Canadian Journal of Fisheries and Aquatic Sciences

Canadian Journal of Fisheries and Aquatic Sciences Journal canadienne des sciences halieutiques et aquatiques

Genetic risks of supplementing trout populations with native stocks: a simulation case study from current Pyrenean populations

Journal:	Canadian Journal of Fisheries and Aquatic Sciences
Manuscript ID:	cjfas-2013-0362.R3
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Fernandez-Cebrian, Raquel; Universitat de Girona, Biology Araguas, Rosa Maria; Universitat de Girona, Biology Sanz, Nuria; Universitat de Girona, Biology García-Marín, Jose-Luis; Universitat de Girona, Biology
Keyword:	RECREATIONAL FISHERIES < General, GENETIC RESOURCES < General, FRESHWATER FISHERIES < General, FISHERY MANAGEMENT < General, CONSERVATION < General

SCHOLARONE[™] Manuscripts

1	
2	March-2014
3	
4	
5	Genetic risks of supplementing trout populations with native stocks: a simulation case
6	study from current Pyrenean populations
7	
8	FERNANDEZ-CEBRIAN Raquel
9	ARAGUAS Rosa Maria
10	SANZ Nuria
11	GARCIA-MARIN Jose Luis *
12	
13	
14	LIG-UdG, Departament de Biologia, Facultat de Ciències, Universitat de Girona.
15	Campus Montilivi, 17071 Girona (Spain).
16	
17	Keywords: Conservation genetics; Effective population size; Fisheries management;
18	Genetic diversity; Native stocks; Population structure
19	
20	*Corresponding author
21	Tel: +34 972418961
22	Fax: +34 972418150
23	
24	Email: joseluis.garcia@udg.edu

25 Abstract

26 The risks of supplementation must be examined to assess the genetic effects to native 27 wild populations before full implementation or exclusion of programs that involve 28 captive breeding and release. Real genetic data can be applied to simulations of genetic 29 changes in populations of interest, and subsequently used in risk assessment. Ancestral 30 Mediterranean brown trout lineages exhibit complex population structure among native 31 populations. Genetically divergent Atlantic stocks were maintained and released in the 32 Mediterranean rivers as recreational fish, which resulted in hybridization and 33 introgression with local populations. Therefore we designed a new supplementation 34 program based on native stocks, and evaluated the genetic risks associated with 35 releasing native fish in recreational fisheries. Our simulation was delimited by the 36 observed population genetic structure, and available hatchery facilities in the study 37 region. Supplementation with native stocks maintained estimates of gene diversity 38 indexes (H_T , H_S and G_{ST}). However, simulations indicated that long-term 39 supplementation significantly reduced genetic diversity among locations due to a 40 homogenizing effect of populations along each management unit. Therefore, such 41 reinforcements compromised the conservation of local genetic variation. Nevertheless, 42 replacement of current foreign with native stocks can be an important step towards 43 promoting the value of preserving local diversity among anglers.

44 Introduction

45	Freshwater fish are among the most endangered species groups due to various
46	anthropogenic impacts, including habitat fragmentation and contamination, and water
47	exploitation and diversion (Freyhof and Brooks 2011). In addition, several freshwater
48	fish species have exhibited notable declines in recent decades from exotic species
49	introductions, overfishing, and/or release of non-native stocks (Cowx and Gerdeaux
50	2004). In temperate and cold river basins, salmonids have experienced declines due to
51	each of these threats on native freshwater biodiversity (Lewin et al. 2006; Naish et al.
52	2007), and on-going climate change has increased the vulnerability and endangered
53	status of salmonid species worldwide (e.g. Hari et al. 2006; Almodovar et al. 2012; Vera
54	et al. 2013). In addition to habitat recovery, several other strategies have been suggested
55	to improve local degraded populations. Extensive release of hatchery cultured fish to
56	enhance recreational opportunities has been widely applied, and supported by anglers
57	(Brown and Day 2002; Arlinghaus and Mehner 2005; Cowx et al. 2010). Despite the
58	widespread biological concerns of applying supplementation practices from hatchery-
59	reared fish to restore wild populations (Laikre and Ryman 1996; Lewin et al. 2006;
60	Naish et al. 2007; Araki and Schmid 2010), these practices continue; and anglers show a
61	positive response by increasing their fishing efforts soon after fish are released (e.g.
62	Baer et al. 2007), which subsequently promotes revenues to local economies
63	(Arlinghaus et al. 2002).
64	
65	In European basins, brown trout are an integral target for a socio-economically
66	important recreational fishery (Elliot 1989). The economic value of the fishery
67	mandates the development of management strategies focused on achieving and
68	maintaining the delicate balance between exploitation and conservation of the resource

http://mc06.manuscriptcentral.com/cjfas-pubs

69	(Araguas et al. 2009; Arlinghaus et al. 2010; Cowx and Van Anrooy 2010). Due to a
70	reduction in the abundance of catchable trout, anglers perceived efforts to reinforce
71	populations as a positive management objective (Arlinghaus and Mehner 2005). Such
72	circumstances also promoted supplementation initiatives among fisheries managers,
73	because recreational fisheries were traditionally managed based on the quality of the
74	fishing experience (Cowx and Gerdeaux 2004), and trout anglers associated quality with
75	catch quantity, and satisfaction followed (Arlinghaus and Mehner 2005). However,
76	management decisions based on anglers' perception could perpetuate stocking as a
77	panacea to maintain both, sustained fishery and the anglers' satisfaction, but at the risk
78	of replacing local fish diversity by hatchery stocks (van Poorten et al. 2011).
79	Mediterranean brown trout populations have been extensively supplemented with
80	North-eastern Atlantic hatchery stocks (hereafter, foreign stocks), resulting in
81	introgressed populations, and homogenization among wild populations (Poteaux et al.
82	1999; Marzano et al. 2003; Jug et al. 2005; Sanz et al. 2006; Apostolidis et al. 2008).
83	For example, Araguas et al. (2004) reported extensive foreign stock releases
84	compromised the genetic integrity and differentiation among native trout populations in
85	eastern Pyrenean rivers. In this region, up to 8 million fish were released in year 1995,
86	but later hatchery releases lowered and have been stabilized in recent times to 2 million
87	fish per year (Araguas et al. 2008). Because local salmonid populations often exhibit a
88	fitness advantage relative to foreign populations (Fraser et al. 2011; Perrier et al. 2013),
89	supplementation with foreign stocks is likely to reduce the mean population fitness in
90	recipient locations due to outbreeding depression and maladaptation of released fish
91	(Rhymer and Simberloff 1996, Baskett et al. 2013). Studies on the adaptive value of
92	local brown trout differences remain scarce, and not all phenotypic traits respond

93 similarly. For example, Jensen et al. (2008a) reported local adaptive variation for length

94	at hatching, and length at first feeding among four Danish trout populations within close
95	geographic proximity. However, adaptive evidence for distinct hatching and survival
96	times was not detected among five brown trout populations in the Swiss Rhine Basin
97	(Stelkens et al. 2012). Nevertheless, a precautionary approach in conservation and
98	fisheries management mandates the preservation of local types, at least until clear
99	scientific evidence is collected to assess the biological significance of local differences
100	(e.g. FAO 1995).
101	
102	European brown trout have several evolutionary lineages (revised in Kottelat and
103	Freyhoff 2007). The Atlantic one (now considered as Salmo trutta sensu stricto in IUCN
104	red list) was native in the Atlantic river basins northward from the Pyrenees. Several
105	morphological and genetically distinct Mediterranean lineages have been described (e.g.
106	S.rhodanensis, S.cettii, S.macrostigma), and some of them are now identified as
107	threatened species in the IUCN red list (Freyhoff and Brooks 2011). However, a
108	taxonomic revision of the trout types inhabiting Mediterranean Iberian rivers is still
109	lacking; despite they could represent several unnamed species (Kottelat and Freyhoff
110	2007). As a result, the Spanish inland fisheries agencies consider all trout populations in
111	Spain as S. trutta, according with former taxonomic studies (Lelek 1980). However,
112	since the 1980s, the Autonomous Government of Catalonia, as well as other regional
113	administrations, recognized declines in endemic trout biodiversity for the region; and
114	since 1987 introduced management measures to recover native populations. These
115	measures included an increase in length requirement for catchable fish from 18 to 22
116	cm, a reduction in hatchery releases, which are now banned in some upstream stretches
117	declared as genetic refuge locations to protect native gene pools, and a change to catch
118	and release management in some previously fished areas (Araguas et al. 2009).

119	However, such restrictive measures typically received low angler support (Arlinghaus
120	and Mehner 2005). In addition, on-going assessments indicated that establishment of
121	genetic refuge did not result in a significant decrease in foreign stock alleles in the
122	Mediterranean Spanish and French wild populations (Araguas et al. 2008, 2009;
123	Caudron et al. 2011, 2012). Therefore, complementary active measures, including non-
124	native fish removal, supplementation with local native breeding stocks, and/or
125	translocation of wild native individuals were required to mitigate the genetic effects of
126	past releases with foreign fish (Caudron et al. 2012; Vera et al. 2013).
127	
128	Hatchery strains derived from regional or local sources (hereafter, native stocks) have
129	been used to reinforce wild fish populations when conservation and fisheries
130	management goals were in common, because these stocks preclude damage to local
131	populations. For example, increased production with limited ecological and genetic
132	effects was observed in Hamma Hamma River steelhead (Oncorhynchus mykiss)
133	populations following supplemental stocking (Berejikian et al. 2008; Van Doornik et al.
134	2010). Hess et al. (2012) detected minimal negative impacts on fitness in a Chinook
135	salmon (O. tshawytscha) population in the Columbia River enhanced with supportive
136	captive breeding. Native stock reinforcement following habitat recovery is an accepted
137	measure within the European Inland Fisheries Advisory Commission (EIFAC) code of
138	practice for recreational fisheries (FAO 2008). Nevertheless, released fish from native
139	stocks and their wild progeny often exhibited decreased performance compared to wild
140	populations (reviewed in Araki et al 2008). For instance, Christie et al (2012) reported
141	genetic changes in the steelhead (O.mykiss) induced during a single generation of
142	hatchery culture resulting in maladaptation to the wild. Consequently more empirical
143	data is needed to evaluate the genetic and fitness effects of supplementation from native

144	stocks	Naish et al 2007; Fraser 2008; Araki and Schmid 2010	J).
-----	--------	--	-----

146	The risks inherent with a supplementation program involving captive stocks must be
147	carefully assessed prior to implementation of the program with native populations
148	(Naish et al. 2007; FAO 2008). Theoretical studies demonstrated reduced Ne and fitness
149	of wild populations following supportive breeding (Wang and Ryman 2001; Ford
150	2002), and a decline in local populations following long-term supplementation by native
151	domestic stocks (Satake and Araki 2012). The effect occurred through density-
152	dependent overcompensation during recruitment, resulting in fewer wild fish recruits.
153	Simulations from real genetic data, augment these theoretical population genetics
154	approaches (Hoban et al. 2012), which facilitated assessments of genetic changes in
155	populations of interest (e.g. Perrier et al 2013).
156	
157	In the present study, we assess patterns of genetic diversity within and among
158	populations at 13 sampling locations along four river basins in the Pyrenean Mountains
159	as a basic pre-requisite to design a regional native hatchery stocks program. We
160	subsequently simulated a supplementation program that involved replacement of foreign
161	by native trout stocks using the observed population structure to select source locations,
162	while integrating the existing regional hatchery facilities and hatchery personal
163	expertise. We assessed the long-term genetic effects of the releases, including the target
164	population gene pools but also the population structure at the intra- and inter-basin
165	levels. Finally, we discussed the social and economic benefits of the results relative to
166	regional trout fisheries.
167	

168 Materials and methods

169 River network, sampled locations and estimates of genetic diversity

170 In the Spanish eastern Pyrenees, the river network is organized into two major units for 171 water supply and hydroelectric production, which includes the Ebro River basin and the 172 coastal rivers. The Ebro basin includes the easternmost Segre River drainage, composed of the mainstem, and its tributaries the Noguera Pallaresa River (2820.1 km² drainage 173 surface), and the Noguera Ribagorzana River (2045.6 km² drainage surface). The Segre 174 175 basin supports the most preserved native populations of Mediterranean brown trout in 176 the Iberian Peninsula (Sanz et al. 2002). The largest coastal rivers are the Llobregat (4948.3 km²) and Ter (3010.5 km²) Rivers. Trout populations only inhabit the 177 178 headstreams of these rivers, with trout habitats more abundant in the Ter River, with 179 headstreams up to 2000 m a.s.l., where the Llobregat are below 1300 m a.s.l. 180 181 A total of 854 wild brown trout were collected during summer 2006 by electro-fishing 182 at 13 localities along the Noguera Pallaresa, Noguera Ribagorzana, Llobregat, and Ter 183 River basins (Table 1, Fig. 1) to assess patterns of genetic diversity within and among 184 Pyrenean populations. Each fish was anesthetized with tricaine methane-sulphonate

185 (MS-222) to biopsy a piece of the adipose fin. The sample was stored in an eppendorf

186 tube containing 96% ethanol and transported to the laboratory until DNA extraction. In

187 the field, the fork length of each fish was measured (to the nearest 0.5 cm) to estimate

188 fish age (0+, 1+, 2+, 3+, and older fish) based on FISAT II software (Gayanilo et al.

189 2005) modal progression analysis and length-age relationships provided by Rocaspana

190 et al. (2006) for Pyrenean trout populations. Once recovered from anaesthesia, fish were

- 191 returned to the streams alive. We also analysed 96 fish from the 2003-year cohort of the
- 192 foreign stock at Bagà hatchery (HAT1, see Fig1) used to reinforce Pyrenean brown
- trout populations in the region. We only analysed fish from this hatchery because trout

- 194 culture at HAT2 is discontinued when trout production at HAT1 is enough to
- supplement regional fisheries. Only when an increased hatchery production is required,
- 196 HAT2 receives fish from HAT1 to regenerate a new stock.
- 197
- 198 Genomic DNA was extracted from fin tissues using a proteinase K-Chelex extraction
- 199 protocol to assess genotypes for nine polymorphic microsatellite loci (*Str15*, *Str73*,
- 200 Str5911NRA, Ssa85, Ssa408, SsHaeIII14.20, SsoSL417, SsoSL438, and SSsp2213) as
- described by Sanz et al. (2009). MICRO-CHECKER 2.2.1 (Van Oosterhout et al. 2004)
- 202 revised microsatellite genotypes to test large allele dropout and null alleles.
- 203 Conformance of genotype distributions with Hardy-Weinberg expectations were tested
- by exact probability tests (Guo and Thompson 1992) using the computer package
- 205 GENEPOP 3.3 (Raymond and Rousset 1995). For each location, the minimum number
- of homogenous units (K = 1, 2, and 3) was determined using the Bayesian Markov
- 207 Chain Monte Carlo (MCMC) approach in STRUCTURE 2.3.3 (Pritchard et al. 2000) as
- indicated in Sanz et al. (2009). FSTAT2.9.3 software (Goudet 1995) was used to
- 209 summarize genetic diversity within samples as follows: mean unbiased expected
- 210 heterozygosity (H_E), mean direct count heterozygosity (H_O), and average allele richness
- 211 per locus (A_R) . To measure the level of current foreign stock introgression in each wild
- location, we estimated the average proportion of foreign stock ancestry (q) following
- 213 Sanz et al. (2009), however Araguas et al. (2008) already reported estimates for 10 of
- these locations based on *LDH-C** locus polymorphisms. Effective population size (*Ne*)
- at each study location was estimated using linkage disequilibrium between loci in the
- 216 LDNe 1.31 program (Waples and Do 2008). Ne was estimated by removing rare alleles
- with frequency less than 0.02, due to a sample size of less than 50 fish in some study
- 218 locations. The LDNe method assumes discrete generations, which are not the case in

219	brown trout; but the method roughly estimates Ne when the number of sampled cohorts
220	approximates the suspected generation time (Waples and Do 2010). At our study
221	locations, three cohorts (0+, 1+, and 2+, see results) were the most abundant, as
222	similarly reported in the Iberian Peninsula (Lobón-Cervia et al. 1986; Nicola et al. 2008;
223	Parra et al. 2009), suggesting generation lengths between 2-3 y for these trout
224	populations. Additional confidence on estimated Ne from our locations resulted from
225	genetic stability reported among five consecutive cohorts (year 1998 to 2002) studied in
226	an earlier work in the Vallfarrera stream (Vera et al. 2010).
227	
228	Population structure
229	Genetic divergence between locations was examined using a matrix of pairwise genetic
230	differentiation, F_{ST} (Weir and Cockerham 1984), and its significance (based on 1000
231	permutations) in FSTAT. Patterns of genetic diversity within and among the study river
232	basins were quantified by gene diversity analyses (Nei 1987) using FSTAT and
233	Analysis of Molecular Variance (AMOVA) using Arlequin 3.5.1.3 (Excoffier and
234	Lischer 2010). Hierarchical levels followed hydrogeographical criteria within (F_{SC}) and
235	among (F_{CT}) basins or tributaries, and involved an analysis spanning the entire study
236	region, and separate analyses for each river basin. Additionally, the pairwise genetic
237	distance matrix among samples (D_a , Nei 1987) computed using MSA 4.05 (Dieringer
238	and Schlötterer 2003) was used to generate a multidimensional scaling (MDS) using
239	SPSS program to depict genetic similarity between study locations. Finally, we
240	examined the most likely number of genetically homogeneous groups ($K = 1$ to 13) in
241	the study region from the Bayesian method implemented in STRUCTURE 2.3.3
242	following Evanno et al. (2005) after 20 replicate STRUCTURE runs for each K value.

243	Each run used a burn-in of 10000 iterations, a run length of 10000 iterations, and all
244	other parameters set to default model.
245	
246	Design of the native stocks
247	The current foreign hatchery stock originated from central European trout, and regional
248	fishery management could require its replacement with native stocks in the future.
249	However, we should keep in mind that despite the stock origin, the current normative
250	framework involving hatchery trout stocks in the study region serves to support
251	recreational fisheries, and not conservation genetics goals. In addition, legislation on
252	other water uses (e.g. industrial, agricultural, and domestic consumption, or
253	hydroelectric production) often takes prevalence over recreational fisheries. The
254	Environmental Services of the Autonomous Government of Catalonian manage trout
255	populations in all the regional basins. However, water supplies and hydroelectric
256	production in the Ebro River basin are under the jurisdiction of the C.H.E.
257	(Confederación Hidrográfica del Ebro), a Spanish State agency; while in the coastal
258	rivers are jurisdiction of the A.C.A (Agència Catalana de l'Aigua), an agency of the
259	Autonomous Government of Catalonian. Because our genetic results suggest "basin" as
260	a primary source for population structure, we focused on "basin" (Ribagorzana,
261	Pallaresa, Llobregat and Ter River basins) as a work unit, which also facilitates the
262	administrative collaboration between the environmental and water agencies. The
263	location (see Fig.1) and facilities of the two regional hatcheries should easily
264	accommodate and separately manage several stocks, despite their previous expertise,
265	which focused on one stock.
266	

267 For the simulation, we first selected a source location for each river basin, which was a

268	challenging task (Allendorf and Ryman 1987; Griffith et al. 2009; Laikre et al. 2010).
269	The selection criteria involved Hardy-Weinberg and gametic equilibria; and low
270	impacts involved with on-going hatchery release of the foreign stock (see results in
271	Table 1). Furthermore, genetic refuge locations were preferred (Araguas et al. 2008).
272	We finally prioritized sources located on river drainage mainstems, because brown trout
273	in mainstem populations were typically larger than in small tributaries (Parra et al.
274	2009), which can increase offspring abundance in the first generation at hatchery
275	facilities, i.e. large trout should have increased fecundity (Lobón-Cerviá et al. 1997).
276	Abundant progeny from as many parents as possible might facilitate further F1
277	manipulation to prevent undesirable genetic diversity losses in hatchery stocks (Araki et
278	al. 2008, Fraser 2008). A large amount of stock diversity was also desirable to prevent
279	further changes by selection and domestication (Fraser 2008; Araki and Schmid 2010).
280	Because of the high amount of foreign stock introgression in the single location studied
281	at the Llobregat River basin we decided to join this basin to the Ter River for the
282	simulated supplementation program as a single management unit for all coastal basins.
283	Subsequently, three captive native stocks were simulated, one to stock the Noguera
284	Ribagorzana River, one the Noguera Pallaresa, and one to stock the coastal basins.
285	According with results on genetic structure, the simulated native stocks supplementation
286	program allowed assessment of genetic effects at intra and inter basins scales covering
287	aspects as: (i) maintenance of the population structure at regional scale, (ii) preservation
288	of local singularities, and (iii) recovery of native gene pools in heavily introgressed
289	locations with foreign alleles. In this later case, at Filià location we simulated the
290	recovery using a native stock derived from a location in the same river, but at the
291	Riutort location by using an stock originated from distinct river.

293 Simulated supplementation program

294 Our simulation evaluated the long-term effects (100 generations) on genetic population 295 structure of a potential supplementation program using the three native stocks 296 characterized above. Initially, a Ne of 100 was assumed for each location, well in the 297 range of estimated brown trout *Ne* at each study location (see results in Table 1). The 298 supplementation effort was adjusted to accept the one-migrant-per-generation (OMPG) 299 rule, considered enough to maintain polymorphism and heterozygosity levels within 300 wild locations, while facilitating divergence (Mills and Allendorf 1996). This level of 301 hatchery introgression per generation was consistent with previous estimates in the 302 study area resulting from release of foreign hatchery fish (1 to 5%, Araguas et al. 2004). 303 For each study location using HYBRIDLAB software (Nielsen et al. 2006), we first 304 simulated samples of 100 individuals at generation 0 from current allele frequencies. In 305 addition, for each native stock we simulated 1000 individuals from the current 306 genotypes representing the source locations. Although a Ne size of 1000 fish for stock 307 might be perceived as unrealistic due to the abundant evidence for genetic changes in 308 salmonid hatchery stocks (Naish et al. 2007; Araki and Schmid 2010), it allowed us to 309 address genetic change in wild populations resulting from fish released from native 310 stocks kept genetically similar to the native source. In addition, this approach might also 311 have utility in evaluating genetic change induced by repetitive supportive breeding from 312 a few local sources.

313

All wild and stocked fish simulated at generation 0 were aged as adults, and randomly sexed as male or female. Input data were subsequently converted in an FSTAT format file used for simulations in NEMO v2.2 software (Guillaume and Rougemont 2006). In each management unit (Noguera Pallaresa, Noguera Ribagorzana and Coastal basins),

318 and in each of their wild population, we simulated 100 generations of native stock 319 reinforcement by setting the local immigration rate (m) from the assigned stock to 0.01 320 using the NEMO software "breed-disperse" life cycle event. Ne for wild and stock 321 populations was maintained each generation at 100 and 1000 individuals, respectively. 322 All loci assorted independently (recombination rate adjusted to 0.5), and simulated 323 genotypes at each generation were stored for further analyses. 324 325 The above reinforcement scenario was compared with simulated management in the 326 absence of supplementation, and drift as a single evolutionary force during 100 327 generations based on negligible dispersal and gene flow reported between resident trout 328 populations even at hydrogeographic distances of a few kilometres (Knouft and Spotila 329 2002; Vera et al. 2010; Vollestad et al. 2012). Gene pool evolution within each location 330 was subsequently simulated as indicated above for the supplementation program, but 331 local immigration from the assigned stock was not permitted (m = 0). Additional 332 simulations were performed for Ne of 50, and 1000 fish in wild populations for both 333 scenarios, with and without supplementation with native stocks. Finally, three 334 additional data sets were simulated based on maintaining current foreign stock releases 335 into all wild locations (m = 0.01 per generation), and respectively considering Ne of 50, 336 100, and 1000 fish. In summary, 3 x 3 (three scenarios x three Ne) simulated genotype 337 data sets were collected. 338 339 Genetic diversity levels at Generation 0 and 100 for each location and scenario were 340 estimated using FSTAT. In all simulations, gene pool stability between generations 0

- and 100 in each wild location, and in each simulated stock, was estimated by F_{ST} values
- 342 (Weir and Cockerham 1984). Significance levels were obtained from 1000 permutation

343	tests in FSTAT. Patterns of population structure among locations followed after 100
344	simulated generations, and for each scenario were estimated by gene diversity analyses
345	(FSTAT). The proportion of divergence between locations within (SC) and among (CT)
346	river basins was examined using hierarchical AMOVAs (Arlequin Software). In
347	addition, population relationships among locations in simulated scenarios (with and
348	without reinforcement) were depicted by nonparametric multidimensional scaling
349	(MDS) from the <i>Da</i> genetic distance matrix between location pairs, as indicated above
350	in the study of captured wild samples. Furthermore, to assess local genetic changes in
351	scenarios with and without supplementation with native stocks, and Ne of 100, we
352	estimated the remaining proportion of the simulated generation 0 and the contribution of
353	the native stock , both as q -values following Sanz et al. (2009) as indicated above for
354	estimating the current contribution of the foreign hatchery stock on wild locations. We
355	should note that the estimated native stock q -value associated with each location under
356	drift was not related to any effects of fish release, but to historical evolutionary
357	processes within and among basins, driving the current genetic divergence between
358	locations. The estimated native stock <i>q-value</i> under drift provides only a reference value
359	to compare with q-value obtained under reinforcement.
360	

361 **Results**

362 *Genetic diversity and population structure of wild populations*

363 Brown trout populations at the study locations were short-lived, with a clear dominance

- 364 of age groups 0+ to 2+, with the exception of the Vallter location, where older fish (>
- 365 2+) were also abundant (Table 1). On average, 77.0 % of fish sampled were in age
- classes 0+ to 2+, and ranged from 55.4% in Vallter to 99.5% in Nuria. Genetic diversity
- 367 differed among locations (Table 1), with the highest variability exhibited in Filià

368	$(A_{R}=8.40)$	$H_{\rm F}=0.769$).	and the lowest	variability in	Vallter (A	P=3.23	$H_F = 0.393$).
200	(1-1) 0			,		·/ ··, ·	

369 Genetic variability in the current hatchery stock was also high (A_R =7.78, H_E =0.682),

and some abundant allele variants detected in this foreign stock (*Str73*146*,

371 Str591INRA*158, SsHaeIII14.20*312, SsHaeIII14.20*324, SsHaeIII14.20*322, and

- 372 *SsoSL438*105*) were rare in wild trout.
- 373

374 Following Bonferroni correction, genotype distributions at three study locations (Tor,

375 Erta, and Nuria) deviated from Hardy-Weinberg expectations due to homozygote excess

376 (supplementary Table S1). MICRO-CHECKER suggested the presence of null alleles in

377 the Nuria *Str15INRA* locus, and the Tor *SsoSL417* locus. Nevertheless, evidence of null

378 alleles at these two loci was not detected at other study locations. In Nuria, Riutort, Tor,

379 Filià, Cavallers, and Erta, significant gametic disequilibria was observed after applying

a Bonferroni correction for multiple tests. High hatchery ancestry (q-values) were

detected in fish sampled at Riutort and Filià (0.30 at both study locations) (Table 1), but

in the other study locations the estimated hatchery ancestry for captured fish was below

383 5% (0.05). STRUCTURE results suggested two genetically distinct units presented in

384 Riutort, Filià, Nuria and Tor locations. The abundance of rare homozygotes for alleles

385 common among hatchery fish indicated recent releases in these streams responsible for

386 observed Hardy-Weinberg and gametic disequilibria. Estimated Ne ranged from 18.7 in

Filià to 293.0 in Ermita, and a larger indeterminate estimate in Ainet, i.e. 243.9 to α.

388 Reduced *Ne* were related to locations with evidence for recent release of hatchery fish

389 (K = 2; Table 1).

390

391 Significant pairwise differentiation was detected in all but one comparison, *i.e.* Ermita-

392 Palomera (Table 2). Despite high hatchery *q*-values observed in Riutort and Filià, all

393	wild populations exhibited significant genetic differentiation from current hatchery
394	foreign stock (F_{ST} range 0.116-0.426). Hierarchical AMOVA results for the entire study
395	area reflected higher significant divergences within (<i>SC</i> component = 86.14%, Table 3)
396	than among basins (CT component = 13.86%). Due to the increased number of study
397	locations in the Pallaresa and Ribagorzana basins, a hierarchical AMOVA was possible
398	for each of the two basins. In both basins, results showed increased differentiation
399	within compared to among tributaries. In the Pallaresa River ($G_{ST} = 0.160$), where the
400	two more hydrogeographically separated study locations were Palomera and Filià (91.6
401	km), only 23.35 per cent of the total differentiation was assigned to differences among
402	tributaries. In the Ribagorzana River, increased differentiation was observed among
403	locations (G_{ST} = 0.357), even though within this basin, 64.95% of the population
404	differentiation was assigned within tributaries. In this basin, the largest hydrogeographic
405	separation among study locations occurred between Conangles and Cavallers, 50.1 km
406	apart.
407	
408	STRUCTURE (Fig. 2) and MDS analyses based on D_a distances (Fig. 3, 2006
409	collections) were largely congruent. Gene pools from study locations were grouped
410	following a hydrogeographic pattern (Ter, Pallaresa, and Ribagorzana), however two
411	outlier samples from different basins were grouped together, <i>i.e.</i> Manyanet and Erta,
412	and a fifth group comprised the high hatchery ancestry locations Riutort and Filià (q-
413	value = 0.300 , see Table 1).
414	

415 Simulated long-term effects of supplementation with native stocks

416 None of the study locations had the complete requirements to be an ideal source

417 location for native stocks (Table 1). The selected source locations for simulated native

418	stocks were then determined as follows: Ermita for the Noguera Pallaresa basin due to
419	the location inclusion as a genetic refuge, reduced average hatchery ancestry, and lack
420	of evidence for Hardy-Weinberg or gametic disequilibria; Conangles for the Noguera
421	Ribagorzana River due to its location in a genetic refuge area in the river mainstem, and
422	Vallter for Coastal basins due to low incidence of hatchery releases, the largest Ne
423	estimate among the three study locations in the coastal management unit, and inclusion
424	as a genetic refuge. Permutation tests in FSTAT indicated that average genetic diversity
425	from source locations (see Table 3) was not significantly different from the average
426	diversity at other study locations ($P > 0.05$), and divergence among source locations
427	(G_{ST}) resulted in the observed population differentiation among the eastern Pyrenean
428	trout populations ($P > 0.05$). Despite Ne for stocks fixed at 1000 fish, small but
429	significant ($P < 0.05$) F_{ST} value between generation 0 and 100 was observed in all
430	simulated stocks (including the foreign one). However, these allelic changes did not
431	significantly modify stock diversity levels (allele richness and gene diversity) as
432	indicated by FSTAT permutation tests.
433	
434	Following 100 generations, simulated genetic drift in wild populations of 100
435	individuals caused loss in genetic diversity, and significant allele frequency changes (P
436	< 0.001) at all locations, indicated by F_{ST} coefficients (Table 4). Simulations showed
437	supplementation with native stocks maintained levels of diversity (heterozygosity and
438	allele richness) at most locations, but again, significant F_{ST} values were detected ($P <$

- 439 0.001), even at the native stock source location. However, genetic changes resulting
- 440 from supplementation with native stocks were generally less severe (decreased F_{ST}
- 441 value) than alterations observed from maintaining supplementation with the current
- 442 exogenous stock (Table 4). Short time supplementation with native stocks (10

443	generations) did not significantly alter diversity patterns within and among locations
444	(Table 3, Fig. 3 G10 N100). Estimates of ancestries in the populations following 100
445	generations in scenarios with and without (drift) supplementation with native stocks
446	added information on genetic changes occurred in each location (Table 5). Despite
447	losses in genetic diversity for simulations involving genetic drift, the estimate remaining
448	ancestry for the local original (generation 0) gene pool was close to 1.0 at each location,
449	and the estimated native stock ancestry was only high for the respective source location
450	except in Palomera. Here, the estimated native stock ancestry was high because of its
451	current genetic similarity with the Ermita trout, which was used as source for the
452	simulated native stocks in the Noguera Pallaresa River basin ($F_{ST} = 0.003$; Table 2).
453	However in all basins, supplementation with native stock produced declines of the
454	original gene pool ancestry for all locations, particularly in locations currently showing
455	large genetic divergence from the source population (Tor and Manyanet in the Noguera
456	Pallaresa basin; Cavallers, Nicolau, and Erta in the Ribagorzana basin, and Riutort in
457	the coastal basins). As expected, these declines were related to increased estimates in
458	native stock ancestry. Altogether indicated that supplementation with native stocks was
459	efficiently eroding local gene pools.
460	
461	In simulations of Ne of 100 individuals, FSTAT comparisons confirmed reduced
462	average allele richness within locations in the simulated scenario with and without
463	(drift) native stocks supplementation (Table 3). The simulation without supplementation
464	maintained total diversity (H_T) in the region by significantly reducing local diversity
465	(H_S), and increasing divergence (G_{ST}) among locations. The native stocks
466	supplementation program showed reduced effects on gene diversity indices (H_T , H_S and

467 G_{ST}), as significant changes were not detected with current estimates. In addition,

468	continued release of foreign stock did not result in significant changes in allele richness
469	and gene diversity indices. However, hierarchical AMOVAs indicated releases from
470	foreign stock into all native population locations nearly eliminated the genetic
471	distinction among management units (CT component close to 0; Table 3). Hierarchical
472	AMOVAs also showed that without supplementation, drift alone was not sufficient to
473	completely erode genetic differences within (SC component) and among (CT
474	component) into the management units. Nevertheless, supplementation with native
475	stocks resulted in increased genetic homogenization of populations within management
476	units (strong reduction in the SC component). MDS results from Da genetic distance
477	matrices between locations (Fig. 3) clearly depicted all changes in population structure
478	in the study area resulting from supplementation with exogenous and native stocks.
479	Consequently, following long-term supplementation by native stocks, populations were
480	clustered based on management units, while maintaining releases from a common
481	foreign stock, resulted in genetic relationships among populations from distinct
482	management units.
483	
484	In simulations involving population sizes of 50 fish, the effects of drift were evidenced
485	by reduced average allele richness and increased divergence among locations under all
486	simulation scenarios (Table 3), however a large "among management units" component
487	(CT) was obtained from supplementing with native stocks (Fig. 3). This diversity
488	component (CT) was not preserved in the other two scenarios (with or without

- 489 supplementation with the foreign stock). Nevertheless, simulations with population
- 490 sizes of 1000 fish exhibited decreased genetic changes in gene diversity and hierarchical
- 491 population structure under the drift scenario compared to any supplementation program
- 492 (Table 3).

493	
494	Discussion
495	Current wild population status
496	Brown trout in the eastern Pyrenean rivers showed levels of diversity at microsatellite
497	loci well within the range detected in Mediterranean populations from other countries
498	(Jug et al. 2005; Apostolidis et al. 2008). Populations showing the greatest genetic
499	impacts following releases of the Atlantic foreign stock (Riutort and Filià locations,
500	Table 1) also exhibited the highest estimates of heterozygosity. Recent foreign stock
501	releases remained common evidenced by the two breeding units detected at four study
502	locations (Nuria, Riutort, Tor, and Filià), which were supported by high estimates of
503	hatchery ancestry or Hardy-Weinberg and gametic disequilibria. Despite estimated
504	introgression rates below 5% from all study locations, with the exception of Riutort and
505	Filià, wider geographical surveys suggested average introgression rates from Atlantic
506	foreign stocks exceeded 10% in eastern Iberian trout populations (Sanz et al. 2002;
507	Aparicio et al. 2005; Almodovar et al. 2006). Recent releases likely contributed to the
508	small Ne estimated in Tor and Filià, as expected from theoretical predictions on
509	hatchery releases and long-term supportive breeding programs (Ryman and Laikre
510	1991; Wang and Ryman 2001, Waples and England 2011). However, a large amount of
511	native genetic diversity was still preserved within the eastern Pyrenean rivers, where
512	native brown trout remained morphologically distinct from hatchery fish (Aparicio et al.
513	2005).
514	
515	Ne estimates suggested adequately self-sustained trout populations in some locations,
516	including Ter, Palomera, Ermita, Ainet, Manyanet, Nicolau, and Erta. In the Iberian

517 Peninsula, age at maturity for brown trout is between 1+ and 2+ for females, and 2+ to

518	3+ for males (Lobón-Cerviá et al. 1986; Parra et al. 2009). The adult fish older than 2+
519	at time of capture represented less than 40% in all study locations with the exception of
520	Ter. In addition, fish available for angling should be even less abundant, because at the
521	study locations, the oldest fish (> 3+) reach catchable length (22 cm) <i>i.e.</i> in Iberian
522	rivers (Lobón-Cerviá et al. 1986; Rocaspana et al. 2006; Parra et al. 2009). A decrease
523	in catchable fish (< 10%) abundance is common among fished trout populations
524	compared with increased abundance in unfished stretches (Almodovar and Nicola
525	2004). Nevertheless, environmental factors and anthropogenic-mediated perturbations,
526	in addition to angling contribute to reductions in catchable trout throughout Spanish
527	rivers (Almodovar and Nicola 1999; Nicola et al. 2009; Ayllón et al. 2012), including
528	Pyrenean waters (Garcia de Jalon et al. 1988, 1996; Alonso et al. 2011). Cumulatively,
529	these factors promote social support for supplementation practices.
530	
531	Genetic effects of the supplementation with native stock
532	Our results indicated that following short-term supplementation, sporadic supportive
533	breeding programs from local sources would not markedly change the gene pools of the

supplemented populations. In addition, as Caudron et al. (2011, 2012) reported in

535 French brown trout populations following supportive breeding programs, simulations

536 predicted recovery of native diversity in the Filià and Riutort populations highly

537 impacted by current releases of a foreign hatchery stock. In the French streams, trout

densities increased 20- to 55-fold, and the majority of juvenile trout (78–89%) were

539 first-generation descendants of released trout. However, recovering native alleles in

540 these previously highly introgressed populations might not restore native local ancestry,

541 but result in genetic swamping of the local populations along the management unit by

542 the native stock gene pool. Swamping was particularly relevant in locations reinforced

543 with a native stock originated from a source in other river basin as Riutort in our 544 simulations; in this location a notorious reduction of the original local ancestry was 545 observed. Within management units, such an effect was even more evident in 546 genetically unique native populations, as Manyanet and Erta in our study. In these 547 outlier populations, the native local gene pool were reduced following long-term 548 supplementation, while a notable increase in the estimate native stock ancestry was 549 observed. The expected result following long-term supplementation with native stocks 550 was then a significant reduction in diversity among locations within management units. 551 However, in the study region, current genetic differentiation was related more with local 552 divergence within rather than isolation between basins. Similar results have already 553 been observed in the wild; for example, populations of Coho salmon (Oncorhynchus 554 *kisutch*) in the Puget Sound of Washington State that underwent extensive hatchery 555 propagation share more of their ancestry recently than they did historically (Eldridge et 556 al. 2009). Hansen et al. (2009) reported substantial local changes in Danish brown trout 557 populations following long-term supplementation with Danish stocks. Supportive 558 breeding efforts in French Mediterranean trout populations showed over short-term time 559 scales, the genetic and demographic effects were restricted to river stretches 2 km 560 downstream from the release locations (Caudron et al. 2012), however other evidence 561 indicated expansion of hatchery genes by hybridized fish occurring over longer periods 562 of time following releases (García-Marín et al. 1998; Allendorf et al. 2004; Araguas et 563 al. 2008; Perrier et al. 2013). 564 565 Fishery managers should be aware that simply maintaining global estimates of gene

566 diversity indices (H_T , H_S and G_{ST}) does not insure conservation of local genetic

567 variation. For example, significant changes were not detected in diversity indices for

568 supplementation simulations, either using current foreign or native stocks, despite losses 569 of native alleles in all locations. Therefore, native stocks do not mean local stocks, even 570 at short hydrogeographical distances. Increased genetic differentiation between 571 Pyrenean brown trout populations suggested isolated populations at hydrogeographical 572 separation of just a few kilometres. In fact, the only non-significant divergence detected 573 in the entire study was between Palomera and Ermita locations, 1.2 km apart along the 574 same mainstem of the Vallfarrera River. Hierarchical partitioning of genetic diversity 575 revealed another relevant source of divergence between tributaries in the same river 576 basin. For example, the Tor River sample was collected 6 km from the Ermita location in a tributary of the Vallfarrera River, and the estimated F_{ST} value between Tor and 577 578 Ermita samples was 0.175.

579

580 Selective forces

581 Our study was based on microsatellite loci, which are typically considered selective 582 neutral markers. However, there might be adaptive and selective processes modulating 583 and modifying our observations. First, we should consider the adaptive value of trout 584 genetic singularities in the Pyrenean locations. Certainly it remains to be demonstrated, 585 yet the observed divergences at microsatellite loci among these trout populations were 586 congruent with distinctions based on protein coding loci variation reported earlier by 587 Araguas et al. (2004). Local adaptation in salmonids occurs at several spatial scales 588 (from a few to thousands of kilometers), with local populations often manifesting a 589 fitness advantage over foreign populations (Fraser et al. 2011; Perrier et al. 2013). In 590 brown trout, selective processes have been detected at small spatial scales for loci 591 related to immune systems, *i.e.* MHC or TAP (Hansen et al. 2007; Jensen et al. 2008b; 592 Keller et al. 2011), but also at microsatellite loci linked to functional loci and QTLs

593	(Meier et al. 2011). Therefore, the high divergence (F_{ST}) observed between wild
594	Pyrenean populations could be related with local adaptation. In this sense, the
595	divergence observed among locations within each management unit is often as high as
596	values reported among wild locations and the current foreign stock, questioning whether
597	the choice of a single native source for each management unit would be a successful
598	management decision. Unfortunately, a supplementation program involving all
599	requested and necessary native stocks to preserve all local genetically differentiated
600	populations at the intra- and inter- basin levels currently appears unfeasible due to the
601	reduced infrastructure (two hatcheries), and high economic costs of maintaining several
602	native stocks.
603	
604	Selective domestication induced by culture conditions is often detected in hatchery
605	stocks (Araki and Schmid 2010). Putative diversifying selection between wild
606	populations and hatchery trout stocks (e.g. Hansen et al. 2010) can result in additional
607	risk due to reduced average fitness of reinforced wild populations, even at low fitness
608	differences between wild and hatchery fish (weak selection), facilitated for instance by
609	reiterated immigration of wild fish into captive stock (Ford 2002). Surprisingly,
610	releasing hatchery stocks phenotypically differentiated from wild populations might
611	result in less harmful effects because the phenotype divergence could be associated with
612	traits maladaptive to wild conditions, and hence strong selective pressures purging
613	released fish before the reproductive season (Baskett and Waples 2012; Baskett et al.
614	2013). In the study territory, the current hatchery stock is phenotypically divergent from
615	wild populations (Aparicio et al. 2005), and its foreign origin and long-time
616	maintenance in captive conditions might result in maladaptation to wild conditions.
617	Based on the simulation results of Baskett et al. (2013), such maladaptation could

justify the reduced estimates of hatchery introgression detected in Pyrenean trout
populations despite the long period of intensive releases (Sanz et al 2002, Aparicio et al
2005), and questions the suitability of replacing foreign stock by native. Nevertheless,
reduced impact of hatchery releases has been reported among North-European
populations phylogenetically close to source populations of our foreign stock (e.g.
Ruzzante et al. 2001).

625 *Conclusions: management prospectives*

626 Results of our simulations indicated that in wild populations comprised of an effective 627 population size of 100 individuals, genetic drift would result in significant changes in 628 the study basin gene pools during the next one hundred years. However, drift alone 629 might better conserve distinct populations among locations within management units. 630 Based on simulation predictions, an increase in effective population size to 1000 631 individuals decreased the likelihood of significant changes in the study basin gene 632 pools. In this case, within and among population changes were lower than those caused 633 by regional reinforcement policies. Such results suggested that habitat restoration to 634 insure large effective population sizes might be enough to protect native genetic 635 diversity. Sociological studies on German anglers indicated that limiting brown trout 636 management to improve or maintain good habitat quality would receive anglers' 637 support, primarily when catches were increased, and fishing experiences were positive 638 (Baer and Brinker 2010), but even then, a large proportion of anglers were not opposed 639 to supplementation practices (Arlinghaus and Mehner 2005). Therefore, avoiding 640 hatchery-releases might compromise angler support for further management measures. In the eastern Pyrenean rivers, a combination of genetic refuges to protect native trout 641 642 diversity in some stretches, and stocking practices in other river sections undergoing

643	intensive fishing efforts, has favoured restrictive measures in a per day bag and
644	increased minimum catchable size limits, and additional fishing river stretches
645	designated as catch-and-release areas (Araguas et al. 2009). In addition, the current
646	normative framework involving trout populations in the Spanish eastern Pyrenean
647	serves to support recreational fisheries, and anglers' societies are the key stakeholders
648	and one of the main lobbyists in decision-making on regulatory measures in the
649	Pyrenean river basin. Because of pending taxonomic revision, any distinct trout taxa
650	from the study region were not included in the most recent red list of European
651	freshwater fish (Freyhoff and Brooks 2011), limiting conservationists' arguments
652	against extensive hatchery trout releases and translocations.
653	
654	Often criticized due to the conservation risks on remnant biodiversity (Laikre et al.
655	2010), hatchery stock supplementation is maintained as a traditional fisheries practice,
656	because it is perceived as a prophylactic measure for human induced damage, including
657	fisheries itself, on wild populations (Arlinghaus et al. 2002). From a put-and-take fish
658	stocking point of view, which is maintained in some eastern Pyrenean river stretches, it
659	may be irrelevant which stocks, foreign or native, are used for release. In fact, current
660	foreign hatchery stocks are well-adapted to hatcheries, and hatchery personnel have
661	sufficient expertise to generate large output to enhance regional trout fisheries.
662	However, compared with maintaining supplementation from foreign stock,
663	supplementation from native stocks might serve as a much better balance between the
664	social benefits of angling and biological damage to native diversity in the regional river
665	basins. Together with measures that limit native releases to locations of intensive
666	fishing that preclude the survival of released fish before the spawning season, the
667	replacement of current foreign with native trout stocks provides an important

668	opportunity to promote the value of preserving local diversity among anglers, and with
669	the presently implemented genetic refuge policy, should be an additional step in the
670	albeit slow transition to a fisheries model focused on local self-sustaining trout
671	populations, and regional habitat management. Native stock development can stimulate
672	regional hatchery expertise and hatchery personnel to manage native fish, and facilitate
673	short-term supportive breeding programs to recover endangered native trout
674	populations.
675	
676	Acknowledgements
677	The Spanish MCYT (currently MINECO) research project REN-2003-05931/GLO and
678	the Universitat of Girona research budget ASIGN2012/01 provided support for this
679	study. RFC was FPI fellow of the MCYT. We thank Dr. Fred M. Utter for revisions and
680	editing of an early draft of this manuscript. Dr. Joanna Schultz from WSR scientific
681	editing services revised the manuscript. In addition, we appreciate the contribution of
682	five anonymous reviewers on earlier versions of the manuscript.
683	
684	References
685	Allendorf, F.W., and Ryman, N. 1987. Genetic management of hatchery stocks, in:
686	Ryman, N., Utter, F. (Eds.), Population genetics and Fishery management.
687	Washington Sea Grant Program, Univ. Washington Press, Seattle, pp 141-159.
688	Allendorf, F.W., Leary, R.F., Hitt, N.P., Knudsen, K.L., Lundquist, L.L., and Pruell, P.
689	2004. Intercrosses and the U.S. Endangered Species Act: Should Hybridized
690	Populations be Included as Westslope Cutthroat Trout? Conserv. Biol., 18,
691	1203-1213.

692	Almodovar, A., and Nicola, G.G. 1999. Effects of a small hydropower station upon
693	brown trout Salmo trutta L. in the River Hoz Seca (Tagus basin, Spain) one year
694	after regulation. Regul. Rivers, 15, 477-484.
695	Almodovar, A., and Nicola, G.G. 2004. Angling impact on conservation of Spanish
696	stream-dwelling brown trout Salmo trutta. Fish. Manag. Ecol., 11, 173-182.
697	Almodóvar, A., Nicola, G.G., Elvira, B., and García-Marín, J.L. 2006. Introgression
698	variability among Iberian Brown trout Evolutionary Significant Units: the
699	influence of local management and environmental features. Freshw. Biol., 51,
700	1175-1187.
701	Almodovar, A., Nicola, G.G., Ayllón, D., and Elvira, B. 2012. Global warming
702	threatens the persistence of Mediterranean brown trout. Glob. Change Biol., 18,
703	1549-1560.
704	Alonso, C., García de Jalón, D., Álvarez, J., and Gortázar, J. 2011. A large-scale
705	approach can help detect general processes driving the dynamics of brown trout
706	populations in extensive areas. Ecol. Freshw. Fish, 20, 449-460.
707	Aparicio, E., García-Berthou, E. Araguas, R.M., Martínez, P., and García-Marín, J.L.
708	2005. Body pigmentation pattern to assess introgression by hatchery stocks in
709	native Salmo trutta form Mediterranean streams. J. Fish Biol., 67, 931-949.
710	Apostolidis, A.P., Madeira, MJ., Hansen, M.M., and Machordom, A. 2008. Genetic
711	structure and demographic history of brown trout (Salmo trutta) populations
712	from the southern Balkans. Freshw. Biol., 53,1555-1566.
713	Araguas, R.M., Sanz, N., Pla, C., and García-Marín, J.L. 2004. Breakdown of the brown
714	trout evolutionary history due to hybridization between native and cultivated
715	fish. J. Fish Biol., 65(A), 28-37.

716	Araguas, R.M., Sanz, N., Fernández, R., Utter, F.M., Pla, C., and García-Marín, J.L.
717	2008. Genetic refuges for a self-sustained fishery: experience in wild brown
718	trout populations in the eastern Pyrenees. Ecol. Freshw. Fish, 17, 610-616.
719	Araguas, R.M., Sanz, N., Fernández, R., Utter, F.M., Pla, C., and García-Marín, J.L.
720	2009. Role of genetic Refuges in the Restoration of Native Gene pools of Brown
721	Trout. Conserv. Biol., 23, 871-878.
722	Araki, H., and Schmid, C. 2010. Is hatchery stocking a help or harm? Evidence,
723	limitations and future directions in ecological and genetic surveys. Aquaculture,
724	308 (Suppl. 1), S2-S11.
725	Araki, H., Barry A. Berejikian, B.A., Ford, M.J., and Blouin, M.S. 2008. Fitness of
726	hatchery-reared salmonids in the wild. Evol. Appl., 1, 342-355.
727	Arlinghaus, R., and Mehner, T. 2005. Determinants of management preferences of
728	recreational anglers in Germany: Habitat management versus fish stocking.
729	Limnologica, 35, 2-17.
730	Arlinghaus, R., Mehner, T., and Cowx, I.G. 2002. Reconciling traditional inland
731	fisheries management and sustainability in industrialized countries, with
732	emphasis on Europe. Fish Fish., 3, 261-316.
733	Arlinghaus, R., Cooke S.J., and Cowx I.G. 2010. Providing context to the global code
734	of practice for recreational fisheries. Fish. Manag. Ecol., 17, 146-156.
735	Ayllón, D., Almodóvar, A., Nicola, G.G., Parra, I., and Elvira B. 2012. A new
736	biological indicator to assess the ecological status of Mediterranean trout type
737	streams. Ecol. Indic., 20, 295-303.
738	Baer, J., and Brinker, A. 2010. The response of a brown trout stocks and perception of
739	anglers to cessation of brown trout stocking. Fish. Manag. Ecol., 17, 157-164.

740	Baer, J., Blasel, K., and Diekmann, M. 2007. Benefits of repeated stocking with adult,
741	hatchery-reared brown trout, Salmo trutta, to recreational fisheries? Fish.
742	Manag. Ecol., 14, 51-59.
743	Baskett, M.L., and Waples, R.S. 2012. Evaluating alternative startegies for minimizing
744	unintended fitness consequences of cultured individuals on wild populations.
745	Conserv. Biol., 27, 83-94.
746	Baskett, M.L., Burgess, S.C., and Waples, R.S. 2013. Assessing strategies to minimize
747	unintended fitness consequences of aquaculture on wild condotions. Evol. Appl.,
748	6, 1090-1108.
749	Berejikian, B.A., Johnson, T., Endicott, R.S., and Lee-Waltermire, J. 2008. Increases in
750	steelhead (Oncorhynchus mykiss) redd abundance resulting from two
751	conservation hatchery strategies in the Hamma Hamma River, Washington. Can.
752	J. Fish. Aquat. Sci., 65, 754-764.
753	Brown, C., and Day, R.L. 2002. The future of stock enhancements: lessons for hatchery
754	practice from conservation biology. Fish Fish., 3, 79-94.
755	Caudron, A., Champigneulle, A., Guyomard, R., and Largiadèr, C.R. 2011. Assessment
756	of three strategies practiced by fishery managers for restoring native brown trout
757	(Salmo trutta) populations in Northern French Alpine Streams. Ecol. Freshw.
758	Fish, 20, 478-491.
759	Caudron, A., Champigneulle, A., Vigier, L., Hamelet, V., and Guyomard, R. 2012.
760	Early effects of the strategies of creating a genetic refuge and direct
761	translocation for conserving and restoring populations of native brown trout.
762	Freshw. Biol., 57, 1702-1715
763	Christie, M.R., Marine, M.L., French, R.A., and Blouin, M.S. 2012. Genetic adaptation
764	to captivity can occur in a single generation. PNAS, 109, 238-242.

765	Cowx, I.G., and Gerdeaux, D. 2004. The effects of fisheries management practices on
766	freshwater ecosystems. Fish. Manag. Ecol., 11, 145-151.
767	Cowx, I.G., and Van Anrooy, R. 2010. Social, economic and ecological objectives of
768	inland comercial and recreational fisheries. Fish. Manag. Ecol., 18, 89-92.
769	Cowx, I.G., Arlinghaus, R., and Cooke, S.J. 2010. Harmonizing recreational fisheries
770	and conservation objectives for aquatic biodiversity in inland waters. J. Fish
771	Biol., 76, 2194-2215.
772	Dieringer, D., and Schlötterer, C. 2003. Microsatellite analyser (MSA): a platform
773	independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes, 3,
774	167-169.
775	Eldridge, W.H., Myers, J.M., and Naish, K.A. 2009. Long-term changes in the fine-
776	scale population structure of coho salmon populations (Oncorhynchus kisutch)
777	subject to extensive supportive breeding. Heredity, 103, 299-309.
778	Elliott, J.M. 1989. Wild brown trout Salmo trutta: an important national and
779	international resource. Freshw. Biol., 21, 1-5.
780	Evanno, G., Regnaut, S., and Goudet, J. 2005. Detecting the number of clusters of
781	individuals using the software structure: a simulation study. Mol. Ecol. 14,
782	2611–2620.
783	Excoffier, L., and Lischer, H.E. L. 2010. Arlequin suite ver 3.5: A new series of
784	programs to perform population genetics analyses under Linux and Windows.
785	Mol. Ecol. Resour., 10, 564-567.
786	FAO. 1995. Code of conduct for responsible fisheries. FAO Fisheries and Aquaculture
787	Department, FAO, Rome. 41pp. Available at:
788	http://www.fao.org/docrep/005/v9878e/v9878e00.HTM. [last accessed: 28-
789	Setember-2013]

790	FAO. 2008.	EIFAC Code of	Practice for	Recreational	Fisheries.	EIFAC	Occasional

- 791 Paper, 42. 45p.
- Ford, M.J. 2002. Selection in captivity during supportive breeding may reduce fitness in
- 793 the wild. Conserv. Biol., 16, 815-825.
- Fraser, D.J. 2008. How well can captive breeding programs conserve biodiversity? A
- review of salmonids. Evol. Appl., 1, 535–586.
- Fraser, D.J., Weir, L.K., Bernatchez, L., Hansen, M.M., and Taylor, E.B. 2011. Extent
- and scale of local adaptation in salmonid fishes: review and meta-analysis.
- 798 Heredity, 106, 404-420.
- 799 Freyhof, J., and Brooks, E. 2011. European Red List of Freshwater Fishes.
- 800 Luxembourg: Publications Office of the European Union. 60p. available at:
- 801 <u>http://data.iucn.org/dbtw-</u>
- 802 wpd/commande/downpdf.aspx?id=12069andurl=http://www.iucn.org/dbtw-

803 wpd/edocs/RL-4-015.pdf [last accessed: 28-January-2013]

- 804 García de Jalón, D., Montes, C., Barceló, E., Casado, C., and Menes, F. 1988. Effects of
- 805 hydroelectric scheme on fluvial ecosystems within the Spanish Pyrenees. Regul.
- 806 Rivers, 2, 479-491.
- 807 García de Jalón, D., Mayo, M., and Molles, M.C. 1996. Characterization of Spanish
- 808 Pyrenean stream habitat: Relationships between fish communities and their
 809 habitat. Regul. Rivers, 12, 305-316.
- 810 García-Marín, J.L., Sanz, N, and Pla, C. 1998. Proportions of native and introduced
- brown trout in adjacent fished and unfished Spanish rivers. Conserv. Biol. 12,313-319.
- 813 Gayanilo, F.C.Jr., Sparre, P., and Pauly, D. 2005. FAO-ICLARM Stock Assessment
- 814 Tools II (FiSAT II). Revised version. User's guide. FAO Computerized

- 815 Information Series (Fisheries).No.8, Revised version. Rome, FAO. 2005. 168 p.
- 816 [FISAT II available from: http://www.fao.org/fishery/topic/16072/en, last
- 817 accessed 30-Setember-2013]
- 818 Goudet, J. 1995. FSTAT Version 1.2: a computer program to calculate F-statistics. J.
- 819 Heredity 86: 485-486. [FSTAT 2.9.3.2 available from:
- 820 <u>http://www2.unil.ch/popgen/softwares/fstat.htm</u>, last accessed: 28-January-
- 821 2013]
- 822 Griffiths, A.M., Bright, D., and Stevens, J.R. 2009. Comparison of patterns of genetic
- 823 variability in wild and supportively bred stocks of brown trout, *Salmo trutta*.
- Fish. Manag. Ecol., 2009, 16, 514-519.
- Guillaume, F., and Rougemont, J. 2006. Nemo: an evolutionary and population genetics
 programming framework. Bioinformatics 22:2556-2557.
- Guo, S.W., and Thompson, E.A. 1992. Performing the exact test of Hardy-Weinberg
 proportions for multiple alleles. Biometrics, 48, 361-372.
- 829 Hari, R. E., Livingstone, D. M., Siber, R., Burkhardt-Holm, P., and Guttinger, H.
- 830 2006. Consequences of climatic change for water temperature and brown trout
- populations in Alpine rivers and streams. Glob. Change Biol., 12, 10-26.
- Hansen, M.M., Skaala, O., Jensen, L.F., Bekkevold, D., and Mensberg, K.L. 2007.
- 833 Gene flow, effective population size and selection at major histocompatibility
- complex genes: brown trout in the Hardanger Fjord, Norway. Mol. Ecol., 16,
- 835 1413-1425.
- 836 Hansen, M.M., Fraser, D.J., Meier, K., and Mensberg, K.L. 2009. Sixty years of
- 837 anthropogenic pressure: a spatio-temporal genetic analysis of brown trout
- populations subject to stocking and population declines. Mol. Ecol., 18, 2549-
- 839 2562.

840	Hansen, M.M., Meier, K., and Mensberg, K.L. 2010. Identifying footprints of selection
841	in stocked brown trout populations: a spatio-temporal approach. Mol. Ecol., 19,
842	1787-1800.
843	Hess, M.A., Rabe, C.D., Vogel, J.L., Stephenson, J., Nelson, D.D., and Narum, S.R.
844	2012. Supportive breeding boosts natural population abundance with minimal
845	negative impacts on fitness of wild population of Chinook salmon. Mol. Ecol.,
846	21, 5236-5250.
847	Hoban, S., Bertorelle, G, and Gaggiotti, E. 2012. Computer simulations: tools for
848	population and evolutionary genetics. Nature Review, Genetics, 13:110-122.
849	Jensen, L.F., Hansen, M.M., Pertoldi, C., Holdensgaard, G., Mensberg, KL. D., and
850	Loeschcke, V. 2008a. Local adaptation in brown trout early life-history traits:
851	implications for climate change adaptability. Proc. R. Soc. B, 275, 2859-2868
852	Jensen, L.F., Hansen, M.M., Mensberg, K.L., and Loeschcke, V. 2008b. Spatially and
853	temporally fluctuating selection at non-MHC immune genes: evidence from
854	TAP polymorphism in populations of brown trout (Salmo trutta, L.). Heredity,
855	100, 79-81.
856	Jug, T., Berrebi, P., and Snoj, A. 2005 Distribution of non-native trout in Slovenia and
857	their introgression with native trout populations as observed through
858	microsatellite DNA analysis. Biol. Conserv., 123, 381-388.
859	Keller, I., Taverna, A., and Seehausen, O. 2011. Evidence of neutral and adaptive
860	genetic divergence between European trout populations sampled along
861	altitudinal gradients. Mol. Ecol., 20, 1888-1904.
862	Knouft, J.H., and Spotila, J.R. 2002. Assessment of movements of resident stream
863	brown trout, Salmo trutta L., among contiguous sections of stream. Ecol.
864	Freshw. Fish, 11, 85-91.

- Kottelat, M., and Freyhof, J, 2007. Handbook of European freshwater fishes.
- 866 Publications Kottelat, Cornol, Switzerland. 646 p.
- 867 Laikre, L., Schwartz, M.K., Waples, R.S., Ryman, N., and The GeM Working Group.
- 868 2010. Compromising genetic diversity in the wild: unmonitored large-scale
- release of plants and animals. Trends Ecol. Evol., 25, 520-529.
- 870 Laikre, L., and Ryman, N. 1996. Effects on intraspecific biodiversity from harvesting
- and enhancing natural populations. AMBIO 25, 504 509.
- 872 Lelek, A. 1980. Threatened freshwater fishes in Europe. Nature and Environment Series
- No. 18. Council of Europe, Strasbourg.269pp.
- 874 Lewin, W.-C., Arlinghaus, R., and Mehner, T. 2006. Documented and potential
- biological impacts of recreational fishing: Insights for management andconservation. Rev. Fish. Sci., 14,305-367.
- 877 Lobón-Cerviá, J., Montañés, C., and de Sostoa, A. 1986. Reproductive ecology and
- growth of a population of brown trout (*Salmo trutta* L.) in an aquifer-fed stream
 of Old Castile. Hydrobiologia, 135, 81-94.
- 880 Lobón-Cerviá, J., Utrilla, C., Rincón, P., and Amezcua, F. 1997. Environmentally
- 881 induced spatio-temporal variations in the fecundity of brown trout *Salmo trutta*
- L.: trade-offs between egg size and number. Freshw. Biol., 38, 277–288.
- 883 Marzano, F.N., Corradi, N., Papa, R., Tagliavini J., and Gandolfi, G. 2003. Molecular
- 884 Evidence for Introgression and Loss of Genetic Variability in *Salmo (trutta)*
- 885 *macrostigma* as a Result of Massive Restocking of Apennine Populations
- 886 (Northern and Central Italy). Environ. Biol. Fish., 68, 349-356.
- 887 Meier, K., Hansen, M.M., Bekkevold, D., Skaala, Ø., and Mensberg, K.-L. D. 2011. An
- assessment of the spatial scale of local adaptation in brown trout (*Salmo trutta*
- L.): footprints of selection at microsatellite DNA loci. Hereity, 106, 488-499.

890	Mills, L.S., and Allendorf, F.W. 1996. The One-Migrant-per-Generation Rule in
891	Conservation and Management. Conserv. Biol., 10, 1509-1518.
892	Naish, K.A., Taylor, J.E. III, Levin, P.S., Quinn, T.P., Winton, J.R., Huppert, D., and
893	Hilborn, R. 2007. An Evaluation of the Effects of Conservation and Fishery
894	Enhancement Hatcheries on Wild Populations of Salmon. Adv. Mar. Biol., 53,
895	61-194.
896	Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
897	271pp.
898	Nicola, G., Almodóvar, A., Jonsson, B., and Elvira B. 2008. Recruitment variability of
899	resident brown trout in peripheral populations from southern Europe. Freshw.
900	Biol., 53, 2364-2374.
901	Nicola, G.G., Almodóvar, A., and Elvira, E. 2009. Influence of hydrologic attributes on
902	brown trout recruitment in low-latitude range margins. Oecologia, 160, 515-524.
903	Nielsen, E.E., Bach, L.A., and Kotlicki, P. 2006. HYBRIDLAB (version 1.0): a
904	program for generating simulated hybrids from population samples. Mol. Ecol.
905	Notes, 6, 971–973.
906	Parra, I., Almodóvar, A., Nicola, G.G., and Elvira, B. 2009. Latitudinal and altitudinal
907	growth pattern of brown trout Salmo trutta at different spatial and temporal
908	scales. J. Fish Biol., 74, 2355-2373.
909	Perrier, C., Baglinière, JL., and Evanno, G. 2013. Understanding admixture patterns in
910	supplemented populations: a case study combining molecular analyses and
911	temporally explicit simulations in Atlantic salmon. Evol Appl., 6, 218–230.
912	Poteaux, C., Bonhomme, F., and Berrebi, P. 1999. Microsatellite polymorphism and
913	genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.).
914	Heredity, 82, 645-653.

- 915 Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of population structure
- 916 using multilocus genotype data. Genetics, 155, 945-959.
- 917 Raymond, M., and Rousset, F. 1995. GENEPOP (ver.3.3): a population genetics
- 918 software for exact test and ecumenism. J. Hered., 86, 248-249.
- 919 Rhymer, J.M., and Simberloff, D. 1996. Extinction by Hybridization and introgression.
- 920 Annu. Rev. Ecol. Syst., 27, 83-109
- 921 Ryman, N., and Laikre, L. 1991. Effects of Supportive Breeding on the Genetically
- 922 Effective Population Size. Conserv. Biol., 5, 325-329.
- 923 Rocaspana, R., Cia, I., Arévalo, J. A., Escué, A., Pou, J., and Pou, C. 2006. Estudi de
- 924 la mida mitjana de la truita en les zones d'alta muntanya de Catalunya.
- 925 Departament de Medi Ambient i Habitatge, Generalitat de Catalunya.
- 926 http://www20.gencat.cat/docs/dmah/Home/Ambits%20dactuacio/Medi%20natur
- 927 <u>al/Caca%20i%20pesca%20continental/Pesca%20continental/Estudis%20i%20di</u>

928 <u>agnosis/43 138255.pdf</u> [last accessed: 28-January-2013]

- 929 Ruzzante, D. E., Hansen, M. M., and Meldrup, D. 2001. Distribution of individual
- 930 inbreeding coefficients, relatedness and influence of stocking on native
- 931 anadromous brown trout (*Salmo trutta*) population structure. Mol. Ecol., 10,
- 932 2107-2128.
- 933 Sanz, N., García-Marín, J.L., and Pla, C. 2002. Managing fish populations under mosaic
- 934 relationships. The case of brown trout (*Salmo trutta*) in peripheral
- 935 Mediterrranean populations. Conserv. Genet., 3, 385-400.
- 936 Sanz, N., Cortey, M., Pla, C., and García-Marín, J.L. 2006. Hatchery introgression blurs
- 937 ancient hybridization between brown trout (*Salmo trutta*) lineages as indicated
- by complementary allozymes and mtDNA markers. Biol. Conserv., 130, 278-
- 939 289.

940	Sanz, N., Araguas, R.M., Fernández, R., Vera, M., and García-Marín, J.L. 2009.
941	Efficiency of markers and methods for detecting hybrids and introgression in
942	stocked populations. Conserv. Genet., 10, 225-236.
943	Satake, A., and Araki, H. 2012. Stocking of captive-bred fish can cause long-term
944	population decline and gene pool replacement: predictions from a population
945	dynamics model incorporating density-dependent mortality. Theor. Ecol., 5,
946	283-296.
947	Stelkens, B., Pompini, M., and Wedekind, C. 2012. Testing for local adaptation in
948	brown trout using reciprocal transplants. BMC Evol. Biol. 12, 247.
949	Van Doornik, D.M., Berejikian, B.A., Campbell, L.A., and Volk, E.C. 2010. The effect
950	of a supplementation program on the genetic and life history characteristics of an
951	Oncorhynchus mykiss population. Can. J. Fish. Aquat. Sci., 67, 1449-1458.
952	Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., and Shipley, P. 2004. MICRO-
953	CHECKER: software for identifying and correcting genotyping errors in
954	microsatellite data. Mol. Ecol. Notes, 4, 535-538
955	Van Poorten, B. T., Arlinghaus, R., Daedlow, K., and Haertel-Borer, S.S. 2011. Social-
956	ecological interactions, management panaceas, and the future of wild fish
957	populations. PNAS, 108, 12554-12559.
958	Vera, M., Sanz, N., Hansen, M.M., Almodóvar, A., and García-Marín, JL. 2010.
959	Population and family structure of brown trout, Salmo trutta, in a Mediterranean
960	stream. Mar. Freshw. Res., 61, 672-681.
961	Vera, M., Garcia-Marin, J.L., Martinez, P., Araguas, R.M., and Bouza, C. 2013.
962	Identification and conservation of remnant genetic resources of brown trout in
963	relict populations from Western Mediterranean streams. Hydrobiologia, 707, 29-
964	45.

- 965 Vøllestad, L.A., Serbezov, D., Bass, A., Bernatchez, L., Olsen, E.M., and Taugbøl, A.
- 966 2012. Small-scale dispersal and population structure in stream-living brown
- trout (*Salmo trutta*) inferred by mark–recapture, pedigree reconstruction, and
 population genetics. Can. J. Fish. Aquat. Sci., 69, 1513–1524.
- Wang, J., and Ryman, N. 2001. Genetic effects of multiple generations of supportive
 breeding. Conserv. Biol., 15, 1619–1631.
- Waples, R.S., and Do, C. 2008. LDNE: a program for estimating effective population
 size from data on linkage disequilibrium. Mol. Ecol. Resour., 8, 753-756.
- 973 Waples, R.S., and Do, C. 2010. Linkage disequilibrium estimates of contemporary Ne
- 974 using highly variable genetic markers: a largely untapped resource for applied
 975 conservation and evolution. Evol. Appl., 3, 244-262.
- 976 Waples, R.S., and England, P.R. 2011. Estimating Contemporary Effective Population
- 977 Size on the Basis of Linkage Disequilibrium in the Face of Migration. Genetics,
- 978 189, 633-644.
- 979 Weir, B.S., and Cockerham, C.C. 1984. Estimating F-statistics for the analysis of
- 980 population structure. Evolution, 38, 1358-1370.
- 981

982	Figure Captions
983	
984	
985	Fig. 1. Geographic locations of the brown trout collections and the two hatcheries
986	(HAT) in the study region. Location codes are defined in Table 1.
987	
988	Fig. 2. Current individual sample relationships indicated by STRUCTURE analysis
989	considering 2, 3, 4 and 5 genetic groups. Each individual is represented by a vertical bar
990	partitioned into segments according to the proportion of the genome assigned to each of
991	the identified clusters. Location codes are defined in Table 1.
992	
993	Fig. 3. Multidimensional scaling (MDS) plots of population genetic structure from
994	captured collections (2006 collections), and from simulations without (drift), and with
995	supplementation by current foreign or native stocks. Circles represent Noguera Pallaresa
996	locations, triangles Noguera Ribagorzana, and Coastal management unit is represented
997	by squares. Location codes are defined in Table 1.

Table 1. Genetic diversity in study brown trout locations. *N*: sample size, *Adult*: percentage of fish older than 2+ at time of capture (class 0+ excluded), A_R : Allelic richness per population, H_O : mean direct count heterozygosity, H_E : mean unbiased expected heterozygosity, *q*: estimate average proportion of foreign hatchery stock ancestry, *K*: number of genetically homogenous units in the sample, *Ne*: estimated effective population size (CI: Jackknife on loci 95% Confidence Interval), *GR*: Genetic refuge area. Very large effective sizes are indicated when negative *Ne* was obtained from LDNe calculations (Waples and Do 2010). In bold, locations used as source of the native stocks (see text)

River	Location	stream	N	Adult (>2+)	A_R	H_0	H_E	q	K	Ne (CI)	GR
N. Pallaresa	Palomera (PL)	Vallfarrera	55	34.7	6.51	0.654	0.664	0.004	1	281.0 (99.6 – α)	Yes
	Ermita (ER)	Vallfarrera	46	36.4	6.73	0.683	0.663	0.003	1	293.7 (88.7 – α)	Yes
	Tor (TOR)	Tor	43	8.5	4.89	0.380	0.421	0.034	2	27.5 (10.4 -152.2)	No
	Ainet (AC)	Cardos	71	35.0	7.31	0.665	0.666	0.018	1	Very large (243.9 – α)	No
	Manyanet (MY)	Flamisell	104	8.5	4.86	0.577	0.594	0.007	1	227.1 (109.4 – 1877.4)	Yes
	Filià (FI)	Flamisell	46	35.0	8.40	0.744	0.769	0.300	2	18.7 (15.8 – 22.2)	Yes
N. Ribagorzana	Conangles (CO)	Ribagorçana	45	20.5	5.52	0.457	0.484	0.045	1	31.0 (12.8 - 149.1)	Yes
	Cavallers (CV)	Noguera Tor	55	34.5	5.18	0.513	0.536	0.020	1	47.0 (27.3 – 101.8)	Yes
	Nicolau (NI)	St. Nicolau	43	13.5	5.56	0.530	0.555	0.040	1	$107.4 (35.6 - \alpha)$	No
	Erta (ERT)	Erta	72	14.9	3.58	0.431	0.455	0.003	1	66.7 (20.7 – α)	Yes
Ter	Vallter (TE)	Ter	65	56.9	3.23	0.379	0.393	0.002	1	61.2 (24.0 - 877.7)	Yes
	Núria (NU)	Freser	155	10.1	4.67	0.489	0.529	0.016	2	53.0 (27.0 - 118.5)	Yes
Llobregat	Riutort (RT)	Llobregat	56	29.1	6.22	0.623	0.630	0.300	2	30.6 (19.2 - 55.3)	No
Hatchery	HAT1	Foreign stock	96	-	7.78	0.666	0.682	-	1	66.8 (52.7 - 87.4)	-

Table 2. Pairwise genetic differentiation (F_{ST} values, Weir and Cockerham, 1984) between brown trout captured in study locations and the current foreign stock. Location code as in Table 1. * P < 0.05

	PL	ER	TOR	AC	MY	FI	CO	CV	NI	ERT	TE	NU	RT
ER	0.003												
TOR	0.192*	0.175*											
AC	0.032*	0.025*	0.183*										
MY	0.190*	0.187*	0.329*	0.171*									
FI	0.121*	0.122*	0.266*	0.108*	0.158*								
CO	0.294*	0.281*	0.425*	0.253*	0.285*	0.247*							
CV	0.193*	0.202*	0.273*	0.226*	0.312*	0.204*	0.334*						
NI	0.203*	0.198*	0.392*	0.221*	0.250*	0.188*	0.331*	0.275*					
ERT	0.299*	0.324*	0.463*	0.310*	0.186*	0.264*	0.454*	0.405*	0.390*				
TE	0.298*	0.323*	0.419*	0.335*	0.379*	0.348*	0.475*	0.379*	0.437*	0.421*			
NU	0.217*	0.199*	0.308*	0.206*	0.291*	0.261*	0.378*	0.329*	0.319*	0.409*	0.354*		
RT	0.260*	0.264*	0.397*	0.259*	0.305*	0.173*	0.364*	0.329*	0.344*	0.288*	0.391*	0.353*	
Foreign stock	0.275*	0.278*	0.390*	0.261*	0.309*	0.116*	0.317*	0.297*	0.298*	0.377*	0.426*	0.366*	0.190*

Table 3. Gene diversity analyses and population structure in the study region using current genotypes, or simulated after 100 generations in scenarios without (Drift), and with supplementation by native stocks, or foreign stock. A_R : Average allelic richness. Total gene diversity (H_T) was partitioned in diversity within locations (H_S) and differentiation between locations (G_{ST}). The per cent of population differentiation assigned to divergence among samples within (*SC*), and among (*CT*) hydrological management units was estimated according to AMOVA analyses. N: effective population size used in simulations; t: indicated accumulated simulated generations. * Significant (P < 0.05) comparison relative to generation 0 (G0) values in gene diversity analysis.

		Gene diversity		Population structure		
	A_R	H_T	H_S	G_{ST}	SC (%)	CT (%)
CURRENT						
All populations	5.59	0.787	0.566	0.281	86.14	13.86
Pallaresa basin	6.45	0.745	0.629	0.160	76.65	23.35
Ribagorzana basin	4.96	0.800	0.508	0.376	64.95	35.05
Only stock sources	5.16	0.797	0.513	0.357	-	-
SIMULATIONS						
G0	5.64	0.787	0.560	0.289	88,94	11.06
DRIFT						
N=50, t=100	1.59*	0.778	0.196*	0.749*	99.99	0.01
N=100, t=100	2.31*	0.785	0.348*	0.564*	93.67	6.33
N=1000, t=100	4.27*	0.789	0.521	0.340	87.08	12.92
NATIVE STOCKS						
N=50, t=100	3.23*	0.735	0.415*	0.435*	55.55	44.44
N=100, t=10	5.23	0.787	0.560	0.289	86.58	13.41
t=25	4.83	0.773	0.554	0.283	75.16	24.84
t=50	4.58*	0.769	0.541	0.297	64.50	35.49
t=75	4.33*	0.767	0.532	0.306	60.38	39.62
t=100	3.96*	0.760	0.506	0.334	57.86	42.14
N=1000, t=100	5.51	0.758	0.599	0.209	21.53	78.47
FOREIGN STOCK						
N=50, t=100	4.05*	0.779	0.533	0.315	98.95	1.05
N=100, t=10	6.41	0.808	0.593	0.267	92.11	7.89
t=25	6.08	0.813	0.612	0.247	92.01	7.99
t=100	5.32	0.782	0.623	0.216	97.06	2.94
N=1000, t=100	7.75*	0.794	0.747*	0.060*	100.00	0.00

Canadian Journal of Fisheries and Aquatic Sciences

Table 4. Diversity levels in each location and stock at simulated Generations 0 and 100, in scenarios without (drift), and with supplementation by native stocks or by a foreign stock. H_E : expected heterozygosis (A_R , Average allele richness). F_{ST} : estimated genetic divergence between simulated Generation 0 and 100 at each location and stock. In bold, source location for each simulated native stocks. Effective population sizes of 100 fish for wild locations and 1000 fish for stocks. *P < 0.05.

		H_E	F _{ST}				
			GEN 100			0-100	
	GEN 0	Drift	Native	Foreign	Drift	Native	Foreign
Noguera Pallaresa							
Palomera	0.654 (6.67)	0.312 (2.44)	0.565 (4.44)	0.606 (5.44)	0.223*	0.136*	0.275*
Ermita	0.646 (6.56)	0.402 (2.78)	0.534 (4.22)	0.656 (5.67)	0.170*	0.081*	0.229*
Tor	0.413 (4.67)	0.299 (1.78)	0.471 (4.00)	0.618 (5.44)	0.226*	0.185*	0.267*
Ainet	0.642 (7.78)	0.480 (2.67)	0.447 (4.33)	0.629 (5.44)	0.220*	0.129*	0.146*
Manyanet	0.591(5.00)	0.382 (2.67)	0.598 (5.22)	0.623 (5.44)	0.116*	0.132*	0.236*
Filià	0.761 (8.22)	0.378 (2.89)	0.592 (5.00)	0.597 (5.33)	0.230*	0.135*	0.142*
Noguera Ribagorzana			6				
Conangles	0.468 (5.11)	0.269 (2.00)	0.434 (3.56)	0.641 (5.33)	0.140*	0.057*	0.257*
Cavallers	0.541 (5.22)	0.394 (2.33)	0.549 (4.22)	0.653 (5.67)	0.164*	0.149*	0.151*
Nicolau	0.558 (5.56)	0.261 (2.00)	0.519 (3.89)	0.588 (5.33)	0.220*	0.295*	0.265*
Erta	0.451 (3.78)	0.307 (1.78)	0.541 (3.78)	0.574 (4.56)	0.203*	0.277*	0.251*
Coastal Basins							
Vallter	0.392 (3.00)	0.225 (1.67)	0.284 (2.67)	0.667 (5.44)	0.192*	0.140*	0.249*
Nuria	0.537 (5.67)	0.463 (2.67)	0.552 (2.89)	0.587 (5.11)	0.202*	0.166*	0.256*
Riutort	0.629 (6.11)	0.349 (2.44)	0.496 (3.22)	0.665 (4.89)	0.181*	0.253*	0.163*
Simulated Stocks							
Pallaresa basin	0.653 (6.78)	-	0.631 (5.50)	-	-	0.024*	-
Ribagorzana basin	0.480 (5.56)	-	0.443 (3.78)	-	-	0.045*	-
Coastal basins	0.392 (3.33)	-	0.355 (3.00)	-	-	0.021*	-
Foreign stock	0.679 (7.78)	-	-	0.638 (6.22)	-	-	0.031*

Table 5. Estimate ancestries in each populations after 100 generations in scenarios without (Drift) and with supplementation with native stocks, and Ne of 100 fish. Np: average remaining ancestry of the local gene pool; Ss: average ancestry of the simulated native stock. In each basin, location in bold was the source of the native stock.

	Drift		Suppleme	entation
Basin/Location	Np	Ss	Np	Ss
Noguera Pallaresa				
Palomera	0.983	0.957	0.890	0.934
Ermita	0.976	0.957	0.975	0.953
Tor	0.950	0.867	0.778	0.926
Ainet	0.795	0.675	0.862	0.961
Manyanet	0.966	0.580	0.653	0.781
Filià	0.966	0.197	0.845	0.675
Noguera Ribagorzana		0.		
Conangles	0.993	0.927	0.981	0.905
Cavallers	0.895	0.407	0.675	0.635
Nicolau	0.935	0.227	0.431	0.571
Erta	0.956	0.131	0.397	0.512
Coastal basins				
Vallter	0.989	0.961	0.986	0.959
Nuria	0.911	0.624	0.927	0.705
Riutort	0.940	0.127	0.429	0.668

Fig. 1. Geographic locations of the brown trout collections and the two hatcheries (HAT) in the study region. Location codes are defined in Table 1. $254 \times 190 \text{ mm}$ (96 x 96 DPI)

Fig. 2. Current individual sample relationships indicated by STRUCTURE analysis considering 2, 3, 4 and 5 genetic groups. Each individual is represented by a vertical bar partitioned into segments according to the proportion of the genome assigned to each of the identified clusters. Location codes are defined in Table 1. $254 \times 190 \text{ mm}$ (96 x 96 DPI)

Multidimensional scaling (MDS) plots of population genetic structure from captured collections (2006 collections), and from simulations without (drift), and with supplementation by current exogenous or native stocks. Squares represent Coastal management unit, circles Noguera Pallaresa, and Noguera Ribagorçana is represented by triangles. Locality codes are defined in Table 1. 190x254mm (96 x 96 DPI)