
Noname manuscript No.
(will be inserted by the editor)

Petri Net Based Process Monitoring

A Workflow Management System for Process Modeling and
Monitoring

Albert Pla · Pablo Gay · Joaquim
Meléndez · Beatriz López

Received: date / Accepted: date

Abstract Nowadays business process management is becoming a fundamen-
tal piece in many industrial processes. To manage the evolution and the inter-
actions of the business actions it is important to accurately model the steps
to follow and the resources needed by a process. Workflows provide a way of
describing the order of execution and the dependencies between the constitut-
ing activities of business processes. Workflow monitoring can help to improve
and to avoid delays on industrial environments where concurrent processes are
carried out.

In this article a new Petri net extension for modeling together workflow
activities with their required resources is presented: resource-aware Petri nets.
Moreover an intelligent workflow management system for process monitoring
and delay prediction is introduced.

Resource aware Petri nets include time and resources into the classical
Petri net workflow representation, facilitating the task of modeling and mon-
itoring workflows. The workflow management system monitors the execution
of workflows and detects possible delays through resource-aware Petri nets.

In order to test this new approach, different services from a medical main-
tenance environment have been modeled and simulated.

Keywords Workflow · Petri Net ·Workflow modeling ·Workflow monitoring ·
Process monitoring · Resource-Aware Petri Nets

Albert Pla · Pablo Gay · Joaquim Meléndez · Beatriz López
University of Girona
Office 003/004 (eXiT Laboratory ”La pizzeria”),
Building P4,
Campus Montilivi,
17001 Girona (Spain)
Tel.:+34 972 418391
E-mail: [albert.pla,pablo.gay,joaquim.melendez,beatriz.lopez]@udg.edu



2 Albert Pla et al.

1 Introduction

Nowadays business process management is becoming a fundamental piece in
many industrial processes. In today’s economy, suppliers, manufactures and
retailers are working together in order to reduce the production costs and to
maximize the productivity. To manage the evolution and the interactions of the
business actions it is important to accurately model the steps to follow in the
process, the resources needed and the flow of the messages between the differ-
ent parts involved (suppliers, manufacturers, clients, etc.). Workflows provide
a way of describing the order of execution and the dependent relationships
between the constituting activities of the business processes.

Workflows usually model single and unique business processes, neverthe-
less, in real life environments, processes represented by workflows are rarely
executed individually. Workflows are usually executed concurrently, sharing a
limited number of resources sometimes even with external processes. In conse-
quence, a delay in an ongoing workflow can impact other pending workflows,
causing a cascade effect in the performance of the rest of the system due to
dependencies or to resource occupation. For this reason it is important to
monitor not only a single workflow execution, but also the whole system, as
a delay can echo in the rest of executions. The focus of this work is studying
monitoring methods to deal with all the workflows in a environment (at the
organization level). Monitoring means to be aware of the states of the whole
system regarding the current workflows actives and the resources available to
carry them out.

Moreover, an intelligent monitoring method should be able to avoid, or
somehow, reduce the effects of unexpected behaviors, so, corrective and pre-
ventive strategies are needed. Regarding corrective strategies, when a workflow
deadline is reached or close to be reached, a time out message or a running
out of time alarm should be fired. For example, in [?], the authors provide a
supporting tool to the user in order to modify running workflows. Regarding
preventive strategies, a monitoring method should be able to predict when
a workflow will fail before this happens. Preventive strategies are important
since when a workflow exceeds a deadline can cause important problems in the
system. In critical domains, such as medical device maintenance, a delay in a
workflow could involve the unavailability of medical equipment causing delays
on hospital operations, delays in surgeries and actually impacting on patients
health. In any case, workflow monitoring is required to anticipate delays.

Our research concerns both workflow modeling and monitoring process in
which shared resources are XXX and the target is detect, correct and pre-
vent workflow deviations. The main contributions on the paper are: Petri net
modeling which include shared resource definitions and a monitoring method-
ology for the early delay detection. this capabilities enhance future intelligent
workflow management systems (i-WMS).

The scope of this work includes a widespread range of domains: not only
manufacturing industrial processes, but also service oriented architectures,
multi agent systems interactions, route scheduling or even device maintenance



Petri Net Based Process Monitoring 3

planification. Particularly, our work is specially concerned with medical equip-
ment maintenance business. We start from an infrastructure that gives support
to the different parts involved in a maintenance operation process, and at the
business level there are several workflows defined in order to minimize equip-
ment downtimes. However, such optimization cannot be guaranteed if there
is no way of monitoring the workflow status and to predict possible delays
on their execution. Delays can be caused, for example, by an unattended re-
quest on behalf of the manufacturer support service, or by the sickness of a
technician in charge of dealing with the maintenance operations. Those are
human-dependent delays, but some others caused by resource overload due to
concurrent execution of multiple workflows.

This paper is structured as follows: Firstly some basic concepts regarding
workflows and Petri nets are given to the reader in order to facilitates the
article comprehension; in Section 3 we present the state of the art regarding
workflow modeling and monitoring; then, we introduce our intelligent work-
flow management system and the methodologies we developed to model and
monitor both workflows and resources; In Sections 5 and 6 we present and
discuss some of our research results; finally, we end the paper presenting the
conclusion of our work and pointing the lines to continue this research.

2 Background

In this section we present a brief introduction to the workflow and the Petri net
concepts and terminology in order to facilitate the reader the realized work.

2.1 Workflows

To manage the evolution and the interactions of the business processes it is
important to accurately model the steps to follow in the activity, the resources
needed and the flow of information between the different parts involved (sup-
pliers, manufacturers, clients, etc.). Workflows provide a way of describing the
order of execution and the dependent relationships between the constituting
activities of the business processes [33]. Workflows usually run concurrently,
sharing a limited number of resources which some times are provided by third
party companies.

A workflow consists in a graph of interconnected actions which represents
the tasks and interactions to be realized by a mechanism, a person, a staff, an
organization, etc. Workflows can model business process, exchange of messages
and software procedures or information.

A workflow instance is a workflow which is being executed in a concrete
time instant. For example, a workflow can model the business process required
to do maintenance in a medical equipment; then, when a medical device re-
quires a maintenance operation, a workflow instance is created. When several
workflows are coexisting in a common framework (e.g. an organization, an



4 Albert Pla et al.

Fig. 1 a)Petri net routing sequence. b)Petri net choice. c)Petri net parallel execution.
d)Petri net iteration.

industry, a server, etc.) where they share resources, actors or information we
can refer them as a workflow environment. Workflows can be controlled and
monitored by a workflow management system (WMS).

The WMS is responsible for monitoring the status of the different workflows
and to store in a log the different events related to the workflow deployment.
WMS can also be responsible of the assignment of resources to workflows and
their schedules.

2.2 Petri Nets

The simple or classical Petri net can be defined as a directed bipartite graph
with two kind of nodes called places and transitions which are connected by
arcs. A place p is called an input place of transition t if exists an arc that
directly connects p to t. A place p is called an output place of transition t
if exists an arc that directly connects t to p. Moreover, arcs cannot connect
two nodes of the same class. Places can contain tokens. During the Petri net
execution, the position and number of tokens may vary. In the graphical repre-
sentation places are drawn as circles, transitions are rectangles or bars, tokens
are represented black dots and arcs by arrows (see Figure 1).

A transition t is enabled when each input place p of t contains one or
more tokens. An enabled transition can be fired. Firing the transition t erases
tokens from t input place and creates new ones to its output place. The state
of a Petri net is defined by the distribution of its tokens along the net, this
can also be referred as marking. More information about Petri nets bases and
history can be found in [25].

In order to include different domain particularities such as time or pri-
orities, Petri nets have been enriched with extensions which represent theses
different domain particularities. This new kind of nets are called high level
Petri nets. In the classical Petri net, tokens have no kind of information incor-
porated, in consequence, it is impossible to distinguish between them. Using
the classical representation, the only way to discern between both tokens is
to duplicate the Petri net and to put each token in different nets, increasing



Petri Net Based Process Monitoring 5

significantly the size and complexity of Petri nets in real problems. In order to
avoid this duplication, the colored Petri net extension was created[2]. Colored
Petri nets assign a type or an identifier to each token so the confusion between
tokens disappears.

Another common extension for the classical Petri nets is the inclusion of
time which can be included in different ways. Transition-timed (T-timed) Petri
nets (PN) associate time to the transition. In T-timed PN an interval of time
can be assigned to each transition and they can only fire during this time
interval, therefore, tokens remains at the input places at least until this time
arrives. Place-timed PN associate time tsi to the places. This means that
when a token t arrives to a place p it must stay there at least tsp time units
although its transition fires. Finally, token-timed PN (or dense-timed PN)[7] is
an extension of Petri nets in which each token is equipped with a real-valued
clock so the time spent for every token can be registered. In this article, when
timed Petri nets are mentioned is referring to this token-timed PN extension.

3 Related Work

This section presents a brief state of the art concerning Workflow Modeling
and Workflow Monitoring which are the two main issues which our work faces.

3.1 Workflow Modeling

The lack of standardization in workflow representation has been a trending
research topic during the last years. This absence of unification has led to a
highly diversified types of workflow representations (see Figure 2). Some au-
thors use other fields’ representation models such as UML activity diagrams[21]
or different types of petri nets (called Workflow-nets)[28,4]. On the other hand
other researchers have chosen to develop specific languages for workflow rep-
resentation.

Unified Modeling Language[30] (UML) is a standardized modeling lan-
guage used in the the field of software engineering. It allows to specify, to
design and to document object-oriented software across several types of dia-
grams. The UML activity diagram describes the process of the different soft-
ware activities step by step and their routing across different situations and
cases. It offers different kinds of splittings such as OR-splits, AND-splits or
conditional splits.These tools allows the activity diagram to represent almost
any kind of information flow making the diagram able to describe the basic
behaviors of a workflow. Many authors, such as Kalnins et al.[21], propose to
use UML or to extend UML[10,36] in order to model workflow while others
have discussed its suitability. Dumas et al.[14] analyzed the UML notation
by representing the workflow patterns defined in [31] and concluded that, un-
like alternative commercial languages, UML provides support for waiting and
processing states and decomposition tools while they syntax and semantics



6 Albert Pla et al.

Fig. 2 Workflow pattern examples in different modeling languages. Top left: sequential
rouging. Top right: concurrent execution. Bottom left: iterative routing. Bottom right: ex-
clusive or choice.



Petri Net Based Process Monitoring 7

presents a lack of precision for complex actions such as cancellation patterns
or Multiple Instance Patterns and that UML doesn not fully capture impor-
tant kinds of synchronization such as the discriminator and the N-out-of-M
join.

Other fields modeling languages have been also used to represent workflows.
A similar tool to UML for workflow modeling is Business Process Management
Notation[24] (BPMN), it provides a graphical notation for specifying business
processes in a Business Process Diagram. BMPN is highly understandable for
almost any user familiarized with the workflow modeled, however its absence
of mathematical and formal notation and the impossibility of linking BPMN
with the execution process[20], reduce its possibilities. BPMN is closely related
with BPEL (Business Process Execution Language)[1] as it can be directly
translated to it. BPEL originally was created to model web service interactions
but it has also been used to model workflows, specially in service oriented
architectures (SOA)[26], but also in scientific processes[35] or to model grid
computing interactions[35]. Moreover, another interesting point of BPEL, is
that can be easily transformed to other languages such as YAWL[12], BPMN
(mentioned above) or to Petri net struchtures[18] as Hinz et al. and Brogi et
al. show on their works.

Petri nets[27](PN) are an established tool for modeling and analyzing pro-
cesses[3]. On the one hand, Petri nets can be used as a design language for the
specification of complex workflows; on the other hand, Petri net theory and
notation provides powerful techniques for workflow analysis. Moreover, Petri
nets can be extended to high level Petri nets[13] which allows a more accurate
representation of the workflow representation. For example, Eshuis et al.[15]
pointed that a limitation of Petri nets is that a transition does not necessarily
fires at the time instant when a task is carried, it can be fired at an aleatory
time after the execution. To solve this problem they present reactive Petri
nets[15]. Other examples of extended Petri nets applied to workflow modeling
is the one presented in [17] where Ha et al. use timed colored Petri nets (al-
lowing differentiation among tokens and the inclusion of time restriction) to
model dynamic product development processes; or the use of hierarchical Petri
nets (HPN), where each place substitutes a lower level Petri net, presented by
Boualem in [11] or by Alt et al. who use HPN to represent grid workflows[9].

In [6], Van der Aalst et al. propose a new workflow modeling language
named YAWL (yet another workflow language). To create YAWL, the authors
analyzed the different existing workflow modeling languages and studied which
ones were able to represent the higher number of workflow patterns[31]. Van
der Aalst et al. realized that the Petri net based languages were the ones
which fitted best so they took them as a start point. In this way, the authors
created a more intuitive workflow language with a formal mathematical nota-
tion and supporting almost all the existing workflow patterns. Besides at this
stage YAWL only supports the control-flow perspective, it is being developed
and improved in other important workflow aspects such as the data and the
resource perspectives.



8 Albert Pla et al.

An alternative technique of modeling workflows is the use of workflow
patterns (WP). Workflow patterns refer to recurrent specific problems and
proven solutions to the development of workflow applications. It is estimated
that using WP any workflow can be represented. As seen above, WP are
also used to evaluate the performance of a workflow modeling language. The
main research in this field has been done by Van der Aalst et al.; in [31] they
present a classification and an analysis of the existing workflow patterns. In
2006 Russell et al. reviewed the list provided by Van der Aalst adding 20 more
patterns which defined specific cases of the existing ones[32].

Regarding the resources representation in workflows, despite some lan-
guages such as the mentioned UML or BPEL provide tools for representing
resources itself, many workflow modeling languages do not integrate resources
into its representations so they need to be extended. A recent work on work-
flow representations that we should take into account is [23] which proposes the
condition task graphs (CTGs). In a CTG, the arcs are labeled with probabili-
ties. Tasks have resources associated. But due to the nature of the conditional
branch of the graphs, the particular resources requirements for the execution
of a given workflow can vary. Then the authors propose a methodology to
optimize the resources requirements. From our perspective, such conditional
representations could also be used for monitoring, without the need of specific
workflow management system. The authors point out in their future work that
their current research concerns the applicability of their approach to BPM.

3.2 Workflow Monitoring

Workflow monitoring concerns our work since to predict delays it is necessary
to monitor the evolution of the workflows and to store information about the
events generated by the workflow execution. In this section we comment some
of the work developed in this area among the recent years and how it is related
with this MSc thesis.

In [19] a web based monitoring system for distributed workflow operations
is presented. Hong et al. developed a software for supervising the evolution
of the workflow and to store statistical data. Nevertheless, the software does
not include any tools for predicting the evolution of the workflow or for the
early detection of possible delays and it is not based in any particular workflow
language. In [22] Kanana et al. propose a monitoring system based on triggers,
as the above mentioned article.

Regarding workflow monitoring in service architectures, Van der Aalst et
al.[5] combine Petri nets (used to model the behavior of a service flow) and
event logs (used to model real behavior of a service flow) in order to detect
deviations and to store data for a further mining process. Then, in [29] the
historical data is used for simulation, so that a short time projection can be
obtained on the workflow outcomes.

As for the use of Petri nets for workflow monitoring, Frankowiak et al.[16]
developed a micro controller-based process monitoring in order to control the



Petri Net Based Process Monitoring 9

Fig. 3 Overview of the whole system.

correct procedure of a manufacturing chain where every Petri net transition
was linked to a micro controller input. The logistic field has also been a hot
research topic when it comes to Petri net monitoring[2].

Other previous related works regarding to workflows monitoring come from
the multi-agent community. For example, in [34] a multi-agent system is pro-
posed to monitor the workflows associated to a given business process, so that
they improve the system capabilities to deal with changes in the environment.
In [37] an agent based system is also proposed to deal with coordination and
management of workflows between virtual enterprises.

4 Intelligent Workflow Management System

As Figure 3 shows, our proposal is to develop a workflow management system
(WMS) which handles both the modeling and the monitoring of a business
process and its resources. The WMS models the business process using high
level Petri nets and monitors its development at the task level. This allows us
to predict the possibility of delays in the development of the business process.

Before starting to describe our monitoring methodology we introduce the
workflow management system (WMS) architecture.

The intelligent WMS uses Petri nets for workflow modeling, and takes into
account all the resources available in the system. Workflows and resources are
handled by the monitoring system (MS), as shown in Figure 4. The MS engine
access to the following data:

– Library of workflow patterns, which contains the workflows modeling the
business process activity.

– Resource data base, which contains the information related to the available
resources of the system.

– Running workflows memory, which contains the workflows states current
running in the system (workflow environment marking).

With this information, the WMS uses the following method to start workflows:



10 Albert Pla et al.

Fig. 4 The workflow management system is responsible for modeling and monitoring the
workflow and sends warnings when a possible delay is detected.

1. Receives a request for a business process Bpi from the system.
2. Search in the workflow library for the pattern associated to Bpi,
Pattern(Bpi) = Wfi.

3. If Wfi is not running with other parameters in the WMS, then the WMS
loads the workflow from the workflow library

4. A new token is created and placed into the corresponding workflow.

Workflows are modeled with Petri nets, since they are a well known tool for
workflow modeling and they offer a wide range of extensions to facilitate this
task. Then, WMS is also responsible of firing the Petri nets transitions while
the workflows are interacting and advancing, so the workflow can be monitored.
Moreover, using previous cases (historical data in Figure 4), WMS estimates
durations of activities so delays, lack of resources or deviations can be detected.
When those are detected, MS sends warning messages so the workflow can be
restructured in order to minimize the impact of these problems. WMS also
stores workflow historical data so further data mining can be done.

The key issues are how workflows are modeled, so the available resources
are taken into account in the monitoring phase. Particularly, we introduce a
new Petri net extension that is detailed below.

4.1 Workflow Modeling: Resource Aware Petri Nets

Our work is specially focused on delays prediction, conversely, we need to
take care of the kind and number of resources needed for every task inside
the workflow so we can evaluate the time workflows will spend waiting for
an available resource. In order to satisfy this requirement we extended Petri



Petri Net Based Process Monitoring 11

nets with new elements so that resources can be represented. We called this
extension resource-aware Petri nets (RAPN). Previously to the formulation of
RAPN, some preliminary definitions are provided as follows.

Definition 1 A Petri net is a 3-tuple 〈P, T,A〉 where

– P is a finite set of Places
– T is a finite set of Transitions
– P ∩ T = ∅
– A is the set of arcs which connect P with T and vice versa. A : (P × T ) ∪

(T × P )

When PN are used to model a Workflow, they are called Workflow Nets
(WF net). In WF nets, the most common type of transition is the one which
represents tasks (e.g. wheel assembly), it is fired just at the moment where the
activity starts. When transitions represent the making of a decision they do
not start any new service, they just chose if a path must be followed or not
and they are fired by the system (or by the actor which takes the decision).
External events (e.g. user inserts a coin into a printer) are also represented
as transitions. The firing of the transition occurs when the event happens. Fi-
nally some transitions are just used for routing tasks (e.g. throw a concurrent
execution of processes) and they are fired by the system. It is important to
notice that there exists some dependencies between different transition types:
a decision type transition always comes after a service type one; decision type
transitions never come alone, there must be at least two complementary deci-
sions so the WF net is path complete.

In WF nets places represents conditions (some authors refers to conditions
as states). A place indicates the status and the conditions of a workflow in
a concrete point, in other words, a place p is the pre-condition of its input
transition and a place p is the post-condition of its output transition.

Finally, tokens (which are colored) represent instances. Every time a token
appears in the input place i means that a business new process p has started
inside the workflow. Tokens are colored so the processes can be distinguished

RAPN (Definition 5) incorporate resources to high level Petri nets[7]. Re-
sources (Definition 2) are related with sets of consecutive transitions (forming
subpaths, Definition 3) where the first transition (ts) is the one which allo-
cates the resource and the last (te) is the one which releases it. If there are
not available resources of the required type by a transition (ts) this transition
cannot be fired until a resource of the desired type is released.

Definition 2 A Resource is defined as a tuple 〈r,Q〉 where r is the kind of
resource and Q the amount of resources of type r available in the system.
Therefore R is a finite set of resources. R = {〈r1, Q1〉 , ... 〈rn, Qn〉} where n
stands for the resources cardinal.

Definition 3 A Transition Subpath (TS) is the set of connected nodes be-
tween two transitions where ts is the starting transition of the subpath and te
the last one, TS = 〈ts, te〉.



12 Albert Pla et al.

Definition 4 A transition subpath resource dependence (SD) defines the de-
pendence between all the nodes of a subpath TSi and a set of resources,
SD = 〈TSi, {〈rj , kj〉}〉 where kj is the amount of resources of type rj needed.

Definition 5 A Resource-aware Petri net is a 6-tuple 〈P, T,A, TO,R,D〉 where

– P is a finite set of places
– T is a finite set of transitions
– P ∩ T = ∅
– A is the set of arcs which connect P with T and vice versa A : (P × T ) ∪

(T × P )
– TO is a finite set of tokens which can store time information
– R is a finite set of Resources
– D is a finite set of transition subpath resource dependencies (SD)
– There exists an input place ”i” and an output place ”o” where:

– Place i does not have any incoming arc.
– Place o does not have any outcoming arc
– Each node n ∈ P ∪ T where n 6= i & n 6= o has a path to o
– Each node n ∈ P ∪ T where n 6= i & n 6= o has a path from i

Each RAPN represents a workflow definition, so, a token in a RAPN repre-
sents a workflow instance. A workflow environment can be mapped as several
RAPN which share the same resources.

4.2 Workflow Monitoring: Predicting Delays

The workflow management system (WMS) is responsible for monitoring the
development of a workflow instance.WMS is aware of the information about
all the tokens that are currently inside a workflow: current time, the instant
time when the workflow instance started, the number of available resources,
which cases are occupying the resources, etc. During the monitoring workflow
time out alarms can be generated as well as two kind of warning can be send:
Task Delay(Definition 9) and Workflow Delay(Definition 11). The first one
advises that the time spent in the execution of a concrete task its exceeding
the task mean time; this do not necessary behaves a workflow delay as the
lost time can be recovered during the execution of the remaining tasks. Work-
flow Delay alarm is triggered when the workflow estimated duration exceeds
its deadline. Monitoring at the workflow level means that it is necessary to
compare the evolution of the monitored workflow instance with the standard
deviation (SD). For that purpose, we kept attached to each WF its mean time
execution and its SD, which is obtained statistically from past executions.

4.2.1 Workflow time out alarm

Every time a new instance is started, a maximum deadline for the instance
resolution is assigned to it. Usually this deadline is a higher time value than
the mean execution time for the workflow.



Petri Net Based Process Monitoring 13

Fig. 5 Graphical representation about how the delays are estimated based on the token
information, the transitions mean times and the workflow state.

When a workflow deadline is reached or close to be reached, the workflow
management system sends a time out message or a running out of time alarm.
However those warnings tend to arrive at the late phase of the workflow (even
if they are caused for an early delay) so a restructuration of the workflow or
resource addition may be difficult to implement. The exceeding of this deadline
can cause important problems in the system. In service oriented architectures
can imply the loss of messages, causing communication problems and even the
restart of the process. In other domains, such as medical device maintenance,
a delay in a workflow could involve the unavailability of medical equipment
causing delays on hospital operations, delays in surgeries and actually impact-
ing on patients health. That is why it is important to predict possible delays
the sooner the better so reescalation rules or modifications in the workflow can
be done in order to avoid the delay or to minimize the impact of this retard.
We consider than a lower-level monitoring of the workflow, in a task level,
would result in an earlier detection of the delay.

4.2.2 Task delay warning

In our approach, besides the global execution time of the workflow, we monitor
the time that tokens spend on each place. Moreover we endow tokens with
information about the time it started the workflow, the instant it arrived to
the current place and the current time stamp. This information allows us
to detect possible delays in the workflow before it reaches its deadline (e.g.
Figure 5) as we can notice when a task is exceeding it’s normal execution
time, sending task delay warning alarms.

4.2.3 Workflow delay warning

However, a delay in the execution of a task does not necessarily means a delay
in the workflow execution as a faster execution of the rest of activities can
avoid the global delay. In order to advance the workflow execution delay we
use the information stored on the token and the time required to execute the
worst case (the slowest path) of the pending workflow. If the sum of the spent



14 Albert Pla et al.

time in the previous tasks of the workflow with the mean time of the pending
tasks is higher than the workflow deadline then a workflow delay alarm is
triggered. Thus, the algorithm applied to predict workflow delays i s the one
shown in Algorithm 1.

Algorithm 1 Delay detection algorithm
for each token TOi do

if ESD(TOi) > µtime(TOi.getCurrentTransition) then
TriggerTaskDelaywarning

end if
if EDW (TOi) > wfµtime(TOi.WF ) then
TriggerWorkflowDelaywarning

end if
end for

Definition 6 Transition mean time µtime(ti) is the mean of the time spent
by tokens in ti’s input place before ti is fired

Definition 7 The longest path of a workflow WF from a transition tc is the
slowest path to be executed starting from the current transition tc to the
endint transition te of the workflow. L(WF,tc)={tc, tc+1, ..., te}

Definition 8 The Elapsed Task Duration associated to a token TOi is the
difference between the arrival time of the token to a place pj and the current
time, ETD(TOi)= (Currenttime − arrivalT ime(TOi, pj)).

Definition 9 A Task Delay associated to a token TOi, TD(TOi), occurs when
a token has an elapsed task duration in a given place p that has exceeded the
tj output transition mean time, ETD(TOi) > µtime(tj)

Definition 10 The estimated duration of a workflow instance represented
by a token TOi, EDW (TOi), is the current elapsed duration, plus the addi-
tion of the transition mean time which belongs to the longest path, that is,
EDW (TOi) = (Currenttime−Wokflowstartingtime) +

∑
ti∈L(WF,tc)

µtime(ti)

Definition 11 A workflow instance represented by a token TOi has a de-
lay, WD(TOi), if its estimated duration exceeds the workflow mean time,
WD(TOi) = EDW (TOi) > wfµtime(WF ).

5 Experiments and Results

This section presents the results obtained in the research concerning this arti-
cle. Firstly a brief description of the implemented prototype is described, then,
some of the performed experiments are described and, finally, the experimen-
tation results are presented.



Petri Net Based Process Monitoring 15

5.1 Prototype

The first prototype of our work consists in 3 modules: a workflow framework, a
workflow simulation engine and the workflow management system (Figure 6).
The workflow framework can load Petri nets defined by XML or load Petri nets
designed with the PM Editeur[38] graphical editor; it is responsible for firing
transitions, moving tokens along the Petri net and all the work related with
Petri nets. Moreover it allows the user to define resources and to associate
them with different parts of the Petri net. The workflow simulation engine
permits to recreate the evolution of a workflow, given a set of parameters (the
workflow modeling, the probability of a workflow instantiation, the standard
deviation in the execution of a time and, number of resources in the system
and the duration of the simulation) it simulates the execution of the workflow.
Finally the workflow management system is responsible for monitoring the
evolution of the workflow, detecting possible delays and to ask the workflow
motor to trigger the transitions. All this software, except the PM Editeur,
have been developed using Java technology.

5.2 Experimental Set Up

To test the performance of our system we modeled and simulated a set of work-
flows corresponding to a medical device reparation service from an hospital.
They were extracted and adapted from the AIMES project [8].

5.2.1 Workflows

The workflows correspond to common activities in the medical device mainte-
nance industry such as assigning a technician for a device repairing, reassigning
a technician, locally repair a device, etc. They are the following:

Fig. 6 Architecture of the workflow simulation framework



16 Albert Pla et al.

Fig. 7 Top: Maintenance event escalation management. Bottom: Reactive maintenance
intervention.

– Reactive Maintenance Interventions - RMI (Figure 7 bottom): de-
scribes the procedure to follow when a a medical device throws a main-
tenance warning. In this case the system catch the warning and classifies
the action, locates the source of the action, assigns a priority to the service
and assigns the maintenance action to a technician. Finally the technician
carries the action and the workflow finalizes. This workflow is composed by
six services. In this case, the resources needed to accomplish the workflow
are technicians of a concrete type.

– Maintenance Event Escalation Management - MEEM (Figure 7
top): the technical staff leader wants to assign a concrete task to an avail-
able technician. First of all, the staff leader looks which technicians are
available and which tasks have not been assigned; then the staff leader
defines a procedure to follow for a technician and finally the technician
performs the assigned task (5 services). In this workflow two kinds of re-
sources interfere in the development: the technical staff leader (which its
amount will be always one as there is only one leader in each group) and
technicians of a concrete type.

– Inventory and Installation of New Equipment - IINE (Figure ??):
It describes the established procedure to follow when a new device arrives
to a hospital. Firstly, a testing specialized technician makes the quality
tests in order to check the popper working of the device and that all its
documentation is attached, then the equipment is registered and installed.
If the received equipment is a piece for an existing device an specialized
technician embeds the equipment to its correspondent device, otherwise, an
installer mounts the device where it corresponds. Nine different services are



Petri Net Based Process Monitoring 17

Fig. 8 Multiple Reactive Maintenance Intervention.

required for this workflow and three different kind of resources (although
only two will be used at each instantiation).

– Multiple Reactive Maintenance Intervention - MRMI (Figure 8:
This workflow is an extension of the Reactive Maintenance Intervention
(RMI) workflow presented before. As the previous one, this business pro-
cess is started when a medical device throws a maintenance warning but is
followed when the maintenance must be carried out by two kinds of tech-
nician. The tasks to follow are almost the same than the RMI but differ
in the reparation task. In this workflow an exclusive or selection is done
and it must be decided if the two technicians can work concurrently or if
they must act sequentially. The resources needed in this process are two
different kinds of technicians.

5.2.2 Scenarios

Combining the workflows presented in the previous paragraphs, we created 5
different scenarios to test the delay prediction procedure:

– Scenario 1 There are two kind of resources in the organization: technical
staff leader(1 in the system) and technician type A(4 in the system), and
two different workflows:reactive maintenance interventions using a type A
technician and maintenance event escalation management using a type A
technician and a technical staff leader. The resource type A technician is
shared by both workflows. The scenario simulated among 500 time units
with a a workflow starting probability p = 0.05 per time unit; the kind
of workflow started is randomly chosen with the same probability for each



18 Albert Pla et al.

workflow type. This scenario allows us to study the behavior of our methods
in a simple experiment.

– Scenario 2 There are three kind of resources in the organization: 1 techni-
cal staff leader, 3 technician type A and 1 technician type B. This scenario
uses two kind of workflows: reactive maintenance interventions and main-
tenance event escalation management. However, this time, some of the re-
active maintenance interventions must be carried by a type B technician so
the reactive maintenance interventions have two kind of instantiations, one
using a type A technician and one using a type B. The scenario simulated
among 500 time units with a a workflow starting probability p = 0.05 per
time unit; the probability of starting a reactive maintenance intervention
using a type B technician is p = 0.2 while the probability of starting one
of the other workflows is p = 0.4 for each one. The aim of this experiment
is to complicate the scenario 1 in order to study the performance of the
workflow management system in a more complex scenario.

– Scenario 3 This scenario adds the inventory and installation of new equip-
ment business process to the first scenario. We considered that the type D
technician as the same which appears in the Reactive maintenance inter-
vention and in the maintenance event escalation management . As techni-
cian D is used by all the workflows we considered to include a high number
of this type available resources in the system, having 5 type D technicians
(used by all the workflows), 1 staff leader (used by MEEM) and 2 type I
and T technicians (used by IINE). We simulated a 500 time units period
with a probability of instantiating a workflow p = 0.05 distributed in 3/6
for RMI, 2/6 for IINE and 1/6 for MEEM. Scenario 3 allows us to study
the workflow management system when many resources are involved in the
business processes.

– Scenario 4 In this case only the multiple reactive maintenance interven-
tion is used since we considerer that is an enough complex workflow itself.
Moreover, MRMI permits to study the difference between the sequential
and the concurrent use of resources. The simulation has been done for 500
time units with a probability of starting a new workflow of p = 0.2. In the
simulation three resources of each kind has been defined.

– Scenario 5 This scenario do not correspond to any of the business pro-
cess presented before since it is a completely synthetic instance created to
analyze the behavior of the system when many workflows share the same
resource. Figure ?? describes the workflow environment where three se-
quential workflows share the same resource (Resource 3 ) moreover two of
them share resource 2 and one also uses the resource 1. The amount of
resources available in the system for each workflow is directly proportional
to the number of workflows which use them: six type 3 resources, four type
2 resources and two type 1 resources. As the rest of scenarios, we have
simulated 1000 time units, the probability of instantiating a new worfklow
used is p = 0.01 with the same probability for each workflow type.



Petri Net Based Process Monitoring 19

5.3 Results

The obtained results are shown as a flow execution diagram. The delayed
workflows appear marked with their token identifier. The workflow executions
are represented as lines where the dashed lines represents a normal execution
(inside its maximum time of execution) and information of delayed plans are
shown as solid lines. Moreover, the instants in which our tool predicted a delay
for the workflow are marked with a vertical line.

Figure 9 shows the results obtained in the first experiment where two
different workflows are sharing two different resources. The simulation among
500 time units generated 30 workflow instances where 7 of them resulted in
a delay (T1, T8, T10, T15, T19, T22 and T26). All of them were predicted
before they occurred by our system although 2 false positives (a delay was
predicted but the workflow ended on time) were also predicted (T5 and T11).
As it is a simple scenario the number of delays produced is small.

Figure 10 shows the results of the second scenario where the same two
workflows share 3 different types of resources with a different quantity of them.
The simulation generated 31 workflow instances where 10 finished out of time
(T7, T9, T12, T15, T16, T17, T19, T20, T25 and T29). As happened on the
previous scenario all the delays were successfully predicted, nevertheless, 2 on
time workflows where classified as delayed workflows (T1 and T12). Moreover,
due to the higher complexity of this experiment, it is important to notice that
the number of delays respect the first scenario has increased.

Finally in Figure 11 the results of the thirds scenario are shown. In it,
the installation and inventory of new equipment is added to the first scenario.
In the simulation 26 workflows have been instantiated and 12 of them have
been marked as possible delayed workflows (T9, T11, T13, T14, T15, T16,
T17, T18, T19, T21, T22 and T24). As both the complexity and the number
of resources used in this scenario are higher than in the previous ones, the
number of delays in the system is also higher. Ten of this marked workflows
have been correctly classified as they have suffered a delay, while T14, despite
the delay prediction, ended on time. The workflow defined by the T24 token has
been classified as susceptible of suffering a delay, however the simulation ended
before the workflow was delayed. Regarding the kind of workflows marked as
delayed, 3 correspond to the IINE WF, 4 to the RMI WF and 5 to the EM
WF.

6 Discussion

The obtained results in the different scenarios show that our prototype can
provide an early detection of workflow delays. In some instances such as token
19(scenario1), token 7(scenario2) or token 22(scenario3) the detection is done
up to 40 time units before the workflow deadline (32% of the workflow dura-
tion). This delay anticipation could be enough to restructure the scheduling
of the workflow, especially in long duration workflows as medical device main-



20 Albert Pla et al.

Fig. 9 Result of the first scenario where the system resources are 4 type A technicians and
a 1 technician staff leader.

Fig. 10 Result of the second scenario where the system resources are 3 type A technicians,
1 type B technician and a 1 technician staff leader.

tenance operations (which can have long term deadlines) or manufacturing
processes (with midterm deadlines).

By comparing the first two presented scenarios we can notice that in the
second one there is a higher number of delays. This fact is due to the lower
number of available resources in the system. As more workflows are waiting for
a resource to be released, more workflows may be delayed. The higher resource
variety in the second scenario caused the ending of some workflows that were
instantiated after others. Despite this two remarkable differences, the delay
prediction presented a similar behavior in both scenarios. The third scenario
presents similar results to the second one. We can see how the coexistence of
different types of WF and resources, as happened before, causes the ending
of some workflows before older workflows have finished. It is important to
notice that although the number of delays produced is the same, the number
of erroneous predictions decrease respect to the second scenario.



Petri Net Based Process Monitoring 21

Fig. 11 Result of the third scenario where the system IINE is added to the workflow
environment.

Table 1 shows the confusion matrix of the three experiments presented
above and Table 6 a summary of the experiments performed. By analyzing
the results we can notice that in any of the performed experiments appear
false negatives (delayed workflows classified as on time workflows). This is an
important fact as it means that all the delayed workflows are predicted. Re-
garding the false positives, we can see that there are 2 in each experiment.
Taking into account that in each instance we are monitoring around 30 work-
flows, this represents an 8% of the classified workflows, which is an acceptable
percentage. Since our point of view, in the domain we are dealing with, a false
positive is less harmful than a false negative as a false positive can result in a
workflow checking by a supervisor while a false negative can produce a global

PC\RC Delay On Time

Delay 7 2
On Time 0 21

(a)

PC\RC Delay On Time

Delay 10 2
On Time 0 19

(b)

PC\RC Delay On Time

Delay 10 2
On Time 0 14

(c)

Table 1 Table (a) shows the confusion matrix for the first experiment results. Table (b)
shows the confusion matrix for the second experiment results. Table (c) shows the confusion
matrix for the third experiment results.



22 Albert Pla et al.

Delayed Scenario Monitoring Agents used Delays produced Delays detected (TP) Delays not detected (FN) Erroneous Delays detected(FP) Ontime Predicted(TN)
SC. 1 30 7(100,00%) 0(0,00%) 2(8,70%) 21(91,30%)
SC. 2 31 10(100,00%) 0(0,00%) 2(9,50%) 19(90,50%)
SC. 3 26 10(100,00%) 0(0,00%) 2(12,50%) 14(87,50%)
SC. 4 97 3(100,00%) 0(0,00%) 2(2,10%) 92(97,90%)
SC. 5 52 10(100,00%) 0(0,00%) 3(7,10%) 39(92,90%)
Mean 30 8(100,00%) 0(0,00%) 7,98% 21(92,02%)

Table 2 Summary of the different scenarios executions

delay on the system. Although the obtained results encourage us to follow this
research direction, it is important to remember that the presented results were
obtained from workflow simulations, not from real procedures. It would be in-
teresting to apply the presented methodology to real data in order to analyze
its performance in a real environment. It is also important to remark that
the application of our proposed workflow monitoring system is conditioned to
the knowledge of the business resources. Thus, it seems that could be straight
applied inside a company, but can present difficulties in workflows involving
external partners.

7 Conclusions

Our work aimed to include a new perspective that can improve workflow ef-
ficiency by taking under consideration not only the time (as it has been done
until now) but also the resources availability and the concurrent execution of
workflows inside an organization. Actual tools for modeling workflows are not
enough to represent all the variables that can affect their efficiency, as the
available resources.

This work has faced two problems regarding workflow monitoring: how
to model workflows including information about the resources needed to its
execution; and how to monitor a workflow for predicting possible delays in its
execution.

For the first issue we defined the resource-aware Petri nets (RAPN), a Petri
net extension which includes the information of the resources needed by each
task. RAPN are based in color dense-time Petri nets, which have been widely
used to model workflows. Its main contribution is the addition of the resource
concept, which is allocated when a concrete transition is fired and its released
when the last transition which needs the resource is fired.

Once the business processes are modeled, workflow management systems
are in charge of its monitorization. The monitoring of RAPN in a task level,
taking into account the organization resources and the rest of workflows which
are executed in a workflow environment, allows to predict delays in a workflow
execution and to generate its correspondent alarms. These alarms allow system
supervisors to restructure the workflow or to endow the system with more
resources in order to avoid the delays. Moreover, the study of these warnings
with data mining and statistical techniques can offer information about the



Petri Net Based Process Monitoring 23

performance of the tasks and to detect which are the weaker points of the
architecture. In this sense, after delays are detected, other tools as the one
presented in [?] can complement this work with diagnostic facilities.

To test our approach, we simulated a medical equipment maintenance or-
ganization deployed in a service oriented architecture. The simulations we ran
fulfilled our expectations, indicating that an anticipated delay alarm can be
predicted in many different situations. There were also some instances (around
the 6% of the cases and 20% of the predictions) where the prediction alarm was
thrown despite no delay was finally produced (false positive) while all the de-
lays where succesfully predicted. In the tested domain the false negatives have
a much higher cost than the fasle positives as they behave the impossibility
of applying a preventive action, in this sense our approach had an apropriate
behavior as any false negative appeared.

At the end, the application of our proposed workflow monitoring system
is conditioned to the knowledge of the business resources. Thus, it seems that
could be straight applied inside an organization or company, however it can
present difficulties on its deployment in workflows involving external partners
since the workflow management system cannot trace all the resources impli-
cated on the business process of different companies.

For that purpose, as a future work, we are considering to incorporate Multi
Agent Systems technology to the WMS that could be more suitable to dis-
tributed environments. Another point is the incorporation of resource alloca-
tion algorithms in order to endow the WMS with more capabilities to avoid
delays and to coordinate manufacturing works. Moreover, the incorporation
of auction mechanisms to the WMS could reduce economic costs during the
resouce allocation. The combination of this points will allow the WMS to deal
with external services and providers in a better way.

References

1. Bpel project. http://www.eclipse.org/bpel/ Accessed June 10th, 2010. URL
http://www.eclipse.org/bpel/

2. van der Aalst, W.: Interval timed coloured petri nets and their analysis (1993)
3. van der Aalst, W.M.P.: The application of Petri nets to workflow management.

The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998). URL
http://wwwis.win.tue.nl/˜wsinwa/Publications/p53.PDF

4. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003). DOI 10.1016/S0169-023X(03)00066-1. URL
http://dx.doi.org/10.1016/S0169-023X(03)00066-1

5. van der Aalst, W.M.P., Pesic, M.: Specifying, discovering, and monitoring service flows
making web services process-aware. BPM Center Report BPM-06-09, BPM Center
(2006)

6. van der Aalst, W.M.P., Ter: Yawl: yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005). DOI 10.1016/j.is.2004.02.002. URL
http://dx.doi.org/10.1016/j.is.2004.02.002

7. Abdulla, P.A., Mahata, P., Mayr, R.: Dense-timed petri nets: Checking zenoness, token
liveness and boundedness. CoRR abs/cs/0611048 (2006)

8. AIMESproject: Deliverable 1.3: requirements specification (2008-2010). URL
http://www.aimes-project.eu/



24 Albert Pla et al.

9. Alt, M., Gorlatch, S., Hoheisel, A., Pohl, H.W.: Using high-level petri nets for hierarchi-
cal grid workflows. In: E-SCIENCE ’06: Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing, p. 13. IEEE Computer Society, Wash-
ington, DC, USA (2006). DOI http://dx.doi.org/10.1109/E-SCIENCE.2006.149

10. Bastos, R., Dubugras, D., Ruiz, A.: Extending uml activity diagram for workflow mod-
eling in production systems. In: HICSS ’02: Proceedings of the 35th Annual Hawaii
International Conference on System Sciences (HICSS’02)-Volume 9, p. 291. IEEE Com-
puter Society, Washington, DC, USA (2002)

11. Benatallah, B., Chrz;stowski-Wachtel, P., Hamadi, R., O?Dell, M., Susanto, A.:
Hiword: A petri net-based hierarchical workflow designer. Application of Con-
currency to System Design, International Conference on 0, 235 (2003). DOI
http://doi.ieeecomputersociety.org/10.1109/CSD.2003.1207720

12. Brogi, A., Popescu, R., Brogi, A., Popescu, R.: Bpel2yawl: Translating bpel processes
into yawl workflows (2006)

13. Buscemi, M., Sassone, V.: High-level petri nets as type theories in the join calculus. In:
In Proceedings of 4th FOSSACS, volume 2030 of LNCS, pp. 104–120. Springer (2001)

14. Dumas, M., ter Hofstede, A.H.: Uml activity diagrams as a workflow specification lan-
guage. pp. 76–90. Springer Verlag (2001)

15. Eshuis, R., Dehnert, J.: Reactive petri nets for workflow modeling. In: Application and
Theory of Petri Nets 2003, pp. 296–315. Springer (2003)

16. Frankowiak, M.R., Grosvenor, R.I., Prickett, P.W.: Microcontroller-based process mon-
itoring using petri-nets. EURASIP J. Embedded Syst. 2009, 1–12 (2009). DOI
http://dx.doi.org/10.1155/2009/282708

17. Ha, S., Suh, H.W.: A timed colored petri nets modeling for dynamic workflow
in product development process. Comput. Ind. 59(2-3), 193–209 (2008). DOI
http://dx.doi.org/10.1016/j.compind.2007.06.016

18. Hinz, S., Schmidt, K., Stahl, C.: Transforming bpel to petri nets. In: W.M.P.
van der Aalst, B. Benatallah, F. Casati, F. Curbera (eds.) Proceedings of the 3rd
Int’l Conference on Business Process Management (BPM 2005), pp. 220–235. Springer
Verlag, Nancy, France (2005). DOI http://dx.doi.org/10.1007/11538394 15. URL
http://dx.doi.org/10.1007/11538394 15

19. Hong, H.S., Lee, B.S., Kim, K.H., Paik, S.K.: A web-based transactional workflow mon-
itoring system. In: WISE ’00: Proceedings of the First International Conference on
Web Information Systems Engineering (WISE’00)-Volume 1, p. 166. IEEE Computer
Society, Washington, DC, USA (2000)

20. Indulska, J.R.M.: How good is bpmn really? insights from theory and practice. In: 14th
European Conference on Information Systems (2006)

21. Kalnins, A., Vitolins, V.: Use of uml and model transformations for workflow process
definitions. CoRR abs/cs/0607044 (2006)

22. Kanana, E., Farhi, M.: Monitoring information and data flows using triggers in a dy-
namic workflow environment. In: Proceedings of the 5th European Conference on
Knowledge Managemen, pp. 175–179 (2004)

23. Lombardi, M., Milano, M.: Allocation and scheduling of conditional task graphs. Arti-
ficial Intelligence 174(7-8), 500–529 (2010)

24. Muehlen, M., Recker, J.: How much language is enough? theoretical and practical use
of the business process modeling notation. Advanced Information Systems Engineering
pp. 465–479 (2008). URL http://dx.doi.org/10.1007/978-3-540-69534-9 35

25. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE
77(4), 541–580 (2002). DOI 10.1109/5.24143. URL http://dx.doi.org/10.1109/5.24143

26. Pant, K.: Business Process Driven SOA using BPMN and BPEL: From Business
Process Modeling to Orchestration and Service Oriented Architecture. Packt Pub-
lishing (2008). URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20/path=ASIN/1847191460

27. Petri, C.A.: Kommunikation mit automaten. Ph.D. thesis, Institut für instrumentelle
Mathematik, Bonn (1962)

28. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes
in workflow systems: a survey. Data Knowl. Eng. 50(1), 9–34 (2004). DOI
http://dx.doi.org/10.1016/j.datak.2004.01.002



Petri Net Based Process Monitoring 25

29. Rozinat, A., Wynn, M., van der Aalsta, W., ter Hofstede, A., Fidge, C.: Workflow
simulation for operational decision support. Data and Knowledge Engineering 68(9),
834–850 (2009)

30. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2. edn. Addison-Wesley, Boston, MA (2005)

31. Russell, N., Arthur, van der Aalst, W.M.P., Mulyar, N.: Workflow control-flow patterns:
A revised view. Tech. rep., BPMcenter.org (2006)

32. Russell, N., Arthur, van der Aalst, W.M.P., Mulyar, N.: Workflow control-flow patterns:
A revised view. Tech. rep., BPMcenter.org (2006)

33. Tick, J.: Workflow model representation concepts. Nemzetkzi Szimpziuma 7 th Interna-
tional Symposium of Hungarian Researchers on Computational Intelligence Workflow
Model Representation Concepts 7 (2002)

34. Wang, M., Wang, H.: Intelligent agent supported flexible workflow monitoring system.
In: A. Banks Pidduck et al: CAISE 2002, LNCS 2348, pp. 787–791 (2002)

35. Wassermann, B., Emmerich, W., Butchart, B., Cameron, N., Chen, L., Patel, J.: Sedna:
A bpel-based environment for visual scientific workflow modelling. In: In Workflows for
eScience - Scientific Workflows for Grids. Springer Verlag (2007)

36. Wirtz, G., Weske, M., Giese, H.: Extending uml with workflow modeling capabilities. In:
CooplS ’02: Proceedings of the 7th International Conference on Cooperative Information
Systems, pp. 30–41. Springer-Verlag, London, UK (2000)

37. Zarour, N., Boufaida, M., Seinturier, L., Estraillier, P.: Supporting virtual enterprise
systems using agent coordination. Knowledge and Information Systems 8, 330?349
(2005)

38. Zdenk, M.S., Svdov, M., Hanzlek, Z.: Matlab toolbox for petri nets. In: 22nd Interna-
tional Conference ICATPN 2001, pp. 32–36 (2001)


