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Abstract. Wildfires have been studied in many ways, for instance as a spatial point pattern or 

through modelling the size of fires or the relative risk of big fires. Lately a large variety of 

complex statistical models can be fitted routinely to complex data sets, in particular wildfires, as 

a result of widely accessible high-level statistical software, such as R. The objective in this 

paper is to model the occurrence of big wildfires (greater than a given extension of hectares) 

using an adapted two-part econometric model, specifically a hurdle model. The methodology 

used in this paper is useful to determine those factors that help any fire to become a big wildfire. 

Our proposal and methodology can be routinely used to contribute to the management of big 

wildfires. 
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1. Introduction 

 

Fire risk can be defined as a product of fire occurrence probability and expected impacts [3]. An 

area can be considered to have high wildfire risk if the probability of fire is high and the 

expected impacts of fire are large. Furthermore, fires are getting larger, more destructive, and 

more economically expensive due to fuel accumulations, shifting land management practices, 

and climate change. Wildfires have negative effects on human life and health, human property 

and wellbeing, cultural and natural heritage, employment, recreation, economic and social 

infrastructures and activities. It is worth noting that some fire episodes have caused catastrophic 

damages as loss of human lives and very significant economic and environmental losses. 

The European Mediterranean is a highly populated region. Approximately 65,000 fires occur in 

the European Mediterranean region every year. Wildfires destroy around 500,000 hectares 

every year in the European Union, 0.7 to 1 million hectares in the Mediterranean basin. This has 

a serious impact on the environment and on socio-economic activities, especially in southern 

Europe. Over 95% of the fires in Europe are due to human causes. An analysis of fire causes 

show that the most common cause of fires comes from agricultural practices, followed by



negligence and arson ([34]). These wildfires are relatively frequent events with recurrence time 

of 23 years ([42]). 

 

Wildfires also destroy biodiversity, increase desertification, affect air quality, the balance of 

greenhouse gases and water resources. During recent years the increasing extension of urban 

areas mixed with rural or forest areas associated with a marked increase of fire activity make 

this impact even greater. The intense urbanization of our societies, the abandonment of rural 

lands and rural activities such as forest management along with the rapidly expanding of 

urban/forest interface are key drivers for wildfires in Europe and in the Mediterranean region. 

Weather is a fundamental component of the fire environment. The prolonged drought and high 

temperatures of the summer period in the Mediterranean climate are the typical drivers that 

demarcate the temporal and spatial boundaries of the main fire season. Future trends of wildfire 

risks in the Mediterranean region, as a consequence of climate change, will lead to the increase 

of temperature in the East and West of the Mediterranean, with more frequent dryness periods 

and heat waves facilitating the development of very large fires. Future scenarios of climate 

change should affect locally fire regimes, and therefore local analyses need to be performed by 

adapting global climatic models to regional conditions. Many factors have been considered to 

explain the temporal variation in fire regime in recent decades in Spain: Climate change is one 

factor, with a clear relationship between increasing number of days with extreme fire hazard 

weather and the number and size of fires in the Mediterranean coast of Spain. 

Earlier detection often leads to smaller fire size, and therefore reduces the probability of fire 

escape ([21]), final fire size, cost and risks to fire response crews. Wildfire prevention should be 

considered as an important part of sustainable forest management and should integrate a 

landscape approach taking into account different land uses. Knowledge of short and long-term 

impacts of wildfire is essential for effective risk assessment, policy formulation, and wildfire 

management. 

Spain is one of the most affected countries in Europe, both considering number of fires and 

area burned. Between 1980 and 2004 nearly 380.000 fires have occurred in Spain, and more 

than 4.7 millions hectares have been burned (roughly 10% of the country). Extreme fires 

(>500ha) are relatively frequent events with recurrence time of 2-3 years, causing large human, 

economic and environmental damage altogether. Their ignition and spread occur under 

favorable weather conditions, often following drought periods, in areas where fuel accumulation  

helps quick fire spread and high fire intensity, they usually burn out of control and can only be 

stopped when meteorological conditions support aerial and ground fire fighting ([39]). In 

Catalonia these fires only represent 1.4% of all fires and 79% of burned area. In this study we 

have included wildfires larger than 50ha because in the Mediterranean region represent more 



than 75% of the area burned, although they represent only 2.6% of the total number of wildfires 

([19] and [30]). Over the last few years, the occurrence of large wildfire episodis with extreme 

fire behavior has affected different regions of Europe: Portugal, south-eastern France, Spain 

and Greece. 

 

Figure 1.Catalonia location in Europe. 

 

Wildfires have been studied in many ways, for instance as a spatial point pattern ([8], [9], [24], 

[42] and [44]) or through modelling the size of fires ([1]) or the relative risk of the big fires ([45]). 

Lately a large variety of complex statistical models can be fitted routinely to complex data sets, 

in particular wildfires, as a result of widely accessible high-level statistical software, such as R 

([32]). Researchers from many different disciplines are now able to analyse their data with 

sufficiently complex methods rather than resorting to simpler yet non-appropriate methods. In 

this case, the objective in this paper is to model the occurrence of big wildfires, and to 

determine those factors which are significative in helping any fire to become a big wildfire. 

We analyse the occurrence of big wildfires in Catalonia between 1994 and 2011, and consider a 

big wildfire to be a fire that burns areas larger than a fixed extension of hectares. Specifically we 

consider three sizes of areas; 50ha, 100ha and 150ha. Moreover, we distinguish between the 

numerous potential causes of wildfire ignition. In particular, we consider: (i) natural causes; (ii) 

negligence and accidents; (iii) intentional fires or arson; and (iv) unknown causes and rekindled. 

The study area encompasses 32,000 square kilometers and represents about 6.4% of the total 

Spanish national territory (1). 

In addition to the locations of the fire centroids, several marks and covariates are considered. 

The year the wildfire occurred is the unique mark considered. The spatial covariates are also 



considered, specifically, eight continuous covariates (i.e. topographic variables – slope, aspect, 

hill shade and altitude, proximity to anthropic areas – roads, urban areas and railways, and 

meteorological variables – maximum and minimum temperatures) and one categorical variable 

(land use). 

The methodology for fitting spatial point process models to complex data sets has seen 

previous advances in facilitating routine model fitting for spatial point processes. For instance, 

the work by [4] has facilitated the routine fitting of point processes based on an approximation of 

the pseudolikelihood to avoid the issue of intractable normalizing constants ([5]) through the use 

of the library spatstat for R ([4]). In the same way, ([22]) consider hierarchical models able to 

analyse a wide variety of point process models, for example those appearing in fire problems. 

In our case, spatio-temporal data can be idealised as realizations of a stochastic process 

indexed by spatial and temporal coordinates. Spatio-temporal clustering of wildfires might 

indicate the presence of risk factors which are not evenly distributed in space and time. In fact, 

what is usually of interest is to assess the association of clustering of wildfires to spatial and 

seasonal covariates ([42]). Covariate information usually comes in the form of spatial patterns in 

regular lattices or as regular vector polygons that may be rasterised into lattice images using 

GIS ([41]). The right methodological context able to deal with these pieces of information comes 

from spatio-temporal point processes. To bypass the problem of inefficiency in the estimation 

under a general integrated nested Laplace approximation (INLA)([36]), we have tried a 

computationally tractable approach based on stochastic partial differential equation (SPDE) 

models ([25]). On one hand, we use SPDE to transform the initial Gaussian Field (GF) to a 

Gaussian Markov Random Field (GMRF). GMRFs are defined by sparse matrices that allow for 

computationally effective numerical methods. Furthermore, by using Bayesian inference for 

GMRFs in combination to the INLA algorithm, we take advantage of the many significant 

computational improvements ([36]). If, in addition, we follow the approach suggested by 

Simpson et al. (2011), in which the specification of the Gaussian random field is completely 

separated from the approximation of the Cox process likelihood, we gain far greater flexibility. 

The proposed method in this paper is an adapted two-part econometric model, specifically a 

Hurdle model. It consists of two stages and it is specified in such a way as to gather together 

the two processes theoretically involved in the presence of wildfires, that is, the fact to be a big 

wildfire (greater than a given extension of hectares) and the frequency of big wildfires per 

spatial unit. Specifically, the Poisson hurdle model consists of a point mass at zero followed by 

a truncated Poisson distribution for the non-zero observations. 

This paper addresses two issues. We develop complex joint models for big wildfires and, at the 

same time, we provide methods facilitating the routine for the fitting of these models, using a 

Bayesian approach. The approach is based on the INLA, which speeds up parameter 

estimation substantially so that particular models can be fitted within feasible time. 



This paper is organised as follows: the following section describes the data. Section 3 presents 

the methodology used, including the statistical framework, the description of the Poisson Hurdle 

model and the statistical inference explanation. Section 4 presents the results. Finally, the paper 

ends with a discussion and future coming steps. 

 

2. DATA SETTING 

 

In this paper we analyse the occurrence of big wildfires in Catalonia between 1994 and 2011. 

The total number of fires recorded in the analysis is 3,283, which are distributed as follows: 206 

wildfires bigger than 50ha, 141 wildfires bigger than 100ha, and 112 wildfires bigger than 

150ha. In Figure 2, on the left, we can see all wildfires and wildfires bigger that 50ha. 

In Catalonia, the agency responsible for identifying the coordinates of the origin of the fire, the 

starting time and the cause of the fire is the Forest Fire Prevention Service (Government of 

Catalonia). In addition, they record the ending time of the fire, the hectares (and their type) 

affected, and the perimeter of the fire. The data used in this article are provided directly by the 

Service, and have been tested and polished before handling. 

We distinguish between the numerous potential causes of wildfire ignition. In particular, we 

consider: (i) natural causes; (ii) negligence and accidents; (iii) intentional fires or arson; and (iv) 

unknown causes and rekindled. The first category includes lightning strikes or heat from the 

sun. The second takes into account that human carelessness can also start a wildfire, for 

instance, with campfires, smoking, fireworks or improper burning of trash. Negligence and 

accidents also includes those wildfires caused purely by chance. The third cause considers 

those wildfires that are started deliberately. Finally, the fourth set includes unknown causes and 

rekindled fires. In Figure 2, on the right, we show the spatial distribution of wildfires bigger than 

50ha distinguishing by causes. 

  

Figure 2. Left: All wildfires (1994-2011) and big wildfires. Right: Big wildfires 

distinguishing by causes. 



In addition to the locations of the fire centroids, measured in Cartesian coordinates (Mercator 

transversal projections, UTM, Datum ETRS89, zone 31-N), several covariates are considered. 

Specifically, eight continuous covariates (i.e. topographic variables – slope, aspect, hill shade 

and altitude; proximity to anthropic areas – roads, urban areas and railways; and meteorological 

variables – maximum and minimum temperatures) and one categorical variable (land use). 

Land use will obviously affect fire incidence, but moreover, topographic variables (slope, aspect 

and hill shade) affect not only fuel and its availability for combustion ([29]), but also the weather, 

inducing diverse local wind conditions, which include slope and valley winds. In fact, [15] point 

out that those topographic variables are relatively more important predictors of severe fire 

occurrence, than either climate or weather variables. The proximity to anthropic areas can be 

considered a factor explaining not only the incidence of fires in the intentional fires and arson 

category, but also why natural cause fires do not occur. As climatic variables are feasibly 

important for natural cause fires and perhaps rekindled fires, we use the maximum and 

minimum temperatures (further details can be found in [42]). 

In this paper, slope is the steepness or degree of incline of a surface. Slope cannot be directly 

computed from elevation points; one must first create either a raster or a TIN surface. In this 

article, the slope for a particular location is computed as the maximum rate of change in 

elevation between the location and its surroundings. Slope is expressed in degrees. Aspect is 

the orientation of the slope and it is measured clockwise in degrees from 0 to 360, where 0 is 

north-facing, 90 is east-facing, 180 is south-facing, and 270 is west-facing. Hill shading is a 

technique used to visualise terrain as shaded relief by illuminating it with a hypothetical light 

source. Here, the illumination value for each raster cell is determined by its orientation to the 

light source, which, in turn, is based on slope and aspect and is also measured in degrees, from 

0 to 360. Finally, altitude is considered as elevation above sea level and it is expressed in 

meters. To obtain topographic variables (DTM) we use the MET-15 model, which is a regular 

grid containing orthometric heights distributed according to a metricconverterProductID15 m15 

m grid side, and is created for the Cartographic Institute of Catalonia. We also use the surface 

analysis tools included in the ArcGis10 application Spatial Analyst ([42]). 

The distances, in meters, from the location of the wildfire to urban areas, roads and railroads, 

are constructed by considering a geographical layer in each case. The urban area and road 

layers are obtained from the Department of Territory and Sustainability of the Catalan 

Government, through the Cartographic Institute of Catalonia (ICC) (http://www.icc.cat). To 

obtain the two new raster layers we use the Euclidean distance function, included in the 

ArcGis10 application Spatial Analyst. Then, we use the merge function of ArcGis10 

Geoprocessing module, to combine those two layers (urban  areas and roads and railroads) into 

one single layer. The layers are continuous and defined as a raster layer (details can be found 

in [42]). 



We also use the land use in Catalonia maps (1:250,000), with classification techniques applied 

on existing LANDSAT MSS images for 1992, 1997 and 2002 ([7], [17] and [35]). Additionally, we 

use orthophotomaps (1:5000) 2005-2007, to create the land use map for 2010. Specifically, we 

assign the land use map just before the date of each wildfire. We assign, as the land use, only 

the percentage value corresponding to the principal land use of the spatial units. In this paper, 

we transform the twenty-two categories, obtained from the Catalonian Cartographic Institute 

(ICC) cover map of Catalonia, into eight categories: coniferous forests; dense forests; fruit trees 

and berries; artificial non-agricultural vegetated areas; transitional woodland scrub; natural 

grassland; mixed forests; and urban, i.e., beaches, sand, bare rocks, burnt areas, and water 

bodies. 

We also consider the temperatures (maximum and minimum) and up to seven days before the 

occurrence of the fire, at the location of the wildfire (note that meteorological data are provided 

by the Area of Climatology and Meteorological Service of Catalonia). The temperatures at the 

point of the occurrence of the wildfire, along with the temperatures from the previous day and up 

to a week before, are estimated by means of a two-step Bayesian model. Further details can be 

found in [37]. 

 

3. METHODS 

 

3.1. Statistical framework. Spatio-temporal data can be idealised as realizations of a 

stochastic process indexed by a spatial and a temporal dimension 

(3.1)  𝑌 𝑠, 𝑡 ≡ {𝑦(𝑠, 𝑡)|(𝑠, 𝑡) ∈ 𝐷 × 𝑇 ∈ ℝ2 × ℝ} 

where𝐷 is a (fixed) subset of ℝ2 and 𝑇 is a temporal subset of ℝ. The data can then be 

represented by a collection of observations 𝑦 = {𝑦 𝑠1 , 𝑡1 , … , 𝑦 𝑠𝑛 , 𝑡𝑛 }, where the set(𝑠1, … , 𝑠𝑛 ) 

indicates the spatial locations, at which the measurements are taken, and (𝑡1, … , 𝑡𝑛) the 

temporal instants. 

In our case we assume separability in the sense that we model the spatial correlation by the 

Matérn spatial covariance function defined in (3.7) and the temporal correlation using a Random 

Walk model of order 1 (RW1). We introduce also the interaction effect between the space and 

time using another RW1 structure. Nevertheless, this inclusion does not change the separability 

structure. This temporal structure can be justified by the apparent randomness as shown in 

Figure 3. In fact, the dispersion of big wildfires varies between the periods considered. In 

particular, there is a reduction considering the number of them, specifically in the period 2008-

2011. 



 

𝑝𝑖𝑡𝑘 = 𝑃𝑟𝑜𝑏 𝑦𝑖𝑡𝑘 > 𝐴 𝑍, 𝛽  

𝑙𝑜𝑔  
𝑝𝑖𝑡𝑘

1 − 𝑝𝑖𝑡𝑘

 = 𝑍′𝛽 + 𝑆𝑖 + 𝜏𝑡 + 𝜐𝑖𝑡  

3.2. The Poisson hurdle model. The model used in this paper is an adapted two-stage 

econometric model proposed by [13], specifically a hurdle model. It consists of two stages and 

specified in a way to gather together the two processes theoretically involved in the presence of 

wildfires, that is, the occurrence of being a big wildfire (greater than a given extension of 

hectares) and the frequency of big wildfires per spatial unit ([28]). Specifically, the Poisson 

hurdle model consists of a point mass at zero followed by a truncated Poisson distribution for 

the non-zero observations. 

In the first stage, we predict the probability that any wildfire becomes larger than 50ha, 100ha 

and 150ha. In the second part, we model the number of these big wildfires per spatial unit. 

The first part of the process can be modeled using a logistic regression that models the 

probability that any wildfire becomes larger than a fixed area  

 

  

  

Figure 3.Big wildfires in Catalonia in 1994 to 2011. Left-Up: 1994-1997; Right-Up: 1998-2002; 

Left-Down: 2003-2007 and Right-Down: 2008-2011. 

 

(3.2) 



where A denotes one of the fixed area‟s values (50ha, 100ha or 150ha), y is the response 

variable (in this case, each wildfire), 𝑍 a matrix of explanatory spatial covariates (containing the 

intercept), 𝛽 is the vector of unknown parameters associated with the covariates, the subscript i 

denotes the wildfire, the subscript t (t=1994,..., 2011) the year of occurrence of the wildfire, and 

the subscript k (k =1,..., 4) the cause of occurrence. We also introduced three random effects: (i) 

spatial dependence, 𝑆𝑖 , (ii) temporal dependence, 𝜏𝑡  and (iii) spatio-temporal interaction, 𝜐𝑖𝑡 . 

In accordance with that proposed by [27], in the second stage of the model the distribution of 

being a big wildfire follows a truncated Poisson that models the number of big wildfires per 

spatial unit, introducing covariates and spatial random effects ([28]) 

 

(3.3) 

 

 

where 𝑇𝑝𝑜𝑖𝑠(𝑦𝑖𝑡𝑘 ; 𝜇𝑖𝑡𝑘 ) denotes a truncated Poisson distribution with parameter 𝜇𝑖𝑡𝑘 , 𝜂 denotes a 

link function such as the logit link, 𝑍𝑚 ,𝑖𝑡  represents the same spatial covariates used in the first 

stage, and 𝛽𝑚  denotes the parameters associated with these covariates. 

The particular estimation process has two steps. In the first step we use a binomial link in order 

to estimate the occurrence of a big wildfire. The probabilities of occurrence obtained from this 

first step are used in the second step as interim priors. In the second step the link is a truncated 

Poisson distribution. In any case, the likelihood of each part is introduced multiplicatively in only 

one equation. 

 

3.3. Statistical inference. 

 

3.3.1. SPDE approach. The SPDE approach allows to represent a Gaussian Field with the 

Matérn covariance function defined in (3.7) as a discretely indexed spatial random process 

which produces significant computational advantages ([25]). Gaussian Fields are defined 

directly by their first and second order moments and their implementation is highly time 

consuming and provokes the so-called “big n problem”. This is due to the computational costs of 

O(n
3
) to perform a matrix àlgebra operation with 𝑛 × 𝑛dense covariance matrices, which is 

notably bigger when the data increases in space and time. To solve this problem, we analyse 

an approximation that relates a continuously indexed Gaussian field with Matérn covariance 

functions, to a discretely indexed spatial random process, i.e., a Gaussian Markov random field 

(GMRF). The idea is to construct a finite representation of a Matérn field by using a linear 

𝑝(𝑦𝑖𝑡𝑘  𝑆𝑖 =  1 − 𝑝𝑖𝑡𝑘  1 𝑦𝑖𝑡𝑘 <𝐴 + 𝑝𝑖𝑡𝑘 𝑇𝑝𝑜𝑖𝑠(𝑦𝑖𝑡𝑘 ; 𝜇𝑖𝑡𝑘 )1(𝑦𝑖𝑡𝑘 >𝐴) 

log(𝜇𝑖𝑡𝑘 ) = 𝜂(𝑝𝑖𝑡𝑘 ) 

𝜂(𝑝𝑖𝑡𝑘 ) =  𝛽𝑚𝑍𝑚 ,𝑖𝑡 + 𝑆𝑖 + 𝜏𝑡 + 𝜐𝑖𝑡

𝑚

 



combination of basis functions defined in a triangulation of a given domain D. This 

representation gives rise to the stochastic partial differential equation (SPDE) approach given 

by (3.8), which is a link between the GF and the GMRF. This link allows replacement of the 

spatio-temporal covariance function and the dense covariance matrix of a GF with a 

neighbourhood structure and a sparse precision matrix, respectively, typical elements that 

define a GMRF. This, in turn, produces substantial computational advantages ([25]). 

In particular the SPDE approach consists in defining the continuously indexed Matérn GF X(s) 

as a discrete indexed GMRF by means of a basis function representation defined on a 

triangulation of the domain D, 

(3.4)    𝑋 𝑠 =  𝜑𝑙(𝑠)𝜔𝑙
𝑛
𝑙=1  

where n is the total number of vertices in the triangulation, {𝜑𝑙(𝑠)} is the set of basis function 

and {𝜔𝑙} are zero-mean Gaussian distributed weights. The basis funcions are not random, but 

rather are chosen to be piecewise linear on each triangle 

𝜑𝑙 𝑠 =  
1 𝑎𝑡 𝑣𝑒𝑟𝑡𝑖𝑥 1
0 𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒

  

The key is to calculate the weights {𝜔𝑙}, which reports on the value of the spatial field at each 

vertex of the triangle. The values inside the triangle will be determined by linear interpolation 

([41]). 

Thus, expression (3.4) defines an explicit link between the Gaussian field 𝑋 𝑠  and the 

Gaussian Markov random field, and it is defined by the Gaussian weights {𝜔𝑙} that can be given 

by a Markovian structure. 

Both the temporal dependence (on t) and the spatio-temporal interaction (on j and t) are 

assumed smoothed functions, in particular RW1 ([33]). Thus, RW1 for the Gaussian vector 

𝑥 = (𝑥1 , … , 𝑥𝑛 ) is constructed assuming independent increments  

(3.5)    Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1~𝑁(0, 𝜏−1) 

The density for 𝑥 is derived from its n−1 increments as 

(3.6)  𝜋 𝑥 𝜏 ∝ 𝜏
 𝑛−1 

2 𝑒𝑥𝑝  −
𝜏

2
  Δ𝑥𝑖 

2 = 𝜏
(𝑛−1)

2 𝑒𝑥𝑝  −
1

2
𝑥𝑇𝑄𝑥  

where𝑄 = 𝜏𝑅 and 𝑅 is the structure matrix reflecting the neighbourhood structure of the model 

([33]). 

Considering a spatio-temporal geostatistical data we need to specify a valid spatio-temporal 

covariance function defined by 𝐶𝑜𝑣 𝑦𝑖𝑡 , 𝑦𝑗𝑞  = 𝜍𝐶
2𝑀(𝑠𝑖 , 𝑠𝑗 |𝑡, 𝑞)where 𝜍𝐶

2 > 0 is the variance 

component and 𝑀(𝑠𝑖 , 𝑠𝑗 |𝑡, 𝑞) is the Matérn spatio-temporal covariance function. Depending on 

our assumptions the spatio-temporal covariance function can be adapted to each situation. In 



the case of stationarity in space and time, the spatio-temporal covariance function can be 

specified as a function of the spatial Euclidean distance Δ𝑖𝑗 , and of the temporal lag Δ𝑡𝑞 = |𝑡 −

𝑞|so it is defined by 𝐶𝑜𝑣 𝑦𝑖𝑡 , 𝑦𝑗𝑞  = 𝜍𝐶
2𝑀(Δ𝑖𝑗 ; Δ𝑡𝑞 ). If we assume separability, the spatio-temporal 

covariance function is given by 𝐶𝑜𝑣 𝑦𝑖𝑡 , 𝑦𝑗𝑞  = 𝜍𝐶
2𝑀1(Δ𝑖𝑗 )𝑀2(Δ𝑡𝑞 ), with 𝑀1 and 𝑀2 being the 

spatial and temporal correlation functions, respectively. Alternatively it is possible to consider a 

purely spatial covariance function given by 𝐶𝑜𝑣 𝑦𝑖𝑡 , 𝑦𝑗𝑞  = 𝜍𝐶
2𝑀(Δ𝑖𝑗 ) when t=q and 0 otherwise. 

In this last case, the temporal evolution could be introduced assuming that the spatial process 

evolves in time following an autoregressive dynamics ([20]). 

Assuming separability we need to define the Matérn spatial covariance function which controls 

the spatial correlation at distance   =  𝑠𝑖 − 𝑠𝑗   and this covariance is given by 

(3.7)    𝑀  𝜈, 𝑘 =
21−𝜈

Γ 𝜈 
 𝑘   𝜈𝐾𝜈 (𝑘  ) 

where𝐾𝜈  is a modified Bessel function of the second kind and 𝑘>0 is a spatial scale parameter 

whose inverse, 1/ 𝑘, is sometimes referred to as a correlation length. The smoothness 

parameter 𝜈>0 defines the Hausdorff dimension and the differentiability of the sample paths 

([18]). Specifically, we tried 𝜈=1,2,3 ([31]). Using the expression defined in (3.7), when 𝜈 + 𝑑/2 

is an integer, a computationally efficient piecewise linear representation can be constructed by 

using a different representation of the Matérn field x (s), namely as the stationary solution to the 

stochastic partial differential equation (SPDE) ([41]) 

(3.8)      𝑘2 − Δ 𝛼 2 𝑥 𝑠 = 𝑊(𝑠) 

A 𝛼 = 𝜈 + 𝑑/2 is a integer, Δ =  
𝜕2

𝜕𝑠𝑖
2

𝑑
𝑖=1  is the Laplacian operator and 𝑊(𝑠) is spatial white 

noise. 

In the general spatial point process context, intensity stands for the number of events (fires in 

our case) per unit area. When considering the total intensity in each cell, we refer to the number 

of fires per cell area. A particular problem in our wildfire dataset is that the total intensity in each 

cell, Λjt is difficult to compute, and so we use instead the approximation, Λjt  ≈ |sj | exp(ηjt (sj )), 

where ηjt (sj ) is a „representative value‟ (i.e., it represents the intensity or number of fires in a 

particular cell given by a linear predictor of covariates and other terms) ([41]), within the cell and 

|sj | is the area of the cell sj. To treat this kind of problems, Cox processes are widely used. In 

particular, Log Gaussian Cox processes (LGCP), which define a class of flexible models are 

particularly useful in the context of modelling aggregation relative to some underlying 

unobserved environmental field ([22]; [41]) and they are characterised by their intensity surface 

being modeled as 

(3.9)     log 𝜆(𝑠) = 𝑍(𝑠) 

where𝑍(𝑠) is a Gaussian random field. 



3.3.2. LGCP. Conditional on a realization of 𝑍(𝑠), a log-Gaussian Cox process is an 

inhomogeneous Poisson process. Considering a bounded region Ω ⊂ ℝ2 and given the intensity 

surface and a point pattern Y, the likelihood for a LGCP is of the form 

(3.10)   𝜋 𝑌 𝜆 = 𝑒𝑥𝑝  |Ω| −  𝜆 𝑠 𝑑𝑠  𝜆(𝑠𝑖)𝑠𝑖∈𝑌Ω
  

where the integral is complicated by the stochastic nature of 𝜆 𝑠 . We note that, the log-

Gaussian Cox process fits naturally within the Bayesian hierarchical modelling framework. 

Furthermore, it is a latent Gaussian model, which allows to embed it within the INLA framework. 

This embedding paves the way for extending the LGCP to include covariates, marks and non-

standard observation processes, while still allowing for computationally efficient inference ([23]). 

The basic idea is that, as we have explained in previous paragraphs, from a Gaussian Field 

(GF) with a Matérn covariance function, we use a SPDE approach to transform the initial 

Gaussian Field to a Gaussian Markov Random Field (GMRF), which, in turn, has very good 

computational properties. In fact, GMRFs are defined by sparse matrices that allow for 

computationally effective numerical methods. Furthermore, by using Bayesian inference for 

GMRFs, it is possible to adopt the Integrated Nested Laplace Approximation (INLA) algorithm 

which, subsequently, provides significant computational advantages. 

Because our data is potentially zero inflated, as not all our events will become big fires, in this 

paper we present a spatial Poisson hurdle model to address these particular aspects of the 

data. 

 

3.3.3. Bayesian computation. In a statistical analysis, to estimate a general model it is useful to 

model the mean for the i-th unit by means of an additive linear predictor, defined on a suitable 

scale 

 (3.11)     𝜂𝑖 = 𝛼 +  𝛽𝑚𝑧𝑚𝑖
𝑀
𝑚=1 +  𝑓𝑙(𝜐𝑙𝑖 )𝐿

𝑙=1  

where α is a scalar which represents the intercept, 𝛽 = (𝛽1, … , 𝛽𝑀) are the coefficients which 

quantify the effect of some covariates 𝑧 = (𝑧1 , … , 𝑧𝑀) on the response, and 𝑓 = {𝑓1(. ), … , 𝑓𝐿(. )) is 

a collection of functions defined in terms of a set of covariates 𝜐 = (𝜐1 , … , 𝜐𝐿). From this 

definition, varying the form of the functions 𝑓𝑙(. ) we can estimate different kind of models, from 

standard and hierarchical regression, to spatial and spatio-temporal models ([36])  

Given the specification in (3.8), the vector of parameters is represented by θ ={ 𝛼, 𝛽, 𝑓}. 

In our case, assuming that the subscript i denotes the wildfire, the subscript j the municipal 

district and the subscript t (t=1994... 2011) the year of occurrence of the wildfire, for each cause, 

we specify the log-intensity of the Poisson process by a linear predictor ([23]) of the form 



(3.12)    𝜂𝑖𝑗𝑡  𝑠𝑗  = 𝛼0𝑗 + 𝛽1𝐺𝑖𝑗𝑡 + 𝛽2𝑍𝑗𝑡 + 𝛽3𝑊𝑗 + 𝑆𝑗 + 𝜏𝑡 + 𝜐𝑗𝑡  

where 𝛼0𝑗  represents the heterogeneity accounting for variation in relative risk across different 

municipals districts,𝐺𝑖𝑗𝑡 represents those covariates which depend on the wildfire, the municipal 

district and the time, 𝑍𝑗𝑡 represents those covariates which depend onthe municipal district and 

the time, 𝑊𝑗  corresponds to those covariates which only depend on the municipal district,𝑆𝑗  is 

the spatial dependence, 𝜏𝑡  is the temporal dependence, and 𝜐𝑗𝑡  is the spatio-temporal 

interaction. 

Note that, we assume separability between spatial and temporal patterns and allow interaction 

between the two components. 

 

Following the Bayesian paradigm we can obtain the marginal posterior distributions for each of 

the elements of the parameters vector 

(3.13)    𝑝 𝜃𝑖 𝑦 =  𝑝 𝜓 𝑦 𝑝 𝜃𝑖 𝜓, 𝑦 𝑑𝜓 

and (possibly) for each element of the hyper-parameters vector 

(3.14)    𝑝 𝜓𝑘  𝑦 =  𝑝 𝜓 𝑦 𝑝𝑑𝜓−𝑘  

Thus, we need to compute: (i) 𝑝 𝜓 𝑦 , from which all the relevant marginals 𝑝 𝜓𝑘  𝑦  can be 

obtained, and (ii) 𝑝 𝜃𝑖 𝜓, 𝑦 , which is needed to compute the marginal posterior for the 

parameters. The INLA approach exploits the assumptions of the model to produce a numerical 

approximation to the posteriors of interest, based on the Laplace approximation ([43]). 

Operationally, INLA proceeds by first exploring the marginal joint posterior for the hyper-

parameters 𝑝  𝜓 𝑦  in order to locate the mode; a grid search is then performed and produces a 

set G of “relevant” points {𝜓∗} together with a corresponding set of weights, {𝑤𝜓∗}to give the 

approximation to this distribution. Each marginal posterior 𝑝  𝜓∗ 𝑦  can be obtained using 

interpolation based on the computed values and correcting for (probable) skewness, e.g. by 

using log-splines. For each 𝜓∗, the conditional posteriors 𝑝  𝜃𝑖 𝜓
∗, 𝑦  are then evaluated on a 

grid of selected values for 𝜃𝑖  and the marginal posteriors 𝑝  𝜃𝑖 𝑦  are obtained by numerical 

integration ([6]) 

(3.15)   𝑝  𝜃𝑖 𝑦 ≈  𝑝  𝜃𝑖 𝜓
∗, 𝑦 𝑝  𝜓∗ 𝑦 𝑤𝜓∗𝜓∗∈𝐺  

Given the specification in (3.12), the vector of parameters is represented by 𝜃𝑗 = {𝛽, 𝛽𝛼 , 𝑆, 𝜏𝑡 , 𝜐𝑗𝑡 } 

where we can consider 𝑋𝑖 = (𝑆, 𝜏𝑡 , 𝜐𝑗𝑡 ) as the i-th realization of the latent GF X(s) with the 

Matérn spatial covariance function defined in (3.7). We can assume a GMRF prior on θ, with 

mean 0 and a precision matrix Q. In addition, because of the conditional independence 



relationship implied by the GMRF, the vector of the hyper-parameters 𝜓 = (𝜓𝑆 , 𝜓𝜏 , 𝜓𝜐) will 

typically have a dimension of order 4 and thus will be much smaller than θ. 

Note that in both parts of the model we control for heterogeneity, spatial dependence and 

spatio-temporal extra variability. Models are estimated using Bayesian inference for Gaussian 

Markov Random Field (GMRF) through the Integrated Nested Laplace Approximation (INLA). 

The use of INLA and the SPDE algorithms produce massive savings in computational times and 

allow the user to work with relatively complex models in an efficient way. All analyses are 

carried out using the R freeware statistical package (version 2.15.2) ([32]) and the R-INLA 

package ([33]). 

 

4. RESULTS 

 

We note that, in general, wildfires caused by natural causes are not larger than 50ha. The same 

happens for those fires caused by unknown causes or for those rekindled. For this reason, even 

if we have analysed the forth causes we focus our results only on big wildfires caused by 

negligence and accidents and on those caused intentionally or arson. 

4.1. First stage results. 

We first consider a logistic regression to model the probability of a wildfire becoming larger than 

a particular area. Table 1 shows the significant factors of the logistic model distinguishing by the 

three sizes (50ha, 100ha and 150ha) and considering wildfires occurred by negligence and 

accidents (cause 2) and those caused by intention or arson (cause 3). The main factors that 

have an influence in the presence of wildfires (larger than a given extension of hectares) are the 

orientation and the land use. Taking into account the rest of the covariates considered we can 

see that the hill shade, the distance to anthropic areas and the maximum temperature have no 

influence in the probability of a fire to become larger than a specific area. Table 2 shows the 

means of the posterior distributions for the hyper-parameters of the first stage considering the 

three sizes of area analysed. The heterogeneity, the time and the interaction have a small 

impact and moreover, their values decrease when the extension of the wildfires increases. We 

can also appreciate that there are not big differences between the two causes. On the other 

hand, the values of the spatial component show that there is an important spatial dependence, 

especially for wildfires occurred by negligence and accidents. 

In Figures 4 and 5, we show the marginal distribution of hyper-parameters 𝜅, 𝜏 , 𝜌, heterogeneity, 

time and interaction for Causes 2 and 3. In all of them, the distribution is Gamma, the 

distributions are similar for both causes. Finally, Figure 6 shows the prediction of the probability 

of a fire to become larger than 50ha as well as the standard deviation of this prediction. Looking 



at the wildfires occurred by negligence and accidents we can see that higher probabilities are 

concentrated around the main urban areas of Catalonia: Girona (in the north-east), Barcelona 

(in the middle of the coast), Tarragona (in the south along the coast) and Lleida (in the centre 

west). There are also high probabilities in the north-west, corresponding to a large forest area. 

With respect to intentional and arson wildfires the probabilities are less concentrated than in 

wildfires occurred by negligence and accidents but are also higher in the same areas. 

Regarding the standard deviation we do not appreciate alarming values. On the second cause 

higher values are found where the probabilities are also higher. The third cause presents lower 

values of deviation than wildfires occurred by negligence and accidents meaning that the model 

works better with wildfires occurred by intention or arson. 

 

 Cause 2 Cause 3 

 50 100 150 50 100 150 

(Intercept) X X X X X X 

factor(Aspect)2       

factor(Aspect)3  X     

factor(Aspect)4    X X X 

factor(Slope)2       

factor(Slope)4       

factor(Slope)5   X    

factor(Altitude)3 X      

factor(Land use)1 X      

factor(Land use)3  X X    

factor(Land use)4     X X 

factor(Land use)6      X 

ftmin 3     X  

ftmin 5  X     
 

Table 1. Significative factors for the logistic model in the first stage of the 

analysis. 

 

 

Table 2. Means of the posterior distributions for the hyper-parameters of the first stage. 

 50ha 100ha 150ha 

 Cause 2 Cause 3 Cause 2 Cause 3 Cause 2 Cause 3 

Heterogeneity 0.000054 

0.000054 

5.212E-09 

5.192E-09 

3.959E-09 

5.247E-09 

0.000054 5.212E-09 5.192E-09 3.959E-09 5.247E-09 

Space 0.246900 

0.148810 

0.3908300 

0.0520790 

0.0884000 

0.0131780 

0.148810 0.3908300 0.0520790 0.0884000 0.0131780 

Interaction 0.000043 0.000043 3.885E-09 3.827E-09 3.408E-09 3.762E-09 

Time (year) 0.000053 0.000049 5.187E-09 5.135E-09 4.444E-09 4.759E-09 



 

Figure 4. From Top-Left to Bottom-Right: Marginal posterior distribution for 

𝜅, 𝜏 , 𝜌, heterogeneity, time and interaction, respectively, for Cause 2. 

 

 

Figure 5. From Top-Left to Bottom-Right: Marginal posterior distribution for 

𝜅, 𝜏 , 𝜌, heterogeneity, time and interaction, respectively for Cause 3. 

 

4.2. Second stage results. In the second stage we model the frequencies of wildfires (larger 

than a specific area) per spatial unit. Table 3 shows the values of the hyper-parameters. It is 

important to note that in this second stage the spatial values are not included. The reason is 

because there is a too high correlation between the spatial dependence component, 𝑆𝑖 , and the 

spatio-temporal interaction, 𝜐𝑗𝑡 , that prevents the model from working properly. Therefore, we 

introduce the spatial random effect through the interaction. The heterogeneity is quite much 

significant than in the first stage, especially for intentional wildfires and arson. Something similar 

happens with the interaction. It is much larger than in the first stage and it is also more 

representative for wildfires occurred by intention and arson. Finally, with respect to the temporal 

dependence, this is also larger than in the first stage but it has almost no variation between the 

two causes. In addition there are not relevant differences between the three extensions of 

hectares in any of the three hyper-parameters analysed. In Figure 7, we show the marginal 



posterior distribution of hyper-parameters for heterogeneity, time and interaction for Causes 2 

and 3. In all of them, the distribution is Gamma. Finally, Figure 8 shows the predicted number of 

wildfires larger than 50ha per spatial unit. Wildfires occurred by negligence and accidents and 

those caused by intention or arson present the same pattern of distribution according to the 

probabilities obtained in the first stage of the model. In general, big wildfires are concentrated 

along the coast being denser around the metropolitan area of Barcelona. Looking at the 

standard deviations we point out that intention wildfires and arson have very low values so, 

again, we note that the model correctly fits wildfires occurred intentionally or arson. 

 

 
 

  

Figure 6. Top: Prediction maps for Cause 2 and Cause 3. Bottom: 

Standard Deviation for the prediction under Cause 2 and Cause 3. 

 

 

 50ha 100ha 150ha 

 Cause 2 Cause 3 Cause 2 Cause 3 Cause 2 Cause 3 

Heterogeneity 0.116645  1.083424 0.116918 1.088495 0.116836 1.089681 

Interaction 0.000181  0.010143 0.000177 0.010101 0.000180 0.009634 

Time (year) 0.000048  0.000048 0.000047 0.000048 0.000048 0.000040 

Table 3. Hyper-parameters for the model in the second stage. 

 

 



 

 

Figure 7.Posterior distribution of the hyper-parameters for the 

second stage. Left: heterogeneity, Middle: time and Right: 

interaction. First line: Cause 2, second line: Cause 3. 

 

  

  

Figure 8. Number of fires expected Maps: On the Top: Cause 2 and Cause 3 and on the 

Bottom: Cause 2-sd and Cause 3-sd.  



5. DISCUSSION 

 

The main finding of this study is that big wildfires are mostly caused by human actions either by 

negligence and accidents or by intention or arson. These results make sense with what the 

bibliography shows and what we have commented in the introduction; over 95% of the fires in 

Europe are due to human causes.  

Normally a natural wildfire does not spread as much as an intentional wildfire and so, the 

number of wildfires which are larger than a big extension, is not enough to obtain results. 

Analyzing the four causes separately we noticed no significant results for wildfires caused by 

natural causes and for those caused by unknown causes or rekindled. In fact separating 

wildfires by cause and by its extension we almost did not have wildfires caused by natural 

causes nor unknown causes or rekindled. In particular in our data there are only 15 wildfires 

bigger than 50ha occurred by natural causes compared to 180 caused by negligence or 

accidents. Our model does not work properly with such a limited small number of data so, even 

if we have studied the four causes, we have restricted the study to the second and the third 

causes. To analyse and estimate the number of zeros in a dataset there are different statistical 

alternatives. On one hand we have the ZIP model, which is employed to estimate event count 

models in which the data result in a larger number of zero counts than would be expected. The 

hurdle Poisson model [27] is a modified count model with two processes, one generating the 

zeros and one generating the positive values. The two models are not constrained to be the 

same. 

The concept underlying the hurdle model is that a binomial probability model governs the binary 

outcome of whether a count variable has a zero or a positive value. If the value is positive, the 

”Hurdle is crossed,” and the conditional distribution of the positive values is governed by a zero-

truncated count model. In the ZIP models, unlike the hurdle model, there are thought to be two 

kinds of zeros, ”true zeros” and ”excess zeros”. Although the practical results are very similar in 

both approaches, hurdle models are most appropriate in our case, since every wildfire can turn 

into a big wildfire and therefore, every point is susceptible to become larger than a specific 

number of hectares. 
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