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Abstract 

A wide range of opportunities are emerging in the micro-system technology sector for laser 

micro-machining systems, because they are capable of processing a various types of materials 

with micro-scale precision. However, few process datasets and machine learning techniques 

are optimized for this industrial task. This article aims to show how the process parameters of 

micro-laser milling influence the final features of the microshapes that are produced and aims 

to identify, at the same time, the most accurate machine learning technique for the 

modelization of this multivariable process. We studied the capabilities of laser micro-

machining by performing experiments on hardened steel with a pulsed Nd:YAG laser. Arrays of 

micro-channels were manufactured using various scanning speeds, pulse intensities and pulse 

frequencies. The results are presented in terms of the main industrial requirements for any 

manufactured good: dimensional accuracy (in our case, depth and width of the channels), 

surface roughness and material removal rate (which is a measure of the productivity of the 

process). Different machine learning techniques were then tested on the datasets to try to 

build high accuracy models for each output variable. The selected techniques were: k-Nearest 

Neighbours, neural networks, decision trees and linear regression models. Our analysis of the 

correlation coefficients and the mean absolute error of all the generated models show that 

neural networks are better at modelling channel width and that decision trees are better at 

modelling surface roughness; both techniques are similar for depth and material removal rate. 

In all cases these two techniques are more accurate than the other two. It can be concluded 

that decision trees can be used for modelling laser micro-machining of micro geometries, if the 

dimensional accuracy of the workpiece is the main industrial requirement, while neural 

networks are better in the other cases. 

 



 

 

1. Introduction 

Laser systems are increasingly employed in many diverse micro-system technology sectors 

such as biomedicine, automotive manufacture, telecommunications, display devices, printing 

technologies and semiconductors (Rizvi, 2002). Material removal during the laser machining 

process depends, to a certain degree, on the characteristics of the laser and the properties of 

the workpiece; however, it is primarily affected by the interaction between the laser and the 

workpiece (Pham, 2007). In real factory conditions, this interaction is influenced by other types 

of machine-tool parameters that are easily controlled, such as pulse frequency, peak power, 

scanning speed and overlapping. Although many of these process parameters can be adjusted, 

in order to obtain the desired quality and to optimize the efficiency of the features being 

produced, there is a lack of knowledge about how they affect the laser machining process, 

especially in new sensitive applications like micro-machining of the shape of micro geometries 

(Brousseau, 2011).  

Various studies have investigated how laser process parameters affect the quality of the 

resultant machined features. Campanelli et al. (Campanelli, 2007) analyzed the influence of 

frequency, scanning strategy and overlap on depth and surface roughness, during laser 

machining of an aluminum-magnesium alloy. The experiments and the analysis of variance 

showed that, in general, optimizing surface roughness was conversely related to maximizing 

depth. Cicala et al. (Cicala, 2008) studied the effects of pulse frequency, power, scanning speed 

and overlap on the MRR and surface roughness. The results showed that pulse frequency and 

scanning speed were the main parameters affecting surface roughness, which was reduced 

with lower scanning speeds and higher frequencies. The Material Removal Rate (MRR) mainly 

depends on pulse frequency alone. Bartolo et al. (Bartolo, 2006) analyzed the incidence of the 

same parameters while looking at the scanning strategy, in the process of machining channels 

in tempered steel and aluminum. Their results suggested that, with lower frequencies and 

reduced laser power, the surface quality is better. However, both parameters need to be 

increased, in order to achieve an optimum value for a higher MRR. Kaldos et al. (Kaldos, 2004) 

used a CNC milling machine with a Nd:YAG laser source, on die steel, to study the impact of 

lamp current, pulse frequency, overlapping and scanning speed on surface roughness and the 

MRR. They concluded that an increase in current intensity or an insufficient overlap of laser 

passes results in a less well finished surface. Semaltianos et al. (Semaltianos, 2010) studied the 

effects of fluence and pulse frequency on surface roughness and MRR in nickel-based alloys 

with a Nd:YVO4 picosecond laser. They also analyzed the surface morphology of these alloys 

with AFM and SEM techniques.  

Ciurana et al. (Ciurana, 2009) used a pulsed Nd:YAG laser to study the effect of the process 

parameters on minimum volume error and surface roughness in laser machined tool steel for 

macro scale geometry, although micro scale geometry was not evaluated. The experimental 

results were inconsistent for large shapes. Dhara et al. (Dhara, 2008) micro-machined die steel 

while modifying pulse intensity, pulse frequency, pulse duration and air pressure, in order to 

predict the optimum process parameter settings for maximum depth with a minimum recast 



 

layer. Kumar et al. (Kumar, 2010) investigated the influence of laser power, pulse frequency, 

number of scans and air pressure, on the groove depth in the generation of micro-notches 

with a nanosecond pulsed fiber laser on stainless steel and aluminum. Karazi et al. (Karazi, 

2009) machined and characterized micro-channel formation by laser machining. They studied 

the effects of laser power, pulse frequency and scanning speed on the width and depth of the 

channels. They also modeled the process using Artificial Neural Networks (ANN). 

The application of Artificial Intelligence (AI) techniques to model micro machining of metal 

components is an open issue. Most of the very few works on this topic focus on the application 

of ANNs to this task: the work of Desai et al. (Desai, 2012) predicted the depth of cut for single-

pass laser micro-milling process using ANN and genetic programming approaches and the work 

of Karazi et al. (Karazi, 2009) compared ANN and DoE models for the prediction of laser-

machined micro-channel dimensions. If we open the state of the art to the application of AI 

techniques to machining processes similar to laser milling, we can conclude that ANNs are the 

most common technique used for most of these processes such as milling, drilling or laser 

finishing (Chandrasekaran, 2010), although many other AI techniques have also been applied 

for such purposes. Bustillo et al. proposed the use of Bayesian Networks and ensembles to 

predict surface roughness in drilling (Bustillo, 2012), laser finishing (Bustillo 2011a) and 

roughing (Bustillo 2011b) operations, Grzenda et al. proposed different evolutionary 

algorithms to improve ANNs accuracy (Grzenda 2012a) and 2012b) in drilling and milling 

operations and Mahdavinejad et al. proposed the use of artificial immune systems to model 

milling processes (Mahdavinejad, 2012). In any case, most of the most recent works use ANNs 

as a standard technique to be improved by new approaches, such as those proposed by 

Bustillo et al. (Bustillo, 2011b), Correa et al. (Correa, 2009), Desai et al. (Desai, 2012), 

Mahdavinejad et al. (Mahdavinejadm 2012) and Diez-Pastor et al. (Diez-Pastor, 2012).  

The aim of this work is to describe the information needed to improve the laser micro-

machining process in the production of microshapes and to develop a suitable AI model for the 

modelization of this industrial task. The process parameter settings are optimized with 

regression models developed from experimental work, to achieve the required dimensional 

precision, surface quality and productivity. Arrays of micro-channels are fabricated on 

hardened tool steel using laser machining processes, while measuring feature size, geometric 

accuracy, surface roughness and the MRR. This work will contribute to the selection of 

appropriate process parameters through an analysis of the influence of scanning speed, pulse 

frequency and pulse intensity on the final quality of the machined micro-feature. Moreover, 

machine learning methods are used to evaluate the complexity of prediction tasks. 

Representatives of rule-based, instance-based and linear and nonlinear models are applied. 

Prediction accuracy remains at different levels depending on the parameter to be modeled 

rather than the technique used to model it. Hence, the complexity of modeling individual 

features of interest has been determined. 

 

 



 

 

2. Experimental set up 

The experiments, set up to study the influence of the process parameters, were carried out 

with a pulsed Nd:YAG, Deckel Maho Lasertec 40 machine, with 100W average laser power and 

a wavelength of 1,064nm.  

Although the pulse intensity level on the surface was not measured during our experiments, 

based on the technical data of the laser system, we can provide an ideal pulse intensity level, 

which is given by: 

PI � �
���

��
�                   (1) 

where, P is the laser power (100 W), and d is the beam spot diameter (0.003 cm). Therefore 

the ideal pulse intensity was estimated to be 1.4 W/cm2. Furthermore, we can determine the 

ideal Peak Pulse Power (PPP), which is given by: 

PPP � �
�                    (2) 

where, P is the laser power (100 W) and τ is the laser pulse duration (10 ns). For the laser 

characteristics used in this study, the PPP is estimated to be 10 MW/s. The specifications of the 

micro channels are: 200µm in width (W) and 50µm in depth (D), machined by the motion of 

the laser beam in the x and y directions removing material in all three directions (x, y and z). As 

shown in Figure 1, in order to machine the entire cavity, there is overlap between adjacent 

pulses (Oy) within a pass of length (L) and overlap between successive passes (Ox). All the 

experiments were performed with a laser spot size (Ø) of 0.03mm and a track displacement 

(distance between passes, a) of 10µm. The overlap Ox between successive passes is given by 

(Samant, 2010): 

O� � �1 � �
�� · 100                  (3) 

In this study, Ox was 66.6%. The overlap between adjacent pulses (Oy) depends on the 

scanning speed, the pulse frequency and the spot diameter. It is therefore different for each 

experiment. Oy is given by: 

O� � �1 � ��
��·�� · 100                  (3) 

where, SS is the scanning speed and PF is the pulse frequency, which are different for each 

experiment. 

The workpiece material was hardened AISI H13 tool steel, selected because it is a widely used 

material in the moulds and dies industry.   



 

 

Dimensional measurements were performed with a ZEISS SteREO Discovery.V12 

stereomicroscope. Quartz PCI© software was used to measure the feature dimensions and 

Mitutoyo SV2000 Surftest equipment was

Figure 1. A schematic illustration of the 3D

Some screening experiments were performed to select the appropriate factor levels of the 

process parameters. Several m

parameter while the others remained fixed. In this way, we could observe the impact of each 

single control variable, in order to determine the control parameter range. This pre

provides a full factorial design with the variable factors and factor levels presented in Table 1, 

which is then used to study the influence of the input parameters on the finished workpiece, 

for which the response parameters are surface roughness [µm], the MRR[

width and depth dimensions [µm].
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Dimensional measurements were performed with a ZEISS SteREO Discovery.V12 

stereomicroscope. Quartz PCI© software was used to measure the feature dimensions and 

Mitutoyo SV2000 Surftest equipment was used to measure surface roughness.

Figure 1. A schematic illustration of the 3D-laser milling and the overlapping of the laser pulses.

Some screening experiments were performed to select the appropriate factor levels of the 

process parameters. Several micro-channels were machined, in each case changing one single 

parameter while the others remained fixed. In this way, we could observe the impact of each 

single control variable, in order to determine the control parameter range. This pre

es a full factorial design with the variable factors and factor levels presented in Table 1, 

which is then used to study the influence of the input parameters on the finished workpiece, 

for which the response parameters are surface roughness [µm], the MRR[mm3/min] and the 

width and depth dimensions [µm]. 

Table 1. Variable factors and factor levels. 

Variable Factors Factor Levels 

Scanning Speed (SS) [mm/s] 

200 225 250

275 300 325

350 375 400

Pulse Intensity (PI) [%] 35 40 45

Pulse Frequency (PF)[kHz] 35 40 -

 

Dimensional measurements were performed with a ZEISS SteREO Discovery.V12 

stereomicroscope. Quartz PCI© software was used to measure the feature dimensions and 

used to measure surface roughness. 
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single control variable, in order to determine the control parameter range. This pre-evaluation 
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3. Experimental results and discussion 

Following the design of the experiments summarized in Table 1, 54 micro channels were 

machined with the laser machining process. Surface roughness was measured in five different 

sections of each micro-channel to get the mean value of the entire channel. Then, each 

channel was cut into three parts to get the cross-section profiles, from which the 

measurements of depth and width were taken by processed digital images. Once again, five 

different measurements, proportionally distributed along the depth and the width, were 

measured. The removed area was also measured for each channel profile, in order to calculate 

the material removal rate. The mean values of the experimental results obtained from the 

machined features for all the combinations of the variable factors are shown in Table 2. The 

micro-channels presented variations in dimensions and shape. These variations are clearly 

represented in Figure 2, which presents the images of six micro-channels. Analysis of Variance 

was performed for each response factor to study the influence of the process parameters. 

 

Table 2. DoE with the experimental results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# 

PI 

(%) 

PF 

(kHz) 

SS 

(mm/s) 

depth 

(µm) 

width 

(µm) 

Ra 

(µm) 

MRR 

(mm3/min) 

28 35 40 200 13.9 192.9 0.560 0.025 

29 35 40 225 12.6 175.5 0.479 0.017 

30 35 40 250 11.6 188.1 0.531 0.026 

31 35 40 275 15.7 191.6 0.465 0.034 

32 35 40 300 8.1 193.2 0.506 0.026 

33 35 40 325 8.1 189.8 0.520 0.020 

34 35 40 350 11.6 189.2 0.471 0.034 

35 35 40 375 10.8 189.9 0.525 0.027 

36 35 40 400 11.7 190.1 0.463 0.027 

37 40 40 200 31.2 186.1 0.531 0.065 

38 40 40 225 26.2 186.6 0.571 0.061 

39 40 40 250 23.7 187.3 0.462 0.056 

40 40 40 275 17.1 190.4 0.510 0.026 

41 40 40 300 17.7 195.7 0.459 0.041 

42 40 40 325 19.2 192.3 0.461 0.061 

43 40 40 350 17.3 190.3 0.435 0.039 

44 40 40 375 16.5 190.5 0.490 0.044 

45 40 40 400 14.2 192.3 0.423 0.040 

46 45 40 200 38.6 184.4 0.519 0.074 

47 45 40 225 35.0 184.2 0.531 0.067 

48 45 40 250 29.5 180.7 0.526 0.071 

49 45 40 275 26.8 185.3 0.523 0.056 

50 45 40 300 25.1 187 0.514 0.067 

51 45 40 325 22.8 186.8 0.446 0.062 

52 45 40 350 19.3 187.3 0.509 0.039 

53 45 40 375 17.5 187.6 0.408 0.040 

# 

PI  

(%) 

PF 

(kHz) 

SS 

(mm/s) 

depth 

(µm) 

width 

(µm) 

Ra 

(µm) 

MRR 

(mm3/min) 

1 35 35 200 18.3 189 0.505 0.034 

2 35 35 225 17.4 190 0.477 0.036 

3 35 35 250 14.9 191 0.533 0.034 

4 35 35 275 15.7 195.8 0.455 0.041 

5 35 35 300 12.9 197.7 0.456 0.033 

6 35 35 325 11.6 193.2 0.463 0.027 

7 35 35 350 8.1 191.7 0.470 0.019 

8 35 35 375 10.9 192.5 0.504 0.021 

9 35 35 400 10.2 192.8 0.457 0.027 

10 40 35 200 29.9 183.9 0.549 0.055 

11 40 35 225 30.0 184.9 0.481 0.059 

12 40 35 250 25.4 184.4 0.513 0.061 

13 40 35 275 21.9 187.2 0.664 0.048 

14 40 35 300 16.8 189.9 0.478 0.036 

15 40 35 325 14.4 188.4 0.473 0.032 

16 40 35 350 18.5 188.5 0.485 0.041 

17 40 35 375 18.2 190.5 0.457 0.048 

18 40 35 400 18.4 190.0 0.382 0.043 

19 45 35 200 39.6 184.4 0.519 0.065 

20 45 35 225 35.8 184.1 0.513 0.073 

21 45 35 250 33.7 181.0 0.493 0.072 

22 45 35 275 22.1 184.3 0.443 0.063 

23 45 35 300 25.4 186.2 0.451 0.057 

24 45 35 325 26.5 189.2 0.451 0.061 

25 45 35 350 20.8 191.1 0.447 0.047 

26 45 35 375 19.8 189.9 0.397 0.054 



 

 

3.1 Micro-channel depth 

As can be seen in Table 2, which shows the results obtained for the micro

target depth of 50µm was never reached. This is clear in Figure 3, where the influence of the 

scanning speed and the pulse intensity on the depth dimension is summarized. It shows that

almost all of the machined depths are within the 10 to 25 µm range and only few experiments 

achieved depth values above this range.

Figure 3. Influence

 

Figure 2. Images of micro-channels  

e 2, which shows the results obtained for the micro-channel depths, the 

target depth of 50µm was never reached. This is clear in Figure 3, where the influence of the 

scanning speed and the pulse intensity on the depth dimension is summarized. It shows that

almost all of the machined depths are within the 10 to 25 µm range and only few experiments 

achieved depth values above this range. 

Figure 3. Influence of scanning speed and pulse intensity on depth dimension. 
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of scanning speed and pulse intensity on depth dimension.  



 

 

The trend lines presented in Figure 3 clearly show that higher scanning speeds result in smaller 

depths and higher pulse intensities result in deeper micro-channels. Thus, the greatest depth 

was reached with the lowest scanning speed (200mm/s) and the highest pulse intensity (45%). 

In a laser milling process (with 3D movements), slower displacements of the laser beam means 

that the surface is machined with high energy for a longer time, which allows a larger amount 

of energy to be absorbed by the material resulting in channels of greater depths. This 

demonstrates that higher pulse intensity values would be necessary to obtain depth values 

closer to the target. 

Table 3 summarizes the results of the ANOVA revealing that the most significant factors for the 

average depth of micro-channels are scanning speed and pulse intensity, as previously pointed 

out (p<0.005). The F-values indicate that pulse intensity is the most significant factor, which is 

made clearer by the contribution values.  

 
Table 3. ANOVA analysis for depth. 

Factor 

Degrees of 

freedom 

(DOF) 

Sum of 

squares 

(SS) 

Mean 

squares 

(MS) 

F-value P-value 
Contribution 

(%) 

PI 2     1775.26   887.63   94.72   0.000 83.9 

PF 1 25.43 25.43 2.71 0.107 2.4 

SS 8 1163.59 145.45 15.52 0.000 13.7 

Residual 42 393.61 9.37 - - - 

Compared with other authors, the experimental results shows that higher pulse intensity and 

lower scanning speeds tend to give deeper channels, which is in line with the idea that the 

number of pulses per mm increases, as the laser beam moves more slowly across the 

workpiece, thus removing more material. Furthermore, when the intensity is higher, the pulse 

energy increases, which in turn results in greater depth values (Bordatchev, 2003 and Youseff, 

2003). 

 

3.2 Micro-channel width 

Table 2 presents width dimensions that range from 175.5 to 197.7 µm. Once again, no 

experiment achieves the target value (200 µm). Figure 4 shows how the scanning speed and 

the pulse intensity affect the average width. In this case, in contrast to the results on depth, 

the experimental values are closer to the target width when the scanning speed is high and the 

pulse intensity is low. These converse effects on width and depth are due to the fact that 

straight walls are really difficult to achieve. Thus, as the channel becomes deeper, the width 

becomes narrower, producing a smaller mean width value. 



 

Table 4 summarizes the results of the ANOVA analysis on the average width. It can be seen 

that the pulse frequency has no statistically significant effect on width dimension. The 

parameters that do have a significant e

speed, with pulse intensity being the most significant, as is clearly indicated by the results of 

the F-value, with a contribution of 69.5 %

 

Figure 4. Influence
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Although other studies using single laser shots (Bordatchev, 2003 and Youseff, 2003) have 

concluded that crater depth and diameter increase with pulse energy, in our case, the width 

decreases. This effect can be explained because in th

necessary along all axes to obtain the final shape. Thus, because of the difficulty in achieving 

straight walls due the Gaussian shape of the laser beam, as the channel gets deeper, the width 

narrows. Therefore, the mean width of the channel decreases.

 

 

Table 4 summarizes the results of the ANOVA analysis on the average width. It can be seen 

that the pulse frequency has no statistically significant effect on width dimension. The 

parameters that do have a significant effect on the width are pulse intensity and scanning 

speed, with pulse intensity being the most significant, as is clearly indicated by the results of 

value, with a contribution of 69.5 % 

Figure 4. Influence of scanning speed and pulse intensity on width dimension.

Table 4. ANOVA analysis for width. 

Degrees of 

freedom 

 

Sum of 

squares 

(SS) 

Mean 

squares 

(MS) 

F P 

195.88 97.94 12.15 0.000 

5.01 5.01 0.62 0.435 

304.22 38.03 4.72 0.000 

 338.43 8.06 - - 

Although other studies using single laser shots (Bordatchev, 2003 and Youseff, 2003) have 

concluded that crater depth and diameter increase with pulse energy, in our case, the width 

decreases. This effect can be explained because in the laser milling process several passes are 

necessary along all axes to obtain the final shape. Thus, because of the difficulty in achieving 

straight walls due the Gaussian shape of the laser beam, as the channel gets deeper, the width 

he mean width of the channel decreases. 

Table 4 summarizes the results of the ANOVA analysis on the average width. It can be seen 

that the pulse frequency has no statistically significant effect on width dimension. The 

ffect on the width are pulse intensity and scanning 

speed, with pulse intensity being the most significant, as is clearly indicated by the results of 

 
width dimension. 
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3.5 

27 

- 

Although other studies using single laser shots (Bordatchev, 2003 and Youseff, 2003) have 

concluded that crater depth and diameter increase with pulse energy, in our case, the width 

e laser milling process several passes are 

necessary along all axes to obtain the final shape. Thus, because of the difficulty in achieving 
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3.3 Micro-channel surface roughness

The influence of the variable factors on surface roughness was also evaluated. Figure 5 shows 

the effect of the scanning speed and the pulse intensity on surface roughness. The t

indicate that surface roughness decreases at high scanning speeds. The influence of pulse 

intensity is less clear, although it does seem to indicate that higher intensity results in lower 

surface roughness. Slow scanning speeds do not improve su

movements hardly affect it. Furthermore, the experimental results show no large differences, 

with a range between 0.4 and 0.55µm. The best surface roughness values were obtained with 

a combination of the highest pulse intensity and

 

Figure 5. Influence

Table 5 summarizes the results of the ANOVA, which reveal that scanning speed is the most 

significant factor in surface roughness, while neither p

statistically significant effect on surface roughness. However, the contribution of the scanning 

speed is relatively small at 46.1 %.

 
Table 5. ANOVA analysis for surface roughness.

Factor 

Degrees of 

freedom

(DF)

PI 2 

PF 1 

SS 8 

Residual 42 

channel surface roughness 

The influence of the variable factors on surface roughness was also evaluated. Figure 5 shows 

the effect of the scanning speed and the pulse intensity on surface roughness. The t

indicate that surface roughness decreases at high scanning speeds. The influence of pulse 

intensity is less clear, although it does seem to indicate that higher intensity results in lower 

surface roughness. Slow scanning speeds do not improve surface roughness and fast 

movements hardly affect it. Furthermore, the experimental results show no large differences, 

with a range between 0.4 and 0.55µm. The best surface roughness values were obtained with 

a combination of the highest pulse intensity and highest scanning speed.   

Figure 5. Influence of scanning speed and pulse intensity on surface roughness.

Table 5 summarizes the results of the ANOVA, which reveal that scanning speed is the most 

significant factor in surface roughness, while neither pulse intensity nor pulse frequency has a 

statistically significant effect on surface roughness. However, the contribution of the scanning 

speed is relatively small at 46.1 %. 

Table 5. ANOVA analysis for surface roughness. 

Degrees of 

freedom 

(DF) 

Sum of 

squares 

(SS) 

Mean 

squares 

(MS) 

F P 

 0.004 0.002 1.92 0.160 

 0.005 0.005 5.79 0.021 

 0.051 0.006 6.58 0.000 

 0.039 0.001 - - 

The influence of the variable factors on surface roughness was also evaluated. Figure 5 shows 

the effect of the scanning speed and the pulse intensity on surface roughness. The trend lines 

indicate that surface roughness decreases at high scanning speeds. The influence of pulse 

intensity is less clear, although it does seem to indicate that higher intensity results in lower 

rface roughness and fast 

movements hardly affect it. Furthermore, the experimental results show no large differences, 

with a range between 0.4 and 0.55µm. The best surface roughness values were obtained with 

 
of scanning speed and pulse intensity on surface roughness. 

Table 5 summarizes the results of the ANOVA, which reveal that scanning speed is the most 

ulse intensity nor pulse frequency has a 

statistically significant effect on surface roughness. However, the contribution of the scanning 

Contribution 

(%) 

13.4 

40.5 

46.1 
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The experimental results shows that high pulse intensities and sl

that more energy is applied to the workpiece, increasing the damage caused to the surface. 

Therefore, lower pulse intensities and higher scanning speeds will improve the final quality of 

the machined parts, because surface roughne

3.4 Micro-channel material removal rate

The effect of the process parameters on the MRR was also studied. Figure 6 presents the 

effects of pulse intensity and scanning speed on the MRR. The trend lines clearly indicat

MRR increases with lower scanning speeds and higher pulse intensities. Although higher 

scanning speeds result in faster processes, the area of material removal is smaller, thus the 

MRR decreases.  On the other hand, higher pulse intensity results in

consequence, higher MRRs. 

Figure 6. Influence

The ANOVA results for MRR are shown in Table 6. It can be seen that pulse frequency has no 

statistically significant effect on MRR. Pulse

effect on MMR with a contribution of 93.1 %, while scanning speed has a somewhat lesser 

impact, with a contribution of 5.9 %.

 

Factor 

Degrees of 

freedom

(DF)

PI 2 

PF 1 

SS 8 

Residual 42 

The experimental results shows that high pulse intensities and slower scanning speeds mean 

that more energy is applied to the workpiece, increasing the damage caused to the surface. 

Therefore, lower pulse intensities and higher scanning speeds will improve the final quality of 

the machined parts, because surface roughness will be reduced (Bordatchev, 2003).

channel material removal rate 

The effect of the process parameters on the MRR was also studied. Figure 6 presents the 

effects of pulse intensity and scanning speed on the MRR. The trend lines clearly indicat

MRR increases with lower scanning speeds and higher pulse intensities. Although higher 

scanning speeds result in faster processes, the area of material removal is smaller, thus the 

MRR decreases.  On the other hand, higher pulse intensity results in deeper channels and, in 

Figure 6. Influence of scanning speed and pulse intensity on MRR. 

The ANOVA results for MRR are shown in Table 6. It can be seen that pulse frequency has no 

statistically significant effect on MRR. Pulse intensity is found to have the most significant 

effect on MMR with a contribution of 93.1 %, while scanning speed has a somewhat lesser 

impact, with a contribution of 5.9 %. 

Table 6. ANOVA analysis for MRR. 

Degrees of 

freedom 

(DF) 

Sum of 

squares 

(SS) 

Mean 

squares 

(MS) 

F P 

 0.0086 0.0043 57.92 0.000 

 4.82·10-5 4.82·10-5 0.65 0.424 

 0.0021 0.0002 3.65 0.003 

 0.0031 7.4·10-5 - - 

ower scanning speeds mean 

that more energy is applied to the workpiece, increasing the damage caused to the surface. 

Therefore, lower pulse intensities and higher scanning speeds will improve the final quality of 

ss will be reduced (Bordatchev, 2003). 

The effect of the process parameters on the MRR was also studied. Figure 6 presents the 

effects of pulse intensity and scanning speed on the MRR. The trend lines clearly indicate that 

MRR increases with lower scanning speeds and higher pulse intensities. Although higher 

scanning speeds result in faster processes, the area of material removal is smaller, thus the 

deeper channels and, in 

 

The ANOVA results for MRR are shown in Table 6. It can be seen that pulse frequency has no 

intensity is found to have the most significant 

effect on MMR with a contribution of 93.1 %, while scanning speed has a somewhat lesser 

Contribution 

(%) 

93.1 

1 

5.9 

- 



 

 

Since MRR is directly proportional to the width and depth of the channel, the MRR plot has a 

shape that is similar to the depth plot, due to the fact that the influence of the depth is greater 

than that of the width. 

 

4 Modeling 

Following the experimental tests and the study and ANOVA analysis of the relationship 

between the parameters, various machine learning techniques were then selected and tested 

for the depth and width dimension, surface roughness and MRR, in order to determine their 

correlation with the process parameters. The objective was to obtain the most appropriate 

process parameters for producing minimal surface roughness with the highest material 

removal rate. This selection included the k-Nearest Neighbors (kNN) technique with k set to 

1,...,5, linear regression, decision trees, and multilayer perceptrons. Hence, these methods 

were considered, which have clear decision rules and the capability to perform both linear and 

nonlinear transformations on the input data. A 10 fold cross-validation was applied, which 

takes account of the capability of the models to predict output parameter values from new 

input data. A naïve approach was adopted as a baseline, to ensure that the new models are 

extracting useful information from the dataset. The correlation coefficient (R2) and Mean 

Absolute Error (MAE) for individual input parameters modeled with the naïve approach were 

analyzed. The results are shown in Table 7, in which it may be seen that the correlation 

coefficient for the four models with the naïve approach is very low. 

 

Table 7. Naïve prediction for individual parameters. 

Parameter Correlation coefficient (R
2
) Mean absolute error (MAE) 

Depth 0.178 6.49 

Width 0.133 3.078 

Surface Roughness (Rα) 0.239 0.0397 

MRR 0.178 0.0141 

 

Starting with the low accuracy provided by a naïve approach, different machine learning 

models were built for each output parameter. First, the accuracy, in terms of R2 and MAE, of 

the depth modelling are shown in Table 8. The best results are observed for decision trees (in 

bold in Table 8), which yield the highest correlation coefficient and lowest MAE out of all 

analyzed models. It can be observed that 1NN is the best technique out of all the analyzed kNN 

simulations. This suggests limited noisiness of depth, i.e. the most similar input features 

provide the best estimation of the output parameter. It is interesting to investigate the 

definition of the tree shown in Fig. 7. As is clear from the ANOVA analysis, pulse intensity is the 

main parameter (83.9%) for this process, therefore the first node refers to this parameter; 

scanning speed is the second parameter from the ANOVA analysis (13.7%) and forms the 



 

second level nodes of the tree; leaving the last level for the lower influence: the pulse 

frequency. It is also interesting how the tree generates the final leaves at different scanning 

speeds depending on the pulse intensity, a conclusion that was expected considering the 

relation between both parameters shown in Figure 3: this capability of decision trees, which 

produce clear graphical conclusions on the influence of each parameter, makes them the most 

accurate technique. Linear regression models do not also achieve the required accuracy; this 

result fits well with the conclusion presented in Section 3 that channel depth depends mainly 

on scanning speed and pulse intensity and that this dependency is not linear. 

 

Table 8. Accuracy of different models of laser milling depth   

 1NN 2NN 3NN 4NN 5NN 
Linear 

regression 

Decision 

tree 

Multilayer 

perceptron 

R2 0.870 0.870 0.819 0.799 0.807 0.82 0.955 0.940 

MAE 2.04 2.04 2.60 2.81 2.80 2.90 1.31 1.44 

 

Figure 7. Decision tree for the estimation of depth  

 

 

Next, the results for width were analyzed. These are shown in Table 9. The best method turns 

out to be a multilayer perceptron (in bold in Table 9), which suggests that a nonlinear method 

is needed this time. It can be observed than the 3NN method provides the best correlation of 

all the kNN simulations that were analyzed. However, the lowest MAE rate for kNN methods is 

observed for k=1. As already observed for width modelling, linear regression models do not 

achieve the expected accuracy; this result fits well with the conclusion presented in Section 3, 

that channel width depends mainly on scanning speed and pulse intensity and that this 

dependency is clearly not linear. 



 

 

 

Table 9. Accuracy of different models of laser milling width 

 1NN 2NN 3NN 4NN 5NN 
Linear 

regression 

Decision 

tree 

Multilayer 

perceptron 

R2 0.325 0.325 0.393 0.364 0.348 0.367 0.371 0.606 

MAE 1.82 1.82 1.95 2.07 2.14 2.09 2.18 1.80 

 

In the case of surface roughness modeling, an interesting phenomenon is observed (Tables 10 

and 11). The correlation coefficient values appear to grow with higher values of k. Hence, 

extended analysis for the values of k exceeding 5 was conducted, as shown in Table 11. 

 

Table 10. Accuracy of different models of laser milling surface roughness  

 1NN 2NN 3NN 4NN 5NN 
Linear 

regression 

Decision 

tree 

Multilayer 

perceptron 

R2 0.0903 0.0903 0.2053 0.2361 0.3053 0.323 0.5952 0.4809 

MAE 0.043 0.043 0.035 0.034 0.033 0.030 0.023 0.029 

As expected, the value of correlation coefficient deteriorates for k>5. Obviously, it will 

converge to naïve results that are guessed. The main conclusion here is that the impact of 

process settings on surface roughness is quite sophisticated and possibly noisy, as averaging 

roughness from the most similar experiments to K=5 yields the best roughness prediction out 

of all kNN experiments. At the same time, the best overall correlation coefficient value and 

MAE rate is attained for decision trees (in bold in Table 10) and is largely superior to kNN. As 

already observed for width and depth modelling, linear regression models do not achieve the 

expected accuracy. This result fits well with the conclusion in Section 3, which states that 

channel roughness depends mainly on scanning speed with a very noisy dependency, which in 

no case is ever linear. 

 

Table 11. Accuracy of different models of laser milling surface roughness – part II 

 6NN 7NN 8NN 9NN 10NN 11NN 12NN 13NN 14NN 15NN 

R2 0.242 0.231 0.263 0.264 0.240 0.152 0.116 0.100 0.096 0.090 

MAE 0.034 0.033 0.032 0.033 0.034 0.036 0.037 0.037 0.037 0.038 

In the case of MRR modelling, Table 12, multilayer perceptrons and decision trees yield the 

best and virtually identical results (in bold in Table 12).  In this case, 1NN proves to be the best 

method out of kNN methods for k ranging from 1 to 5. This is in line with previous findings for 

depth i.e. the closest input settings produce the most similar output parameter value: this 



 

time, the MRR rates. Linear regression models do not achieve the required accuracy; this result 

fits well with the conclusion presented in Section 3, that MRR depends mainly on pulse 

intensity (more than 93% in the ANOVA test) and that this dependency is not linear. 

 

Table 12. Accuracy of different models of laser milling MRR 

 1NN 2NN 3NN 4NN 5NN 
Linear 

regression 

Decision 

tree 

Multilayer 

perceptron 

R2 0.769 0.769 0.680 0.650 0.657 0.702 0.825 0.828 

MAE 0.006 0.006 0.007 0.007 0.008 0.007 0.005 0.005 

To sum up, prediction accuracy evaluation, depth and MRR can be modeled with high 

accuracy. Lower, but still significant accuracy is observed for surface roughness and width 

modelling. In the case of surface roughness, a higher value of k, meaning the averaging of 

roughness based on many similar experiments gives better results than using the roughness 

from the most similar experiment in terms of input settings. This fact suggests noisiness of the 

data, dependencies between inputs and outputs that are difficult to capture and even the 

need to collect other parameter values that contribute to the problem. In accordance with the 

bibliography (Bernardos 2003), it can be concluded that surface roughness depends on too 

many variables to assure a complete determination of the milling process and therefore 

models are expected to be, in any case, less accurate than the other performance parameters 

under study. In no case did the linear regressions show high accuracy, a result that was 

expected, considering the non-linear dependencies between input and output parameters in 

all cases. 

 

4. Conclusions 

Micro-laser milling is a machining process suitable for fabricating micro-moulds. However, it 

requires the most appropriate process parameters settings. In this study, the surface quality, 

dimensional features and productivity of micro-channels have been studied in a micro laser 

milling process. Although the results obtained for the micro-channels present variations, they 

do suggest that laser machining is capable of producing micro-geometries. Several specific 

conclusions should be pointed out: 

1. Low scanning speeds and high pulse intensities increase the depth and decrease the 

width of the micro-channels.  

2. The surface quality of the channels improves with a rise in scanning speed, which in 

turn decreases surface roughness. 

3. Laser micromachining productivity increases with high pulse intensities and low 

scanning speeds.  

4. ANOVA results show that pulse frequency is not statistically significant for the 

responses under study.  



 

 

5. Machine learning techniques are suitable techniques with which to model laser-milling 

manufacture of micro shapes. Higher accuracy is observed for surface roughness and 

width modelling, than for depth and material removal rate modelling. Neural networks 

were better at modelling width dimensions and decision trees were better at 

modelling surface roughness; both techniques were similar for depth and material 

removal rate.  In all cases these two techniques showed better accuracy than the other 

two models: k-nearest neighbors and linear regression. The use of decision trees is 

therefore feasible, if the dimensional accuracy of the workpiece is the main industrial 

requirement, while neural networks are better in the other cases. 

6. The Nearest Neighbor models with higher k values show greater accuracy for 

roughness prediction, allowing us conclude that the noisiness of this output is higher 

or that it depends on more parameters than the other variables, as suggested in the 

previous literature. 

Future work will consider other AI techniques, such as ensembles of classifiers or regressors. 

These ensembles are built by combining different basic classifiers that could improve final 

model accuracy. This experimental methodology, in which the best process parameter 

combination is selected, will also be applied to other types of materials, such as transparent 

polymers typically used for disposable lab-on-chip devices and ceramics used for various 

industrial applications in aeronautics, automobile manufacturing, electronics, medicine and 

semiconductors. 
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