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a b s t r a c t 

This paper focuses on understanding the influence of laser milling process parameters on the final geometrical and surface quality of micro-channel 
features fabricated on AISI H13 steel. Optimal selection of process parameters is highly critical for successful material removal and high dimensional 
and surface quality for micro-sized die/mold applications. A set of designed experiments is carried out in a pulsed Nd:YAG laser milling system using AISI 
H13 hardened tool steel as work material. Arrays of micro-channels have been fabricated using a range of process parameters such as scanning speed 
(SS), pulse intensity (PI), and pulse frequency (PF). The relation between process parameters and quality characteristics has been studied with 
experimental modeling. Multi-criteria decision making for material and process parameter selection for desired surface quality and dimensional accuracy 
is investigated using an evolutionary computation method based on particle swarm optimization (PSO). 

1. Introduction

The micro-manufacturing processes are a growing area and
have found widespread use in a variety of applications, such as 
biomedical devices, which represent a niche market, thereby 
creating a need to find alternative processes to manufacture these 
components with low cost, high accuracy and high quality surface 
finishing. 

Laser-energy beam processing is widely used for cutting, 
drilling, scribing, marking, welding, sintering and heat treatment 
applications [1]. Computer numerically controlled machining 
systems based on laser beams, also called laser milling systems, 
have become commercially available in recent years. Further 
developments in pulsed laser techniques and systems have 
increased the applicability of laser milling technology in produc- 
tion systems. Hence, it has become a viable alternative to 
conventional methods for producing complex and micro-features 
on difficult-to-process materials and is being employed increas- 
ingly in industry because of its known advantages. 

Laser milling can be applied to a wide range of materials 
(metals and non-metals, soft and difficult-to-machine) and allows 
the production of parts with complex shapes without expensive 
tooling. Compared with other conventional mechanical processes, 

laser machining (milling) is a non-contact material removal 
process that removes much less material, involves highly loca- 
lized heat input to the workpiece, minimizes distortion, and offers 
no tool wear. Therefore, the process is not limited by constraints 
such as maximum tool force, buildup edge formation, or tool 
chatter. Laser milling is a relatively new machining process that 
removes material in a layer-by-layer fashion. It is an ablation 
procedure that causes the vaporization of material as a result of 
interaction between a laser beam and the workpiece being 
machined [2]. However, it is important to distinguish between 
the laser interaction with metals and with polymers. Whenever 
metals are used, the laser beam heats, melts and vaporizes the 
metal (metal sublimation), while in polymers the process is based 
on the rupture of molecular chains (laser ablation). 

Many laser machining systems designed for material removal 
(laser milling) are based on pulsed Nd:YAG laser sources with 
characteristic pulse lengths in the nanosecond and microsecond 
range [3–5]. The ablation process, which takes place within the 
pulse duration, sublimates the metal (melting and vaporization 
phases). There is enough time for a thermal wave to propagate 
into the material. Evaporation occurs from the liquid state of the 
material. The molten material is partially ejected from the cavity 
by the vapor and plasma pressure, but a portion of it remains near 
the surface. After the end of a pulse the heat quickly dissipates 
into the bulk of the material and a recast layer is formed [6]. 

The removal of material during laser milling is affected by the 
characteristics of the laser beam and the workpiece but is mainly 
determined by the way that both interact [2]. The wavelength, the 



laser power, and pulse duration are the major factors that affect 
laser milling and can rarely be modified without changing the 
laser type with a few exceptions (e.g., Q-switching can provide 
the harmonics of the main wavelength). Laser ablation occurs 
only when the substrate material strongly absorbs the wave- 
length of the transmitted radiation. Hence, surface finishing, 
surface coating, and thermal conductivity are parameters which 
will lead to more or less effective laser milling. The process 
parameters that can be controlled and modified to obtain optimal 
machining results are the selection of the repetition rate of the pulses 
(frequency), the scanning speed, the hatch space, the hatch strategy, 
and the pulse intensity, all of which significantly affect the quality of 
the micro-feature created and the material removal rate. 

Several research works deal with how process parameters 
affect the quality of the resultant surfaces or geometrical features 
using experimental analysis tools. Ciurana et al. [7] used a pulsed 
Nd:YAG laser to study the influence of pulse intensity, scanning 
speed, and pulse frequency on desired dimensions (angles, depth 
and width) and surface roughness in the laser micro-machining of 
hardened AISI H13 tool steel and they observed large variations in 
dimensional quality. Bartolo et al. [8] analyzed the influence of 
laser scanning strategies on surface roughness. Then, with the 
better strategy the influence of pulse frequency, laser power, and 
scanning speed on the material removal rate and surface rough- 
ness of tempered steel and aluminum was investigated. Their 
results suggest that lower pulse frequencies and laser power are 
more appropriate whenever surface quality is an issue. However, 
increasing both parameters is required until an optimum value 
for higher material removal rates are achieved. Cicala et al. [9] 
used an Nd:YAG pulsed laser for the machining of aluminum 
alloy, stainless steel, and titanium materials. They investigated 
the influence of the intensity, frequency, scanning speed, and line- 
spacing on the material removal rate and surface roughness. The 
results showed that the material removal rate depends mainly on 
the frequency of the laser pulses, and the surface roughness of the 
machined surface depends mainly on pulse frequency and, 
secondarily, on scanning speed. The lowest levels of roughness 
were obtained with the highest frequencies and with low scan- 
ning speeds. Campanelli et al. [10] had similar results analyzing 
the influence of pulse frequency, scanning strategy and over- 
lapping on the depth of removed material and surface roughness 
in aluminum–magnesium alloy where the roughness results are 
generally contrary to the depth result. Kaldos et al. [11] studied 
the impact of the intensity, frequency and scanning speed on the 
surface roughness and material removal rate of die making steels. 
They used a CNC milling machine equipped with an Nd:YAG laser 
source as in the case of Quintana et al. [12], who conducted 
experiments with fixed parameters while machining aluminum, 
steel and titanium. Cheng et al. [13] analyzed the effects of pulse 
overlap, repetition rate and number of overscan on micro-proces- 
sing quality and efficiency. They used femtosecond and picose- 
cond lasers on copper, aluminum and titanium alloys. Kumar and 
Gupta [14] investigated the dependence of groove depth on laser 
power, repetition rate, number of scans and gas pressure in the 
generation of micro-notches in stainless steel and aluminum. 
Semaltianos et al. [15] studied the effects of the fluence and the 
pulse frequency on the MRR and the surface roughness in nickel 
based alloys with a Nd:IVO4 laser. They also analyzed the surface 
morphology with AFM and SEM techniques. 

Some researchers have focused their interest on studying the 
pulse energy. Bordatchev and Nikumb [16] experimentally inves- 
tigated the effect of it on the accuracy, precision and surface 
quality of copper machined parts. The results showed that the 
crater diameter and depth increase in accordance with the 
increase in the pulse energy. The use of lower pulse energy 
significantly improves the final accuracy and precision of 

machined parts, and reduces the process-affected zone, burrs, 
and damage to the surrounding material. Yousef et al. [17] 
investigated, analyzed, and modeled how the geometry of the 
crater (diameter, depth and volume of material removed) and 
final surface profile are formed and how they depend on the level 
of incident laser pulse energy. They used a diode pumped Nd:YAG 
laser and brass, copper and stainless steel as bulk material. 
Several other research works have focused on the interest in the 
pulse width (pulse duration). Chichkov et al. [18] presented 
experimental results on femtosecond, picosecond and nanose- 
cond laser ablation of metal targets showing the advantage of 
femtosecond lasers over the others. Jandeleit et al. [19] studied 
the picosecond and nanosecond machining of gold, copper and 
some ceramics. 

Finally, other research works developed models and methods to 
simulate the process and predict the results to assist in the design 
process. Ciurana et al. [7] developed multiple linear regression models 
and neural network models to predict surface roughness, and 
geometrical and dimensional features. In addition, the multi-objective 
particle swarm optimization (PSO) of process parameters of mini- 
mum surface roughness and minimum volume error was carried out. 
Petkov et al. [6] presented a method for analyzing the effects of pulse 
duration on surface integrity, surface roughness, and material micro- 
structure changes. Dobrev et al. [20] developed a simulation model to 
investigate the influence of a number of laser ablation parameters on 
temperature distribution, heat flow, material removal and general 
laser–material interaction and the effects of crater profiles and laser 
milling strategies on resulting surface quality. Dhupal et al. [21] 
developed a mathematical model for the deviation of taper angle and 
depth deviation characteristics. Various tests modifying the air 
pressure, lamp current, pulse frequency, pulse width and scanning 
speed were carried out to serve as the bases of the model. Dhara et al. 
[22] developed a strategy for predicting the optimum machining
parameter (air pressure, lamp current, pulse frequency and pulse
width) settings for the generation of the maximum depth of groove
with minimum height of recast layer. Bustillo et al. [23] presented
research about the most appropriate modeling system for laser
milling of copper components. The Box Jenkins (BJ) model was best
adapted to this case, in terms of identifying the best conditions and
predicting future circumstances.

This paper provides insight into optimizing process para- 
meters to improve dimensional and surface quality in the laser 
milling micro-manufacturing process by optimizing process para- 
meters. It is highly crucial to capture the influence of laser milling 
process parameters (e.g., scanning speed, laser pulse frequency 
and laser pulse intensity) on desired dimensional quality, geome- 
trical feature size and surface finish. Moreover, it is also important 
to identify which ones have strong effects on the resultant quality 
of feature dimensions and surface while achieving target material 
removal rates and productivity. Therefore, this work will con- 
tribute to an understanding of the relations between process 
parameters and quality of the final geometrical features. The 
method used will also help develop a predictive system to 
identify the optimum set of process parameters considering 
different and possibly conflicting objectives. For this purpose, 
the multi-criteria based selection of laser milling process para- 
meters for the most desired accuracy, geometry shape and surface 
finish is carried out using experimental models and the multi- 
objective particle swarm optimization (MOPSO) method. 

1.1. Experimental work 

The main objective of the experimental work was to investi- 
gate the influence of laser process parameters on dimensional 
precision and surface quality in laser milling of hardened AISI H13 
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tool steel and to evaluate the reliability and the availability of the 
process to produce micro-geometries instead of studying the 
productivity. The experiments were performed using a Deckel 
Maho Lasertec 40 machine, a nanosecond Nd:YAG lamp pumped 
solid-state laser, 100 W average laser power, and 1064 nm wave- 
length with a laser beam spot diameter of 0.03 mm. In the 
experiments the scanning speed (SS), the pulse frequency (PF), 
and the pulse intensity levels (PI) of a percentage of the ideal 
maximum pulse intensity were considered as a input process 
parameters. 

In laser milling the incident laser beam is directed at the 
material to be removed. A focused, high-energy intensity spot 
area is created to ablate the material to be removed. Although the 
pulse intensity level on the surface was not measured during the 
experiments, an ideal pulse intensity level, based on the technical 
data of the laser system, can be given by 

PI 
P 
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Fig. 2. Micro-channel design (not to scale). 

Table 1 
Factors and factor levels. 

where P is the laser power (100 W), and d is the beam spot 
diameter (0.03 mm). The ideal pulse intensity was estimated to be 
141.4 kW/mm2. Furthermore, the ideal peak pulse power (PPP) 
can be determined by 

digital camera of 3.75 MB for the collection of digital images with 
high resolution and contrast, and very good recording quality of 
texture and color. These images were numerically processed 

PPP ¼ 
P

ð2Þ using the Quartz PCI& software, version 5. 
The measurement of the surface roughness parameter Ra on 

where P is the laser power (100 W) and t is the laser pulse 
duration (10 ns). For the laser characteristics used in this study, 
the peak pulse power is estimated to be 10 MW/s. 

Fig. 1 represents a schematic 3D-laser milling process, where 
the rectangular cavity is machined by the motion of a laser beam 
in the x and y directions. The x, y and z axes were assumed to be 
along the width, length and depth, respectively, of the machined 
cavity. As shown in the figure, it was assumed that the volume of 
the cavity machined (corresponding to a certain depth in the z 
direction) per unit spot area by these physical phenomena was 
equivalent to a cylinder of diameter, d (beam diameter of 
0.03 mm on surface of material being machined) [24,25]. Transla- 
tion of the laser beam in the x and y directions led to material 
removal in all three directions (x, y and z) and a three-dimen- 
sional cavity was formed. 

AISI H13 hardened tool steel was used in a workpiece material 
test. This material was selected because it is commonly used 
when mold inserts are needed. The experiments were carried out 
machining micro-channels of 200 mm in width and 50 mm in 
depth (Fig. 2). 

Dimensional measurement was performed with a ZEISS 
SteREO Discovery.V12 stereomicroscope attached to DeltaPix 

Fig. 1. Schematic illustration of three-dimensional laser milling process with 
pulse overlaps in the x and y directions and the cylindrical volume machined per 
spot area. 

the micro-channel bottom surface was conducted with a stylus 
instrument (Mitutoyo SV2000 Surftest equipment), with a cut off 
of 0.8 mm, in accordance to ISO/DIS 4287/1E. The Ra parameter 
was selected over other roughness parameters to study the 
surface roughness because it is used in several references and 
research studies. The ability of a profilometer to obtain the most 
precise and rapid surface measurements is affected by the 
reduced scale of the micro-channels. As a consequence, the 
profilometer stylus inside the micro-channel cannot be seen with 
the naked eye. In order to compensate for this difficulty, mea- 
surements were taken using a magnifying glass and intense 
illumination in the direction of the workpiece. 

A full factorial design was used to determine the effects of 
pulse intensity, scanning speed, and pulse frequency on resultant 
dimensional precision and surface roughness in the laser milling 
of H13 hardened tool steel. The factors and factor levels are 
summarized in Table 1. These factor levels result in a total of 54 
unique factor level combinations. The response variables are the 
surface roughness, Ra (mm) at the bottom of the micro-channel, 
micro-channel width dimension (mm), and micro-channel depth 
dimension (mm). 

2. Experimental results

A total number of 54 micro-channels were machined with a
laser machining process on a laser milling machine by following 
the experimental plan discussed in the previous section. The 
surface roughness was measured in five different sections of each 
micro-channel to obtain the mean value of the entire channel and 
the variation along its length. Then, each channel was cut in three 
parts to obtain the cross-sectional profiles where the measure- 
ments of depth and width were taken from the digital images 
processed using the software described previously. Again, five 
different measurements, proportionally distributed along the 
depth and the width, were taken. The mean (m) and the standard 
deviation (s) values of the experimental results obtained on the 
machined features for all the variable factor combinations are 
shown in Table 2. 

Factors Factor levels 

Scanning speed (SS) (mm/s) 200 225 250 
275 300 325  

350 375 400  

Pulse intensity (PI) (%) 35 40 45  
Pulse frequency (PF) (kHz) 35 40 



Table 2 
Experimental results. 

Trial PF (kHz) PI (%) SS (mm/s) lDepth (lm) rDepth (lm) lWidth (lm) rWidth (lm) lRa (lm) rRa (lm) Time (s) 

1 35 35 200 18.35 2.79 188.97 2.67 0.505 0.067 71 
2 35 35 225 17.41 2.09 190.01 0.96 0.477 0.078 59 
3 35 35 250 14.87 1.59 190.98 11.27 0.533 0.086 57 
4 35 35 275 15.75 0.76 195.77 0.90 0.455 0.062 50 
5 35 35 300 12.91 1.10 197.75 3.95 0.456 0.216 59 
6 35 35 325 11.59 2.33 193.25 15.84 0.463 0.014 55 
7 35 35 350 8.09 1.15 191.73 9.89 0.470 0.029 63 
8 35 35 375 10.93 3.85 192.51 13.17 0.504 0.156 72 
9 35 35 400 10.25 1.72 192.80 3.70 0.457 0.011 50 

10 35 40 200 29.91 0.98 183.95 4.73 0.549 0.073 62 
11 35 40 225 30.01 4.30 184.88 2.58 0.481 0.045 54 
12 35 40 250 25.45 2.30 184.41 3.91 0.513 0.042 52 
13 35 40 275 21.91 1.03 187.22 3.26 0.964 0.043 55 
14 35 40 300 16.82 5.66 189.89 11.53 0.478 0.058 49 
15 35 40 325 14.43 4.03 188.40 4.89 0.473 0.014 53 
16 35 40 350 18.47 3.95 188.53 7.60 0.485 0.076 58 
17 35 40 375 18.19 1.28 190.54 5.35 0.457 0.066 46 
18 35 40 400 18.37 2.33 190.01 3.31 0.382 0.009 50 
19 35 45 200 39.60 1.92 184.41 2.43 0.519 0.080 70 
20 35 45 225 35.81 0.45 184.13 3.50 0.513 0.115 59 
21 35 45 250 33.67 0.72 181.01 1.93 0.493 0.098 52 
22 35 45 275 22.13 3.09 184.29 3.05 0.443 0.029 50 
23 35 45 300 25.39 1.03 186.19 4.03 0.451 0.039 53 
24 35 45 325 26.50 2.54 189.17 2.74 0.451 0.017 52 
25 35 45 350 20.77 3.35 191.12 1.11 0.447 0.050 60 
26 35 45 375 19.81 2.33 189.89 1.47 0.397 0.006 46 
27 35 45 400 19.15 0.38 188.26 4.48 0.377 0.010 50 
28 40 35 200 13.93 0.20 192.91 2.18 0.560 0.031 74 
29 40 35 225 12.58 2.59 166.66 15.89 0.479 0.036 73 
30 40 35 250 11.63 2.05 188.07 4.21 0.531 0.082 64 
31 40 35 275 15.71 3.53 191.62 4.99 0.465 0.081 61 
32 40 35 300 8.15 3.25 193.16 11.14 0.506 0.076 54 
33 40 35 325 8.07 2.35 189.81 6.92 0.520 0.019 52 
34 40 35 350 11.57 2.86 189.25 3.21 0.471 0.001 47 
35 40 35 375 10.80 4.78 189.87 2.80 0.525 0.099 45 
36 40 35 400 11.67 2.59 190.06 5.31 0.463 0.029 45 
37 40 40 200 31.16 1.18 186.11 3.23 0.531 0.076 57 
38 40 40 225 26.16 2.20 186.57 1.60 0.571 0.051 54 
39 40 40 250 23.68 2.59 187.26 7.35 0.462 0.051 52 
40 40 40 275 17.09 5.78 190.37 1.36 0.510 0.191 62 
41 40 40 300 17.71 1.14 195.68 2.00 0.459 0.013 48 
42 40 40 325 19.25 1.42 192.31 3.78 0.461 0.063 47 
43 40 40 350 17.34 5.35 190.31 2.26 0.435 0.032 52 
44 40 40 375 16.46 2.06 190.50 4.32 0.490 0.049 46 
45 40 40 400 14.24 2.54 192.35 1.93 0.423 0.021 45 
46 40 45 200 38.60 1.53 184.39 1.21 0.519 0.012 57 
47 40 45 225 34.97 1.97 184.19 1.22 0.531 0.029 59 
48 40 45 250 29.55 1.16 180.66 3.04 0.526 0.010 52 
49 40 45 275 26.82 2.11 185.31 0.55 0.523 0.026 62 
50 40 45 300 25.07 0.59 187.03 3.88 0.514 0.086 48 
51 40 45 325 22.79 1.94 186.82 3.19 0.446 0.033 47 
52 40 45 350 19.30 0.23 187.28 2.32 0.509 0.046 53 
53 40 45 375 17.49 1.07 187.62 2.48 0.408 0.006 58 
54 40 45 400 17.71 1.18 188.64 0.37 0.413 0.008 50 

Fig. 3. Micro-channel images (200   ): (a) scanning speed 275 mm/s, frequency 35 kHz and intensity 35% (Trial 4); (b) scanning speed 325 mm/s, frequency 35 kHz and 
intensity 40% (Trial 15); (c) scanning speed 225 mm/s, frequency 35 kHz and intensity 45% (Trial 20); and (d) scanning speed 300 mm/s, frequency 40 kHz and intensity 
45% (Trial 50). 



The dimensional and geometrical quality of the grooves 
produced with the laser milling process exhibit some variations 
as can be seen in Table 2. The target width or depth was never 
achieved in any of the experiments. It can also be seen that the 
deeper the channel, the worse the width. Fig. 3 presents some 
images of the profiles of the micro-channels produced using 
different laser input parameters. These images clearly indicate 
how irregular the laser milling process becomes when grooves 
with micro-features are manufactured. 

These variations exhibit the complexity of the laser milling 
process and make clear the necessity of analyzing the data to find 
methods and models to select the best conditions and predict 
results to improve the productivity and the quality of the process. 

The effect of scanning speed and pulse intensity parameters on 
the micro-channel depth is presented in Fig. 4, which shows that 
the closest depth value to the target was obtained with the lowest 
scanning speed and the highest pulse intensity combination. It is 
clear that the lower the scanning speed, the more time laser beam 
has to machine the surface and achieve higher depths. Pulse 
intensity plays an important role in the depth values. Higher 
pulse intensities produce deeper grooves with each laser beam 
pass. The pulse frequency does not seem to affect the depth value. 

Fig. 5 shows the effect of scanning speed and pulse intensity 
on the micro-channel width. In this case, unlike in that of depth, 

the experimental values are closer to the target width (0.2 mm) 
when the scanning speed is high and the pulse intensity is low. 
These opposite effects on the depth and the width are due to 
straight walls being really difficult to achieve. Thus, when the 
channel becomes deeper, the width becomes narrower, and a 
smaller mean width value is obtained. Also, the higher the pulse 
frequency is, the higher the micro-channel width becomes. 

The effect of the scanning speed and the pulse intensity on the 
surface roughness is less clear than in the previous cases (Fig. 6). 
The best surface roughness values were obtained by a combina- 
tion of the highest pulse intensity and the highest scanning speed. 
The influence of scanning speed on surface roughness in laser 
micro-machining processes can be explained as follows: the laser 
beam may not affect the surface roughness as much when 
movement is fast, but when movement is slow surface roughness 
does not improve. However, the experimental values do not show 
so many differences due to the range vary between 0.4 and 
0.55 mm. The level of pulse frequency does not have too much 
effect on the surface roughness. 

Figs. 4–6 illustrate the trends in effects of process parameters 
on the dimensional and geometrical quality of a micro-channel 
feature; however, these offer no prediction capability, and it is 
hard to use them directly in process planning without using an 
intelligent computational tool. Therefore, second order models 

Fig. 4. Effect of pulse intensity and scanning speed on micro-channel depth (PF ¼ 40 kHz). 

Fig. 5. Effect of the scanning speed and pulse intensity on the micro-channel width (PF ¼ 35 kHz). 



Fig. 6. Effect of scanning speed and pulse intensity on surface roughness (PF ¼ 40 kHz). 

Fig. 7.  Example of the multi-criteria selection process for the eDepth (up to 50%) - eWidth (up to 7.5%) - Ra (up to 0.515 mm) - time.

Table 3 
Best combinations for the multi-criteria selections. 

Multi-criteria selection Trial PF (kHz) PI (%) SS (mm/s) 

eDepth (up to 50%) - eWidth (up to 7.5%) - Ra (up to 0.515 mm) - time 50 40 45 300 
eWidth (up to 5%) - eDepth (up to 70%) - Ra (up to 0.460 mm) - time 17 35 40 375 
Ra (up to 0.450 mm) - eDepth (up to 50%) - eWidth 25 35 45 350 
Ra (up to 0.450 mm) - eWidth (up to 5%) - eDepth 25 35 45 350 
eDepth (up to 50%) - eWidth (up to 7.8%) - sDepth (up to 2.0 mm) - sWidth 19 35 45 200 
eWidth (up to 5%) - eDepth (up to 70%) - sWidth (up to 4.0 mm) - sDepth 4 35 35 275 
Ra (up to 0.460 mm) - eDepth (up to 65%) - eWidth (up to 5.5%) - sDepth (up to 2.5 mm) - sWidth 26 35 45 375 
Ra (up to 0.460 mm) - eWidth (up to 5.0%) - eDepth (up to 70%) - sWidth (up to 10.0 mm) - sDepth 4 35 35 275 

and PSO are employed to establish this input and output relation- 
ship and predict the optimal process parameters. Also, a multi- 
criteria selection method is used to find the best combinations for 
different quality criteria. 

2.1. Multi-criteria ranking and selection of process parameters 

In this paper, a multi-criteria selection method is presented to 
establish the initial process parameters, which depend on the 
preferences of the final part characteristics. The method consists 
in filtering, step by step, the data obtained from the experimental 
design with established, prioritized criteria, in order to obtain the 
best process characteristic combinations that result in the desired 
quality. With this method it is possible to achieve acceptable, 
quality results for multiple characteristics. The user can establish 

quality ranges for each output parameter and the combinations 
that are out of the range are eliminated step by step. So, in the 
end, the best combination for the criteria is the order selected. 

Fig. 7 shows an example of the method/process. In this 
example the first criterion selected is the depth, and the data is 
filtered by the depth error percentage up to 50% to reduce the 
number of combinations to 15. This error range is wide because 
the results obtained for the depth value were not close to the 
target. The second criterion selected is the width, and the data is 
filtered by the width error percentage up to 7.5% to reduce the 
combinations to six. The third criterion is the surface roughness. 
In this case there was not a target value, so the data is filtered by 
the Ra value, establishing the limit at 0.515 mm. Table 4 shows the 
three remaining combinations. Finally, the last criterion used is 
the processing time that achieves the best process parameter 
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Table 4 
Model parameters for the response in laser milling of steel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

combination for this specific multi-criterion. The ranges of the 
different criteria are selected to reduce the number of combina- 
tions. With the first criterion the goal is to reduce the 54 

 
 
 
 
 
 
 
 
 

þb23PFUSS þb11PI  þb33SS  þe ð8Þ 

mWidth ¼ b0 þb1PI þb2PF þb3SS þb12PIUPF þb13PIUSS experiments into 10–15 combinations, a number that will provide 2 2 

enough data. Then, in the following steps, the idea is to filter this 
first group in smaller parts until the last criterion when just one 

þb23PFUSS þb11PI  þb33SS  þe ð9Þ 

sWidth ¼ b0 þb1PI þb2PF þb3SS þb12PIUPF þb13PIUSS 
combination is selected. 2 2 

Table 3 shows the best combination for the different multi- 
criteria selections used. As can be seen, there is not one combina- 
tion that fulfils all the criteria. These results make clear that laser 
milling is a complex process and is not easy to find the proper 
combination of process parameters to achieve different quality 
outputs. With this multi-criteria selection method the user can 
find the best combination of criteria used to obtain results 
between established quality ranges. 

 
 

2.2. Experimental modeling 
 

In this study, a second order model is used to efficiently 
establish input–output relationships between response and con- 
trollable variables that takes the generic form 

þb23PFUSS þb11PI  þb33SS  þe ð10Þ 

mRa ¼ b0 þb1PI þb2PF þb3SS þb12PIUPF þb13PIUSS 

þb23PFUSS þb11PI  þb33SS  þe ð11Þ 

sRa ¼ b0 þb1PI þb2PF þb3SS þb12PIUPF þb13PIUSS 

þb23PFUSS þb11PI  þb33SS  þe ð12Þ 

The second-order terms of the process variable PF is not 
presented because only two levels were used and it was not 
possible to use this term for the estimation. The statistical 
analysis resulted in the estimated experimental model para- 
meters as given in Table 4. 

 
2.3. Multi-objective particle swarm optimization (MOPSO) 

y ¼ b0 þ 
k 

 

i ¼ 1 

bixi þ 
k 

 

i ¼ 1 

bijxixj þ 
k 

 

i ¼ 1 

 
biixi 

2
 þe ð3Þ 

 
Multi-objective optimization problems can be solved using 

evolutionary computational algorithms such as genetic algo- 
where e is the residual error. 

Experimental models were developed using the generic 
regression form in Eq. (3) for responses of depth (mm), width 
(mm) and surface roughness Ra (mm) for the mean (m) and the 
standard deviation (s) values using the experimental test data 
and establishing the effect of variables on the outputs. 

Since the analysis was done with coded values, the codification 
of the control parameters can be calculated with Eqs. (4)–(6) 
where PI is the pulse intensity (%), PF is the pulse frequency (kHz) 
and SS is the scanning speed (mm/s) 

A ¼ PI 40 ð4Þ 

rithms and particle swarm optimization [26]. We conducted 
multi-criteria optimization to investigate the dimensional and 
geometrical accuracy in laser milling of hardened tool steel for 
micro-channel fabrication on medical devices. The optimal selec- 
tion of laser milling process parameters can be formulated and 
solved as an optimization problem. The experimental results 
obtained in this work indicate that the laser milling of micro- 
channels requires simultaneous consideration of multiple objec- 
tives, including achieving the target depth and width (minimum 
error) and a minimum surface roughness. Usually, the process 
parameters selected for one objective function are not suitable for 
the other objective function, creating conflicting objectives. This 
presents a challenge for the optimization problem, since the 

B PF 37:5 
2:5 

C SS 300 
100 

ð5Þ 

 
ð6Þ 

parameter settings (decision variables) selected for given multiple 
choices may be in conflict with each other. For this purpose the 
two objective functions are considered separately: 

minimizeff ðxÞ,gðxÞ,hðxÞg 

The six responses can be related with the three controllable 
process variables, x1 ¼ PI, x2 ¼ PF, x3 ¼ SS, including the interac- 
tion terms and the second order terms as follows: 

s:t:    f ðxÞrb1 and gðxÞr b2 and hðxÞrb2 where x A X ð13Þ 

In the optimization problem formulation in Eq. (13) f ðxÞ, gðxÞ, 

mDepth ¼ b0 þ b1PI þ b2PF þ b3SS þ b12 PIUPF þb13 PIUSS 
hðxÞ represent the objective functions for depth error, width error, 
and surface roughness, respectively, with a set of process para- 2 2 

s 
þb23PFUSS þb11PI  þb33SS  þe ð7Þ meters (x ¼ x1 þ      þ xn, n ¼ 1,2 or 3). X is the solution space with 

Depth ¼ b0 þb1PI þb2PF þb3SS þb12PIUPF þb13PIUSS all feasible values for the process parameters. 

Coef. Dl (lm) Dr (lm) Wl (lm) Wr (lm) Ral (lm) Rar (lm) 

Constant 19.30637646 3.09113497 188.65224788 4.99182540 0.48098498 0.04922962 
PI 6.96888888   0.38953735   2.29170543   2.11066182   0.01006574   0.00476403 
PF 
SS 
PF2 

  0.68629629 
  6.82014814 

– 

0.02153868 
0.28046390 
– 

0.15773619 
2.20940114 
– 

  0.58382381 
0.38492483 
– 

0.00998468 
  0.04482011 

– 

  0.00322906 
  0.01912820 

– 
PI2 
SS2 
PI PF 

  1.49740740 
3.88425204 
0.15296296 

  0.86221603 
  0.73581535 
  0.30101644 

  0.44302666 
  1.35701459 

0.13044464 

0.33583218 
  1.98547325 
  0.02282023 

0.00089479 
  0.00201368 

0.00272870 

  0.00236796 
  0.00774625 
  0.00624486 

PI SS   3.66911111   0.33677867 1.28780939   0.40730512   0.02269138   0.00197180 
PF SS 0.37659259 0.09088012   0.79816099   1.05231278 0.0004567 0.01242588 
R-sq 94.17% 25.89% 74.73% 33.39% 62.47% 33.26% 
R-sq (adj) 93.13% 12.71% 69.67% 21.55% 55.65% 20.54% 

 



 

In the formulation given above, the objective is to simulta- 
neously minimize the objective functions. In solving this optimi- 
zation problem, a general approach based on a Pareto-optimal 
set of non-dominated decision variable settings is considered. The 
selection of a Pareto-optimal set avoids the problem of a single 
combined objective function with weights, which often leads to a 
unique solution but offers no other solution for optimum para- 
meter selection to the decision maker. 

In the case of a laser milling process, the optimization problem 
is defined with multiple objectives. Decision variables such as 
scanning speed (SS), pulse intensity (PI) and pulse frequency (PF) 
are constrained within the ranges of the experiments (see 
Table 3). 

The multi-objective optimization problem has been solved 
using the dynamic neighborhood-particle swarm optimization 
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(DN-PSO) method proposed by Hu and Eberhart [27]. In DN- 
PSO, several neighborhoods are defined for each particle and local 
optimums are found within these neighborhoods. If a two-dimen- 
sional objective function space in a min–min problem is consid- 
ered, the Pareto front is the boundary of the objective value 
region, which is the lower left side of the objective function space 
for min–min problems. The objective of the proposed algorithm is 
to drop those solutions onto the boundary line indicated by a 
solid line. For this purpose, the first objective function is fixed to 
define neighborhoods and the second objective function is used in 
optimization. According to the DN-PSO algorithm; (1) the dis- 
tances between the current particle and other particles are 
calculated in terms of the first objective function, (2) based on 
these distances, the nearest m (neighborhood size) particles are 
found, and (3) the local best particle among neighbors is selected 
in terms of the second objective function. In order to handle 
constraints, a simple modification to the particle swarm optimi- 
zation algorithm is sufficient. The DN-PSO optimization algorithm 
combined with constraints was converted into a code using 
Matlab software. This MOPSO procedure using the DN-PSO 
method is explained in detail in previous works [28–30]. 

The simulations are run using a population of 200 for the 
particle swarm and a maximum number of 300 iterations. After 
obtaining the best particle values in each iteration of the simula- 
tion, the particles are plotted in a two-dimensional objective 
space for viewing. This procedure is repeated until a clear Pareto 
frontier forms. Then, the Pareto frontiers of the non-dominated 
solution sets are obtained using multi-objective PSO method as 
shown in Figs. 8–10. 

This dimensional accuracy must be the first criteria when 

Fig. 9. Pareto frontier of optimal surface roughness and depth error of laser 
milling parameters. 
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Fig. 10. Pareto frontier of optimal surface roughness and width error of laser 
milling parameters. 
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micro-channel fabrication for micro-medical devices is the objec- 
tive. So, the multi-objective optimization of the depth and width 
errors (Fig. 8) must be analyzed before the surface roughness 
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Fig. 8. Pareto frontier of optimal depth and width errors of laser milling parameters. 

Fig. 11. Decision variable space for optimal laser milling parameters for depth 
and width. 

 
 

analysis. As the previous results have shown, there is no optimum 
parameter condition that can achieve the target value of depth or 
width. The minimum depth error is close to 10 mm, with a 
corresponding width error of 20 mm, and the other combinations 
of parameters will result in better width but higher depth error. 
The little convexity in the axes bisector line confirms that both 
objective parameters are unrelated. 

The convexity shape of the Pareto frontier in Fig. 9 shows a 
clear independence between the surface roughness and depth 
error objective parameters. A lower surface roughness will result 
in a higher depth dimensional error. The lowest depth error is 
around 10 mm with a surface roughness of 0.53 mm. However, the 
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Pareto frontier of optimal surface roughness and width error 
(Fig. 10) presents a concave shape, indicating that it is possible to 
improve both surface roughness and width error by changing 
some conditions. 

As a result of these investigations, it can be claimed that none 
of the combinations reaches an optimal result. That could be 
because the range of levels selected for some of the input 
parameters is not wide enough to obtain the optimum. No 
combination exceeds the target values of depth and width so 
the range levels of pulse intensity and pulse frequency must be 
wide to get these kinds of outputs. Furthermore, non-dominated 
optimal solutions that form the Pareto front in objective function 
space are analyzed in decision variable space (x1 ¼ SS, x2 ¼ PI and 
x3 ¼ PF) as shown in Figs. 11–13. 

The particles (circles in the figures) representing the optimal 
set of decision variables for depth and width errors given in Fig. 8 
are mapped into the decision variable space as shown in Fig. 11. 

As can be seen from this figure, the optimal laser milling 
parameters occur along the boundaries of the decision variable 
space, i.e., around a pulse frequency (PF) of 45 kHz and a scanning 
speed (SS) of 400 mm/min. This tends to confirm that the range 
levels of the parameters selected could be wider. The particles try 
to reach high values for pulse frequency and scanning speed to 
get better results for the depth and width of the micro-channel. 

Similarly, the optimal decision variables for laser milling for 
optimization of surface roughness and depth error are mapped 
from objective space in Fig. 9 into the decision variable space as 
shown in Fig. 12. In that case the optimal parameters are not 
aligned along the boundaries of the decision variable space, and 
the particles are diagonally descending from one vertex with high 
pulse intensity and scanning speed and low pulse frequency to a 
medium point in the decision variable space. 
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Fig. 12. Decision variable space for optimal laser milling parameters for depth and 
surface roughness. 

 

Finally, the optimal decision variables for laser milling for 
optimization of surface roughness and width error are mapped 
from objective space in Fig. 10 into the decision variable space as 
shown in Fig. 13. In that case the optimal parameters are firmly 
aligned along the scanning speed boundary of 40 mm/s and close 
to the pulse frequency boundary of 35 kHz, showing that the 
highest scanning speed values would lead to better results and 
get closer to optimum surface roughness and width values. In 
addition, the low pulse frequencies make the results better. 

 
 

3. Conclusions 
 

In this study, surface finishing and dimensional features of 
micro-channels have been investigated in laser milling process of 
hardened AISI H13 tool steel. 3D plots are used to illustrate the 
trends of the effects of the process parameters and a method 
using multi-criteria ranking and selection of parameters is pre- 
sented to find the best combinations for different quality criteria. 
Experimental models based on quadratic regression are devel- 
oped for surface roughness and width and depth errors. Further- 
more, an evolutionary computational approach is applied to the 
decision-making problem in micro-machining parameters. 
Finally, an analysis of optimal solutions that form the Pareto 
front in objective function space is provided in decision variable 
space. The analysis indicates that the control parameter level 
ranges should be wider to obtain results close to the optimum. 
However, some trends and specific conclusions can be drawn: 

 
1. Although the dimensions and shape of the micro-channels 

produced with laser micro-milling processes exhibit varia- 
tions, the results suggest that laser machining is a process 
capable of producing micro-geometries. 

2. Laser milling is a complex process and it is not easy to find the 
proper combination of process parameters to achieve differ- 
ent quality outputs. 

3. A multi-criteria ranking and parameter selection method can 
find the best combination of those used to obtain results 
between established quality ranges. 

4. A multi-objective particle swarm optimizer provides Pareto 
frontiers of non-dominated solution sets for optimum laser 
milling process parameters, providing decision makers with a 
resourceful and efficient means of achieving it. 

5. Analyses of optimal solutions in decision variable space show 
that the particular optimal micro-milling parameters are 
along the boundaries of the objective function space. 
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[30] Vá zquez E, Ciurana J, Rodrı́guez CA, Thepsonthi T, Ö zel T. Swarm intelligent 
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