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Abstract 

A key parameter of many transformations when heated at a constant rate is the peak 

temperature, i.e., the temperature at which the transformation rate is at its maximum. 

The most universal approach to determining peak temperature for thermally activated 

transformations is the Kissinger equation. In this paper we solve Kissinger equation to 

deduce the exact dependence of the peak temperature on the heating rate. This 

analytical solution is based on the Lambert W-function. In addition, an approximate 

solution is derived that is used to infer general properties of thermally activated 

processes and to obtain a test to check the validity of Kissinger method. 
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1. Introduction 

In thermally activated and homogeneous transformations the rate of change of a 

substance can be described as a function of the temperature and its state, and that the 

system state is a function of a single parameter: the degree of transformation, α (0< 

α<1). Under this assumption, and supposing that the transformation is ruled by a single 

mechanism, the transformation rate is described by a differential equation where the 

contribution of the temperature and α may be factorized [1,2]:  

)()( Tkf
dt

d αα = ,     (1) 

where t is time, T is the temperature, k(T) is the rate constant and f(α) is the conversion 

function for the particular transformation mechanism. Besides, in many thermally 

activated solid state transformations k(T) is described by the Arrhenius dependence [3–

6]:  








−=
RT

E
ATk exp)(      (2) 

where A is the pre-exponential term, E is the activation energy and R is the universal gas 

constant. When the temperature is raised at a constant rate, β ≡ dT/dt, Eq. 1 still holds 

provided that the transformation rate does not depend on the thermal history. Thus, 

under continuous heating conditions, the explicit dependence on time of Eq. 1 can be 

eliminated:  
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From Eq. 3 one can easily derive the Kissinger equation [7] (see appendix A) that 

relates the peak temperature, TM, with the kinetic parameters and heating rate:  
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where ( )
M

ddff M αα
αα

=
≡'  and αM is the degree of transformation at TM.  

Eq. 4 has been used to determine the activation energy for a large variety of 

transformations [8–15]. Kissinger method relies on the determination of the peak 

temperature TM,i from experiments carried at different heating rates βi. The activation 

energy is obtained from a linear fit of the plot ( )2
,/ln iMi Tβ  versus 1/TM,i. Although Eq. 4 
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is exact, the Kissinger method is approximate because it assumes that the second term 

of the right hand side does not depend on the heating rate, β. Kissinger originally 

derived his equation for a first-order reaction, in this case ( ) 1' −=Mf α  and its kinetic 

method is exact. For most kinetic models ( )Mf α'  is approximately constant provided 

that MRTE / is large enough [15–20] (see appendix A). In Refs. [16–18,21,22] the 

values of αM and ( )Mf α'  are given, and for many reaction models( ) 1' −≈Mf α . For 

most kinetic models the percent error in the calculation of the activation energy is below 

2% if 10/ >MRTE  [23] (a review of the literature reveals that, for most 

transformations, 10/ >MRTE  [24]). Typically the activation energy is around 1.5 eV 

(145 kJ/mol); thus, for peak temperatures around 600 K, 30~/ MRTE , and for 

TM~1700 K, 10~/ MRTE . For smaller values of MRTE /  other temperature 

dependencies may emerge due to the weak thermal activation and, therefore, Eqs. 1-4 

must be applied with caution. 

The Kissinger method has received more than four thousand citations [25]. The 

reason for this success are the simplicity of the model, its relative independence of the 

reaction mechanism [23,26] and its robustness. This is because the strong temperature 

dependence of the rate constant ensures a reliable determination of the activation energy 

from Eq. 4. The validity of Eq. 4, and therefore that of Kissinger method, is not limited 

by its accuracy but rather to the ability of Eq. 1-3 to describe the actual kinetics. Recent 

papers [10,26–28] reveal that the Kissinger method is erroneously applied to systems 

that are not governed by Eqs. 1-3. The log scale involved in the Kissinger plot smoothes 

out the kinetic data. Consequently, linear plots are obtained even though Eqs. 1-3 do not 

describe the actual kinetics. Thus, validity of Kissinger method cannot be judged from 

the goodness of the linear fit. [29].  

The Kissinger method fails when multiple mechanisms are involved [31–34], for 

heterogeneous systems [35], for transformations where the activation energy depends on 

α (such as structural relaxation [27,36,37]) or for transformations depending on 

parameters other than α and T (such as solid-gas reactions that depend on the local gas 

pressure [10,16,38]). To deal with these complex systems isoconversional methods have 
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been developed that, in addition and within the framework of the isoconversional 

hypothesis [39], are exact or significantly more accurate [10,11,40–43]  

In general, the Kissinger method also fails for heterogeneous systems. However, 

in some relevant cases such as crystallization of amorphous materials, Eqs. 1-3 

approximately hold and it provides a reliable determination of the activation energy 

[8,28,44]. Since the Kissinger method assumes a constant temperature rise it cannot be 

directly applied to constant cooling measurements [26,45]. Similarly, some thermally 

activated processes such as glass crystallization or melt crystallization do not follow an 

Arrhenius behavior. In these circumstances the method may be modified [21,26,46]. In 

particular, it has been numerically shown that it provides reliable results [21] for a 

Vogel-Fulcher temperature dependence [47] but it fails in the case of melt 

crystallization [21,28]. Finally, thermal gradients, related to heat propagation trough the 

sample [48,49] or to the heat evolved from the sample [50,51], pose difficulties to the 

correct determination of the peak temperature.  

As far as we know, no exact analytical solution of Eq. 4 for the peak temperature 

has been published. Knowledge of the peak temperature is important for both 

experimental and theoretical purposes. Besides having an accurate solution, it is also 

useful in reducing the computation time required for numerical simulations. In this 

paper we solve Eq. 4 and we provide analytical solutions with sufficient accuracy for 

experimental, theoretical and numerical purposes. Finally, the analytical solution is used 

to disclose some general properties of thermally activated processes and to develop a 

test to check the validity of the Kissinger method. 

 

2. Peak temperature: solution of the Kissinger equation 

 

Eq. 4 can be expressed in terms of the reduced activation energy MM RTEx /≡ , 

Mx
M exz 224 = ,      (5) 

where z contains all the system parameters: 
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Our goal is to determine xM as a function of z: xM (z). If we take the square root of both 

sides of Eq. 5 we obtain, 

)()( zWezWz =      (7) 

where MxW 2
1≡ . Eq. 7 turns out to be the definition of the transcendental Lambert W-

function [52]. Lambert W-function has two branches: the principal one, W0, which 

corresponds to W(z)>0, and the negative branch W-1. The solution of the Kissinger 

equation is restricted to W0 because 0/ >≡ MM RTEx . W0 is a single-valued function 

that monotonically increases with z. Thus the peak temperature is given by 
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It is worth recalling that Eq. 8 is exact, no approximation has been used so far. 

 

2.1 Analytical solution for experimental and theoretical purposes 

 

There are several approximations to the Lambert W-function [53,54]. As we 

discussed in the introduction, xM>10 and typically xM is around 20 or 30; the related z 

values are 742, 2.2×105 and 4.9×107. Thus, we are interested in an asymptotic 

expansion for large values of z. In particular, the solution ))/ln(/ln(0 LzzW =  can be 

used to obtain a sequence of approximate analytical solutions [53,54], 
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For xM>10 (z>742), the maximum relative errors of 10W  and 2
0W  are 5.6% and 2.1%, 

respectively. This error is reduced to 1.1% and 0.21% respectively for xM>20. In Ref. 

[24] the first term of this sequence is also proposed as a solution that takes as an initial 

term a value of xM inside the interval of interest.  

In Fig. 1 we have plotted the exact solution, Eq. 8, for a parameter range that 

corresponds to 10< xM<40. The nearly linear relationship between xM and ln(z) is 

noteworthy. To take advantage of this property, we have approximated the exact 

solution by its first order series expansion in ln(z) around a reference peak temperature 

TM,0 related to a heating rate β0 (see appendix B), 
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where 0,0 / MRTEx ≡ . From the second term of the series expansion, we can evaluate the 

relative percent error of the approximate solution, Eq. 10, (see appendix B), 
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For instance, if we assume that β spans 3 decades (say from 0.1 to 100 K/min) and β0 is 

a central value (say 3 K/min), then ( ) 12/ln 2
0 ≈ββ  and the percent relative error for 

xM=20 is around 0.1%. In the inset of Fig. 1 we have plotted e% as a function of xM 

assuming that β spans 3 decades. One can state that the inaccuracies of Eq. 10 are well 

below 1%, i.e., they are irrelevant in practical situations provided that xM>10. 

The reader may think that Eq. 10 is not really a solution of the Kissinger 

equation delivering xM (or TM) as a function of the system parameters, E, A, β and 

f’(αM), for two reasons: a) these parameters do not appear explicitly and b) Eq. 10 can 

only be applied if a particular solution (β0, x0) is already known. However, a particular 

solution can be directly obtained by introducing x0 into the Kissinger Eq. 5, 

02
0

2
04 xexz = , and solving Eq. 6 to obtain β0. Thus, we can express Eq. 10 as a function 

of z, 
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In Fig 1 we have plotted Eq. 12 with x0=20 together with the exact solution for 10< 

xM<40. One can verify that Eq. 12, and therefore Eq. 10, provide a quite accurate 

solution even for xM values significantly different than x0. Hence, the choice of the 

reference value is not critical at all. Besides and as we will see in Section 3, a solution 

in terms of β, Eq. 10, is more useful to understand several general properties of 

thermally activated processes. 

 

2.2 Analytical solution for numerical purposes 
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 In this section we are looking for an analytical solution with accuracy of the 

order of double-precision floating-point numbers, i.e., accuracy of the order of 10-16 or 

better. For xM>10, the solution nW0  achieve this accuracy for n=22. Taking into account 

that in general xM>20, n=16 suffices to achieve this accuracy. 

 A less time-consuming computing-time alternative consists of replacing the 

solution ))/ln(/ln(0 LzzW =  by its doubly-infinite expansion [53]: 
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where )ln(0 zL = , )ln( 01 LL =  and ck,m is a positive Stirling number of the first kind. For 

instance, for m+k= 16 the accuracy is 4.5×10-13 and 1.1×10-16 for xM>10 and xM>20, 

respectively. 

 

3. Properties of thermally activated processes 

 

In this section we will apply the analytical solutions derived above to infer some 

properties of thermally activated processes. In particular, we analyze the dependence of 

the peak temperature, peak width and signal intensity on the heating rate.  

 

3.1 Dependence of the peak temperature on the heating rate 

 

The dependence of the peak temperature on the heating rate may be directly derived 

from the approximate solution Eq. 10: 
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 Therefore a plot of 1/TM versus lnβ must deliver a straight line. We have 

checked the latter prediction against the experimental and theoretical curves of the 

thermal decomposition of CaCO3 (see Fig. 2). The experimental details are given in ref. 

[30]. According to ref. [30], the decomposition of CaCO3 is approximately described by 
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a n-reaction model, nf )1()( αα −= , with n=0.42, E=195 kJ/mol and lnA=7.14 (A in s-

1). In Fig 3 we have plotted 1/TM versus lnβ for the experimental and theoretical curves 

shown in Fig. 2 together with the predicted dependence of Eq. 14 taking as reference 

β0=10 K/min and TM,0=1032 K (x0=22.73). The agreement between numerical and 

experimental data with Eq. 14 is remarkable. Note, that the straight line in Fig. 3 is not a 

linear fit but the predicted dependence according to Eq. 14 and using the kinetic 

parameters derived from the Kissinger method (the details of the kinetic analysis are 

given in Ref. [30]). 

 From Eq. 14 one can disclose some general trends of the thermally activated 

reactions. For instance, one can verify that the peak temperature increases with the 

heating rate. As for the separation between two peaks TM,0 and TM,1 performed at two 

different heating rates, β0 and β1 respectively, 
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Hence, the peak separation scales as the logarithm of the heating rate. Thus, for a non-

isothermal kinetic analysis, the heating rates should be equally distributed in a 

logarithmic scale. In addition, the peak separation is proportional to the reciprocal of the 

activation energy, therefore for processes that take place at the same temperature range, 

the larger the activation energy, the smaller the temperature separation. 

Finally the logarithm in the right hand side of Eq. 15 significantly limits the 

temperature range that can be explored with non-isothermal experiments. For instance, 

according to Eq. 15 and for a process that takes place at 600 K with typical activation 

energy around 145 kJ/mol, the temperature range that can be explore varying 3 decades 

the heating rate is only 145 K. In Fig. 2 the separation between the peaks obtained at 0.5 

and 80 K/min is 200 K and the separation predicted from Eq. 15 is 211 K (with E=195 

kJ/mol and TM,0 =1032 K). 

 

3.2 Dependence of the peak width on the heating rate 

 

The width at half maximum, ∆t, of the transformation rate peak is given by [21,30], 
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where 't∆  is a constant that depends on the reaction model. If we substitute the 

approximate solution, Eq. 10, into the previous relationship we obtain, 
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where ( )Atxt /'lnln 00 ∆+=∆  is the width of the peak when the heating rate is β0. 

As a result, a plot of ln∆t versus lnβ must deliver a straight line. We have 

checked the latter prediction against the experimental data obtained from the 

crystallization of amorphous silicon, a-Si, (see Fig. 4). The experimental details are 

given in ref. [30]. According to ref. [30], crystallization of a-Si is approximately 

described by a KJMA model [8,55–59], [ ] n

n

nf
1

)1ln()1()(
−

−−−= ααα , with n=4, 

E=346 kJ/mol, lnA=37.5 (A in s-1), 1)(' −=Mf α  and 2.44639/4 '=∆t . In Fig 5 we have 

plotted ln∆t versus lnβ for the experimental evolutions shown in Fig. 4 together with the 

predicted dependence of Eq. 17. The agreement between the experimental data with the 

predicted dependence, Eq. 17, is remarkable. Note again, that the solid line is not a 

linear fit but the prediction obtained from Eq. 17 using the activation energy delivered 

by the Kissinger method and the measured peak width for β0=1 K/min.  

Since tT ∆=∆ β , the peak width in temperature scale is, 
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Note, that the term 2/(2+ x0) goes to zero when ∞→0x . Since x0>10, typically 

above 20, T∆  is roughly constant when compared to the evolution of t∆  with β. 

Moreover, the term x0/(2+ x0) tends to one when ∞→0x . Therefore, the peak width in 

time is roughly proportional to the reciprocal of the heating rate. For instance, in Fig 2 

the peak width ranges from 42 to 87 K and from 5090 to 60 s when β varies from 0.5 to 

80 K/min. That is, when the heating rate is raised from 0.5 to 80 K/min the peak width 

in temperature increases by a factor 2 while the peak width in time decreases by a factor 

85. 
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3.3 Dependence of the signal intensity on the heating rate 

 

In several thermal analysis techniques such as DSC or DTA the signal intensity is 

proportional to the transformation rate, so through the analysis of the transformation 

rate at the peak temperature, 
MT

dtdα , we will be able to analyze the dependence of the 

signal intensity on the heating rate. This dependence can be disclosed by substituting 

the approximate solution, Eq. 10, into Eqs. 1-2: 

0,
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 Therefore, the signal intensity increases with β. Since the area under the peak is 

constant and equal to 1; the peak height must be proportional to 1/∆t. This relationship 

is obtained from the combination of Eqs. 17 and 19, 

)(' MT
fttdtd

M
αα ∆=∆×     (20) 

 

This constant on the right hand side of Eq. 20 depends solely on the reaction model.  

In the previous section we have seen that the peak width roughly scales as 1/β; 

so, the signal intensity must be roughly proportional to β. The latter conclusion is also 

apparent from Eq. 19 since the term x0/(2+ x0) tends to one when ∞→0x . In kinetic 

studies it is important to explore a relatively large range of heating rates. As a result, the 

time and the peak height scales may differ significantly from one experiment to another. 

Therefore, a plot of all the curves recorded at different heating rates is not convenient. 

However, it is possible to rescale time and transformation rate to achieve a plot where 

all the peaks have a similar size. This has been done in Figs. 2 and 4. Note that in Figs. 

2 and 4 the transformation rate has been divided by β while the time scale has been 

multiplied by β (it has been converted into temperature). 

 

3.4 A criterion to test the validity of Kissinger method 
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 Kissinger method relies exclusively on the determination of the peak 

temperature, so useful information such as the peak shape is neglected. The 

combination of different mechanisms or artifacts related to temperature gradients may 

have a significant effect on the peak width. Thus, the peak width provides useful 

information to check the validity of Eq. 1 to describe the actual kinetics. From Eq. 17, 

the plot of ln∆t versus lnβ must deliver a straight line where the value of the slope can 

be determined from the Kissinger analysis.  

For instance, we have simulated two equally weighted n-order reactions: 
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where E1=80 kJ·mol-1, A1=1.17×108 s-1, E2=120 kJ·mol-1 and A2=1.67×1084 s-1. In Fig. 6 

we have plotted the simulated evolutions and in Fig. 7 we have plotted the Kissinger 

analysis. The parameters for the numerical simulation have been chosen so that the 

complex nature of the kinetics it is not apparent from the shape of the peaks; no double 

peak is observed and the only significant feature is a shoulder for β=0.5 K/min. Despite 

the fact that we are analyzing a complex transformation, the points of the Kissinger plot 

are nicely aligned. The activation energy determined from the slope of the linear fit is 

86.1 kJ·mol-1. The plot of ln∆t versus lnβ also delivers a straight line, but the slope 

determined from the linear fit does not coincide with the expected value according to 

Eq. 17. The linear fit delivers a slope of −1.03 while according to Eq. 17 its absolute 

value, x0/(2+ x0), is always smaller than 1. Taking as reference β0=5 K/min, the slope 

predicted by Eq 17 is 0.93 which is significantly smaller than the one delivered by the 

linear fit. In Fig. 7 we have also plotted the solution delivered by Eq. 16, and clearly it 

deviates from the observed behavior.  

 Due to heat evolved from the sample, the thermal decomposition of yttrium 

trifluoroacetate undergoes a thermal runaway and the peak shape is significantly altered 

[51]. In Fig. 8 we have plotted the evolution of the decomposition of yttrium 

trifluoroacetate to form yttrium fluoride (the experimental details are given in ref. [60].). 

Fig. 9 shows the Kissinger and the ln∆t versus lnβ plots. In both cases, the data are well 

aligned. The activation energy delivered by the Kissinger method is 165 kJ·mol-1. 

Taking as reference β0=5 K/min, the expected slope for the ln∆t versus lnβ plot is 
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−0.94, the magnitude of which is significantly smaller than the value delivered by the 

linear fit, −1.27. In addition, a slope of absolute value above 1 is in contradiction with 

the prediction of Eq. 17 and evidences that the actual kinetics cannot be described by 

Eq. 1.  

 

Conclusions 

 

We have derived the exact relationship of the peak temperature for thermally activated 

processes in terms of the transcendental Lambert W-function. In addition, we have 

derived an approximate analytical solution for experimental and theoretical purposes. 

 We have shown that in non-isothermal kinetic studies and for processes that take 

place at the same temperature range, the separation between peaks obtained at different 

heating rates increases steadily when the activation energy diminishes. We have also 

shown that in non-isothermal analysis, the different heating rates should be equidistant 

in a logarithm scale. In addition, the temperature range analyzed by non-isothermal 

measurements is relatively narrow, typically few hundreds of Kelvin when the heating 

rate is varied over three decades. 

We have shown that the duration of a process, peak width, is roughly 

proportional to the reciprocal of the heating rate but the peak width in the temperature 

scale is nearly constant when compared to the time peak width. As for the signal 

intensity, it is approximately proportional to the heating rate. 

Finally, we have introduced a test to check whether a transformation is ruled by 

a single-step kinetics. This test is based on the linear relationship between the logarithm 

of the heating rate and the logarithm of the peak width. 
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Appendix A. Derivation of the Kissinger equation 
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The peak temperature, TM, i.e., the temperature at which the transformation rate is at its 

maximum is obtained by imposing that the first derivative of the transformation rate, 

Eqs 1-2, is zero, 
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Since at the maximum the heating rate is non zero,  
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where αM is the degree of transformation when T=TM. Finally, taking logarithms at both 

sides we obtain, 

( )






−+−=







M

MM

f
E

AR

RT

E

T
αβ

'lnln 2    (A.3) 

Kissinger method is based on the determination of the peak temperature TM,i for 

non-isothermal experiments performed at different heating rates βi. The activation 

energy is determined from the slope of the plot of ( )2
,/ln iMi Tβ  versus 1/TM,i. Therefore, 

Kissinger method assumes that the term ( )Mf α'  is constant, i.e., independent of β or 

TM. Kissinger initially derived its method for a first order reaction ( ( ) αα −= 1f ). In 

this case ( ) 1' =αf  and the method is exact. The validity of the method may be 

extended to other kinetics by integrating Eq. 1: 
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x
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u
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)exp(
)(  is the temperature integral [61] and Tα is the temperature at 

which a degree of transformation α is attained. Combining Eqs. A.2 and A.4 we obtain, 









−=

M
MM RT

E
hgf )()(' αα     (A.5) 

where xexxpxh 2)()( ≡ . The temperature integral can be developed by an alternate 

series expansion [62], 



 14

∑
=

+−−=
0

2

)!1(
)1(

)exp(
)(

i
i

i

x

i

x

x
xp    (A.6) 

For large values of x, p(x) may be approximate by the first term of the series. This is the 

well known Murray’s approximation [63]. Under this approximation, 

1)()(' ≈MM gf αα     (A.7) 

Therefore, for large values of E/RTM, αM is a constant that depends on the reaction 

model but it is independent of β and TM [17,18]. From Eq. A.5 it is clear that the 

accuracy of the Kissinger method is related to the reaction model and the value of 

E/RTM. However, it has been show that the accuracy is mainly related to E/RTM 

[20,23,26], therefore Kissinger method is relatively independent of the reaction model. 

 

Appendix B. Taylor series of 2W0 

 

The Taylor order series expansion of Eq. 8 in ln(z) around a reference peak 

temperature TM,0 which is related to a heating rate β0 is given by, 
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Figure 1. Solid line: plot of the exact solution, Eq. 8. Dashed line: plot of the 

approximate solution, Eq. 12, with x0=20. Inset: maximum relative error of the first 

order of Taylor series, Eq. 11, when the heating rate spans along 3 decades. 
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Figure 2. Symbols are the measured evolution of the decomposition rate of CaCO3 and 

solid lines are the simulated curves; n-reaction model with n=0.42, E=195 kJ/mol and 

lnA=7.14 (A in s-1). 

-5 -4 -3 -2 -1 0

0.9

1.0

1.1

 

 

10
00

/T
M
  /

K
-1

ln(β)

 Eq. 13
 Numerical simulation
 Experimental data

 

Figure 3. Symbols correspond to the experimental and simulated evolutions of the 

decomposition of CaCO3 shown in Fig 2. The solid line is the predicted dependence 

from Eq. 14 with E=195 kJ/mol, β0=10 K/min and TM,0=1032 K. 
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Figure 4. Symbols are the measured evolution of the crystallization rate of a-Si and 

solid lines are the simulated curves; KJMA model with n=4, E=347 kJ/mol and 

lnA=37.5 (A in s-1). 

-6 -4 -2
4

6

8

10

 Eq. 16
 Numerical simulation
 Experimental data

 

 

ln
(∆

t)

ln β

 

Figure 5. Symbols correspond to the experimental and simulated evolutions of the 

crystallization of a-Si shown in Fig 4. The solid line is the predicted dependence from 

Eq. 17 with E=346 kJ/mol, β0=10 K/min, TM,0=1032 K and ∆t0=973 s. 
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Figure 6. Evolution of the transformed fraction for the numerical simulation of two 

parallel reactions. 
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Figure 7. Kissinger and ln(∆t) versus ln(β) plots for the evolutions shown in Fig. 6. 

Solid lines are linear fits while the dashed line is the predicted dependence according to 

Eq. 17. 
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Figure 8. Experimental evolution of the thermal degradation of yttrium trifluoroacetate 

in the form of powders obtained from TG experiments performed at different heating 

rates.  
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Figure 9. Kissinger and ln(∆t) versus ln(β) plots for the evolutions shown in Fig. 8. The 

solid lines are linear fits while the dashed line is the predicted dependence according to 

Eq. 16. 

 


