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In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic
and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which
provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system
dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical
integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are
compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure
is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such
as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric
materials at high extensibility, among others.

1. Introduction

The aim of this paper focuses on using a nonlinear approach
to transform the forced nonlinear equation:

𝑥̈ + 𝑓 (𝑥) + 𝑓

1
(]𝑥̇, 𝜅𝑥̇𝑝) = 𝑄

0
cos (𝜔

𝑓
𝑡) ,

𝑥 (0) = 𝑥

0
, 𝑥̇ (0) = 0,

(1)

with nonlinear damping terms into an equivalent forced, lin-
early dampedDuffing’s equation. Here we assume that𝑓(𝑥) is
the system restoring force which could have rational or
irrational conservative force terms,𝑓

1
(]𝑥̇, 𝜅𝑥̇𝑝) represents the

systemnonlinear dissipative effects, ] and 𝜅 are damping con-
stants,𝑝 is the exponent of the velocity,𝑄

0
is the driving force

magnitude,𝜔
𝑓
is the systemdriving frequency, 𝑡 is the current

time, and 𝑥

0
is the initial amplitude. The main motivation

in studying the equivalent representation form of (1) with

nonlinear damping terms for which 𝑝 > 0 comes from the
fact that the addition of nonlinear damping to the sys-
tem could remove undesirable effects over the nonresonant
regions that can help to improve the overall performance of
Duffing-type vibration isolators [1, 2]. Furthermore, during
the study of the dynamics response of resonators made from
carbon nanotubes and graphene, Lifshitz and Cross [3] and
Eichler et al. [4] concluded that damping is strongly depen-
dent on the amplitude of motion and that its effects are better
described by nonlinear damping forces. They also concluded
that the nonlinearities could be associated with a dissipation
channel exterior to the resonator, such as the manner in
which the resonator is clamped by its boundaries to the
surrounding material, friction effects associated with the
sliding between the nanotube/graphene and the metal elec-
trode, and the phonon-phonon interactions, among others.
To quantify the nonlinear dissipative effects observed during
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the performance of micromechanical oscillators, Zaitzev and
coworkers designed a doubly clamped beam oscillator and
performed several experimental studies to understand the
phenomenon of nonlinear damping. They found that non-
linear damping plays an important role in the dynamics
response of the micromechanical beam oscillator [5].

On the other hand, it is known that structural engineering
design utilizes nonlinear damper devices to reduce the forces
exerted in the dampers that could exceed the device force
capacity during the structure dynamics response to earth-
quakes. In this case, the exponent of the velocity is selected
on the interval of 0.3 < 𝑝 < 1.95 [6]. Mart́ınez-Rodrigo and
Romero [7] found that when the nonlinear dampers velocity
exponent 𝑝 is slightly less that 1, the forces in the dampers can
be reduced more than 35% during the retrofitting of a mul-
tistory that leads to a similar structural performance when
compared to the usage of linear dampers. Similar results were
reported in [8] in which the utilization of nonlinear viscous
dampers reduces the displacement response of existing girder
bridges and arch bridge structures.

Since nonlinear dampers with fractional powers in the
velocity terms are commonly used to model the rhythmic
movement of the wrist, the inclusion of a nonlinear damping
term for which 𝑝 = 1/5 is considered in (1). This dynamics
model is known as the one-fifth power law model [9]. Of
course, there are other models that consider different values
of𝑝 to characterize the damping and the elastic nonlinearities
observed in different experimental measurements [10–12]. In
an attempt to cover the gap between viscous, dry friction, and
drag forces in turbulent fluids, Litak and coworkers consid-
ered a nonlinear damping term with a fractional exponent to
model the behavior of double well oscillators.They identified
the critical values of𝑄

0
that induced chaotic vibrations in the

double well systemwith a nonlinear damping term [13]. Later,
Borowiec and coworkers applied the Melnikov criterion to
examine the global homoclinic bifurcation and the transition
to chaos in a forced Duffing oscillator with nonlinear frac-
tional damping term. They found, by using perturbation
methods, the critical forcing amplitude above fromwhich the
system can behave chaotically [14].

It is clear that the inclusion of nonlinear damping terms in
(1) allows a better prediction of the systemdynamics response
behavior [15–23]. Therefore, the aim of this paper focuses
on modifying the nonlinear transformation approach intro-
duced in [24] to find the equivalent representation form of (1)
in which nonlinear damping with velocity terms to the power
𝑝 is included.

2. A Nonlinear Transformation Procedure

To transform (1) into a driving, linearly damped differential
equation of the Duffing type, we will follow the procedure
introduced in [24] and consider first the transformation of
the conservative force terms𝑓(𝑥), which do not have a cubic-
like representation form, by using the classical Chebyshev
polynomials of the first kind [25–29], since this provides a
uniform approximation and requires a smaller number of

expansion terms in comparison, for instance, to Taylor series
to obtain good accuracy [30]:

𝑓 (𝑥) =

𝑁

∑

𝑛=0

𝑏

2𝑛+1
(𝑥) 𝑇

2𝑛+1
(𝑥) , (2)

where

𝑏

2𝑛+1
=

2

𝜋

∫

+1

−1

1

√

1 − 𝑥

2
𝑓 (𝑥) 𝑇

2𝑛+1
(𝑥) 𝑑𝑥, (3)

and 𝑇

2𝑛−1
are the Chebyshev polynomials of the first kind

defined as

𝑇

2𝑛+1
(𝑥) = cos [(2𝑛 + 1) cos−1 (𝑥)] ,

𝑥 ∈ [−1, 1] , 𝑛 = 0, 1, 2, . . . .

(4)

The first three terms are given by

𝑇

1
(𝑥) = 𝑥, 𝑇

3
(𝑥) = 4𝑥

3
− 3𝑥,

𝑇

5
(𝑥) = 16𝑥

5
− 20𝑥

3
+ 5𝑥.

(5)

Thus, the equivalent restoring force 𝑓(𝑥) can be written
as

𝑓 (𝑥) ≡ 𝑏

1
(𝑞) 𝑇

1
(𝑦) + 𝑏

3
(𝑞) 𝑇

3
(𝑦)

≈ 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥

3
+ 𝛾 (𝐴) 𝑥

5
.

(6)

Substituting (2) into (3), by using (5), provides the follow-
ing equivalent representation form of 𝑓(𝑥):

𝑓 (𝑥) ≈ 𝛼 (𝑥) 𝑥 + 𝛽 (𝑥) 𝑥

3
+ 𝛾 (𝑥) 𝑥

5
. (7)

Then, (1) can be equivalently written as

𝑑

2
𝑥

𝑑𝑡

2
+ 𝛼 (𝑥) 𝑥 + 𝛽 (𝑥) 𝑥

3
+ 𝛾 (𝑥) 𝑥

5

+ 𝑓

1
(]𝑥̇, 𝜅𝑥̇𝑝) − 𝑄

0
cos (𝜔

𝑓
𝑡) ≈ 0.

(8)

Since nonlinear damping terms are involved in the dissi-
pative force expression𝑓

1
(]𝑥̇, 𝜅𝑥̇𝑝), wemodify our cubication

nonlinear transformation approach introduced in [24] by
adding a constant term 𝑐(𝑥) to the resultingDuffing equation.
This term will take into account the asymmetric dynamics
behavior described by (1) due to the presence of the nonlinear
dissipative effects. For instance, let us consider the forced
Duffing equation with nonlinear damping terms:

𝑥̈ + ]𝑥̇ + 𝜅
0
𝑥̇|𝑥̇|

𝑝−1
+ 𝛼𝑥 + 𝛽𝑥

3
= 𝑄

0
cos (𝜔

𝑓
𝑡) ,

with 𝑥 (0) = 𝑥

0
, 𝑥̇ (0) = 0,

(9)

where 𝑦 denotes the displacement of the system, ] and 𝜅

0

are damping coefficients, 𝛼, 𝛽, and 𝑄

0
are system constant

parameters, and𝜔
𝑓
represents the driving frequency. Figure 1

shows the phase portrait of (1) by considering the values of
𝑝 = 1 and 2.5. Notice that when 𝑝 ̸= 1, the corresponding
phase portrait exhibits asymmetric dynamic behavior about
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Figure 1: Steady-state phase portraits of 𝑥̈ + ]𝑥̇ + 𝜅
0
𝑥̇|𝑥̇|

𝑝−1
+ 𝛼𝑥 +

𝛽𝑥

3
= 𝑄

0
cos(𝜔

𝑓
𝑡) when 𝛼 = 1, 𝛽 = 1, ] = 0.1, 𝜅 = 0.9, 𝑄 = 1,

𝜔

𝑓
= 1, and 𝑝 = 1 and 2.5.

the equilibrium point (0, 0). Therefore, we write the restoring
force term of (8) in the form

𝐹 (𝑥, 𝑥̇) = 𝛼 (𝑥) 𝑥 + 𝛽 (𝑥) 𝑥

3
+ 𝛾 (𝑥) 𝑥

5
+ 𝑓

1
(]𝑥̇, 𝜅𝑥̇𝑝)

≡ 𝛿 (𝑥) 𝑥 + 𝜖 (𝑥) 𝑥

3
+ (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ + 𝑐 (𝑥) ,
(10)

where ]
1
, 𝑐(𝑥), 𝛿(𝑥), and 𝜖(𝑥) can be found from

𝐹

1
(𝛿, 𝜖, 𝑐, ]

1
) = ∫

𝜎

0

(𝑓

1
(]𝑥̇, 𝜅𝑥̇𝑝) + 𝛼𝑥 + 𝛽𝑥3

+ 𝛾𝑥

5
+ 𝑄

0
cos (𝜔

𝑓
𝑡)

− (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ − 𝛿𝑥 − 𝜖𝑥3

− 𝑐 − 𝑄

0
cos (𝜔

𝑓
𝑡))

2

𝑑𝑥 󳨀→ min,
(11)

𝐹

2
(𝛿, 𝜖, 𝑐, ]

1
) = ∫

V

0

(𝑓

1
(]𝑥̇, 𝜅𝑥̇𝑝) + 𝛼𝑥

+ 𝛽𝑥

3
+ 𝛾𝑥

5
+ 𝑄

0
cos (𝜔

𝑓
𝑡)

− (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ − 𝛿𝑥 − 𝜖𝑥3

− 𝑐 − 𝑄

0
cos (𝜔

𝑓
𝑡))

2

𝑑𝑥̇ 󳨀→ min,
(12)

𝜕𝐹

1

(𝛿, 𝜖, 𝑐, ]
1
)

𝜕𝛿

= 0, 𝜕𝐹

1

(𝛿, 𝜖, 𝑐, ]
1
)

𝜕𝜖

= 0,

(13)

𝜕𝐹

1

(𝛿, 𝜖, 𝑐, ]
1
)

𝜕𝑐

= 0, 𝜕𝐹

2

(𝛿, 𝜖, 𝑐, ]
1
)

𝜕]
1

= 0. (14)

In (11) and (12), 𝜎 and 𝜐 are fitting parameters whose
values must be fixed to ensure that the equivalent restoring
forces are qualitatively and quantitatively similar to those of
the original equations of motion. During the transformation
process, the values of 𝑄

0
and 𝜔

𝑓
are assumed to remain con-

stant. Once the expressions to determine ]
1
, 𝑐(𝑥), 𝛿(𝑥), and

𝜖(𝑥) are found, then (1) can be written as the following
Duffing-type equation of motion:

𝑑

2
𝑥

𝑑𝑡

2
+ (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ + 𝛿 (𝑥) 𝑥

+ 𝜖 (𝑥) 𝑥

3
+ 𝑐 (𝑥) ≈ 𝑄

0
cos (𝜔

𝑓
𝑡) .

(15)

Notice that (1) only contains linear damping terms since
the nonlinear damped effects are now contained in the (𝜅|]

1
|+

])𝑥̇ term [18].
To assess the accuracy of the proposed solution proce-

dure, we will next examine the dynamics response of forced
oscillators with nonlinear damping terms such as the Duffing
equation, the cubic-quintic Duffing equation, the rational
form elastic term oscillator, and the finite extensibility non-
linear oscillator (FENO).

3. Forced Duffing Equation with
Nonlinear Damping

Here we consider the forced, damped Duffing equation given
by (9) and introduce the following change of variable𝑥 = 𝐴/𝑦
which transforms it into an equation of the form

𝑥̈ + ]𝑥̇ + 𝜅𝑥̇|𝑥̇|𝑝−1 + 𝐴𝑥 + 𝐵𝑥3 = 𝑄 cos (𝜔
𝑓
𝑡) ,

with 𝑥 (0) = 1, 𝑥̇ (0) = 0,

(16)

where 𝜅 = 𝜅
0
𝑥

(𝑝−1)

0
and𝑄 = 𝑄

0
/𝑥

0
. We next use (12) and (14)

to derive the following forced, damped Duffing equation of
the form

𝑥̈ + (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ + 𝐴𝑥 + 𝐵𝑥3 + 𝑐 = 𝑄 cos (𝜔
𝑓
𝑡) , (17)

where 𝑐 and ]
1
are given by

𝑐 = −

2𝜅 (𝑝 − 1) 𝜐

𝑝

𝑝 + 2

,

]
1
=

3𝑝𝜐

(𝑝−1)

√
4 + 4𝑝 + 𝑝

2

.

(18)

Here the values of 𝜐 must satisfy (12). To assess the
accuracy of (17) when compared to the numerical integration
of (16), let us consider the parameter values of 𝐴 = 1, 𝐵 = 1,
] = 0.1, 𝜅 = 0.9, 𝑄 = 1, and 𝜔

𝑓
= 1 with 𝑝 = 0.1, 0.387, 1.5,

and 2.5 with the initial conditions of 𝑥(0) = 1 and 𝑥̇(0) = 0.
Figure 2 shows the comparison of the amplitude-time curves
obtained from the numerical integration solutions of (16)
and (17). As we can see from these amplitude-time plots, the
predicted curves obtained from (17) followwell the numerical
integration solutions of (16). In fact, the computed root-
mean-square error (RMSE) values are 0.1196, 0.0874, 0.1530,
and 0.1351 for the 𝑝 values of 0.1, 0.387, 1.5, and 2.5, respec-
tively. In Figure 2, the solid lines represent the numerical
integration solutions of (16), while the dashed lines represent
the numerical integration solutions of (17).Therefore, we can
conclude that our solution procedure provides an equivalent



4 Mathematical Problems in Engineering

0 10 20 30 40 50

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

Time, t

(a)

0 10 20 30 40 50

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

Time, t

(b)

0 10 20 30 40 50

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

Time, t

(c)

0 10 20 30 40 50

x

−1.0

−0.5

0.0

0.5

1.0

Time, t

(d)

Figure 2: Amplitude-time response curves of (16) and (17). Here, the solid lines represent the numerical integration solutions of (16), while
the dashed lines represent the numerical integration solutions of (17). The parameter values are 𝐴 = 1, 𝐵 = 1, ] = 0.1, 𝜅 = 0.9, 𝑄 = 1, and
𝜔

𝑓
= 1, with 𝑥(0) = 1 and 𝑥̇(0) = 0. (a) 𝑝 = 0.1, 𝑐 = 0.8535, ]

1
= 0.0574, and 𝜐 = 2.75; (b) 𝑝 = 0.387, 𝑐 = 0.5544, ]

1
= 0.3646, and 𝜐 = 1.6;

(c) 𝑝 = 1.5, 𝑐 = −0.0221, ]
1
= 0.5677, and 𝜐 = 0.195; (d) 𝑝 = 2.5, 𝑐 = −0.0434, ]

1
= 0.3451, and 𝜐 = 0.35.

equation of motion that describes the dynamics behavior of
the oscillatory system (16) well evenwhen nonlinear damping
terms are considered.

To further assess the accuracy of our proposed approach,
we will next study the forced cubic-quintic Duffing oscillator
with linear and nonlinear damping terms.

4. Cubic-Quintic Duffing Equation with
Nonlinear Damping Terms

In this case, we derive the equivalent representation form
of the cubic-quintic oscillator in which nonlinear damping
terms are considered. Here, we assume that the equation of
motion has the form

̈𝑦 + 2] ̇𝑦 + 𝜂

0
𝑦

2
̇𝑦 + 𝜅

0
̇𝑦

󵄨

󵄨

󵄨

󵄨

̇𝑦

󵄨

󵄨

󵄨

󵄨

𝑝−1

+ 𝛼𝑦 + 𝛽𝑦

3
+ 𝛾𝑦

5
= 𝑄

0
cos (𝜔

𝑓
𝑡) ,

(19)

with initial conditions given by 𝑦(0) = 𝑦

0
and ̇𝑦(0) = 0. In

(19)𝑦 denotes the displacement of the system, ], 𝜂
0
, and 𝜅

0
are

damping coefficients, 𝛼, 𝛽, and 𝛾 are system constant param-
eters, and 𝑄

0
and 𝜔

𝑓
are the driving force and frequency,

respectively.Notice that the nonlinear damping terms 𝜂
0
𝑦

2
̇𝑦+

𝜅

0
̇𝑦| ̇𝑦|

𝑝−1 of (19) are commonly used to model the dynamics
of nanoresonators and microresonators. See [3–5] and refer-
ences cited therein. If we let 𝑥 = 𝐴/𝑦, thus, (19) becomes

𝑥̈ + 2]𝑥̇ + 𝜂𝑥2𝑥̇ + 𝜅𝑥̇|𝑥̇|𝑝−1 + 𝐴𝑥

+ 𝐵𝑥

3
+ 𝐺𝑥

5
= 𝑄 cos (𝜔

𝑓
𝑡) ,

(20)

with 𝑥(0) = 1, 𝑥̇(0) = 0, 𝐴 = 𝛼, 𝐵 = 𝛽𝑦

2

0
, 𝐺 = 𝛾𝑦

4

0
, 𝜂 = 𝜂

0
𝑦

0
,

𝜅 = 𝜅

0
𝑦

(𝑝−1)

0
, and 𝑄 = 𝑄

0
/𝑦

0
. In accordance with our pro-

posed nonlinear transformation approach, the system terms
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Figure 3: Amplitude-time response curves of (19) and (22).The parameter values are 𝛼 = 1, 𝛽 = 5, 𝛾 = 1, ] = 0.1, 𝜂
0
= 0.15, 𝜅

0
= 0.25,𝑄 = 1,

𝑝 = 3/4, and 𝜔
𝑓
= 0.5, 1.5, 2, and 2.75 with 𝑥(0) = 1 and 𝑥̇(0) = 0. The computed parameter values are 𝛿 = 0.9147, 𝜖 = 5.5863, ]

1
= 1.395,

𝑐 = 0.0572, 𝜎 = 0.685, and 𝜐 = 0.05. (a) Amplitude-time response curves for 𝜔
𝑓
= 0.5; (b) amplitude-time response curves for 𝜔

𝑓
= 1.5;

(c) amplitude time-response curves for 𝜔
𝑓
= 2; (d) amplitude-time response curves for 𝜔

𝑓
= 2.75. Here the solid black lines represent the

numerical integration solution of (19) while the red dots represent the prediction obtained by using the derived equivalent equation ofmotion
(22).

2]𝑥̇+𝜂𝑥2𝑥̇+𝜅𝑥̇𝑝+𝐴𝑥+𝐵𝑥3+𝐺𝑥5 are replaced by an equivalent
cubic-like polynomial expression of the form

2]𝑥̇ + 𝜂𝑥2𝑥̇ + 𝜅𝑥̇|𝑥̇|𝑝−1 + 𝐴𝑥 + 𝐵𝑥3 + 𝐺𝑥5

≡ (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ + 𝛿𝑥 + 𝜖𝑥3 + 𝑐.
(21)

Thus, the equivalent nonlinear transformation form of
(20) is given as

𝑥̈ + (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ + 𝛿𝑥 + 𝜖𝑥3 + 𝑐 ≈ 𝑄 cos (𝜔
𝑓
𝑡) , (22)

where

𝛿 = 𝐴 +

5𝜂𝜐𝜎

12

−

25𝐺𝜎

4

63

,

𝜖 = 𝐵 +

5 (21𝜂𝜐 + 40𝐺𝜎

3
)

162𝜎

,

]
1
=

3𝑝𝜐

𝑝−1

2 + 𝑝

+

252𝜐] + 273𝜂𝜐𝜎2 − 80𝐺𝜎5

252𝜅𝜐

,

𝑐 = −

2𝜅 (𝑝 − 1) 𝜐

𝑝

2 + 𝑝

+

848𝐺𝜎

5
− 2541𝜂𝜐𝜎

2

2268

.

(23)

To evaluate the accuracy of (22), we use the parameter
values of 𝛼 = 1, 𝛽 = 5, 𝛾 = 1, ] = 0.1, 𝜂

0
= 0.15, 𝜅

0
= 0.25,

𝑄 = 1, and𝜔
𝑓
= 0.5, 1.5, 2, and 2.75with the initial conditions

of 𝑥(0) = 1 and 𝑥̇(0) = 0. Figure 3 illustrates the amplitude
versus time plots by considering a nonlinear damping term of
order 𝑝 = 3/4. The solid black lines represent the numerical
integration of (19) while the red dots represent the numerical
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Figure 4: Amplitude-time response curves of (19) and (22). The parameter values are 𝛼 = 1, 𝛽 = 1, 𝛾 = 0.1, 𝜐
0
= 0.05, 𝜂

0
= 0.15, 𝜅

0
= 0.1,

𝜔

𝑓
= 2.75, and 𝑄 = 1, with 𝑥

0
= 1 and 𝑥̇(0) = 0. Here 𝛿 = 0.9975, 𝜖 = 1.0679, 𝜐

1
= 1.2806, and 𝑐 = −0.0045, with 𝜎 = 0.645 and 𝜐 = 0.11.

(a) Morlet continuum wavelet transform plot; (b) transient response phase portrait on 0 ⩽ 𝑡 ⩽ 50; (c) the steady-state system response phase
portrait on 750 ⩽ 𝑡 ⩽ 800; (d) amplitude-time response curves. Here the solid lines represent the numerical integration solution of (19), while
the red dots represent predicted values obtained by using the derived equivalent equation of motion (22).

integration of (22). Notice that in all cases, the predicted
solutions obtained from (22) follow well the numerical
integration solution of the original equation of motion. The
computed parameter values are 𝛿 = 0.9147, 𝜖 = 5.5863, ]

1
=

1.395, 𝑐 = 0.0572, 𝜎 = 0.685, and 𝜐 = 0.05. In all cases, the
maximum RMSE value does not exceed 0.0666. As a second
example, let us consider the following system parameter
values: 𝛼 = 1, 𝛽 = 1, 𝛾 = 0.1, ]

0
= 0.05, 𝜂

0
= 0.15, 𝜅

0
= 0.1,

𝜔

𝑓
= 2.75, and 𝑄 = 1. Here the computed values for 𝛿, 𝜖,

]
1
, and 𝑐 are, respectively, 0.9975, 1.0679, 1.2806, and −0.0045

with 𝜎 = 0.645 and 𝜐 = 0.11. The corresponding RMSE
value computed on 0 ⩽ 𝑡 ⩽ 800 is 0.0188. Figure 4 illustrates
the amplitude-time response curves, the phase space, and the
Morlet continuumwavelet transformplots. As usual, the solid
black lines represent the numerical integration of (20) while
the red dots describe the numerical integration solution of
(22). From these plots, it is clear that the equivalent represen-
tation form (22) of (20) describes well the system dynamics
response. Of course, the equivalent expression (22) can be
used if different system parameter values are considered.

We will next derive the equivalent representation form of
the forced power-form elastic term oscillator with linear and
nonlinear damping terms.

5. The Forced Power-Form Elastic Term
Oscillator with Nonlinear Damping

The equation of motion of this oscillator is assumed to be
given as

𝑑

2
𝑦

𝑑𝑡

2
+ 2]

𝑑𝑦

𝑑𝑡

+ 𝜅

0
̇𝑦

󵄨

󵄨

󵄨

󵄨

̇𝑦

󵄨

󵄨

󵄨

󵄨

𝑝−1

+ 𝜔

2

𝑛
𝑦

+ ℎ sgn (𝑦) 󵄨󵄨󵄨
󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑚

= 𝑄

0
cos (𝜔

𝑓
𝑡) ,

𝑦 (0) = 𝐴, ̇𝑦 (0) = 0,

(24)

where 𝜔
𝑛
, ], 𝜅
0
, and ℎ are constant parameters and 𝑚 can

take any nonnegative real value on 0 ≤ 𝑚 < ∞ [31, 32]. By
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Figure 5: Amplitude-time response curves of (25) and (29). The parameter values are 𝑚 = 3/2, 𝐴 = 1, 𝜔
𝑛
= 1, ℎ = 1, 𝑄

0
= 1, ] = 0.1,

𝜅 = 0.9, and 𝜔
𝑓
= 0.75, with 𝑥

0
= 1 and 𝑥̇(0) = 0. (a) Amplitude-time response curves for 𝑝 = 1/4; (b) amplitude-time response curves for

𝑝 = 3/4; (c) amplitude time-response curves for 𝑝 = 1.5; (d) amplitude-time response curves for 𝑝 = 2.75. Here the solid black lines represent
the numerical integration solution of (25), while the red dots represent the prediction obtained by using the derived equivalent equation of
motion (29).

introducing the coordinate transformation 𝑥 = 𝑦/𝐴, (24) can
be written as

𝑑

2
𝑥

𝑑𝑡

2
+ 2]

𝑑𝑥

𝑑𝑡

+ 𝜅𝑥̇|𝑥̇|

𝑝−1
+ 𝜔

2

𝑛
𝑥

+ 𝑐

1
sgn (𝑥) |𝑥|𝑚 = 𝑄 cos (𝜔

𝑓
𝑡) ,

with 𝑐

1
= ℎ𝐴

(𝑚−1)
, 𝜅 = 𝜅

0
𝐴

(𝑝−1)
,

𝑄 =

𝑄

0

𝐴

𝑥 (0) = 1, 𝑥̇ (0) = 0.

(25)

The restoring conservative forces 𝜔2
𝑛
𝑥+ 𝑐

1
sgn(𝑥)|𝑥|𝑚 can

be replaced by a cubic-quintic polynomial by using the Che-
byshev polynomial expansion (2) which provides

𝜔

2

𝑛
𝑥 + 𝑐

1
sgn (𝑥) |𝑥|𝑚 ≈ 𝛼

2
𝑥 + 𝛽𝑥

3
+ 𝛾𝑥

5
+ Δ𝑥

7
+ 𝜀𝑥

9
,

(26)

where

𝛼

2
=

5𝑐

1
(𝑚 − 9) (𝑚 − 7) (𝑚 − 5) (𝑚 − 3) Γ [𝑚/2 + 1]

8√𝜋Γ [(11 + 𝑚) /2]

+ 𝜔

2

𝑛
,

𝛽 = −

10𝑐

1
(𝑚 − 9) (𝑚 − 7) (𝑚 − 5) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

,

𝛾 =

42𝑐

1
(𝑚 − 9) (𝑚 − 7) (𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

,

Δ = −

64𝑐

1
(𝑚 − 9) (𝑚 − 5) (𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

,

𝜀 =

32𝑐

1
(𝑚 − 7) (𝑚 − 5) (𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

.

(27)
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Table 1: Computed values of the forced power-form elastic term oscillator with nonlinear damping term.The assumed parameter values are
𝑚 = 3/2, 𝐴 = 1, 𝜔

𝑛
= 1, ℎ = 1, 𝑄

0
= 1, ] = 0.1, 𝜅 = 0.9, and 𝜔

𝑓
= 3/4.

𝑝 𝛿 𝜖 𝑐 ]
1

𝜎 𝜐 RMSE
1/4 2.2003 −0.3094 0.5011 0.3964 −1 1.85 0.1293
3/4 2.2003 −0.3094 0.0609 0.8878 −1 1.85 0.0730
3/2 2.2260 −0.3513 0.0320 0.9539 0.95 0.6 0.0937
11/4 2.2260 −0.3513 −0.0111 0.6684 0.96 0.6 0.0759

Here Γ[∙] represents the Euler gamma function. We next
use our solution procedure previously described and deter-
mine the equivalent representation form of

𝑑

2
𝑥

𝑑𝑡

2
+ 2]

𝑑𝑥

𝑑𝑡

+ 𝜅𝑥̇|𝑥̇|

𝑝−1
+ 𝛼

2
𝑥 + 𝛽𝑥

3

+ 𝛾𝑥

5
+ Δ𝑥

7
+ 𝜀𝑥

9
= 𝑄 cos (𝜔

𝑓
𝑡) .

(28)

This gives the following equivalent equation of motion:

𝑑

2
𝑥

𝑑𝑡

2
+ (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ])
𝑑𝑥

𝑑𝑡

+ 𝛿𝑥 + 𝜖𝑥

3
+ 𝑐 = 𝑄 cos (𝜔

𝑓
𝑡) ,

(29)

where

𝛿 = 𝛼

2
−

25𝛾𝜎

4

63

−

35Δ𝜎

6

66

−

81𝜀𝜎

8

143

,

𝜖 = 𝛽 +

100𝛾𝜎

2

81

+

7 (455Δ𝜎

4
+ 432𝜀𝜎

6
)

2574

,

𝑐 = −

2𝜅 (𝑝 − 1) 𝜐

𝑝

𝑝 + 2

+

212𝛾𝜎

5

567

+

71Δ𝜎

7

99

+

712𝜀𝜎

9

715

,

]
1
=

3𝑝𝜐

𝑝−1

𝑝 + 2

+

]
𝜅

−

14300𝛾𝜎

5
+ 28665Δ𝜎

7
+ 40824𝜀𝜎

9

45045𝜐

.

(30)

To study the influence in the system dynamics of the non-
linear damping termof (24), the parameter values of𝑚 = 3/2,
𝐴 = 1, 𝜔

𝑛
= 1, ℎ = 1, 𝑄

0
= 1, ] = 0.1, 𝜅 = 0.9, 𝜔

𝑓
= 0.75, and

𝑝 = 1/4, 3/4, 1.5, and 2.75 are considered. Figure 5 illustrates
the amplitude-time response curves obtained by numerically
integrating (25) and (29). As we can see from Figure 5, the
numerical integration of (29) closely follows the amplitude-
time response curve obtained from (25). Here, the black solid
and the red dots represent, respectively, the numerical inte-
gration solution of (25) and (29). Table 1 shows the estimated
RMSE values and the computed parameter values of 𝛿, 𝜖, 𝑐, ]

1
,

𝜎, and 𝜐. Based on these results, it is concluded that our equiv-
alent representation form (29) describes well the numerical
integration solution of (25).

We will next develop the equivalent representation form
of the finite extensibility nonlinear oscillator with nonlinear
damping terms that models the chain dynamics of polymeric
materials at high extensibility.

6. The Finite Extensibility
Nonlinear Oscillator (FENO)

As a final example, we now focus our attention on determin-
ing the equivalent representation form of the FENO dynam-
ical system:

𝑑

2
𝑦

𝑑𝑡

2
+ 2]

𝑑𝑦

𝑑𝑡

+ 𝜅 ̇𝑦

󵄨

󵄨

󵄨

󵄨

̇𝑦

󵄨

󵄨

󵄨

󵄨

𝑝−1

+

𝑦

(1 − 𝐴

2
𝑦

2
)

= 𝑄 cos (𝜔
𝑓
𝑡) ,

𝑦 (0) = 1, ̇𝑦 (0) = 0,

(31)

where ] and 𝜅 = 𝜅

0
𝐴

(𝑝−1) are the damping coefficients,
𝑄 = 𝑄

0
/𝐴 is the driving force, 𝜔

𝑓
represents the driving fre-

quency, and𝐴 is the initial oscillation amplitude on 0 < 𝐴 < 1

[33]. By using Chebyshev polynomials, the conservative force
of (31) can be written in equivalent form as follows

𝑦

(1 − 𝐴

2
𝑦

2
)

≡ 𝛼 (𝐴) 𝑦 + 𝛽 (𝐴) 𝑦

3

+ 𝛾 (𝐴) 𝑦

5
+ Δ (𝐴) 𝑦

7
+ 𝜀 (𝐴) 𝑦

9
,

(32)

in which

𝛼 (𝐴) =

1

𝐴

10
√

1 − 𝐴

2
(𝐴

4
(9504 − 5600

√

1 − 𝐴

2
)

+ 𝐴

8
(330 − 50

√

1 − 𝐴

2
)

− 4608 (

√

1 − 𝐴

2
− 1)

+ 48𝐴

6
(25

√

1 − 𝐴

2
− 66)

+ 256𝐴

2
(35

√

1 − 𝐴

2
− 44)) ,

𝛽 (𝐴) =

16

𝐴

10
√

1 − 𝐴

2
(𝐴

6
(2244 − 800

√

1 − 𝐴

2
)

+ 128𝐴

2
(71 − 56

√

1 − 𝐴

2
)

+ 3840 (

√

1 − 𝐴

2
− 1)

+ 𝐴

8
(25

√

1 − 𝐴

2
− 198)

+ 8𝐴

4
(525

√

1 − 𝐴

2
− 913)) ,
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Figure 6: Amplitude-time response curves of (31) and (35). The parameter values are 𝐴 = 0.9, ] = 0.1, 𝑄
0
= 1, and 𝜅

0
= 0.9, with 𝜔

𝑓
= 0.75.

(a) Amplitude-time response curves for 𝑝 = 1/4; (b) amplitude-time response curves for 𝑝 = 1/2; (c) amplitude time-response curves for
𝑝 = 1.25; (d) amplitude-time response curves for 𝑝 = 2.5. Here the solid black lines represent the numerical integration solution of (31) while
the red dots represent the prediction obtained by using the derived equivalent equation of motion (35).

𝛾 (𝐴) = −

32

𝐴

10
√

1 − 𝐴

2
(4𝐴

6
(913 − 315

√

1 − 𝐴

2
)

+ 128𝐴

2
(125 − 98

√

1 − 𝐴

2
)

+ 6912 (

√

1 − 𝐴

2
− 1)

+ 𝐴

8
(35

√

1 − 𝐴

2
− 297)

+ 16𝐴

4
(441

√

1 − 𝐴

2
− 779)) ,

Δ (𝐴) =

256

𝐴

10
√

1 − 𝐴

2
(64𝐴

2
(41 − 32

√

1 − 𝐴

2
)

+ 8𝐴

6
(71 − 24

√

1 − 𝐴

2
)

+ 1152 (

√

1 − 𝐴

2
− 1)

+ 𝐴

8
(5

√

1 − 𝐴

2
− 44)

+ 80𝐴

4
(14

√

1 − 𝐴

2
− 25)) ,

𝜀 (𝐴) = −

512

𝐴

10
√

1 − 𝐴

2
(64𝐴

2
(9 − 7

√

1 − 𝐴

2
)

+ 𝐴

8
(

√

1 − 𝐴

2
− 9)

− 40𝐴

6
(

√

1 − 𝐴

2
− 3)

+ 256 (

√

1 − 𝐴

2
− 1)

+ 48𝐴

4
(5

√

1 − 𝐴

2
− 9)) .

(33)
Thus, (31) becomes
𝑑

2
𝑦

𝑑𝑡

2
+ 2]

𝑑𝑦

𝑑𝑡

+ 𝜅 ̇𝑦

󵄨

󵄨

󵄨

󵄨

̇𝑦

󵄨

󵄨

󵄨

󵄨

𝑝−1

+ 𝛼 (𝐴) 𝑦 + 𝛽 (𝐴) 𝑦

3

+ 𝛾 (𝐴) 𝑦

5
+ Δ (𝐴) 𝑦

7
+ 𝜀 (𝐴) 𝑦

9
= 𝑄 cos (𝜔

𝑓
𝑡) .

(34)

We next determine the Duffing-like representation form
of (34) by using (11)–(14). This yields

𝑑

2
𝑦

𝑑𝑡

2
+ (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ])
𝑑𝑦

𝑑𝑡

+ 𝛿𝑦 + 𝜖𝑦

3
+ 𝑐 = 𝑄 cos (𝜔

𝑓
𝑡) ,

(35)
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Table 2: Computed values of the finite extensibility nonlinear oscillator (FENO) with nonlinear damping term. The assumed parameter
values are 𝐴 = 0.9, ] = 0.1, 𝑄

0
= 1, and 𝜅

0
= 0.9, with 𝜔

𝑓
= 0.75.

𝑝 𝛿 𝜖 𝑐 ]
1

𝜎 𝜐 RMSE
1/4 0.6432 2.0089 0.7490 0.2392 -0.800 4.8 0.1984
1/2 0.4782 2.3696 0.1949 0.5017 -0.875 4.8 0.1270
5/4 0.6919 1.8831 0.0371 1.0742 0.750 0.8 0.0819
3/2 0.6601 1.9668 0.0894 0.3851 0.785 0.5 0.0927

where

𝛿 = 𝛼 −

25𝛾𝜎

4

63

−

35Δ𝜎

6

66

−

81𝜀𝜎

8

143

,

𝜖 = 𝛽 +

100𝛾𝜎

2

81

+

7 (455Δ𝜎

4
+ 432𝜀𝜎

6
)

2574

,

𝑐 = −

2𝜅 (𝑝 − 1) 𝜐

𝑝

𝑝 + 2

+

212𝛾𝜎

5

567

+

71Δ𝜎

7

99

+

712𝜀𝜎

9

715

,

]
1
=

3𝑝𝜐

𝑝−1

𝑝 + 2

+

]
𝜅

−

14300𝛾𝜎

5
+ 28665Δ𝜎

7
+ 40824𝜀𝜎

9

45045𝜐

.

(36)

Notice that equations in (36) are similar to those derived for
the forced power-form elastic term oscillator with nonlinear
damping term but with different expressions to determine the
values of 𝛼, 𝛽, 𝛾, Δ, and 𝜀.

To illustrate the accuracy attained from the derived non-
linear equivalent equation of motion of the FENO oscillator,
let us consider the parameter values of ], 𝜅

0
, 𝑄
0
, 𝜔
𝑓
, and 𝐴

to be, respectively, 0.1, 0.9, 1, 0.75, and 0.9 with 𝑝 = 0.25, 0.5,
1.25, and 2.5. In this case𝛼 = 1.224,𝛽 = −3.1263, 𝛾 = 19.0743,
Δ = −31.445, and 𝜀 = 19.4869. The computed values of 𝛿, 𝜖,
𝑐, ]
1
, 𝜎, and 𝜐 are summarized in Table 2. Figure 6 exhibits

the amplitude-time plots computed from the numerical
integration solutions of (31) and (35). Figure 6 shows that the
amplitude-time response curves obtained form (35) describes
well the qualitative and quantitative behavior of (31). In fact,
the RMSE does not exceed the value of 0.1984. Here the black
solid lines represent the numerical integration solution of
(31), while the red dots represent the numerical integration
results obtained from (35).

7. Conclusions

In this paper, we have introduced a nonlinear procedure to
obtain the equivalent representation formof forced nonlinear
oscillators that involve nonlinear damping that depends on
velocity terms to the power 𝑝 in which 𝑝 is a positive number
that can be even odd or fractional; that is, 𝑝 > 0. Then, we
have obtained the equivalent equation ofmotion of oscillators
that are commonly used to study, among others, nanores-
onators, microresonators, vibration isolators, the dynamics of
the human movement, the retrofitting of existing girder
bridges and arch bridge structures, and the finite extensibility
nonlinear oscillator that is used to characterize chain dynam-
ics of polymeric-like materials. The comparison among the
numerical integration solutions of the original equations of

motion and the equivalent ones exhibits good agreement in
all the cases considered here even at larger nonlinear stiffness
and damping parameter values. In fact, the computed RMSE
values do not exceed of 0.1984 for all the oscillators studied
here. Therefore, we can conclude that our nonlinear solution
procedure which is developed to determine the equivalent
representation form of forced oscillators with nonlinear stiff-
ness and damping effects describes well the qualitative and
quantitative dynamics behavior of the original equations of
motion. Furthermore, the equivalent equations of the original
equations of motion derived by using our nonlinear transfor-
mation approach can be used to study the system bifurcations
and basins of attraction, since it provides equivalent repre-
sentation forms that are close to those provided by Melnikov
analysis [18].
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