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Abstract – Materials science is a multidisciplinary research topic related to the development of 
physics and technology. Mechanical alloying of ribbon flakes is a two steps route to develop 
advanced materials. In this work, a Fe based alloy was obtained using three pathways: 
mechanical alloying, melt-spinning and mechanical alloying of previously melt-spun samples. 
Processing conditions allow us to obtain amorphous or nanocrystalline structures.  Furthermore, 
a bibliographic revision of mechanical alloying is here presented. Copyright © 2007 Praise 
Worthy Prize S.r.l. - All rights reserved. 
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I.  Introduction 

One of the main fields concerning physics research is 
materials science. Materials science is a 
multidisciplinary research discipline involving physics, 
engineers and chemists. The history of the humanity is 
closely associated to the development of new materials.  
In fact, materials with a metastable structure 
(amorphous, nanocrystalline, extended solid solution) 
present interesting technological applications. 
Mechanical alloying (MA) and rapid solidification (RS) 
are two important routes to obtain amorphous or 
nanocrystalline alloys. The field of rapid solidification 
(~ 106 K/s) of alloys from the liquid state started with 
Pol Duwez and coworkers successful rapid quenching 
experiments in 1960 [1]. In these experiments, an 
extended crystalline solid solution and an amorphous 
phase, the metallic glass Au80Si20, were obtained.  One 
of the typical methods to develop alloys by rapid 
solidification is the melt-spinning (MS) technique. It is 
known that Fe-based alloys prepared by rapid 
solidification techniques in ribbon form can exhibit 
superior soft magnetic properties [2]. Nevertheless, 
ribbons not attain a more important level of applicability 
due to various shortcomings: the ribbon form, the 
limited alloy compositions (near deep eutectics) and the 
usually brittle behavior [3]. Recently, mechanical 
alloying of ribbons is applied as an alternative route to 
obtain powdered materials [4]-[5]. The MA of bulk 
amorphous or nanocrystalline metallic glasses may be a 
two-step procedure in the powder metallurgy industry. 
In principle, the MA alloys may be consolidated to any 
desired shape and form. 

In this work, we present: a) an historical perspective 
and analysis of the MA technique and b) a comparison 
of three routes (MA, MS and MS+MA) to develop a Fe 
based alloy.  

II.  Mechanical alloying 

II.1. Historical perspective 

 
Mechanical alloying is a processing technique that 

allows alloys production starting from mixtures of 
elemental and/or compounds powders (flakes). During 
MA, a lamellar structure arises in the powders due to the 
cold welding and fracture of the particles. The MA 
process produces a refinement of the microstructure and 
an intimate mixing of the constituents that favors the 
formation of a metastable structure. MA was developed 
around 1966 by John Benjamin and coworkers at the 
Paul D. Merica Research Laboratory of the International 
Nickel Company (INCO) to produce a material 
combining oxide dispersion strengthening with gamma 
prime precipitation hardening in a nickel-based 
superalloy for gas turbine applications [6]-[7]. Initially, 
the process was referred to as milling or mixing. The 
first scientific article was “Dispersion strengthened 
superalloys by mechanical alloying” [8]. Nevertheless, 
this process was known 40 years earlier from the work 
of Hoyt, who reported coating of tungsten carbide, WC, 
with Co by ball milling. The term “mechanical alloying” 
was introduced by INCO in a patent [9].  

MA has been utilized in several areas of materials 
processing and applied to obtain different materials, 
sometimes combined with consolidation techniques to 
develop bulk materials: oxide dispersion strengthened 
materials [10], intermetallics [11], nanomaterials [12], 
composites [13], ceramics [14], polymers [15], 
amorphous  [16], hydrogen storage [17] and extended 
solid solutions [18]. As an example, figure 1 shows the 
solubility limits of several elements into Fe bcc structure 
at the equilibrium state and after MA process.  
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The recent status of MA has been reviewed in 
several works [9], [19]-[20]. The MA and related 
topics literature available up to 2007 has been 
collected. Figure 2 presents the growth of 
publications in the field of MA and related topics 
during the period 1990-2007 [21]. The article amount 
increases a factor three. 
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Fig. 1. Solid solubility limits of several elements in Fe [22-30]. 
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Fig. 2. Amount of publications concerning materials developed by 

mechanical alloying. 

II.2. Milling parameters 

MA is a complex process which depends on many 
physical, chemical and geometrical factors. Those 
parameters affect the milling efficiency and the energy 
transfer. A detailed list must include the geometric and 
dynamic parameters of mill design, the character of 
motion of milling media, the physical and mechanical 
characteristics of milling media, the characteristics of 
processed substances, the mass ratio of milling balls to 
powder, the milling time, the temperature of the vial, the 
milling atmosphere, the selection of process control 
agents or the filling factor of the vial. The milling time 
(BPR) and the ball-to powder mass ratio (BPR) are the 
parameters usually given to characterize an experimental 
MA setup.  It should be pointed that the use of different 
milling conditions and/or ball mills results in different 
reaction pathways. The milling intensity is a measure of 
the milling energy, which is directly proportional to the 
powder generated in the milling process. The 
modification of the milling conditions will strongly 
affect the way by which energy is transferred to the 
milled powder and, hence, the nature of final alloys. As 

an example, using other milling device, and milling 
alloys of similar composition can be obtained a 
nanocrystalline or an amorphous phase as main phase 
[31]. Figure 3 shows the evolution of the crystalline size 
of a Fe based alloy using different milling intensity. A 
higher value of the rotation speed (here given in r.p.m.) 
correspond to a higher milling intensity. 

It is necessary to consolidate the nanocrystalline or 
amorphous materials developed by melt spinning to 
obtain bulk alloys for practical applications in the 
powder metallurgy or magnetic sectors. For it, an option 
is to mill ribbon flakes to produce a material with a like-
powdered form. In this moment, consolidation of 
amorphous or nanocrystalline powders into bulk, full 
density compacts while retaining final nanoscale grain 
size is obviously a major challenge [32]. If the original 
material is amorphous, it can be easier to obtain a 
nanocrystalline material after consolidation. As an 
example, bulk amorphous and nanocrystalline FeZrNbB 
alloys were prepared by consolidating amorphous 
powders crushed from as-quenched ribbons [33].  
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 Fig. 3. Crystalline size versus milling time for different milling 
intensities. 

As increasing the milling time, the ribbon pieces 
were fractured, and the final form corresponds to a 
powdered-like material. Figure 4 shows the percentage 
of alloy in ribbon form using a sieving method as a 
function of milling time. Results show a general 
diminution of the necessary milling time, considered as 
the lowest limit time at which powdered particles 
represents ≥ 95 wt.%, with the increase of the rotation 
speed. As expected, when increasing the total energy 
involved in the ribbon fracture, the limit time decreases. 
A lower milling time favors the technological reliability 
of this combined route. For ribbon flakes milled at 200, 
300 and 400 r.p.m. the times were 24 h, 24 h and 8h, 
respectively. In previous works [34], only slight 
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differences due to the ball-to-powder weight ratio were 
found.  
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Fig. 4. Percentage of alloy in ribbon form as a function of milling 
time. 

III.  Materials and Methods 

The composition analyzed in this article is 
Fe70Ni10B20. The alloy was produced directly by milling 
(MA alloy), by melt spinning (MS alloy) or by the 
combined route (MS + MA alloy). Milling (MA alloy) 
was performed in a planetary ball-mill (Fritsch 
Pulversitte P7) starting from pure element and 
compound powders (99.7%-purity Fe, with a particle 
size under 10 µm; 99.8%-purity Ni, with a particle size 
under 50 µm; and 99.6%-purity B, with a particle size of 
50 µm). Powder was loaded into a cylindrical Cr-Ni 
stainless-steel vial together with balls of the same 
material in an argon atmosphere. The ball-to-powder 
ratio was 5:1. The milling process was performed at a 
speed of 700 r.p.m. at different milling times until 100 
hours.  

The Fe-Ni based alloy was also produced by melt-
spinning (MS alloy). The precursors used were pressed 
powders of elemental Fe, Ni and B. The ribbon has a 
size of about 0.1 cm wide and 20 µm thick. The molten 
alloy was quenched on the surface of a rapidly spinning 
(about 30 m/s) Cu wheel. The working atmosphere was 
inert, Ar. The ribbons ulterior milling was performed at 
400 rpm during 10 hours (MS + MA alloy). Ribbons 
were cut into pieces about 0.5 cm large. The size 
reduction of the ribbons was followed by a sieving 
method after different milling times, using a 50 µm sieve 
to control the percentage of original ribbon considered 
as well fractured or powdered-like. 

The sample thermal characterization was carried out 
by differential scanning calorimetry (DSC) under an 

argon atmosphere in a Mettler-Toledo DSC30 device. 
The morphology and composition study was performed 
by scanning electron microscopy (SEM) in a Zeiss 
DSM960 A equipment coupled with energy dispersive 
X-ray microanalysis (EDX). The X-ray diffraction 
(XRD) patterns were carried out in Siemens D-500 
equipment and the analysis of the patterns was 
performed by Rietveld refinement using MAUD 
software. 

IV.  Results and discussion 

Low contamination from the milling tools (< 1.35 
at.%) was found by ICP and EDX in the milled alloys 
(MA and MS + MA). Furthermore, oxygen was detected 
probably due to the large surface area and the high 
reactivity of the fine particles. Likewise, MS alloy 
shows the same nominal composition after and before 
melt-spinning production. Similar results are reported in 
other Fe based alloys [35]. Figure 5 shows the X-ray 
diffraction patterns of the alloy as quenched, the alloy as 
milled and the as milled ribbon. MS alloy show the 
typical halos of an amorphous structure. The same 
structure remains after flakes milling. The 
microstructure of MA alloy after 100 h milling is 
nanocrystalline, a bcc Fe solid solution, with a lattice 
parameter of 0.2865(3) nm and a crystallite size of 12.4 
nm. 
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Fig. 5. XRD spectra corresponding to: as milled powders (MA), as 
quenched (MS) and as milled flakes (MS + MA).  

 
DSC measurements performed support the existence 

of a metastable structure as determined by XRD. Figure 
6 shows DSC scans performed at a heating rate of 10 
K/min, for quenched and milled samples. One or two 
main exothermic processes were detected that are 
related to the structural relaxation (MA and MS + MA) 
and crystallization (all samples). The first process is 
shallow and broad. It is typical for a relaxation process 
and starts at about 425 K. A crystallization peak starts at 
high temperature. The crystallization process in the 
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rapidly solidified samples produces a very sharp 
exothermic peak. Both, the onset temperature of the 
main peak and the crystallization enthalpy are 
comparatively higher for rapidly solidified sample than 
for samples MA, as expected since the last ones are 
powders with some remains of crystallinity.  

 
Fig. 6. DSC scans at 10 K/min of: as milled powders (MA), as 

quenched (MS) and as milled flakes (MS + MA).  
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Fig. 7. Kissinger plots to determine the apparent activation energy of 
the crystallization process. 

 

The apparent activation energies of the 
crystallization process processes were calculated by the 
Kissinger’s shift peak method [36]. For it, the samples 
were heated at different rates: β = 2.5-5-10-20-40 K 
min-1. The value of the apparent activation energy, E, of 
the crystallization process are 241 ± 21, 361 ± 32 and 
298 ± 23 kJ/mol  for alloys MA, MS and MS + MA 
respectively. The values obtained in other alloys were 
between 230 and 380 K/mol in MA samples, and 
between 320 and 690 K/mol in MS samples [37]-[38]. 

The apparent activation energy of the MA alloyed 
powders seems reasonable to be associated with a grain 
growth process in the nanocrystalline MA alloy and to 
nucleation plus crystalline growth in the amorphous 
alloy obtained by MS or by MS + MA.  

The combination of higher activation energy and 
crystallization temperature is associated to a higher 
thermal stability. In this work, the alloy produced by 
MA is nanocrystalline and the alloys produced by MS 
are amorphous. It is reasonable to expect that structure 
and properties could be different when using MA, MS 
or MA + MS methods [39]. Nevertheless, it is also 
possible to develop amorphous MA alloys by modifying 
milling conditions [40]. In this moment, it is possible to 
design advanced materials for specific applications by 
the combination method of melt-spinning and 
mechanical alloying [41].  

 

V. Conclusions 

In this work, we perform a brief bibliographic 
revision of mechanical alloying as a technique able to 
develop metastable materials. This technique can be 
combined with melt-spinning to obtain powdered 
materials. In our case, the same Fe-rich alloy was 
produced by three routes: mechanical alloying (MA), 
melt spinning (MS) and mechanical alloying of melt-
spun sample (MS + MA). Different processing pathways 
produce alloys with different microstructure (amorphous 
or nanocrystalline) and thermal stability front 
crystallization.  
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