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We suggest new strict constraints that the two-particle cumulant matrix should fulfill. The constraints
are obtained from the decomposition of 〈Ŝ 2〉, previously developed in our laboratory, and the vanish-
ing number of electrons shared by two non-interacting fragments. The conditions impose stringent
constraints into the cumulant structure without any need to perform an orbital optimization procedure
thus carrying very small or no computational effort. These constraints are tested on the series of Piris
natural orbital functionals (PNOF), which are among the most accurate ones available in the litera-
ture. Interestingly, even though all PNOF cumulants ensure correct overall 〈Ŝ 2〉 values, none of them
is consistent with the local spin structure of systems that dissociate more than one pair of electrons.
A careful analysis of the local spin components reveals the most important missing contributions
in the cumulant expression thus suggesting a means to improve PNOF5. The constraints provide an
inexpensive tool for the construction and testing of cumulant structures that complement previously
known conditions such as the N-representability or the square of the total spin angular momentum,
〈Ŝ 2〉. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903449]

I. INTRODUCTION

The quest for a means to provide accurate electronic en-
ergies and properties of molecular systems at reduced com-
putational cost has brought a plethora of methods. A fully
satisfactory approach has not been found yet and ongoing at-
tempts include, among others, developments in density matrix
functional theory (DMFT)1 and cumulant density functional
theory (CDFT).2 The latter method belongs to the group of
approaches that implicitly uses the exact second-order density
matrix (2-RDM) and enforces some N-representability condi-
tions, whereas the former uses the first-order reduced density
matrix (1-RDM) to approximate the diagonal of the 2-RDM
following a bottom-up approach.3

There are many different ways to construct approximate
expressions to the 2-RDM in terms of the 1-RDM, the good-
ness of the approach being assessed by the known (applica-
ble) N-representability conditions4 and its ability to reproduce
energies of molecular systems. These methods, on one hand,
do not guarantee the N-representability of the 2-RDM and,
on the other hand, provide approximations that are biased to-
wards the electronic energy and are not necessarily adequate
to describe other molecular properties. In this sense, uncov-
ering new physical constraints for the 2-RDM not based on
the electronic energy is relevant for the development of new
approximate methods.

In this work, we suggest two constraints that the two-
particle cumulant matrix (2C) of a molecular system should
fulfill. These conditions impose serious restrictions on the 2C
expression that complement previously known constraints5, 6

such as the N-representability or the computation of the
square of the total spin of the angular momentum, 〈Ŝ 2〉. The
constraints do not require the cumulant obtained after some

orbital optimization procedure, only the general cumulant ex-
pression thus providing an inexpensive means to check the 2C
(or the 2-RDM) structure. They are obtained from the decom-
position of 〈Ŝ 2〉, previously developed in our laboratory,7 and
imposing a vanishing number of electrons shared between two
non-interacting fragments.

These new constraints provide a means to check the local
spin structure, which is a more restrictive condition than the
fulfillment of the global 〈Ŝ 2〉 itself. The importance of the
correct spin structure of the 2-RDM (or the 2C) manifests in
different chemical contexts, such as the analysis of spin states
in transition metal complexes or nuclear magnetic resonance
calculations. This feature, to the best of our knowledge, was
not explicitly checked on the 2-RDM by any other conditions
reported thus far in the literature.

The constraints are tested on the expressions of Piris
natural orbital functionals (PNOF), proving that no PNOF
provides a 2C expression that is consistent with the conditions
suggested in this work. The PNOF functionals are chosen
because they are among the most accurate ones and, unlike
most natural orbital functionals available, they ensure correct
〈Ŝ 2〉.8

II. THE APPROXIMATE CUMULANTS

The spinless 2C for singlet systems can be written as

�ij ;kl = 2Dij ;kl − DikDjl + 1

2
DilDjk, (1)

where 2Dij; kl is the 2-RDM normalized to N(N − 1) and Dij is
the 1-RDM normalized to N. The spinless 2C gathers the sum

0021-9606/2014/141(23)/234101/5/$30.00 © 2014 AIP Publishing LLC141, 234101-1
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of the four spin-dependent 2C components

�ij ;kl = �αααα
ij ;kl + �

αβαβ

ij ;kl + �
βαβα

ij ;kl + �
ββββ

ij ;kl . (2)

There are a few approximations to the 2-RDM defined in
the literature. Among those, we are only interested in the ones
that have a non-vanishing 2C and afford correct 〈Ŝ 2〉 values.
In the recent years, Piris has defined a general formula for the
2C known as Piris natural orbital functionals,1 PNOFi (i = 1,
5),9–13 that has the following structure:14

�σσσσ
ij ;kl = −�σσ

ij (δikδjl − δjkδil), (3)

�σσ ′σσ ′
ij ;kl = −�σσ ′

ij δikδjl + �ikδij δkl, (4)

where σ and σ ′ are either α or β, giving the approximate spin-
less 2C that follows

�ij ;kl = −(
�αα

ij + �
ββ

ij

)(
δikδjl − δjkδil

)

− (
�

αβ

ij + �
αβ

ij

)
δikδjl + 2�ikδij δkl, (5)

where the diagonal terms of matrices � and � guarantee the
conservation of 〈Ŝ 2〉 and,8 regardless of PNOF version, read

�ii = nini, (6)

�ii = ni, (7)

ni being the occupation of the ith natural orbital and restricted
to the range 0 ≤ ni ≤ 1. The PNOFi differ from each other by
the form of the off-diagonal elements of matrices � and �.
We do not consider here the extended PNOF515 because for
the present purpose it provides qualitatively similar results to
PNOF5.

In this work, we will analyze the structure of several
PNOF functionals that provide a complete expression of
the 2C, i.e., PNOF2, PNOF4, and PNOF5. In PNOF2 and
PNOF4, � depends on the type of orbitals involved and thus
these cumulant expressions do not lend themselves to an
easy analytical manipulation. On the other hand, PNOF5,13

the most successful functional of the series, has a very sim-
ple structure, thus permitting an exhaustive analysis. PNOF2,
PNOF4, and PNOF5 are defined for pure singlet states,
� = �σσ = �σσ ′

. In particular, PNOF5 has the following
structure for the off-diagonal terms of � and � matrices:

�ĩi = nĩni, (8)

�ĩi = −√
nĩni . (9)

The pairs (ĩ, i) are called coupled natural orbitals and
ĩ = N − i + 1 where N is the total number of electrons. This
pair-coupled arrangement actually grants PNOF5 the struc-
ture of an antisymmetrized product of strongly orthogonal
geminals (APSG).16, 17 Therefore, one could anticipate that
PNOF5 will not attain one of the constraints suggested in this
work because for multiple bond dissociations APSG does not
reproduce the proper spin states of the separated products.18, 19

Such methods do not describe properly multiple bond dissoci-
ation, since the separated products are of incorrect spin states.
Indeed, the analysis of these new constraints uncovers this

feature and provides a plausible solution to remedy this situa-
tion.

III. LOCAL SPIN AND DELOCALIZATION INDEX (DI)

Lately,7, 20–24 there has been an interest in assigning local
spin values by decomposing the expectation value of the total
spin angular momentum as

〈Ŝ 2〉 =
∑
A

〈Ŝ 2〉A +
∑

A,B �=A

〈Ŝ 2〉AB, (10)

where A and B are atoms or molecular fragments and 〈Ŝ 2〉A is
the local spin of fragment A. There are infinitely many ways7

to define the terms entering the r.h.s. of the latter expression.
In a recent work, some of us have suggested a proper general
definition of 〈Ŝ 2〉 that avoids the arbitrarity by imposing a
number of physical requirements and for pure singlet states
yields7, 24

〈Ŝ 2〉A = 3

4
uA + 	AA + 	′

AA (11)

and

〈Ŝ 2〉AB = 	AB + 	′
AB, (12)

where the following compact forms in terms of the matrix rep-
resentation (in molecular or natural orbitals) of the 1-RDM
(D), the 2C (�), and the fragment overlap matrix (SA) are
used,

uA = 2 Tr(DSA) − Tr(DSAD), (13)

	AA = 1

2

∑
ijkl

�ij ;klS
A
kiS

A
lj 	′

AA = −1

2

∑
ijkl

�ij ;klS
A
li S

A
kj ,

(14)

	AB = 1

2

∑
ijkl

�ij ;klS
A
kiS

B
lj 	′

AB = −1

2

∑
ijkl

�ij ;klS
A
li S

B
kj .

(15)

The Delocalization Index (DI) or electron sharing index
will also be used to set up stringent conditions over the 2-
RDM.25–28 The expression of the DI between two molecular
fragments A and B in terms of the 2C reads

δ(A,B) = Tr(DSADSB) − 4	AB. (16)

IV. THE NEW CONDITIONS IMPOSED
ON THE CUMULANT

Let us consider a system dissociating into two fragments
for which we compute: (i) the DI between fragments and
(ii) the local spin of each fragment, using the approximate
2C whose expression we want to analyze.

The first condition imposes that the DI between two non-
interacting fragments calculated using a given 2C approxima-
tion, X, should vanish in the dissociation limit, i.e.,

lim
|R

AB
|→∞

δX(A,B) = 0. (17)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

84.88.138.106 On: Thu, 29 Jan 2015 12:55:56



234101-3 Ramos-Córdoba et al. J. Chem. Phys. 141, 234101 (2014)

This condition might seem not too restrictive but, as we shall
see, it is not fulfilled by all the 2C approximations studied
in this paper. We note in passing the recent work of García-
Revilla et al.29 where values of the DI upon dissociation of
diatomic molecules were analyzed using several approximate
natural orbital functionals.

The second constraint requires that the local spin of each
fragment at the dissociation limit coincides with the corre-
sponding 〈Ŝ 2〉 value of the isolated fragment A. The latter
requirement imposes a serious restriction on the structure of
the 2C that is actually not attained by any of the functionals
tested in this work. The condition is valid for any physical
system dissociating into two fragments, A and B, and for an
approximate 2C, X, reads

lim
|R

AB
|→∞

〈Ŝ2〉XA = 〈Ŝ2〉freeA. (18)

The last condition is a particularly interesting condition
involving off-diagonal terms of the cumulant matrix (Eq. (14),
right) that do not enter the energy expression. This condition
goes thus beyond the typical constraints and tests that are usu-
ally performed in cumulant matrices. These constraints can
be easily checked into any 2C structure, and since the 〈Ŝ 2〉 of
the free fragment can be anticipated the test does not require
expensive benchmark calculations. Therefore, they can be ap-
plied to any approximate 2C. DI and 〈Ŝ 2〉 can be manipulated
algebraically (see, e.g., Eqs. (21) and (22)) to obtain partial
contributions and further analyze the failure of some approx-
imate 2C. Since the calculation of an exact 2C is out of reach
for most systems, one can use a wavefunction method to ob-
tain a reference 2C, as well as the natural orbitals and their
occupancies. Many 2C approximate expressions are given in
terms of natural orbitals and their occupancies because they
can be readily obtained from the 1-RDM and constitute a
complete one-particle basis in terms of which to expand the
2C. One can thus try to reproduce the reference 2C from nat-
ural orbitals and its occupancies using the approximate cu-
mulant expression. By doing so, we are testing the ability of
the cumulant expression to reproduce the 2C structure from
natural orbitals. This procedure does not permit to capture the
performance of the approximate 2C to reproduce accurate en-
ergies. However, it affords an inexpensive means to analyze
the cumulant structure similar to other requirements such as
the antisymmetry or the sum rule.

V. CONSTRAINTS TESTED ON PNOF CUMULANTS

In order to obtain partial contributions, we will use a
complete active space self-consistent field (CASSCF) wave-
function, which provides a qualitatively correct description of
fragment dissociations and its wavefunction conforms with
correct 2C structure to reproduce the local spin.21, 22 The use
of more accurate wavefunctions would complicate the forth-
coming analysis unnecessarily, whereas CASSCF already
captures the essence of the local spin upon dissociation. Fur-
thermore, the CASSCF closely resembles PNOF5 but, unlike
PNOF5, it reproduces the correct spin structure upon disso-
ciation. For the sake of simplicity, we only include in the ac-
tive space the orbitals that contain the n electron pairs that

break upon dissociation, i.e., we perform CASSCF(2n, 2n)
calculations. Each dissociating fragment has a well-defined
spin state, 〈Ŝ 2〉A = n

2 ( n
2 + 1). The inner N − 2N orbitals will

not be correlated by either method. These orbitals entering
the active space are thus orthogonal (also orthogonal within
each fragment, i.e., Sij(A)=0 for j �= ĩ) and delocalized over
the whole system. These assumptions are genuinely fulfilled
by the CASSCF natural orbitals and do not lead to lack of
generalization because we are testing the cumulant expres-
sion in terms of an arbitrary natural orbital set. The pairs of
orbitals that share one electron will be labeled i and ĩ, so that
ni + nĩ = 1. Notice that we do not need any computational
calculation to assess orbital occupancies at the dissociation
limit, where there are n pairs of spinorbitals with occupation
1/2 (the pairs broken upon dissociation) and other electron
pairs sit on orbitals with occupation equal one.

Since we are testing PNOF5, which is defined for sin-
glet states, we will restrict the analysis to singlet systems that
dissociate into fragments with different spin states. After al-
gebraic manipulation one obtains the following formulae for
PNOF:

〈Ŝ 2〉A = 3

⎡
⎣∑

i

(
ni − n2

i

)
SA

ii +
∑
ij

�ij

(
SA

jiS
A
ij − SA

ii S
A
jj

)
⎤
⎦ ,

(19)

δ(A,B) = 4
∑
ij

[(
ninj − �ij − �ij

)
SA

jiS
B
ij + 2 SA

ii S
B
jj

]
.

(20)

Notice that the formula for the local spin, Eq. (19), does
not depend on the structure of �, and thus this part of the
PNOFi 2C is never tested by the analysis of the local spin.

Under these conditions, in the dissociation limit

lim
|R

AB
|→∞

SA

ĩi
SA

iĩ
= 1

4
= lim

|R
AB

|→∞
SA

ii S
A

ĩĩ
= 1

4
, (21)

consequently, the PNOF5 expression brings

lim
|R

AB
|→∞

〈Ŝ 2〉PNOF5
A = 3

2

∑
i

ni(1 − ni) = 3

4
n. (22)

Analogously, by straightforward algebra we can write the lo-
cal spin, the compacted forms, and the DI as a function of the
number of broken electron pairs for the other PNOF expres-
sions (see Table I). All PNOFs provide the wrong local spin

TABLE I. Asymptotic values of the 〈Ŝ 2〉
A

, compacted forms, and the DI as
a function of the number of broken pairs (n) upon dissociation.

uA 	AA 	′
AA 	AB 〈Ŝ 2〉

A
DI

CASSCF n −n

4

n2

4
0

n

2
(
n

2
+ 1) 0

PNOF2 n 0
3

4
(1 − n) −n

4

3

4
n

PNOF4 n −n

4
(
3

4
− n

2
) 0

3

4
0

PNOF5 n −n

4

n

4
0

3

4
n 0
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TABLE II. Nonzero cumulant contributions to 	AA included in PNOF5 ex-
pression at the dissociation limit. The table collects the partial value of each
term (multiplied by the corresponding overlaps) as a function of the number
of broken pairs, n. There are 2n terms for each kind listed on this table.

Contributions to 	AA

Kind of term CASSCF PNOF5

�ii; ii, �
iĩ;ĩi

1

16n

1

16

�
iĩ;iĩ , �

ii;ĩ ĩ −n + 1

16n
− 1

8

upon dissociation except for systems where a single electron
pair is broken (n = 1), i.e., the dissociation of a singlet sys-
tem into two doublet fragments. Furthermore, PNOF2 also
presents wrong DI between the dissociating fragments. Inter-
estingly, both PNOF4 and PNOF5 provide the correct value
for 	AA but they fail to reproduce the quadratic dependence
of 	′

AA on the number of broken pairs.
In the following, we will focus on PNOF5 cumulant

structure and its ability to reproduce CASSCF 2C from its nat-
ural orbitals. Tables II and III collect the contributions of dif-
ferent kinds of cumulant components upon dissociation con-
tained and not contained in PNOF5, respectively. Careful ex-
amination of the cumulant contributions (see Table II) shows
that the values obtained from PNOF5 cumulant expression
and the CASSCF ones do not coincide (except for n = 1) but,
nonetheless, the overall value of 	AA matches. Essentially,
the contributions from PNOF5 expression are independent of
the number of pairs, but the number of individual contribu-
tions for each cumulant kind (2n) does depend on the number
of pairs and therefore there is a final dependency on n (see
Table II).

One should bear in mind that PNOF5 has a pretty simple
cumulant structure that assumes, among other things, vanish-
ing off-diagonal terms. The off-diagonal terms do not enter
the expression of 	AA whereas 	′

AA does have contributions
from the off-diagonal terms. On the other hand, the struc-
ture of PNOF5 involves only the coupling between pairs of
orbitals, one below the Fermi level with one above it. Other
couplings are not considered. In Table III, we gather the non-
zero cumulant contributions to 	′

AA that are not included in
PNOF5 expression, i.e., �ij; ji, �ij ;j̃ ĩ , and �ij̃ ;j ĩ . The first kind
involves the coupling of the orbitals below the Fermi level
and they contribute to 	′

AA with a term linear on n. These
contributions are not contained in PNOF5 but they exist in
other PNOFs. Interestingly, �ij; ji contributes to the local spin

TABLE III. Contributions of the cumulant matrix to 	′
AA at the dissociation

limit not included in PNOF5. The table gathers the number of terms, the
partial value of each term (multiplied by the corresponding overlaps), and the
total contribution as a function of the number of broken pairs, n.

Kind of term Number of terms Partial Total

�ij; ji 4n(n − 1) − 1

16n
−n − 1

4

�
ij̃ ;j ĩ

, �
ij ;j̃ ĩ

4n(n − 1)/2 −n + 1

16n

n2 − 1

4

as much as �iĩ;ĩi , which is included in PNOF5. This fact sug-
gests that �ij; ji could be included in the PNOF5 using an ex-
pression analogous to �iĩ;ĩi , for instance, by assuming �ij =
ninj.

30 This formulation would give the right asymptotic value
of this 2C contribution to the local spin.

The second and the third terms involve the coupling be-
tween two pairs of orbitals (i, ĩ) and (j, j̃ ) and thus, they
are necessarily off-diagonal terms which are not included in
PNOF5. These terms are responsible for the n2 final depen-
dency of the local spin that is missing in PNOF5. Notice
that the quadratic dependency comes from the total number
of terms included, rather than from the individual cumulant
components. Furthermore, these terms have the same value
than �ii;ĩ ĩ and �iĩ;iĩ , which are included in PNOF5 expression.
However, the inclusion of these terms might not be straight-
forward, as it involves the coupling between two orbital pairs.

Each individual cumulant value of the CASSCF wave-
function that contributes to the local spin depends on n, the
number of broken pairs. It is thus advisable to construct ap-
proximate cumulant matrices that show this n-dependency at
the dissociation limit. Obviously, a natural way to improve
the PNOFs is to add off-diagonal terms of the cumulant ex-
pression; this could restore the correct n2 dependency with-
out affecting the trace of the 2C. Finally, for the full correct
description of the 〈Ŝ 2〉A with PNOF5, one should also con-
sider the coupling between the orbitals below the Fermi level.
However, one should conduct these changes in PNOF5 mak-
ing sure that the performance of PNOF5 is not affected in
both energy calculations and ground-state local spin values of
molecular systems.

To summarize, Eqs. (17) and (18) are two new stringent
conditions to test approximate cumulants at very small com-
putational cost. The fact that very accurate functionals such as
PNOF5 do not attain these conditions puts forward the rele-
vance and constraining character of these requirements. Most
importantly, we have identified the cumulant contributions to
the local spin that are not included in PNOF5 and should be
the focus of future improvements.
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