed or not (scale invariance prin-
ciple).

CoDa T2 Control Chart

Based on the theory above, we now describe
the proposed method for calculating the T
statistic for compositional variables. This
method is consistent with the CoDa nature
because it fulfills the conditions of scale in-
variance and subcompositional coherence.

Given x = (x1, %2, ...,%p), & p-part com-
position and z = (zy,..., 2,_1), its ilr coor-
dinates as defined in Equation 2, the CoDa
T? statistic (TZ) is defined as

(Te)e = (20 — )27 (2 — p2) - (4)

Where z; is the coordinate of the observed
composition at time ¢ and p, and 3, are
the mean vector and the variance covariance
matrix of the log-ratio coordinates. In prac-
tice, it is necessary to estimate both values
in Phase I, as is done with typical standard
methods.

It can be easily demonstrated that the T
statistic is not affected by the basis used for
calculating the ilr coordinates. In practice,
the user would select a basis that is conve-
nient for easy interpretation (Egozcue and
Pawlowsky-Glahn (2005)).

We assume that the in-control observa-
tion vectors z;, 2 = 1,...,m are i.i.d. multi-
variate normal random vectors (N (u., X))
with common mean vector and covariance
matrix. In that case, the vector x; is said
to follow a normal distribution on the Sim-
plex: Ns(p.,X.) (Mateu-Figueras et al.
(2013) and Mateu-Figueras and Pawlowsky-
Glahn (2008)). This is a natural assump-
tion because, as stated in Buccianti (2011),
“Whenever there is a change in a composi-
tion by an independent process able to pro-
duce random variation, log-rationed data
tend to become normally distributed”.

Conceptually, we are comparing each ob-
servation with the geometric mean because
the p, from Equation 4 is the coordinate of
the geometric mean of the raw composition.
This is a better measure of center than the
arithmetic mean because usually the uni-
variate distributions of compositions do not
follow normal distributions (for which it is
convenient to use 7?) but log-normal distri-
butions do (Aitchison (1986) and Buccianti
(2011)).

The control limit (UCL) of the T3 con-
trol chart is calculated in the same way as
that in standard multivariate control charts
for individual observations (Tracy et al.
(1992)) but is applied to the ilr coordinates.



We apply the T2 CC to the examples
described in the previous section: “arch
shaped” and “vertex data”. The control re-
gions are drawn in the Simplex and in the
coordinate space (R?) for both examples in
Figure 6. It can be seen that the well-known
elliptical contour is only found in the coor-
dinate space. The same contour is deformed
when transformed back to S? due to the spe-
cial geometry in the Simplex. The coordi-
nates follows a multivariate normal distri-
bution in both examples.

Comparative study

We compare the in-control performance of
TZ CC with the one obtained after delet-
ing one variable and computing the typi-
cal T? when parameters are known. The
run length (RL) distribution and its aver-
age (ARL) and percentiles are used as per-
formance indicators. A simulation program
similar to that used in Champ et al. (2005)
for unknown parameters is used.

The data in which the performance of
both methods is going to be tested is
considered normal data in the Simplex
Nss(p., 3,) with known parameters

0.05 0
pe=(0,0) == ( 0 0.05)

Where p, and ¥, are the parameters of
the multivariate normal distribution in the
coordinate space in R2.

Without loss of generality we consider a
log-ratio uncorrelated (diagonal) covariance
matrix and a mean vector which is located
in the centre of the ternary diagram. We
also consider seven more mean vectors (co-
variance matrix remains unchanged) going
from the center of the ternary diagram to
the vertex x3 (Table 1). Thus, comparison
of both methods is going to be done across
these eight scenarios considering homoge-
neous and heterogeneous compositions.

For better understanding of the cases con-
sidered, simulated samples of size 30 have

Table 1: Values of the mean vector consid-
ered in the simulation

o
Scenario To T3
0 0.33 0.33 0.33
1 0.29 0.29 042
2 0.25 0.25 0.50
3 0.21 0.21 0.58
4 0.17 0.17 0.67
5 0.12 0.12 0.75
6 0.08 0.08 0.83
7 0.04 0.04 0.92

been drawn in the ternary diagram with
mean vectors numbered 0, 3 and 7 from Ta-

ble 1.

By

1 2 1 2 1 2

Figure 7: Samples from a Ngs(u.,X,) with
. equal to the coordinates of scenarios 0,

3 and 7.

The corresponding parameters of the
composition (x) in 8 are p, and X,. The
mean of x is calculated by p, = ilr™'(u.)
but there is no exact formula for obtaining
>, from ¥.. We estimate it from the ilr~!
of one million samples from a N'(p., 3., for
each of the mean vectors of Table 1. This
matrix is considered as the known covari-
ance matrix of x.

The control limit for known parameters
follows a x2 distribution with p degrees of
freedom. In both CC (TZ and T%), the
control limit is set at UC'L = 10.597 with
a = 0.005.

The simulation program is outlined as fol-
lows:

1. Generate a random vector z; from a
N(p.,X.) to represent the new pro-
cess information observed at time ¢ and
calculate x;, = ilr'(z,). Compute T3
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Figure 6: “Arch Shaped” (above) and “Vertex data” (below) with contour limits using
T?Z and the corresponding ilr coordinates with the same contour region.

from Equation 4 and 72 from Equation
1 after deleting one component (i.e., the
last one).

2. Compare both values (T2 and T?) with
the control limit. If no signal is ob-
served, then go to step 1. If a signal is
observed in one of them, retain the run
length value and go to step 1 until a sig-
nal is observed in the other one. Once
there is a run length value for both pro-
cesses, go to step 3.

3. Record both run lengths in a separate
vector.

4. Repeat steps 1-3 until the desired num-
ber of repetitions has been completed
(100,000).

5. Repeat steps 1 to 4 for each of the 8
mean vectors p,.

As a result, we have 100,000 RL values
for each of the eight values of u,. The

RL follows a geometric distribution with
mean ARL= 1/a when the chart statistics
are independent and identically distributed
and the control limits are constant. For
a = 0.005 the mean is ARL= 200.

This is always true for the T3 chart, as
can be seen in Figure 8, but the ARL of
the T? decreases as the distribution of the
composition moves to the vertex.

From Table 2, it can be seen that the ARL
in the CoDa approach is near the theoretical
value of 200 with some errors due to the sim-
ulation. On the contrary, the mean and the
quantiles of the RL of the typical approach
are decreasing as we move through the dif-
ferent scenarios, which means that the chart
will signal more often (false alarms) when
samples are near the vertex.

The increased false alarms are due to
the fact that contour ellipses of the typi-
cal approach contain extreme observations
or even values that are not in the sample
space as in the “vertex data” of Figure 2.
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Figure 8: ARL of the T3 compared to the
typical T? for the eight simulated scenarios

For the example in scenario 7 with pu, =
(0.04,0.04,0.92) an extreme value such as
x; = (0.01,0.01,0.98) is not likely to occur
considering the natural distribution of the
composition. Such a change would mean
that components 1 and 2 had reduced by
one fourth. With a log-ratio approach, this
observation would be found as an out of con-
trol observation (T3 CC). Despite the ex-
tremeness of this observation, in the typical
T? CC it would be found to be in control.

When the composition is homogeneous,
both methods perform well. But the differ-
ence between both methods is more acute
when the samples are close to the vertex.
We show an application of a real vertex
dataset in next section.

Example

Here we supply an example of an industrial
application using the data of Holmes and
Mergen (1993), which is also used in Sul-
livan and Woodall (1996) and reproduced
in Montgomery (2009). The data describes
the particle size distribution (percentage by
weight) for a plant in Europe. There are 56

Table 2: The in-control performance of the
T2 (CoDa) and the typical T? CC (Typical)
with known parameters.

Scenario ARL SDRL Q10 Q50 Q90
0 CoDa 201.12 201.91 21 139 463
Typical 190.99 190.12 20 132 442

1 CoDa  199.12 198.36 21 138 459
Typical 176.54 176.57 18 122 408

2 CoDa  198.68 199.28 21 137 459
Typical 147.48 148.26 15 102 340

3 CoDa  198.22 1984 21 137 456
Typical 114.1 11517 12 79 264

4 CoDa  198.37 200.37 20 137 458
Typical 88.72 89.18 9 61 206

5 CoDa 198.24 1985 20 137 457
Typical 70.64 70.96 7 49 163

6 CoDa  199.18 200.62 21 137 458
Typical 49.06 49.6 5 34 114

7 CoDa  199.47 200.07 21 138 459
Typical 49.19 49.63 5 34 113

observations with three components L, M,
and S, denoting the percentages classified as
large, medium and small, respectively. The
dataset is in Table 3.

As the sum of each row is constant, in
the three previous articles, authors decided
to suppress one component: “Only the first
two columns are used in the analysis since
the total of the percentages is always 100
and the variance-covariance matrix will not
invert under these conditions ” (Holmes
and Mergen (1993)) or “Since a dependency
exists, only the first two components of
each observation were used ” (Sullivan and
Woodall (1996)). The removed component
in the three cases is the percentage of S.

A typical T? CC was set up to en-
sure that the particle size distribution was
being manufactured in a consistent man-
ner. The arithmetic mean vector is X' =
(5.682, 88.220,6.098) and the sample covari-
ance matrix is S;. Note that S; is degener-
ate.

3.770  —5.495 1.725
S =1 —5495 13.529 -8.033
1.725 —8.033 6.308
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Sullivan and Woodall (1996) proposed an-
other estimator of the covariance matrix
called the sample covariance matriz of suc-
cessive observations, denoted by Ss, also
known as Sp in other references (Williams
et al. (2006)).

This estimator does not perform very well
for detecting outliers but has good proper-
ties for detecting sustained step shifts in the
mean vector. In Williams et al. (2006),
the distribution of the T3 , which is the
Hotelling statistic using Ss, as an estimator
of the covariance matrix, is studied. Recom-
mendations on the calculations of the UCL
for given historical data set size (m) and
variables (p) are given.

For a p < 10, when m > p? + 3p the
UCL has to be calculated using the y? dis-
tribution. With a false alarm probability of
a = 0.003, the limit is set at UCL= 11.618.
Instead, Sullivan and Woodall (1996) ob-
tained a limit of 11.35 from simulation that
corresponds to a false-alarm probability of
0.003 for each of the 56 independent obser-
vations. The authors also suggest a limit of
10.55 for the CC using S;. Both limits sug-
gested by Sullivan and Woodall (1996) will
be considered in this example.

The sample covariance matrix of succes-
sive differences S; for this example is

1.562 —2.093 0.531
Ss; =1 —2.093 6.721 —4.628
0.531 —4.628 4.097

which is also a singular matrix.

With only considering the first two com-
ponents of each observation (i.e., the first
two columns and rows of the variance-
covariance estimators), the typical T
statistic is calculated using S; and S; and
CC of Figure 9 are obtained. A control
chart with 7§ do not detect any outlier,
while observations 26, 45 and 52 are found
out of control by 7§, CC.

In the ternary diagram (Figure 10), sam-
ples are located near the vertex correspond-

ing with 100% of medium (M) particle sizes,
as it is the predominant component.

Control regions defined by 7§, and Tg_ are
drawn in Figure 10. The well-known elliptic
profile of the Hotelling statistic is obtained
in the ternary diagram.

Figure 10: Zoom of the right-hand vertex
of the ternary diagram with control regions
using S; (dashed) and S5 (dotted) as sample
covariance estimators

It is easy to see how both elliptical profiles
admit in the in-control region observations
that are not in the sample space. At the
same time, if a shift occurs in the direction
of increasing the percentage of M, it is never
going to be detected by the CC computed
using S;. The same occurs if Sy is used and
a shift occurs in the direction of observation
1, which has the smallest values of S.

As the data handled in this example is
compositional, it is more convenient to ap-
ply the T2 from Equation 4. For that par-
ticular example, a basis has been selected so
that the projected coordinates z = (z1, 2)
are positive.

2 = Llog%
V2 oS

29 = 2log M5
3 L

The results of this projection can be
found in Table 3, as well as the values of

11
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Figure 9: Typical T? CC using S; and S5 as sample covariance estimators and its contour

regions in the L — M plane.

the T2 statistic computed using Equation
4 with sample mean and covariance estima-
tors

z = (1.959,1.118)

S, — ( 0.134 0.133 )

0.133 0.153

and with upper control limit UCL =
10.472 from Equation 3 with a = 0.003.
Note that z corresponds to the coordinate
of the sample geometric mean of the com-
positional dataset: G, = (5.40,89.03,5.58)

If a T2 CC is computed, then the elliptical
control region is obtained in the real space
R? of the coordinates obtained after apply-
ing an ilr transformation (Figure 11 left).
The control region in the Simplex is shown
in Figure 11 (right).

It can be seen that observations detected
as outliers with the typical approach are
no longer considered as atypical under the
CoDa approach. Observation 26 has a large
absolute value of S and small M thus, the
log-ratio between M and S (z1) is small but
not that much different from the other ra-
tios. If compared with the geometric mean,

we see that a measure of centre of the ratio
M vs § is 16 and for observation 26 is not
that different: 5.7.

Observation 45 has large L if compared
directly with other values of large particle
size, although the value of z, — which ratio
has L as a denominator — is not that small
compared with other ratios. And finally, ob-
servation 52 signals in the typical T? CC
because of its small M, although the rel-
ative proportions between components are
perfectly met.

On the other hand, observation 1, which
has the lowest value of S and the third high-
est value of M, is now detected as atypical
due to the hight log-ratio between M and S
(z1). Again, if compared with the geomet-
ric mean we obtain a ratio M vs S of 93,
which is almost 6 times more than the same
ratio of the geometric mean. The resulting
TZ CC is shown in Figure 12.

Conclusions

In this paper, we proposed a multivariate
Hotelling T? control chart (T2) suitable for
monitoring individual composition of a mix-
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Figure 12: T2 control chart.

ture. The proposed control chart is based
on an ilr transformation of the data that
moves the data from a restricted space into a
non restricted space where the standard 72
control chart can be applied. Conclusions
are then translatable back to the restricted
space.

We showed that the typical approach of
applying a 72 control chart after deleting
one variable of the composition is not con-
sistent with the CoDa nature. When the
dataset lies near the vertex, the control re-
gion allows for samples out of the sample
space. Also, when the dataset has specific
shapes, e.g., like an arch, the typical method
does not provide a reasonable model of the
data.

Our simulation study showed that, as-
suming that compositions of mixtures fol-
low a normal distribution on the Simplex,
the performance of the T3 is better than
the typical T? in terms of in-control ARL,
specially when samples are close to a ver-

tex. When samples are homogeneous, both
methods perform well.

A final promising research topic includes
studying other estimators of the covariance
matrix of the transformed coordinates, such
as the covariance matrix from the vector
differences between successive observations.
This is a more robust estimate and the re-
sulting control chart has been demonstrated
to be more effective in detecting step or
ramp shifts in the mean vector. The new
estimate applied to the coordinates is likely
to detect step and ramp shifts in terms of
ratios of components.
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Table 3: Example from Holmes and Mergen (1993) showing the data

nates and the corresponding T? statistic

and the ilr coordi-

i L M S zZ1 Z2 Tg« i L M S zZ1 Z2 Tgv
1 5.40 93.60 1.00 3.21 0.48 13.26| 29 740 83.60 900 158 107 145
2 320 9260 420 219 1.48 2.02|30 680 8480 840 1.63 112 0.94
3 520 9170 310 240 096 151|301 630 87.10 6.60 1.82 109 024
4 350 8690 9.60 156 1.72 3.65|32 610 8720 670 1.81 112 021
5 290 9040 670 184 1.75 3.60|33 660 87.30 6.10 1.88 1.02 0.31
6 460 9210 330 235 1.09 117|34 620 8480 9.00 159 122 1.04
7 440 9150 410 220 121 055|35 650 8740 610 1.88 1.03 027
8§ 500 9030 470 209 116 0.14|36 6.00 8680 7.20 1.76 1.17 031
9 840 8510 650 182 084 152|37 480 8880 6.40 1.86 131 025
10 420 89.70 6.10 190 140 062|388 490 89.80 530 200 122 007
11 380 9250 370 228 129 124|39 580 8690 730 175 120 0.32
12 430 91.80 390 223 121 0.72|40 720 8380 9.00 158 1.09 1.35
13 370 9170 460 212 140 1.06| 41 560 8920 520 201 1.10 0.04
14 3.80 9030 590 1.93 147 1.07| 42 690 8450 860 1.62 1.11 1.06
15 260 9450 290 246 1.51  4.41| 43 740 8440 820 165 1.04 1.15
16 270 9450 280 249 147 4.21| 44 890 8430 6.80 178 081 1.96
17 790 8870 340 231 0.64 298|45 10.90 82.20 6.90 1.75 0.64 3.94
18 660 8460 880 1.60 1.16 1.04| 46 820 89.80 2.00 2.69 040 7.75
19 400 90.70 530 2.01 139 068|47 670 9040 2.90 243 072 2.84
20 250 9020 7.30 178 190 572]48 590 90.10 4.00 220 0.95 0.68
21 3.80 9270 350 232 127 1.39]49 870 8360 7.70 169 0.87 1.92
22 280 9150 570 196 171 346| 50 640 88.00 560 1.95 1.02 0.24
23 290 91.80 530 202 166 296|501 840 8470 6.90 1.77 0.86 1.54
24 330 90.60 6.10 191 160 211|52 9.60 80.60 9.80 1.49 0.88 3.37
25 7.20 87.30 550 195 091 0.70|53 510 93.00 190 275 0.78 5.05
26 7.30 79.00 13.70 1.24 1.23 3.97| 54 500 9140 360 229 1.05 0.1
27 7.00 8260 1040 147 117 1.94|55 500 8620 880 161 139 1.15
28 6.00 8350 1050 147 1.30 1.81|56 590 87.20 690 1.79 116 0.22
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