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Abstract 

 

Wildfires have become one of the principal environmental problems in theMediterranean basin. 

While fire plays an important role in most terrestrial plant ecosystems, the potential hazard that 

it represents for human lives and property has led to the application of fire exclusion policies 

that, in the long term, have caused severe damage, mainly due to the increase of fuel loadings 

in forested areas, in some forest systems. The lack of an easy solution to forest fire 

management highlights theimportance of preventive tasks. 

The observed spatio-temporal pattern of wildfire occurrences may be idealised as a realization 

of some stochastic process. In particular, we may use a spatio-temporal point pattern approach 

for the analysis and inference process. We studied wildfires in Catalonia, a region in the north-

east of the Iberian Peninsula, and we analysed the spatio-temporal patterns produced by those 

wildfire incidences by considering the influence of covariates on trends in the intensity of wildfire 

locations. A total of 3,166 wildfires from 1994-2008 have been recorded. 

We specified spatio-temporal log-Gaussian Cox process models. Modelswere estimated using 

Bayesian inference for Gaussian Markov RandomField (GMRF) through the Integrated Nested 

Laplace Approximation (INLA)algorithm. 

The results of our analysis have provided statistical evidence that areas closer to humans have 

more human induced wildfires, areas farther have more naturally occurring wildfires.  

We believe the methods presented in this paper maycontribute to the prevention and 

management of those wildfires which arenot random in space or time. 

Key words: wildfire, spatio-temporal point processes, marks, covariates, log-Gaussian Cox 

models, GMRF, INLA. 

 

 

  



Highlights 

 

- We obtain a model that maps fire risk in Catalonia. 

- We have provided clues as to which risk factors are associated with which different 

causes of wildfires.  

- Wildfires started intentionally were associated with low elevation locations. 

- With wildfires caused by nature, relative risks were higher for locations far from the 

coastal plains, and from urban areas, roads and railways.  

- Wildfires associated with human activity, are related to the accessibility of the areas. 



1.- Introduction 

 

Forest fires are considered dangerous natural hazards around the world (Agee, 1993). After 

urban and agricultural activities, fire is the most ubiquitous terrestrial disturbance. It plays an 

important role in the dynamics of many plant communities, accelerating the recycling time of 

important minerals in the ashes, and allowing the germination of many dormant seeds in the 

soil. Natural occurring forest fires are ignited by lightings. In the Mediterranean area however, 

many forest fires are ignited by arsonists or by other human related causes, such as negligence 

or by machinery in farm land areas. 

 

In recent decades, forest fires have become one of the main environmental problems and one 

of the most significant causes of forest destruction in Mediterranean countries (Varga 2007). 

The term forest fire comprises any conflagration that might take place in a forest or wild land 

area, and includes wildfires. A wildfire is defined as an unplanned ignition caused by lightning, 

volcanoes, or unauthorized or accidental human actions (National Wildfire Coordinating Group 

(NWCG) Fire Policy Committee 2010). A wildfire differs from other fires in its extensive size, the 

speed at which it can spread out from its original source, its potential to change direction 

unexpectedly, and its ability to jump gaps such as roads, rivers and fire breaks (National 

Interagency Fire Centre 2011).  

 

Wildfires are classified according to the cause of ignition, physical properties such as speed of 

propagation, the type of combustible material and the effect of weather on the fire (Flannigan et 

al. 2006). The four major natural causes of wildfire ignitions are lightning, volcanic eruption, 

sparks from rock falls, and spontaneous combustion (Scott, 2000). However, many wildfires are 

attributed to human sources directly provoking ignitions deliberately or accidentally (Pyne et al. 

1996).  

 

At the beginning of the twentieth century, 10% of Catalonia (a region located in the northeast of 

the Iberian Peninsula and representing 6.4% of Spanish national territory, see Figure 1), was 

covered by forests, whereas currently the forest represents about 61% (two million hectares) 

(Varga 2007; CREAF 1991).This increase in the forested area has been particularly notable in 

recent years, making wild areas prone to the outbreak of wildfires. However, the re-shaping of 

the landscape due to the social and economic changes that have occurred in the last fifty years 

(Díaz-Delgado and Pons 2001; Moreira et al. 2001; Loepfe et al. 2011); together with many 

features of global climate change in the Mediterranean basin, such as a temperature increase 

and a reduction in precipitation (Varga 2007), could explain the evolution of wildfires. 

Accordingly, the worst years of wildfires in Catalonia have been in 1979, 1991, 1994 and 1998, 

when more than 400,000 Ha burned (Varga 2007). 

 



The aforementioned facts drew the attention of government agencies about the importance of 

having scientific studies regarding wildfire occurrence, as well as the risk factors associated as 

the temperature (Dever et al, 2008, Piñol and Lloret, 1998), from different perspectives (Varga, 

2007). One such perspective comes from the statistical modelling of the spatial distribution of 

wildfires, while assessing which factors can be related to their existence. In fact in various 

locations around the globe, there are now many studies of the spatial patterns of wildfire risk. 

Without being exhaustive,and referringonly to those more recent studies, we cite works on fires, 

above all, in North America (Chen 2007; Yang et al.2008; Gedalof 2011; Miranda et al. 2011; 

Gralewitz et al. 2012), but also in the Mediterranean region (Millington et al. 2009; Millington et 

al. 2010; Romero-Calcerrada et al. 2010), including Catalonia (Juan et al. 2012; Serra et 

al.2012), as well as in Asia (Liu et al. 2012) and Oceania (O‟Donnell 2011). 

Wildfires can be associated to their spatial coordinates (representing, for example, the location 

of the origin, or the center of a burned area), the temporal instant, and the corresponding 

covariates. This association facilitates the representation of a wildfire as a realization of a 

spatio-temporal stochastic process. Spatio-temporal clustering of wildfires might indicate the 

presence of risk factors which are not evenly distributed in space and time. In fact, what is 

usually of interest is to assess the association of clustering of wildfires to spatial and seasonal 

covariates (Serra et al. 2012). Covariate information usually comes in the form of spatial 

patterns in regular lattices or as regular vector polygons that may be rasterized into lattice 

images using GIS (Simpson et al. 2011). The right methodological context able to deal with 

these pieces of information comes from spatio-temporal point processes. In particular, Log 

Gaussian Cox processes (LGCP) define a class of flexible models that are particularly useful in 

the context of modelling aggregation relative to some underlying unobserved environmental 

field (Illian et al. 2010; Simpson et al. 2011). These processes provide models for point patterns 

where the intensity function is supposed to come from a continuous Gaussian random field. In 

this sense, LGCP are able to mix the two main areas of spatial statistics, point processes and 

geostatistics. The spatial dependence amongst locations depends on the spatial structure of the 

underlying random field depicting a nice and clear combination between the two areas of spatial 

statistics.  

Recently, Illian et al. (2010) have proposed a flexible framework, using integrated nested 

Laplace approximations (INLA), for fitting complicated LGCPs (Rue et al. 2009). However, this 

approach is still based on a regular lattice, and although this leads to consistent estimates if the 

lattice is fine enough and appropriately discretized (Waagepetersen 2004), this approach could 

be highly inefficient, especially when the intensity of the process is high or the observation 

window is large or, as in the case of wildfires, typically oddly shaped (Simpson et al. 2011).  

To bypass the problem of inefficiency in the estimation under a general INLA approximation, we 

have tried another more computationally tractable approach based on stochastic partial 

differential equation (SPDE) models (Lindgren et al. 2011). On one hand, we used SPDE to 

transform the initial Gaussian Field (GF) to a Gaussian Markov Random Field (GMRF). GMRFs 

are defined by sparse matrices that allow for computationally effective numerical methods. 



Furthermore, by using Bayesian inference for GMRFs in combination to the INLA algorithm, we 

take advantage of the many significant computational improvements (Rue et al. 2009). If, in 

addition, we follow the approach suggested by Simpson et al. (2011), in which the specification 

of the Gaussian random field is completely separated from the approximation of the Cox 

process likelihood, we gain far greater flexibility. 

We present here, the results of analyzing data for wildfires in Catalonia for the years 1994 to 

2008. The objective of this study was two-fold: (a) to evaluate which factors were associated 

with the presence of wildfires and their spatial distribution; and (b) to evaluate in time, the 

spatial variation of fire risk across Catalonia. We used two different kinds of log-linear models: 

Poisson regression and zero-inflated Poisson regression. In addition to the above, we were also 

interested in assessing the possible existence of interaction between space and time, in order to 

improve the quality of our models. 

 

The paper is structured as follows. Section 2 presents the dataset and the statistical approach. 

The results of the statistical analysis are presented in Section 3, and the paper ends with some 

discussion in Section 4. 

 

2.- Material and Methods 

 

2.1.- Data setting 

 

In this paper we analyzed the spatio-temporal pattern observed in the wildfires that occurred in 

Catalonia between 1994 and 2008. The study area encompasses 32,000 square kilometres and 

represents about 6.4% of the total Spanish national territory (see Figure 1). We consider a 

wildfire to be a fire that burns forested areas larger than 0.5 hectares, or a fire bigger than 1 

hectare in mixed and non-forested areas. The total number of fires recorded in the analysis was 

3,166, representing 126,989.44 hectares burned.  

 

In Catalonia, it is the Forest Fire Prevention Service (Government of Catalonia) who is the 

agency responsible for identifying, in each fire, the coordinates of the origin of the fire, the 

starting time and the cause of the fire. In addition, they record the ending time of the fire, the 

hectares (and their type) affected and the perimeter of the fire. The data used in this article were 

provided directly by the Service, and are definitive, once tested and approved. 

We distinguished between the numerouspotential causes of wildfire ignition. In particular, we 

considered: (i) natural causes; (ii) negligence and accidents; (iii) intentional fires or arson; and 

(iv) unknown causes and rekindled.  

 

The first category includes lightning strikes or heat from the sun. The second, takes into account 

that human carelessness can also start a wildfire, for instance with campfires, smoking, 

fireworks or improper burning of trash. Negligence and accidents also includes those wildfires 



caused purely by chance. The third cause considers those wildfires that are started deliberately. 

Finally, the fourth set includes unknown causes and rekindled fires. Table 1 depicts the fires 

and some of their features. 

 

In the Mediterranean region we find episodes with high temperature and low moisture for many 

days. These episodes, added to the increase of forest mass in the last 50 years, lack of forest 

management and the lack of a fire prevention policy makes this territory very vulnerable. So any 

cigarette, unauthorized grass burning or barbecue may produce a wildfire. It is true that until 

now no one has been arrested for this crime. 

Many arsonist wildfires in Spain are caused for economic interests (payment of compensations, 

burnt wood, land price speculation, quarrels between hunters, landowners and tenants). It 

seems obvious that Spain needs to enact some more drastic anti-fire policing strategies. 

In addition to the locations of the fire centroids, several covariates were considered. Spatial 

covariates were also considered Spatial covariates were also considered.  Specifically, eight 

continuous covariates (i.e. topographic variables – slope, aspect, hill shade and elevation; 

proximity to anthropic areas – roads, urban areas and railways; and meteorological variables – 

maximum and minimum temperatures) and one categorical variable (land use).  

 

Land use will obviously affect fire incidence, but moreover, topographic variables (slope, aspect 

and hill shade) affect not only fuel and its availability for combustion (Ordóñez et al. 2012), but 

also affect the weather, inducing diverselocal wind conditions, which include slope and valley 

winds. In fact, Dillon et al. (2011) point out that those topographic variables were relatively more 

important predictors of severe fire occurrence, than either climate or weather variables. The 

proximity to anthropic areas could be considered a factor explaining not only the incidence of 

fires in the intentional fires and arson category, but also why natural cause fires do not occur. 

As climatic variables, feasiblyimportant for natural cause fires and perhaps rekindled fires, we 

use the maximum and minimum temperatures (further details can be found in Serra et al. 2012). 

 

In this paper, slope was the steepness or degree of incline of a surface. Slope cannot be 

directly computed from elevation points; one must first create either a raster or a TIN surface. In 

this article, the slope for a particular location was computed as the maximum rate of change in 

elevation between the location and its surroundings. Slope was expressed in degrees. Aspect 

was the orientation of the slope where the wildfire occurred, and was measured clockwise in 

degrees from 0 to 360. Given the circular nature of this covariate, it was transformed into four 

categories: 0 (north facing), 1 (east facing); 2 (south facing) and 3 (west facing).Hill shading is a 

technique used to visualize terrain as shaded relief by illuminating it with a hypothetical light 

source. Here, the illumination value for each raster cell was determined by its orientation to the 

light source, which, in turn, was based on slope and aspect and was also measured in degrees, 



from 0 to 360. Finally, elevation was considered as elevation above sea level and expressed in 

meters. To obtain topographic variables (DTM) we have used the MET-15 model, which is a 

regular grid containing orthometric heights distributed according to a 15 m grid side, and has 

been created for the Cartographic Institute of Catalonia.  

The distances, in meters, from the location of the wildfire to urban areas, roads and railroads, 

were constructed by considering a geographical layer in each case. The urban area and road 

layers were obtained from the Department of Territory and Sustainability of the Catalan 

Government, through the Cartographic Institute of Catalonia (ICC) (http://www.icc.cat). 

We also used the land use in Catalonia maps (1:250 000), with classification techniques applied 

on existing LANDSAT MSS images for 1992, 1997 and 2002(Chuvieco et al. 2010; García et al. 

2008; Röder 2008). Additionally, we used orthophotomaps (1:5000) 2005-2007, to create the 

land use map for 2010. Specifically, we assigned the land use map just before the date of each 

wildfire. We assigned,asthe land use for eachbuffer, only the percentagevalue corresponding to 

the principal land use of thebufferwithin. In this paper, we transformed the twenty-two 

categories, obtained from the Catalonian Cartographic Institute (ICC) cover map of Catalonia, 

into eight categories: coniferous forests; dense forests; fruit trees and berries; artificial non-

agricultural vegetated areas; transitional woodland scrub; natural grassland; mixed forests; and 

urban, i.e., beaches, sand, bare rocks, burnt areas, and water bodies. Figure 2 provides a 

graphic distribution of the wildfires over time and with this categorical covariate. In general, they 

are spread out over the eight land use categories. However, wildfires caused by negligence and 

accidents are mainly concentrated in four specific categories: dense forests (2); fruit trees and 

berries (4);natural grassland (8) and mixed forests (10). 

We also included the temperatures (maximum and minimum) from up to seven days before the 

occurrence of the fire, in the location of the wildfire (Note that meteorological data were 

provided by the Area of Climatology and Meteorological Service of Catalonia). The 

temperatures at the point of the occurrence of the wildfire, along with the temperatures from the 

previous day and up to a week before, were estimated by means of a two-step Bayesian model. 

Further details can be found in Saez et al. (2012). In Table 2 we specify covariates and their 

source ordered by their importance on fire hazard generation. 

 

Rather than constructing a fine regular lattice, we constructed a very irregular grid using buffers. 

The reason being, that an irregular lattice avoids the arbitrariness of assigning the summary for 

the whole cell (i.e. the sum of the wildfires) to the centroid of the regular cell, and instead 

assigns the centre where wildfires occurred. We first built a buffer of some 1,500 meters 

(diameter) around each of the wildfires, with the centre being defined by its geographic 

coordinates. Then, we merged those buffers to form an intersection. Now, we had not only 

buffers (those without any intersection with other buffers), but also groups of (merged) buffers 

that, in turn, could form intersections with other groups of (merged) buffers. We remerged those 

groups of buffers that showed any intersection with other groups and/or with another single 

buffer. We ended the process when any group of buffers (and/or single buffer) did not intersect 

http://www.icc.cat/


with another group (and/or single buffer). At the end of the process, we had a grid of „cells‟, i.e. 

each final group of buffers and/or single buffer. Specifically, we had 1,516 cells, each cell with a 

median of 2 wildfires, first quartile 1, and third quartile 5 wildfires. Since we follow the usual 

assumption that the point pattern observed is a realization of a point process defined in a space 

that contains the study area as a proper subset (Baddeley and Turner, 2000, Møller and Díaz-

Avalos, 2010), the system of buffer cells that surround the study area is necessary to avoid the 

bias in the estimation of the intensity function. Since the behaviour of the intensity function 

outside the study area does not have an effect in the estimation process, the form of the buffer 

system is irrelevant (Møller and Díaz-Avalos, 2010). The partition of the study area in a system 

of cells in spatial point process inference is necessary to compute the approximation of the 

pseudo-likelihood function and obtain the estimates of the model parameters. In our study, the 

cell system is based on a tessellation and was built such that every point within the study 

belongs to a lattice cell. 

 

2.2.-Methods 

 

Spatio-temporal data can be idealised as realizations of a stochastic process indexed by a 

space and a time dimension 

𝑌 𝑠, 𝑡 ≡ {𝑦(𝑠, 𝑡)|(𝑠, 𝑡) ∈ 𝐷 × 𝑇 ∈ ℝ2 × ℝ} 

where𝐷 is a (fixed) subset of ℝ2 and 𝑇 is a subset of ℝ. The data can then be represented by a 

collection of observations  𝑦 = {𝑦 𝑠1 , 𝑡1 , … , 𝑦 𝑠𝑛 , 𝑡𝑛 }, where the set (𝑠1 , … , 𝑠𝑛 ) indicates the 

spatial units, at which the measurements are taken, and (𝑡1, … , 𝑡𝑛) the time points. 

The mathematical theory of point processes on a general space is now well-established 

(Bremaud 1981; Daley and Vere-Jones 1988). However, most models for specific applications 

are restricted either to point processes in time or to the two-dimensional space. Cox processes 

are widely used as models for point patterns which are thought to reflect underlying 

environmental heterogeneity. 

In the general spatial point process context, intensity stands for the number of events (fires in 

our case) per unit area. When writing total intensity in each cell, we refer to the number of fires 

per cell area. A particular problem in our wildfire dataset is that the total intensity in each 

cell,Λ𝑗𝑡 , was difficult to compute, and so we used the approximation Λjt ≈  sj exp(ηjt (sj)); where 

sj is a point within the jth cell and exp(ηjt (sj)), is the estimated intensity function within such 

cell. Note that here we assume that Λjt  is constant or has small spatial variation within the jth 

cell, so  sj could be any point inside the cell. The approximation allows the use of a GLM 



structure for the likelihood and therefore the computation of the estimate for ηjt (sj) is 

straightforward using numerical methods (Simpson et al., 2011).  

This approximation allowed us to describe the log-intensity of the Poisson processes by a linear 

predictor (Illian et al. 2012) of the form 

𝜂𝑖𝑗𝑡𝑘  𝑠𝑗  = 𝛽𝑗 + log 𝐸𝑠𝑝𝑗𝑡𝑘  +  𝛽𝛼𝑧𝛼 ,𝑖𝑡 + 𝑆𝑗 + 𝜏𝑡 + 𝜐𝑗𝑡𝛼    (1) 

where 𝛽𝑗  represents the heterogeneity, 𝐸𝑠𝑝𝑗𝑡𝑘  the expected number of wildfires, of cause k, in 

cell j and year t, 𝑧𝛼 ,𝑖𝑡  the spatial covariates, 𝛽𝛼  the parameters associated with covariates, 𝑆𝑗  the 

spatial dependence, 𝜏𝑡  the temporal dependence and 𝜐𝑗𝑡  the spatio-temporal interaction. 

A full and detailed explanation of the role and meaning of each term in (1) will be given in 

section 2.4. 

Log Gaussian Cox processes (LGCP) are a particular case of a flexible class of point processes 

known as Cox processes, and which are characterised by their intensity surface being modelled 

as  

log 𝜆 𝑠  = 𝑍(𝑠) 

where𝑍(𝑠) is a Gaussian random field.  

Conditional on a realization of  𝑍(𝑠), a log-Gaussian Cox process is an inhomogeneous Poisson 

process. Considering a bounded region Ω ⊂ ℝ2, it follows that the likelihood for an LGCP is of 

the form 

𝜋 𝑌 𝜆 = exp( Ω −  𝜆 𝑠 𝑑𝑠
Ω

)  𝜆(𝑠𝑖)

𝑠𝑖∈𝑌

 

where the integral is complicated by the stochastic nature of 𝜆 𝑠 . However, this integral can be 

numerically computed using fairly traditional methods. We note that, the log-Gaussian Cox 

process fits naturally within the Bayesian hierarchical modelling framework. Furthermore, it is a 

latent Gaussian model, which allows us to embed it within the INLA framework. This embedding 

paves the way for extending the LGCP to include covariates, marks and non-standard 

observation processes, while still allowing for computationally efficient inference (Illian et al. 

2012). 

The basic idea is that, from a Gaussian Field (GF) with Matérn covariance function, we will use 

a SPDE approach to transform the initial Gaussian Field to a Gaussian Markov Random Field 

(GMRF), which, in turn, has very good computational properties. In fact, GMRFs are defined by 

sparse matrices that allow for computationally effective numerical methods. Furthermore, by 



using Bayesian inference for GMRFs, it is possible to adopt the Integrated Nested Laplace 

Approximation (INLA) algorithm, which, subsequently, provides significant computational 

advantages over MCMC.  

Although Gaussian Fields are defined directly by their first and second order moments, their 

implementation is costly and provokes the so-called “big n problem” which is due to the 

computational costs of 𝒪(𝑛3) to perform a matrix algebra operation with 𝑛𝑥𝑛 dense covariance 

matrices, which is notablybigger when the data increases in space and time. To solve this 

problem, we analyse an approximation that relates a continuously indexed Gaussian field with 

Matérn covariance functions, to a discretely indexed spatial random process, i.e., a Gaussian 

Markov random field (GMRF). The idea is to construct a finite representation of a Matérn field by 

using a linear combination of basis functions defined in a triangulation of a given domain D. This 

representation gives rise to the stochastic partial differential equation (SPDE) approach, which 

is a link between the GF and the GMRF, and allows replacement of the spatio-temporal 

covariance function and the dense covariance matrix of a GF with a neighbourhood structure 

and a sparse precision matrix, respectively, typical elements that define a GMRF. This, in turn, 

produces substantial computational advantages (Lindgren et al. 2011). 

 

2.3.- Zero Inflated Poisson 

 

Data were taken for several causes of fire and when we worked with just one single cause we 

found some buffers without any wildfire, which led to the data having numerous zero counts. In 

many areas of interest, including public health, epidemiology, sociology, psychology, 

engineering, agriculture, among others, count data analysis is of primary interest. Typically, a 

Poisson model is assumed for modelling the distribution of the count observation or, at least, 

approximating its distribution. However, it has been observed in various applications that, the 

dispersion of the Poisson model underestimates the observed dispersion. This phenomenon, 

also called overdispersion, occurs because a single Poisson parameter is often insufficient to 

describe the population. In fact, in many cases it may be suspected that population 

heterogeneity, which has not been accounted for, is causing this overdispersion. This 

population heterogeneity is unobserved; in other words, the population consists of several 

subpopulations, in this case of the Poisson type, but subpopulation membership is not observed 

in the sample. Mixed-distribution models, such as the zero-inflated Poisson (ZIP), are often 

used in such cases. In particular, the zero-inflated Poisson distribution (ZIP) regression model 

might be used to model count data for which the proportion of zero counts is greater than 

expected on the basis of the mean of the non-zero counts (Breslow 1984; Broek 1995). 
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Therefore, we can also consider that 𝑁𝑗𝑡  follows a zero-inflated Poisson model, thus providing a 

way of modelling the excess of zeros, in addition to allowing for overdispersion.  

In this paper, we analysed the two most common types of ZIP models, namely ZIP0 and ZIP1. 

Considering Λ𝑗𝑡  as the total intensity per cell, we can thus define the observed number of 

wildfires in a specific cell as 

𝑁𝑗𝑡 ~  

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 Λ𝑗𝑡  

𝑍𝐼𝑃  
𝑍𝐼𝑃0 Λ𝑗𝑡  

𝑍𝐼𝑃1 Λ𝑗𝑡  
 
  

The different types of the zero-inflated Poisson models differ from the others in terms of the 

form of their likelihood functions (Lambert 1992).  

Firstly, Type 0 (ZIP0) likelihood is in the form of 

𝑓 𝑦; 𝜃; 𝑝 =  
𝑝,                                                        𝑖𝑓 𝑦 = 0

(1 − 𝑝) 𝑃𝑜(𝑦, 𝜃|𝑦 > 0),               𝑖𝑓 𝑦 > 0
  

where𝑃𝑜 denotes the Poisson density, p is a hyperparameter given by 

𝑝 =
exp(𝜃)

1 + exp(𝜃)
 

andθ is the internal representation of p, meaning that the initial value and prior is given for θ. 

Type 1 zero-inflated Poisson model (ZIP1) is a mixture of a point mass at 0 and a regular 

Poisson distribution, whereas Type 0 is a mixture of a truncated Poisson (the y>0 bit) and a 

point mass at 0, so that the probability at zero is governed directly by p. 

This means, for instance, that Type 0 can have a lower probability at 0 than a pure Poisson, 

(relative to the probability at 1), whereas Type 1 can only increase the relative probability for 0.  

Therefore, Type 1 likelihood has the form 

𝑓 𝑦; 𝜃; 𝑝 =  
𝑝 + (1 − 𝑝)𝑃𝑜(𝑦, 𝜃),        𝑖𝑓 𝑦 = 0
(1 − 𝑝)𝑃𝑜(𝑦, 𝜃),               𝑖𝑓 𝑦 ≠ 0

  

where p is a hyperparameter defined as in Type 0 and θ is the internal representation of p. 

Note that, the only difference between Type 0 and Type 1 is the conditioning on y>0 for Type 0, 

which means that for Type 0 the probability that y=0 is p, while for Type 1, the probability 

is  𝑝 + (1 − 𝑝)𝑃𝑜(𝑦, 𝜃). 



2.4.- Model specification 

 

Let 𝑁𝑗𝑡  denote the observed number of wildfires in a specific cell𝑠𝑗 , j=1,…,1,516 and year t (t= 

1994,…,2008). As a consequence of the definition of the LGCP, Njt may be considered as an 

independent Poisson random variable (Simpson et al. 2011). Summing up, we specified our 

LGCP defined in (1) with four explicitfeatures.  

1) We specified a spatio-temporal mixed model with two levels, the wildfire, with subscript i 

(i=1,…,3,166); and the cell to which the wildfire belonged, with subscript j (j=1,…,1,516). 

In addition, subscript t (t=1994,…,2008) denoted the year the wildfire occurred, and 

subscript k (k=1,…,4) denoted the cause. 

2) We included in the model (1), as an offset, the expected number of wildfires, of cause k, 

in cell j (and year t), Espjtk.We constructed this variable as a sample (one per cell) from 

a Poisson distribution with mean equal to the average of wildfires (per cause) per cell in 

the year t. In fact, we were not interested in the (predicted) number of wildfires per cell 

and year, or in the effect of covariates on the (predicted) number of wildfires. Rather, 

our interest was in the relative risk (RR) of wildfires per cell and year, as well as the 

effect of covariates on such relative risk. Directly analyzing the number of wildfires per 

cell does not give us a reference for determining whether the occurrence of wildfires is 

higher or lower than expected. Relative risk is a ratio of the observed number of 

wildfires, of cause k, in cell j, divided by the expected number of wildfires, of cause k, in 

cell j. It is the risk of an event relative to exposure. That is to say, if the risk of a wildfire 

occurring was higher than (RR>1), equal to (RR=1) or less than (RR<1) expected.  

3) Note that, we included only spatial covariates𝑧𝛼 ,𝑖𝑡  as explanatory variables of the 

relative risk of a wildfire. That is, all covariates were included at the level of the wildfire, 

not the cell (the subscript was i). 𝛽𝑗 denoted (unknown) parameters associated with 

covariates. With the exception of temperatures (both maximum and minimum), we 

categorised all continuous covariates. Thus, we approached a possible non-linear 

relationship between the covariate and relative risk parametrically. The finer the 

categorization, the closer it is to the possible nonlinear relationship. In fact, we 

preliminarily tested directly with continuous variables and other categorizations (seventh 

percentile, quartiles and thirds), but it provided a better fit were the quintiles.In addition, 

the categorization of a continuous variable allows for a better interpretation, because 

the relative risk associated with the quintile (in our case) is interpreted in relation to the 

reference quintile (the first, in our case). 

4) We introduced four random effects in (1): (i) heterogeneity, i.e. j accounting for 

variation in relative risk across different cells; (ii) spatial dependence, Sj; (iii) temporal 

dependence, 𝜏𝑡and (iv) spatio-temporal interaction,𝜐𝑗𝑡 . Note that, we assume 

http://en.wikipedia.org/wiki/Ratio


separability between spatial and temporal patterns and allow interaction between the 

two components.  

 

The heterogeneity was specified as a vector of independent and Gaussian distributed random 

variables on j, with constant precision (R-INLA, 2012).  

When spatio-temporal geostatistical data are considered, we need to define a valid spatio-

temporal covariance function. For the spatial covariance structure we used the Matérn family, 

which specifies the covariance function as Σ𝑖𝑗 = 𝐶𝑜𝑣 𝜃𝑖𝑡 , 𝜃𝑗𝑢  = 𝜍𝐶
2𝑀 𝑠𝑖 , 𝑠𝑗 |𝜈, 𝜅  where 𝜍𝐶

2 > 0 is 

the variance component and  

𝑀  𝜈, 𝜅 =
21−𝜈

Γ 𝜈 
 𝜅   𝜈Κ𝜈 (𝜅  )    (2) 

controls the spatial correlation at distance  =  𝑠𝑖 − 𝑠𝑗  . Here, Κ𝜈  is a modified Bessel function 

of the second kind and 𝜅 > 0 is a spatial scale parameter whose inverse, 1/𝜅 is sometimes 

referred to as a correlation length. The smoothness parameter 𝜈 > 0 defines the Hausdorff 

dimension and the differentiability of the sample paths (Gneiting et al. 2010). Specifically, we 

tried 𝜐=1,2,3) (Plummer, 2008). When 𝜈 + 𝑑/2 is an integer, a computationally efficient 

piecewise linear representation can be constructed by using a different representation of the 

Matérn field  𝑥 𝑠 , namely as the stationary solution to the stochastic partial differential equation 

(SPDE) (Simpson et al. 2011) 

(𝜅2 − ∆)𝛼/2𝑥 𝑠 = 𝑊(𝑠) 

where  𝛼 = 𝜈 + 𝑑/2 is an integer,  ∆=  
𝜕2

𝜕𝑠𝑖
2

𝑑
𝑖=1  is the Laplacian operator and 𝑊(𝑠) is spatial white 

noise. 

The main idea of the SPDE approach consists in defining the continuously indexed Matérn GF 

X(s) as a discrete indexed GMRF by means of a basis function representation defined on a 

triangulation of the domain D, 

𝑋 𝑠 =  𝜑𝑙(𝑠)𝜔𝑙
𝑛
𝑙=1      (3) 

where n is the total number of vertices in the triangulation,  𝜑𝑙(𝑠)  is the set of basis function 

and  𝜔𝑙  are zero-mean Gaussian distributed weights. The basis functions are not random, but 

rather were chosen to be piecewise linear on each triangle;  

𝜑𝑙 𝑠 =  
1              𝑎𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒 𝑙

 0              𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒   
  



The key is to calculate 𝜔𝑙 , which reports on the value of the spatial field at each vertex of the 

triangle. The values inside the triangle will be determined by linear interpolation (Simpson et al. 

2011).  

Thus, the expression (3) is an explicit link between the Gaussian field X(s) and the Gaussian 

Markov random field, and defined by the Gaussian weights  𝜔𝑙  that can be given by a 

Markovian structure.  

Both the temporal dependence (on t) and the spatio-temporal interaction (on j and t) were 

assumed smoothed functions, in particular random walks of order 1 (R-INLA, 2012). Thus, the 

random walk model of order 1 (RW1) for the Gaussian vector 𝑥 = (𝑥1 , … , 𝑥𝑛 ) is constructed 

assuming independent increments: 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖+1~𝑁(0, 𝜏−1) 

The density for x is derived from its  𝑛 − 1 increments as 

𝜋 𝑥 𝜏 ∝ 𝜏
 𝑛−1 

2 𝑒𝑥𝑝  −
𝜏

2
  ∆𝑥𝑖 

2 = 𝜏
(𝑛−1)

2 𝑒𝑥𝑝  −
1

2
𝑥𝑇𝑄𝑥  

where𝑄 = 𝜏𝑅 and R is the structure matrix reflecting the neighbourhood structure of the model. 

Given the specification in (1), the vector of parameters is represented by  𝜃𝑗 = {𝛽, 𝛽𝛼 , 𝑆, 𝜏𝑡 , 𝜐𝑗𝑡 } 

where we can consider 𝑋𝑖 = (𝑆, 𝜏𝑡 , 𝜐𝑗𝑡 ) as the i-th realization of the latent GF 𝑋(𝑠) with the 

Matérn spatial covariance function defined in (2). We can assume a GMRF prior on  𝜃, with 

mean 0 and a precision matrix Q. In addition, because of the conditional independence 

relationship implied by the GMRF, the vector of the hyper-parameters 𝜓 = (𝜓𝑆 , 𝜓𝜏 , 𝜓𝜐) will 

typically have a dimension of order 4 and thus will be much smaller than  𝜃. 

Table 3 shows the results after analyzing the wildfire data with the four different kinds of LGCP. 

A natural way to compare models is to use a criterion based on a trade-off between the fit of the 

data to the model and the corresponding complexity of the model. The Bayesian model 

comparison criterion based on this principle is called Deviance Information Criterion (DIC) 

(Spiegelhalter et al. 2002): 

DIC = „goodness of fit‟ + „complexity‟ =  
DpD 2  

where  D  is the deviance evaluated at the posterior mean of the parameters and Dp  

denotes the „effective number of parameters‟ which measures the complexity of the model 

(Spiegelhalter et al. 2002). When the model is true,  D  should be approximately equal to the 

„effective degrees of freedom‟,  𝑛 − 𝑝𝐷. Alternatively, because DIC may underpenalise complex 



models with many random effects (Plummer 2008; Riebler et al. 2013), Table 3 also shows the 

conditional predictive ordinate (CPO) (Pettit 1990; Geisser 1993, Held et al., 2009), which 

expresses the posterior probability of observing the value (or set of values) of 𝑦𝑖  when the 

model is fit to all data except 𝑦𝑖 .  

𝐶𝑃𝑂𝑖 = 𝜋 𝑦𝑖
𝑜𝑏𝑠  𝑦−𝑖  

Here, 𝑦−𝑖  denotes the observations y with the i-th component omitted. This facilitates 

computation of the cross-validated log-score (Gneiting and Raftery 2007) for model choice (-

(mean(log(cpo)))). Therefore, both the lower DIC and the lower (-(mean(log(cpo)))) suggest the 

best model. Table 3 shows that Poisson regression proved the best method for modelling both 

the natural, and unknown and rekindled causes, and a zero-inflated Poisson regression was 

better for modelling the second and third causes. Finally, the last line in Table 3 shows the 

effective number of parameters of the model. The larger this is, the worse the data fit for the 

model. A high number of parameters mean more complexity. The best models are those with a 

lower level of complexity and high goodness of fit. 

All analyses were carried out using the R freeware statistical package (version 2.14.1) (R-

Development Core Team 2011) and the R-INLA package (R-INLA 2012). 

 

3.- Results 

 

Table 2 shows the evolution of wildfires (1994-2008) and distinguished by cause. In general, the 

table shows a decreasing trend with regards to the number of wildfires over the years. 

Specifically, it shows a decrease in the number of wildfires from 1994 onwards, coinciding with 

the development of better extinction methods and favourable weather conditions. The number 

of fires also differs greatly between causes.  

Table 4 provides total number of wildfires distinguishing by cause (natural causes; negligence 

and accidents; intentional fires or arson; and unknown causes and rekindled) and the numberof 

wildfires by buffer. The number of buffers differs between causes and depends on the number 

of wildfires; i.e., more fires mean more buffers. Table 4 also shows that there are a large 

number of buffers without wildfires. Specifically, natural causes have 94.40% zeros per buffer, 

followed by unknown causes and rekindled with 85.8%. The second and the third causes have 

fewer zeros: 41.60% and 78.20%, respectively. We can see that generally there are not many 

wildfires per buffer. For all causes, the percentage of buffers with more than three wildfires per 

buffer is below 2%.  



Tables 5 to 8 show the relationship between relative risks (RR), according to the associate 

covariates and depending on the cause analysed. We have marked the estimated fixed effects 

that proved statistically significant. The RR>1 (i.e. risk factor) is highlighted, and the RR<1 (i.e. 

protective factor) is depicted in bold cursive.  

In the category of natural causes, it seems that the higher the elevation the greater number of 

wildfires. In this same category, relative risk increases with the distance to urban areas, roads 

and railways; this is clearly because we are dealing with natural causes. That is to say, 

concentrations of fires by natural causes are usually in zones without human presence and 

zones with more difficult access. On the other hand, low values of hill shade (i.e. the presence 

of shadow) were associated with a smaller number of fires, although with the exception of the 

third quintile. 

With reference torandom effects, we see not only a weak association between buffers and 

interaction dependence, but also an insignificant temporal association. In relation to negligence 

and accidents, a greater distance from both urban areas and roads and railways (from 0.72km 

to 10.49km) is associated with a decrease in the number of wildfires. Regarding topographic 

variables, high hill shade values are associated with an increase in the number of wildfires, and 

the higher the elevation the fewer fires. With respect to random effects, it is worth noting the 

presence of a significant spatial association and significant values with regard to heterogeneity. 

As for intentional causes or arson, a low elevation (90%-179%) increases the number of fires, 

and with respect to aspect, the relative risk of a wildfire was 23.54% in the fourth quintile, which 

is higher than other quintiles. Considering random effects, spatial dependency is even more 

important than in negligence and accidents, whereas heterogeneity is less significant. In the 

final category, topographic variables, with the exception of elevation, are generally associated 

with a reduction in the number of fires. In relation to random effects, the spatial and 

heterogeneity terms of the model are also very significant. Compared to the other terms, 

interaction dependency is also significant.  

We have used the conjugate prior to the Poisson likelihood which is a Gamma distribution 

function. Indeed, with the aim of checking the robustness of our methodological choice we have 

used several other (non-conjugate) priors for the precision parameters (in particular Gaussian 

and flat priors) and the posterior distribution for the precision hyper-parameters has not 

changed significantly. We have thus preferred using in the paper the corresponding Gamma 

conjugate priors. Clearly, as used generically in INLA for the hyper-parameters, the distribution 

of the fixed parameters is Normal for the Intercept, as we see in the Figure 3a, and Gamma for 

the random effects, as we see in the Figure 3b. 

With regard to the effect of temporal dependency on the relative risk of wildfire, Figure 4 shows 

its evolution graphically. In the first cause considered, natural causes, there is a notable 

temporal association. In fact, this effect decreased until 1998 and increased slowly thereafter. In 



relation to negligence and accidents, we see that the effect of the temporal association on the 

relative risk of wildfire starts to increase in 1997, but it is not until after 2002 that the tendency 

increases significantly. As for intentional causes or arson, the temporal effect oscillated 

significantly until 2006, decreasing thereafter. In the final category, Figure 4 shows that the 

temporal effect decreased throughout the period analysed.  

On the other hand, causes 1 to 4 correspond to natural causes, negligence and accidents, 

intentional causes or arson, unknown causes and rekindled, respectively, and Figures 5a and 

5b provide a more visual view of the different distribution of fires according to time, space and 

cause. Looking at the top of Figure 4, we notice that fires produced by natural causes have an 

important spatial and temporal variability. The intensity of the fires shows a clear spatial and 

temporal variation. However, in all cases, the highest risk is concentrated in the centre of 

Catalonia, coinciding with the most rural areas. The relative risk of negligence and accidents, 

even if its distribution pattern varies over the years, is in general higher in the west. However, 

the maps at the bottom of Figure 5a do not present large areas with high relative risk, except for 

the year 2008 where there is a significant focal point around the area of Lleida, which is a city in 

the west of Catalonia. Intentional causes or arson is that with the least change over the years. 

Nevertheless, it is interesting to observe that the higher relative risks are concentrated around 

urban areas, especially the areas of Barcelona and Girona, cities located in the central area of 

the coastline and in the northeast of Catalonia, respectively. Finally, fires produced by unknown 

causes and rekindled fires do not follow a specific pattern 

 



4.- Discussion and conclusions 

 

The analysis of wildfire incidence in Catalonia has provided important clues as to which risk 

factors are associated with which different causes. In the time frame of our study, wildfires 

started intentionally were associated with low elevation locations, which are easily accessible to 

most people, particularly arsonists. Although the relative risk of fires in this class indicates that 

the number of fires observed is 23% higher than the number of fires for hills facing southwest 

and 13% higher for lag 6 of maximum temperature, it is not easy to find an associated probable 

cause. The number of wildfires caused by negligence and accidents was, on average, 38% 

higher than the mean number of fires for hills facing southeast. The nature of this association is 

not clear. On the other hand, the relative risk for the covariate hill shade indicates that one must 

expect an incidence of wildfires between 66.9% and 284% higher than the mean in locations 

with hill shade values ranging between 172 and 251 degrees. The probable reason for this is 

that these locations have a high chance of small fires spreading quickly and becoming a 

wildfire. By contrast, the relative risk of wildfire caused by negligence or accident is lower than 1 

for high elevations and locations far from urban areas, roads and railways, due to the lower 

human presence and activities in such locations. Although minimum temperature was also a 

significant factor for negligence and accidental wildfires, we cannot find a reasonable 

explanation for this. 

For wildfires caused by nature, the relative risk is higher than 1.0 for locations far from the 

coastal plains and those locations distant from urban areas, roads and railways. For both 

covariates there is a clear gradient in the relative risk as these covariates increase, because the 

greater their value, the higher the importance of meteorological factors, such as lightning strikes 

or sun irradiance, in causing a fire. This, added to the lower human presence in such locations, 

facilitates the spreading of fire without control. An increased gradient in the relative risk was 

also observed for lags 1 and 4 of maximum temperature, in this case perhaps associated with a 

lower humidity of plant material, making it prone to becoming fuel. High temperatures combined 

with other effects, such as wind, increase fire danger. A slope exposed to the sun will have not 

only higher air and fuel temperatures, but also lower relative humidity. The lower relative 

humidity (<30%) rapidly dries out the fine dead fuels, and so a fire's spread rate and intensity 

will increase. When a fuel has more moisture, it is harder to ignite and burn. Although hills 

facing south receive higher sun irradiance and consequently tend to be drier, for naturally-

caused wildfires the relative risk was below 1.0. Finally, for wildfires with unknown causes or 

rekindled fires, all covariates (with the exception of elevation) showed a significant association 

with the relative risk, some higher and some lower than 1. It must be said however, that 

elevation and distance from urban areas should be correlated, which may make it difficult to 

attribute single factors to fire occurrence. This complex model structure is most likely due to the 

fact that here we have a mix of fires from all of the different causes.  

The results of our analysis have provided a deeper insight into factors associated with wildfire 



incidence in Catalonia, Spain, than previous studies on this subject (Serra et al. 2012). We have 

statistical evidence that wildfires associated with humans could be related to the accessibility of 

the areas at risk, whilst naturally-caused wildfires show the opposite behaviour. This does not, 

of course, mean that naturally-caused wildfires are unlikely in areas near urban areas or roads, 

for example, we simply mean that the relative importance of humans being responsible for 

starting a wildfire, either intentionally or not, decreases as locations become more difficult to 

reach. Although the model considers both spatial and temporal structure, the results do not 

show the superiority of such consideration. Climatic variables (maximum and minimum 

temperature) could explain the spatial structure but we are not sure what drives the temporal 

variation of wildfires occurrences on time. However, we can note that land use varies with time 

and it has an effect on the temporal variation of the wildfire counts
2
. 

Models for forest fire occurrence have been studied using different approaches (Serra et al. 

2012; Juan et al. 2012). We chose the spatio-temporal point process because the nature of our 

data and the aim of our study suggested that this was the most sensible approach. For a wide 

class of point process models, the problem of evaluating the likelihood function has been solved 

using tessellations (Baddeley and Turner 2005). Instead, we have proposed a modification to 

the INLA method (Rue et al. 2009) by building a grid based on the intersection of buffers around 

the data points. The advantage of our approach is that it can be easily implemented within the 

INLA R package, using the computational advantages of INLA. The methodology we used in 

our analysis has allowed us to find a class of models that best fits the occurrence of wildfires 

distinguished by cause. In addition, we have proved that there is a spatio-temporal interaction 

and clearly different characteristics between the distributions of the wildfires, depending on each 

cause, exist. This leads to an improved predictive capability of fire risk and may contribute to the 

prevention and management of those wildfires which are not random in space and time, as we 

have shown here. It is worth noting that, fire is a natural component of all plant ecosystems on 

Earth, and its role is to accelerate the recycling of minerals, promote the germination of dormant 

seeds and open areas, and modify the composition of the forest in small areas, thus promoting 

biodiversity. For this reason, information such as that we have produced here, must be used 

with care by those agencies responsible for fire control and land management (Carmo et al, 

2011, Cardille et al, 2001, Chuvieco et al, 2010). 

There is at least one alternative to the ZIP model we have employed to estimate event count 

models in which the data result in a larger number of zero counts than would be expected. The 

hurdle Poisson model (Mullahy 1986; King 1989) is a modified count model with two processes, 

one generating the zeros and one generating the positive values. The two models are not 

constrained to be the same. The concept underlying the hurdle model is that a binomial 

probability model governs the binary outcome of whether a count variable has a zero or a 

positive value. If the value is positive, the "hurdle is crossed," and the conditional distribution of 

                                                      
2
We acknowledge this comment to one of the anonymous reviewers. 



the positive values is governed by a zero-truncated count model. The ZIP model on the other 

hand is a mix of two models. One is a binomial process which generates structural zeros, and 

the second component a Poisson model with mean Λ𝑗𝑡 , which generates counts, some of which 

can be equal to zero. The ZIP model then combines both components through a factor p i that 

represents the probability of the zero counts coming from the binomial component, and (1- pi) 

the probability that a zero comes from the Poisson component. Zero counts coming from the 

binomial component are also known as structural or excess zeros. Although the practical results 

are very similar in both approaches, ZIP models are most appropriate in our case, since there 

are areas in which it is not possible for a wildfire to occur, either because they are urban, 

aquatic or do not have sufficient forest mass to make a wildfire possible. 

Our approach has some similarities to the model presented (Ramis et al. 2012) in the sense of 

both fitting a model based in a Poisson regression with an unstructured random effect and using 

a spatial random effect to account for the spatial structures of the data. However, we also 

consider the time component and the interaction between space and time, and we do not 

consider any element that follows a CAR model. Finally, our goal was to obtain a model that 

allows fire risk mapping and prediction in Catalonia.  

The comparison between MCMC and INLA approach has already been done. Most of them use 

simulations and conclude the superiority of INLA against MCMC alternatives (Held et al, 2009, 

Wilhelmsen et al, 2009, Martino et al, 2010 and Eidsvik et al, 2012). However, recently Taylor 

and Diggle, 2013, point out that the INLA approach is not as faster as MALA within a MCMC 

strategy. It is worth noting that the version of INLA they used is earlier than 2011 and they do 

not take advantage of the current SPDE approach (Krainski, 2013). 

Efforts to suppress wildfires have become an important problematic in last years. Current 

wildfire management policy is focused in suppressing almost all wildfires. Indirect costs of this 

achievement include the increase of dense vegetation in absence of wildfires and increasingly 

more intense wildfires. Furthermore, some results on climate changes argue that fire season 

comes earlier, stays longer each year and fires burn with more intensity. These fires could 

cause catastrophic damages as human lives, economics and environmental losses. 

For this reason, knowledge of wildfire occurrence (space/time) and wildfire ignition causes 

should be considered an important part of sustainable forest management and it is essential for 

effective risk assessment and policy formulation. This study can help to improve current 

prevention fire policy. Moreover economic benefits include reduced suppression and fuel 

treatment costs over long term. 
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