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Abstract

A key parameter of many transformations when heatea constant rate is the peak
temperature, i.e., the temperature at which thestommation rate is at its maximum.

The most universal approach to determining pealpésature for thermally activated

transformations is the Kissinger equation. In eper we solve Kissinger equation to
deduce the exact dependence of the peak temperaturthe heating rate. This

analytical solution is based on the LambéHfunction. In addition, an approximate

solution is derived that is used to infer generadpprties of thermally activated

processes and to obtain a test to check the wabdliKissinger method.

Keywords: Kissinger equation, Kinetics, Peak temperaturen-i¢othermal, Lambert

function, thermally activated transformation, camétheating rate.



1. Introduction

In thermally activated and homogeneous transfoonatithe rate of change of a
substance can be described as a function of thpeterture and its state, and that the
system state is a function of a single paramelsr:degree of transformation, (0<
a<1). Under this assumption, and supposing thatrtresformation is ruled by a single
mechanism, the transformation rate is described lajfferential equation where the
contribution of the temperature andnay be factorized [1,2]:

da _
o f(a)k(T), 1)

wheret is time, T is the temperaturd(T) is the rate constant aifi@) is the conversion
function for the particular transformation mechamisBesides, in many thermally
activated solid state transformatick{3) is described by the Arrhenius dependence [3—
6]:

_ _E
K(T) = Aexp{ RT) )

whereA is the pre-exponential terrg,is the activation energy amlis the universal gas
constant. When the temperature is raised at a aonsite f = dT/dt, Eqg. 1 still holds
provided that the transformation rate does not deépen the thermal history. Thus,
under continuous heating conditions, the explieppehdence on time of Eq. 1 can be
eliminated:

da _ 1

—=—k(T)f (a) . 3

i B (M) O (a) 3)
From Eg. 3 one can easily derive tKessinger equation [7] (see appendix A) that
relates the peak temperatufg, with the kinetic parameters and heating rate:

gl

where f'(a,, )= df /dai___ anday is the degree of transformationTat.

Eg. 4 has been used to determine the activatiorggrfer a large variety of
transformations [8-15]. Kissinger method relies the determination of the peak

temperaturely; from experiments carried at different heating sgte The activation

energy is obtained from a linear fit of the pln(,é’i /Tj,i) versus ITy;. Although Eqg. 4



is exact, the Kissinger method is approximate beeatiassumes that the second term
of the right hand side does not depend on the rigeatite, 5. Kissinger originally

derived his equation for a first-order reaction this casef '(a,,) =-1 and its kinetic
method is exact. For most kinetic modeﬂS(aM) is approximately constant provided
that E/RT,, is large enough [15-20] (see appendix A). In R¢i€§-18,21,22] the
values ofay and f'(a,,) are given, and for many reaction modgle,, )=-1. For

most kinetic models the percent error in the calioh of the activation energy is below

2% if E/RT, >10 [23] (a review of the literature reveals that, fonost
transformations,E/RT,, > 1(24]). Typically the activation energy is around eV
(145 kJ/mol); thus, for peak temperatures aroun0 60 E/RT,, ~30, and for
Tw~1700 K, E/RT,, ~10. For smaller values ofE/RT,, other temperature

dependencies may emerge due to the weak thernmehtaant and, therefore, Eqgs. 1-4
must be applied with caution.

The Kissinger method has received more than faougand citations [25]. The
reason for this success are the simplicity of tlueleh its relative independence of the
reaction mechanism [23,26] and its robustness. iBhiecause the strong temperature
dependence of the rate constant ensures a retlatdemination of the activation energy
from Eq. 4. The validity of Eq. 4, and thereforattbf Kissinger method, is not limited
by its accuracy but rather to the ability of E(3 16 describe the actual kinetics. Recent
papers [10,26—28] reveal that the Kissinger metisoerroneously applied to systems
that are not governed by Egs. 1-3. The log scalelved in the Kissinger plot smoothes
out the kinetic data. Consequently, linear ploesabtained even though Eqgs. 1-3 do not
describe the actual kinetics. Thus, validity of $figjer method cannot be judged from
the goodness of the linear fit. [29].

The Kissinger method fails when multiple mechanismesinvolved [31-34], for
heterogeneous systems [35], for transformationgewtie activation energy depends on
a (such as structural relaxation [27,36,37]) or toansformations depending on
parameters other thanandT (such as solid-gas reactions that depend on ta ¢as
pressure [10,16,38]). To deal with these complestesys isoconversional methods have



been developed that, in addition and within themiaork of the isoconversional
hypothesis [39], are exact or significantly morewaate [10,11,40-43]

In general, the Kissinger method also fails foehegeneous systems. However,
in some relevant cases such as crystallization rmbrghous materials, Egs. 1-3
approximately hold and it provides a reliable deieation of the activation energy
[8,28,44]. Since the Kissinger method assumes atanhtemperature rise it cannot be
directly applied to constant cooling measuremef€45]. Similarly, some thermally
activated processes such as glass crystallizatiomett crystallization do not follow an
Arrhenius behavior. In these circumstances the odkethay be modified [21,26,46]. In
particular, it has been numerically shown thatrivvides reliable results [21] for a
Vogel-Fulcher temperature dependence [47] but itsfan the case of melt
crystallization [21,28]. Finally, thermal gradientslated to heat propagation trough the
sample [48,49] or to the heat evolved from the darff0,51], pose difficulties to the
correct determination of the peak temperature.

As far as we know, no exact analytical solutioreqgf 4 for the peak temperature
has been published. Knowledge of the peak temperat important for both
experimental and theoretical purposes. Besidesngaan accurate solution, it is also
useful in reducing the computation time required fiomerical simulations. In this
paper we solve Eq. 4 and we provide analyticaltsmig with sufficient accuracy for
experimental, theoretical and numerical purposesllly, the analytical solution is used
to disclose some general properties of thermaltiaed processes and to develop a

test to check the validity of the Kissinger method.

2. Peak temperature: solution of the Kissinger equation

Eq. 4 can be expressed in terms of the reducedhsion energyx,, = E/RT,, ,
47 = x; e, (5)
wherez contains all the system parameters:

-1 [_EAf(a, ©)
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Our goal is to determingy as a function ot xu (2). If we take the square root of both

sides of Eq. 5 we obtain,
z=W(z)e"? (7)
whereW = 1x,, . Eq. 7 turns out to be the definition of the tieerslental Lamben\V-

function [52]. LambertW-function has two branches: the principal ok, which
corresponds toM2)>0, and the negative brandh’;. The solution of the Kissinger
equation is restricted td becausex,, = E/RT,, >0. Wy is a single-valued function

that monotonically increases withThus the peak temperature is given by

1 [ EAf'(a, J @)

E
=Xy, =2W,(2) =2W,| = |-
RTM M O() 0(2 Rﬂ

It is worth recalling that Eq. 8 is exact, no apgneation has been used so far.
2.1 Analytical solution for experimental and theoretical purposes

There are several approximations to the Lambéfunction [53,54]. As we
discussed in the introductiory,>10 and typicallyxy is around 20 or 30; the related
values are 742, 2.2x10and 4.9x1Q0 Thus, we are interested in an asymptotic

expansion for large values of In particular, the solutiohV, =In(z/In(z/--- )Fan be
used to obtain a sequence of approximate analgatations [53,54],

Wt = 'n(vxj“j’ WP = In(2) (9)

0

For xyw>10 (>742), the maximum relative errors @, and W are 5.6% and 2.1%,

respectively. This error is reduced to 1.1% and%h2espectively foxy>20. In Ref.
[24] the first term of this sequence is also preubas a solution that takes as an initial
term a value oky inside the interval of interest.

In Fig. 1 we have plotted the exact solution, EgfoB a parameter range that
corresponds to 10«y<40. The nearly linear relationship betwesp and Ing) is
noteworthy. To take advantage of this property, lwea’e approximated the exact
solution by its first order series expansion irgJrground a reference peak temperature
Twm o related to a heating rafie (see appendix B),



XM :X0+2-):0X0Inlﬁ80. (10)

where x, = E/RT,, ,. From the second term of the series expansiomaneevaluate the

relative percent error of the approximate solutieg, 10, (see appendix B),

B\
In=2 | x100 11
(”ﬁj ()

e% =
T (24 %)

For instance, if we assume thfaspans 3 decades (say from 0.1 to 100 K/min)/ans

a central value (say 3 K/min), the(ln ,6’0/,6’)2 =12 and the percent relative error for

xw=20 is around 0.1%. In the inset of Fig. 1 we hpiaited €% as a function oky
assuming thaf spans 3 decades. One can state that the inacsiadeEq. 10 are well
below 1%, i.e., they are irrelevant in practicahations provided thag,>10.

The reader may think that Eq. 10 is not really &utsin of the Kissinger
equation deliveringqy (or Ty) as a function of the system paramet&ésA, g and
f'(am), for two reasons: a) these parameters do notaampeplicitly and b) Eqg. 10 can
only be applied if a particular solutiofio( Xo) is already known. However, a particular
solution can be directly obtained by introducixg into the Kissinger Eq. 5,

472 = x2€*, and solving Eq. 6 to obtajfy. Thus, we can express Eg. 10 as a function

of z,

- 2% 02
xM—xO+2+X0InZO. (12)

In Fig 1 we have plotted Eqg. 12 wig=20 together with the exact solution for 10<

xv<40. One can verify that Eq. 12, and therefore Hgj. provide a quite accurate
solution even forxy values significantly different thar,. Hence, the choice of the
reference value is not critical at all. Besides asdve will see in Section 3, a solution
in terms of 5, Eq. 10, is more useful to understand several gemmaperties of
thermally activated processes.

2.2 Analytical solution for numerical purposes



In this section we are looking for an analyticalusion with accuracy of the

order of double-precision floating-point numbers,,iaccuracy of the order of 10or
better. Fomxy>10, the solution’ achieve this accuracy for22. Taking into account
that in generaky>20,n=16 suffices to achieve this accuracy.

A less time-consuming computing-time alternativangsists of replacing the

solutionW, =In(z/In(z/---)) by its doubly-infinite expansion [53]:

| _ e b o Ly (2+L)  (6-9L+2L)
W =L, LﬁémZ:l( D Ck,ngﬁk =L, L1+LO+L1 212 +L 6.7 +
‘L (-12+36L, —422L§ +3L) L (60—-300L, +350|_fs—125|_§ +1205) ,
1213 60L;
(13)

where L, =In(z ), L, =In(L,) andcm is a positive Stirling number of the first kindorF

instance, fom+k= 16 the accuracy is 4.5x1band 1.1x18° for xy>10 andxy>20,

respectively.
3. Properties of thermally activated processes

In this section we will apply the analytical sobrs derived above to infer some
properties of thermally activated processes. Itiq@dar, we analyze the dependence of

the peak temperature, peak width and signal intensithe heating rate.
3.1 Dependence of the peak temperature on the heating rate

The dependence of the peak temperature on thenbeatie may be directly derived

from the approximate solution Eq. 10:

1_ X R 1 X R
== —I e —1 14
T, 2+><0En’8+[TM,O+2+x0En'B°J (14)

Therefore a plot of Ti versus I must deliver a straight line. We have
checked the latter prediction against the experialeand theoretical curves of the
thermal decomposition of CaG@see Fig. 2). The experimental details are giveref.

[30]. According to ref. [30], the decomposition@aCQ is approximately described by



an-reaction model,f (a) = L-a)", with n=0.42,E=195 kJ/mol and lA=7.14 (A in §
Y. In Fig 3 we have plotted Ty, versus I for the experimental and theoretical curves
shown in Fig. 2 together with the predicted dependeof Eq. 14 taking as reference
So=10 K/min andTy¢=1032 K §&=22.73). The agreement between numerical and
experimental data with Eq. 14 is remarkable. Nittat the straight line in Fig. 3 is not a
linear fit but the predicted dependence accordimget). 14 and using the kinetic
parameters derived from the Kissinger method (tb@il$ of the kinetic analysis are
given in Ref. [30]).

From Eq. 14 one can disclose some general trehtlsecthermally activated
reactions. For instance, one can verify that thekpemperature increases with the
heating rate. As for the separation between twk$&a o and Ty 1 performed at two

different heating rateg, andg; respectively,

Tyi-T
walwo . 11 o % R4 (15)

Tl\i,O TM,O TM,l 2-'-XO E ﬁO

Hence, the peak separation scales as the logaothhe heating rate. Thus, for a non-
isothermal kinetic analysis, the heating rates khdae equally distributed in a
logarithmic scale. In addition, the peak separagoroportional to the reciprocal of the
activation energy, therefore for processes tha pice at the same temperature range,
the larger the activation energy, the smaller émegerature separation.

Finally the logarithm in the right hand side of B significantly limits the
temperature range that can be explored with naeésmal experiments. For instance,
according to Eq. 15 and for a process that takesepht 600 K with typical activation
energy around 145 kJ/mol, the temperature rangecimbe explore varying 3 decades
the heating rate is only 145 K. In Fig. 2 the sapan between the peaks obtained at 0.5
and 80 K/min is 200 K and the separation prediftech Eq. 15 is 211 K (witle=195
kJ/mol andTy o =1032 K).

3.2 Dependence of the peak width on the heating rate

The width at half maximunyt, of the transformation rate peak is given by [2],,3



Inat=—5 4ol & (16)
RT, LA

where At' is a constant that depends on the reaction madtlele substitute the

approximate solution, Eg. 10, into the previousatiehship we obtain,

—_ % B
nat=-_~ . In[ﬂOJ +In(At,) (17)

wherelnAt, = x, +In(At'/ A) is the width of the peak when the heating raf.is

As a result, a plot of Wt versus I must deliver a straight line. We have
checked the latter prediction against the experialenlata obtained from the
crystallization of amorphous silicon, a-Si, (seg.H). The experimental details are

given in ref. [30]. According to ref. [30], cryskiaktion of a-Si is approximately

n-1
described by a KIMA model [8,55-59] (a)= n(l—a)[—ln(l—a)]T, with n=4,
E=346 kJ/mol, Id=37.5 (A in &), f'(a, ) =-1 and At'=2.44639/4 In Fig 5 we have

plotted In1t versus I for the experimental evolutions shown in Fig. gether with the
predicted dependence of Eqg. 17. The agreement eetthe experimental data with the
predicted dependence, Eq. 17, is remarkable. Nga#athat the solid line is not a
linear fit but the prediction obtained from Eg. d8ing the activation energy delivered
by the Kissinger method and the measured peak vodify=1 K/min.

Since AT = fAt, the peak width in temperature scale is,

% 0
Note, that the term 2/(2%) goes to zero when, — «. Sincexp>10, typically

InAT = 2 |n(§j +In(AT,) (18)

above 20,AT is roughly constant when compared to the evolubdbnAt with .

Moreover, the termxy/(2+ Xo) tends to one whemr, — o« . Therefore, the peak width in

time is roughly proportional to the reciprocal bEtheating rate. For instance, in Fig 2
the peak width ranges from 42 to 87 K and from 5@060 s wher$ varies from 0.5 to
80 K/min. That is, when the heating rate is raiBech 0.5 to 80 K/min the peak width
in temperature increases by a factor 2 while ttekpedth in time decreases by a factor
85.



3.3 Dependence of the signal intensity on the heating rate

In several thermal analysis techniques such as DSOTA the signal intensity is

proportional to the transformation rate, so throtigh analysis of the transformation

rate at the peak temperatuclao//dt\T , we will be able to analyze the dependence of the

signal intensity on the heating rate. This depeoderan be disclosed by substituting

the approximate solution, Eq. 10, into Egs. 1-2:

=% Inﬁ +Ind—a
. 2t% \ G dt

Therefore, the signal intensity increases witlsince the area under the peak is

da
ni
dt

(19)

Tvo

constant and equal to 1; the peak height must tyeoptional to 14t. This relationship

is obtained from the combination of Egs. 17 and 19,

da/dt_ xAt =At' f(a,,) (20)

This constant on the right hand side of Eq. 20 ddpesolely on the reaction model.
In the previous section we have seen that the pedtk roughly scales as/t/
so, the signal intensity must be roughly proportior@aBt The latter conclusion is also

apparent from Eq. 19 since the texg(2+ xo) tends to one wher, — «. In kinetic

studies it is important to explore a relativelyg@arange of heating rates. As a result, the
time and the peak height scales may differ sigaifity from one experiment to another.
Therefore, a plot of all the curves recorded afediint heating rates is not convenient.
However, it is possible to rescale time and tramsédion rate to achieve a plot where
all the peaks have a similar size. This has beee doFigs. 2 and 4. Note that in Figs.
2 and 4 the transformation rate has been divided@ tile the time scale has been

multiplied byg (it has been converted into temperature).

3.4 A criterion to test the validity of Kissingerthod

10



Kissinger method relies exclusively on the deteation of the peak
temperature, so useful information such as the psh#pe is neglected. The
combination of different mechanisms or artifactated to temperature gradients may
have a significant effect on the peak width. Thie peak width provides useful
information to check the validity of Eq. 1 to deberthe actual kinetics. From Eq. 17,
the plot of It versus I must deliver a straight line where the value &f sfope can
be determined from the Kissinger analysis.

For instance, we have simulated two equally werhterder reactions:

da, _ _EB gy 9as _ L Y -1
ot Aex;{ R_I_}(l a,), ot Azexp{ |__\,_I_}(l a,)” anda 2(a1+a2),(21)

whereE;=80 kJ-mof, A;=1.17x16 s*, E;=120 kJ-mot andA;=1.67x18 s. In Fig. 6
we have plotted the simulated evolutions and in Figve have plotted the Kissinger
analysis. The parameters for the numerical sinarlahave been chosen so that the
complex nature of the kinetics it is not appareoif the shape of the peaks; no double
peak is observed and the only significant featara shoulder fof=0.5 K/min. Despite
the fact that we are analyzing a complex transftionathe points of the Kissinger plot
are nicely aligned. The activation energy deterehiftem the slope of the linear fit is
86.1 kJ-mof. The plot of Imt versus I also delivers a straight line, but the slope
determined from the linear fit does not coincidewthe expected value according to
Eq. 17. The linear fit delivers a slope of —1.03ile/taccording to Eqg. 17 its absolute
value, xo/(2+ xg), is always smaller than 1. Taking as referefiges K/min, the slope
predicted by Eq 17 is 0.93 which is significantiyadler than the one delivered by the
linear fit. In Fig. 7 we have also plotted the s delivered by Eqg. 16, and clearly it
deviates from the observed behavior.

Due to heat evolved from the sample, the thernemlothposition of yttrium
trifluoroacetate undergoes a thermal runaway aag#ak shape is significantly altered
[51]. In Fig. 8 we have plotted the evolution ofetldecomposition of yttrium
trifluoroacetate to form yttrium fluoride (the expaental details are given in ref. [60].).
Fig. 9 shows the Kissinger and thétrversus I plots. In both cases, the data are well
aligned. The activation energy delivered by theskiger method is 165 kJ- ol

Taking as referencgy=5 K/min, the expected slope for theAtnversus I plot is

11



—-0.94, the magnitude of which is significantly slkeathan the value delivered by the
linear fit, —1.27. In addition, a slope of absolutdue above 1 is in contradiction with
the prediction of Eq. 17 and evidences that theahdtinetics cannot be described by
Eq. 1.

Conclusions

We have derived the exact relationship of the geatperature for thermally activated
processes in terms of the transcendental Lamb&finction. In addition, we have
derived an approximate analytical solution for ekpental and theoretical purposes.

We have shown that in non-isothermal kinetic sta@ind for processes that take
place at the same temperature range, the sepabstioeen peaks obtained at different
heating rates increases steadily when the activaiergy diminishes. We have also
shown that in non-isothermal analysis, the diffefegating rates should be equidistant
in a logarithm scale. In addition, the temperattaege analyzed by non-isothermal
measurements is relatively narrow, typically fewntiteds of Kelvin when the heating
rate is varied over three decades.

We have shown that the duration of a process, peamkh, is roughly
proportional to the reciprocal of the heating rate the peak width in the temperature
scale is nearly constant when compared to the peek width. As for the signal
intensity, it is approximately proportional to theating rate.

Finally, we have introduced a test to check whetheansformation is ruled by
a single-step kinetics. This test is based onitteat relationship between the logarithm

of the heating rate and the logarithm of the pemithw
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Appendix A. Derivation of the Kissinger equation
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The peak temperatur@y,, i.e., the temperature at which the transformataia is at its

maximum is obtained by imposing that the first dative of the transformation rate,

D =0 (A.1)

Since at the maximum the heating rate is non zero,

Egs 1-2, is zero,

da _(da

df (@) E
dt> dt[ da KO+ A

E

B _ R, TR,
= ==—f'(a,)Ae ™ A.2
ARG (A2)

whereay is the degree of transformation whesly. Finally, taking logarithms at both

sides we obtain,

In(éj =- F;M + |n(—’?§R f'(a,, )j (A.3)

Kissinger method is based on the determinatiomefpeak temperatuiR,; for
non-isothermal experiments performed at differeatiting ratesp;. The activation
energy is determined from the slope of the pIotrrﬂiS’i /iji) versus ITy;. Therefore,
Kissinger method assumes that the teft{m,, ) is constant, i.e., independent br
Twu. Kissinger initially derived its method for a firerder reaction ((a):l—a). In
this case f'(a)=1 and the method is exact. The validity of the métimoay be
extended to other kinetics by integrating Eq. 1:

_odu _EAE
g(@) =] T ﬁRp[RTaj (A4)

where p(x) = wwdu is the temperature integral [61] afgis the temperature at
X u2

which a degree of transformatians attained. Combining Eqgs. A.2 and A.4 we obtain,

, _ | E
f'(aw)a(ay) = h(RT J (A.5)

M
where h(x) = p(x)x’¢*. The temperature integral can be developed by l@mnate

series expansion [62],

13



p(g = 2PN 5 gy 42 (A6)

For large values of, p(x) may be approximate by the first term of the seriéis is the
well known Murray’s approximation [63]. Under trapproximation,

f'(ay)9(a,) =1 (A7)
Therefore, for large values &RTy, am IS a constant that depends on the reaction
model but it is independent ¢f and Ty [17,18]. From Eqg. A.5 it is clear that the
accuracy of the Kissinger method is related to rimction model and the value of
E/RTy. However, it has been show that the accuracy ismlynaelated to E/RTy

[20,23,26], therefore Kissinger method is relatpveldependent of the reaction model.
Appendix B. Taylor seriesof 2Wy

The Taylor order series expansion of Eq. 8 irg)lrg§round a reference peak

temperatur@ o which is related to a heating rdigis given by,

dw 1 dWwW
Xy, =X, +2 x(Inz-Inz)+2= x(Inz-Inz)?>+.... (B.1
70 20, NETNRI 2y g H(NETINA) e B)
where x,=E/RT,, and 20:1 —M. Taking into account that
’ 2| R,
dw 1 W 1
— == and that(lnz-Inz)) ==In(83,/ £), Eq. (B1) becomes,
e (inz-Inz)=—In(5,/§), Eq. (B1)
2
_ X w5 %o By
Xy =X +=———In=—2+ (Inj +... (B.2)
M 2+x% B (2+x)F B
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Figure 1. Solid line: plot of the exact solution, Eq. 8. dbad line: plot of the
approximate solution, Eq. 12, withh=20. Inset: maximum relative error of the first

order of Taylor series, Eq. 11, when the heatitg spans along 3 decades.
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Figure 2. Symbols are the measured evolution of the decsitipo rate of CaC@and
solid lines are the simulated curvesteaction model witm=0.42,E=195 kJ/mol and
INA=7.14 (A in §).
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Figure 3. Symbols correspond to the experimental and siedl@&volutions of the

decomposition of CaCOshown in Fig 2. The solid line is the predictegpeledence
from Eq. 14 withE=195 kJ/molf,=10 K/min andTy (=1032 K.
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