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també atrapats (o ho estaven, no fa tant) en un doctorat, Masi, Albert Pla,
Gerard, Mariano, Pablo, Albert Gubern, Eloy, Pepe, Marc y Sergio per estar
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aviat tots plegats poguem finançar la recerca amb diners d’una economia
real al servei de la gent i no pas al d’avariciosos jugadors compulsius.

Finalment, dec el més especial dels agraı̈ments a les tres persones a qui va
dedicada aquesta tesi. Als meus pares, Jordi i Mari, per portar-me a la vida
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Submarina

cmu Carnegie Mellon University

cola2 Component-Oriented Layer-based Architecture for Autonomy

dof Degree Of Freedom

dvl Doppler Velocity Log

fer Faculty of Electrical and Computer Engineering, Fakultet Elektrotehnike i
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A B S T R A C T

At present, a mission to survey the ocean floor with an Autonomous Under-
water Vehicle (AUV) is typically planned by selecting a list of waypoints that
then the vehicle will automatically navigate through while keeping a safe
distance from the bottom. Nonetheless, this approach has major drawbacks:
(1) it does not allow the vehicle to safely operate amidst protrusions on the
sea floor; (2) when traversing rugged terrain, the vehicle is forced to keep
a conservative altitude, limiting applications requiring close proximity such
as photomosaicing; (3) when inspecting 3D, protruding structures from the
bottom the vehicle can only perceive them from an overhead viewpoint, re-
sulting in poor data collected from these sites; (4) it does not account for the
effect of the terrain on the vehicle’s position estimates.

To address these limitations, this thesis proposes new methods to find
collision-free paths allowing an AUV to cover an area of the ocean floor with
its sensors, which is known as coverage path planning. First, we propose a
coverage path planning method to plan 2D, safe-altitude surveys which pro-
vides a principled way to account for obstacles in AUV survey planning. Its
main advantage is that it minimizes redundant coverage when the vehicle
navigates at constant depth, leading to shorter paths. Second, we provide
a method to account for the uncertainty in the vehicle position estimates
when planning 2D surveys. The method minimizes the uncertainty induced
by the path and leads to better maps of the ocean floor as a result. Third,
we provide a coverage path planning method suitable for inspecting areas
of the ocean floor including 3D structures. The resulting coverage paths en-
able applications requiring close proximity and allow viewpoints for full 3D
sensing of the structure. Moreover, by contrast to most existing methods, we
provide two techniques to adapt the planned path in realtime using sensor
information acquired on-line during the mission, rather than only planning
the path off-line and relying on the unrealistic assumption of an idealized
path execution by the AUV. The proposed methods are validated in simula-
tion and in experiments with a real-world AUV.
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R E S U M

Actualment, una missió per a cartografiar el fons marı́ amb un vehicle sub-
marı́ autònom és planificada tı́picament seleccionant una llista de punts a
través dels quals el vehicle navegarà automàticament mentre es manté a una
distància segura del fons. Tanmateix, aquesta metodologia presenta consid-
erables inconvenients: (1) no permet al vehicle operar amb seguretat entre
obstacles que sobresurten del fons; (2) en recórrer terreny escarpat, el ve-
hicle és forçat a mantenir una altitud conservadora, impedint tasques que
requereixen proximitat al fons, com ara la creació de fotomosaics; (3) en in-
speccionar estructures 3D que sobresurten del fons, el vehicle pot només
percebre-les des d’un punt de vista zenital, obtenint dades de baixa qualitat
com a resultat; (4) no té en compte l’efecte del terreny sobre les estimacions
de posició del vehicle.

Amb l’objectiu d’esmenar aquests inconvenients, aquesta tesi proposa nous
mètodes per generar camins lliures de col·lisions per a vehicles submarins
autònoms que permeten cobrir una àrea del fons de l’oceà usant els sen-
sors del vehicle, tasca coneguda com a planificació de camins de cobertura.
Primer, proposem un mètode de planificació de camins de cobertura per a
planificar missions en un espai 2D a una altitud segura, proporcionant una
manera fonamentada de tenir en compte obstacles en la planificació de mis-
sions per a vehicles submarins autònoms. L’avantatge principal del mètode
proposat és que minimitza la cobertura redundant sorgida quan el vehicle
navega a profunditat constant, obtenint camins més curts com a resultat.
Segon, presentem un mètode per tenir en compte la incertesa de les estima-
cions de posició del vehicle durant la planificació de missions 2D. Aquest
mètode minimitza la incertesa induı̈da pel camı́ i genera mapes més acurats
del fons oceànic com a resultat. Tercer, presentem un mètode de planificació
de camins de cobertura adequat per inspeccionar àrees del fons oceànic amb
estructures 3D. Els camins de cobertura resultants permeten tasques que re-
quereixen proximitat al fons i permeten una completa percepció 3D de les
estructures d’interès. A més, a diferència de la majoria dels mètodes exis-
tents, proporcionem dues tècniques per adaptar els camins planificats en
temps real utilitzant informació sensorial adquirida durant la missió, per
contra de planificar només abans de l’execució de la missió i confiar en la
poc realista assumpció d’una execució idealitzada del camı́ per part del vehi-
cle. Els mètodes proposats han estat validats en simulació i en experiments
amb un vehicle submarı́ autònom real.
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R E S U M E N

Actualmente, una misión para cartografiar el fondo marino con un vehı́culo
submarino autónomo es planificada tı́picamente seleccionando una lista de
puntos a través de los cuales el vehı́culo navegará de forma automática
mientras se mantiene a una distancia segura del fondo. No obstante, esa
metodologı́a presenta considerables inconvenientes: (1) no permite operar
con seguridad entre obstáculos que sobresalen del fondo; (2) al recorrer ter-
reno escarpado, el vehı́culo es forzado a mantener una altitud conservadora,
impidiendo tareas que requieren proximidad al fondo, como por ejemplo la
creación de fotomosaicos; (3) al inspeccionar estructuras 3D que sobresalen
del fondo, el vehı́culo puede sólo percibirlas desde un punto de vista cenital,
obteniendo datos de baja calidad como resultado; (4) no tiene en cuenta el
efecto del terreno sobre las estimaciones de posición del vehı́culo.

Con el objetivo de enmendar esos inconvenientes, en esta tesis se proponen
nuevos métodos para generar caminos libres de colisiones para vehı́culos
submarinos autónomos que permiten cubrir un área del fondo oceánico
utilizando los sensores del vehı́culo, tarea conocida como planificación de
caminos de cobertura. Primero, proponemos un método de planificación de
caminos de cobertura para planificar misiones en un espacio 2D a una alti-
tud segura, proporcionando una forma fundamentada de tener en cuenta
obstáculos en la planificación de misiones para los susodichos vehı́culos
submarinos. La ventaja principal del método propuesto es que minimiza la
cobertura redundante surgida cuando el vehı́culo navega a profundidad con-
stante, obteniendo caminos más cortos como resultado. Segundo, presenta-
mos un método para tener en cuenta la incertidumbre de las estimaciones de
posición del vehı́culo durante la planificación de misiones 2D. Este método
minimiza la incertidumbre inducida por el camino y genera mapas más pre-
cisos del fondo oceánico como resultado. Tercero, presentamos un método
de planificación de caminos de cobertura adecuado para la inspección de
áreas del fondo oceánico con estructuras 3D. Los caminos de cobertura resul-
tantes permiten tareas que requieren proximidad al fondo y permiten una
completa percepción 3D de las estructuras de interés. Además, a diferen-
cia de la mayorı́a de métodos existentes, proporcionamos dos técnicas para
adaptar los caminos planificados en tiempo real utilizando información sen-
sorial adquirida durante la misión, en vez de confiar en la poco realista
asunción de una ejecución idealizada del camino por parte del vehı́culo. Los
métodos propuestos han sido validados en simulación y en experimentos
con un vehı́culo submarino autónomo real.
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1
I N T R O D U C T I O N

“Don’t blame you,” said Marvin and counted
five hundred and ninety-seven thousand million

sheep before falling asleep again a second later.

— Douglas Adams, “The Hitchhiker’s Guide to the Galaxy” (1979)

In this chapter, we introduce the real-world problem that has motivated
this thesis: inspection of the ocean floor by an Autonomous Underwater
Vehicle (AUV). This challenge has motivated our development of new path
planning techniques that achieve sensor coverage of both 2-dimensional, ef-
fectively planar regions and 3-dimensional, complex structures of the ocean
floor while accounting for the particulars of the underwater domain. We first
detail the motivation of this thesis and state the general problem it addresses
in Section 1.1. Next, we present the goal and objectives of this thesis in Sec-
tion 1.2 and briefly introduce the context where this work has been carried
out in Section 1.3. Lastly, we overview the contents of this thesis and state
its contributions in Section 1.4.

1.1 motivation and problem statement

“Space... the final frontier.” This legendary phrase not only has dazzled the
millions of fans of the Star Trek franchise, but it arguably captures what has
been the focus of discovery and exploration in the last fifty years. The Space
Race led to putting the first man in orbit and the first man on the Moon in
the 1960s and following efforts brought on the launch of space probes sent
throughout the entire Solar System and even beyond, after NASA’s Voyager 1

probe surpassed its limits in August 2012.
Paradoxically, we know less about the oceans on Earth than we do about

the dark side of the Moon. Despite covering more than seventy percent of the
Earth’s surface, ninety percent of the ocean floor has not even been charted
and a similar portion of it remains unseen by human eyes. Despite remark-
able achievements, such as the manned descends into the Mariana Trench
by bathyscaphe “Trieste” in 1960 and by submersible vessel “Deepsea Chal-
lenger” in 2012, the technology to explore the ocean’s floors is still being
developed.

1



2 introduction

Oceans support a great diversity of life and ecosystems, play a major role
in controlling our climate, provide a large source of food, and its organisms
are said to hold the promise of cures for an array of diseases. Therefore,
exploring and understanding the oceans is a matter of utmost importance.
Just to make some compelling cases: a drug isolated from the dogfish shark
led to advances in combating blindness (Brunel et al., 2005), the horseshoe
crab was crucial in developing a test for bacterial contamination (Bang, 1956)
and sea urchins helped in the development of test-tube fertilization (Loeb,
1914).

Initially developed in the 1960s to perform deep-sea rescue operations,
Remotely Operated Vehicles (ROVs) are valuable tools for exploration of the
ocean floor. ROVs are unmanned, tethered submersible vehicles operated by
a crew aboard a vessel, involving a ship. This way, they enable exploration
of deep regions far beyond reach of human divers while avoiding risk to
human lives. Figure 1 shows one of the many ROVs in operation today. ROVs

are heavily used in the offshore oil industry, where they have become an
essential tool without which the offshore hydrocarbon extraction would not
have been possible. Nonetheless, ROVs are also used in a variety of science
applications (Hudson et al., 2005), allowing exploration and sampling of
zones of geological or biological interest, and have been used to locate many
historic shipwrecks, including that of the RMS Titanic (Ward, 2012).

Figure 1: The LATIS ROV being launched at sea. Image credit: Mobile & Marine
Robotics Research Center, University of Limerick.

Despite their valuable capabilities, ROV operations require a complex in-
frastructure involving a ship with its corresponding crew and specialized
ROV operators. The ship must be equipped with a crane for deployment and
recovery, a winch with sufficient tether for the desired operation depth and,
in some scenarios, even a tether management system to minimize drag in the
presence of currents. Moreover, operations may take place far from the coast
and last for several days or even weeks, leading to a high cost of operation.
On the other hand, the autonomy of ROVs is severely limited by the tether,
restricting the extent of the area of operation in a single mission.

To address these limitations, efforts have been made to provide ROVs with
a higher level of autonomy. The focus has been to remove the tether to ex-
pand the vehicle’s capabilities and, at the same time, reduce the cost of op-
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eration. This is achieved by equipping the submersible with its own power
source, and the capability to determine its actions based on inputs from its
onboard sensors and a pre-defined mission plan. The result of those efforts
are AUVs. Figure 2 shows a torpedo-shaped AUV; as illustrated in this figure,
AUVs are often smaller and easier to deploy than their ROV counterparts.

Figure 2: The Sparus AUV (left) next to a human diver.

Thanks to technology breakthroughs in the last two decades, AUVs have
become a standard tool for mapping the ocean floor using optical (Eustice
et al., 2006) and acoustic (Paduan et al., 2009) sensors, with applications to
dam inspection (Ridao et al., 2010), marine geology (Escartin et al., 2008;
Yoerger et al., 2000), underwater archaeology (Bingham et al., 2010) and
Mine CounterMeasures (MCM) (Williams, 2010) to mention but a few. Par-
ticularly remarkable is the role AUVs have played in bathymetric mapping*

for charting the ocean floor. Bathymetric mapping supports safe navigation,
helps protect and monitor marine areas of biological interest and is key to
geology, archaeology and military applications. Thanks to near-bottom sur-
veys, AUVs provide high resolution maps and require little human supervi-
sion compared to their ship- or ROV-assisted counterparts, and hence at a
lower cost.

Recently, the number of AUVs in operation throughout the world has in-
creased remarkably (Nicholson and Healey, 2008). This is largely because
of their excellent ability to explore and assess underwater environments. As
the technology development progresses at a steady pace, the cost of AUVs is
decreasing and becoming available to an equally increasing number of peo-
ple. Whether it is mapping the ocean floor, assessing a naval mine threat or
collecting oceanographic data, these vehicles provide users a great resource
for better understanding of the ocean in general.

Surveying an area of interest on the ocean floor by completely covering its
extent with the vehicle’s sensors is an integral task in most AUV applications.
Examples include microbathymetric mapping, image photomosaicing and
searching for a target object. At present, these missions are typically pre-

* Bathymetry is the study of underwater depth of lake, river or ocean floors. In other words,
bathymetry is the underwater equivalent to hypsometry (the measurement of land elevation
relative to sea level).
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programmed by a human operator selecting a list of waypoints on an a priori
chart of the target area. A typical survey mission path is composed of a
sequence of straight lines that connect at waypoints in a “mowing the lawn”
manner, as shown in Figure 3. Once downloaded to the AUV, the vehicle
executes the mission while keeping a safe altitude from the sea bottom.

Figure 3: Typical “mowing the lawn” AUV survey path planned on a diving site
bathymetric chart off the Costa Brava in Catalonia (Spain).

This is an approach that suits most commercially available AUVs, which
are typically torpedo-shaped and have very limited obstacle avoidance and
maneuvering capabilities. Nevertheless, this approach has several important
drawbacks, and, especially, it imposes serious limitations to the applicabil-
ity of an increasingly developing new class of AUVs which are able to hover
and maneuver with more agility: the so-called hovering AUVs. In particular,
the aforementioned AUV survey planning approach presents the following
drawbacks. First, it has no principled way of accounting for obstacles in
the survey path planning phase, precluding the vehicle from safely operat-
ing amidst rugged protrusions on the sea floor. Second, due to the limited
obstacle avoidance capabilities of most AUVs, they are forced to fly at a con-
servative altitude to avoid collisions when traversing rugged terrain. This
hinders coverage operations such as optical imaging that require to survey
the bottom in close proximity for acceptable visibility. Third, when surveying
3-dimensional structures on the ocean floor such as coral reefs or shipwrecks,
the overhead point of view provided by these survey paths results in poor
imaging of the target structure. Lastly, while state-of-the-art AUV navigation
techniques seek to match the vehicle’s sensor measurements to landmarks
in the terrain, standard lawnmower-type survey paths do not look for dis-
criminative actions that lead to more accurate position estimates. Clearly, an
automated survey path planning method that addresses these drawbacks is
highly desirable.

This thesis addresses the aforementioned limitations of AUV survey mis-
sion planning in the context of coverage path planning, which is the task of
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passing a sensor over all points in a target surface or volume of interest while
avoiding obstacles. This task is integral to many robotic applications, such
as vacuum cleaning robots, painter robots, lawn mowers and automated har-
vesters and, indeed, AUV surveys. Although, as we will see in Chapter 2,
a considerable body of research has addressed coverage path planning, lit-
tle attention has been paid to the coverage path planning problem in un-
derwater environments. While many underwater robotics applications such
as microbathymetric mapping, habitat monitoring, image photomosaicing
or target search and recovery can benefit greatly from the complete cover-
age guarantees and robustness of coverage path planning methods, prior
research in coverage path planning has not addressed the aforementioned
limitations of standard AUV survey planning. In fact, while coverage path
planning has been applied to a variety of problems in robotics and automa-
tion, it has been mostly demonstrated in controlled environments including
absolute positioning. Under the surface, by contrast, there is no ubiquitous
absolute positioning (such as GPS), sensors are often limited by the narrow
bandwidth and low accuracy of underwater acoustics and AUVs are exposed
to currents and all sorts of unexpected disturbances, just to name but a few
of the numerous challenges of underwater robotics. Therefore, studying the
coverage path planning problem in the context of the underwater domain
opens the door to pushing the envelope of AUV capabilities in particular and
of ocean exploration and understanding in general.

1.2 goal of the thesis

Once the motivation and the problem addressed in this thesis have been set
forth, the goal of this thesis is stated as follows:

To develop coverage path planning techniques for autonomous underwater vehicles
that endow them with a principled way to account for obstacles, allow to survey the
ocean floor in close proximity, provide suitable viewpoints for imaging applications

and take into account the effect of the terrain being traversed on the position
estimates.

1.2.1 Objectives of the Thesis

The general goal can be categorized more specifically in the following objec-
tives:

review of the coverage path planning literature . To carry out
a thorough review of prior work in the coverage path planning litera-
ture and to identify requirements of the underwater domain that have
not been properly addressed in said work.

2d coverage path planning for auvs . To propose a coverage path
planning method that provides a principled and automated manner
to account for obstacles in survey mission planning for AUVs.
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uncertainty-driven 2d coverage path planning for auvs . To
propose a coverage path planning method that takes into account the
effect of the terrain on the uncertainty of AUV pose estimates to plan
a survey path that leads to more accurate estimates and therefore to
higher quality data products of the ocean floor.

3d coverage path planning for auvs . To propose a coverage path
planning method that goes beyond traditional 2D surveys at a safe
altitude from the sea bottom and allows inspection of intrinsically 3-
dimensional regions such as shipwrecks and coral reefs in close prox-
imity.

validation in a real-world auv. To validate the proposed techniques
in a real AUV with experiments in real-world underwater environments
that go beyond simulation and controlled experimentation in the labo-
ratory.

1.3 context

The research presented in this thesis has been carried out at the Underwater
Robotics Research Center, Centre d’Investigació en Robòtica Submarina (CIRS) of
the Computer Vision and Robotics Institute of the University of Girona. Re-
search in underwater robotics has been ongoing there since 1992, supported
by several Spanish and European research programs. The group has devel-
oped several AUV prototypes: GARBI (Amat et al., 1999), a vehicle originally
conceived as a ROV that was restyled as an AUV; URIS (Batlle et al., 2004),
a lightweight AUV; Ictineu (Ribas et al., 2007), which won the first Student
Autonomous Underwater Challenge - Europe (SAUC-E) competition in 2006;
Sparus, which championed SAUC-E in 2010 and has recently been restyled
and presented as a commercial platform (Carreras et al., 2013); and GIRONA
500 (Ribas et al., 2012), a reconfigurable AUV that has been the main platform
for experimentation in this thesis (see Appendix A for more details on this
later vehicle).

Research at CIRS revolves around AUV applications, and has focused on
control architectures (Ridao et al., 2002; Palomeras et al., 2012), model iden-
tification (El-Fakdi et al., 2003), machine learning (Carreras et al., 2001; El-
Fakdi et al., 2010), mission control (Palomeras et al., 2006), mapping (Nico-
sevici et al., 2009) and, more recently, AUV intervention (Prats et al., 2012b;
Ribas et al., 2012), Simultaneous Localization And Mapping (SLAM) (Ribas
et al., 2008; Zandara et al., 2013) and path planning (Hernandez et al., 2011).
Noteworthily, this thesis represents the first endeavors of the group in cover-
age path planning, opening a new line of research in the subject.

In addition, the work presented in this thesis has contributed to the fol-
lowing European research projects where CIRS took part:

• 2011-2015. FP7 EU project “MORPH: Marine robotic system of self-
organizing, logically linked physical nodes”.
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• 2011-2014. FP7 EU project “PANDORA: Persistent autonomy through
learning, adaptation, observation and re-planning”.

• 2010-2013. FP7 EU project “TRIDENT: Marine robots and dexterous
manipulation for enabling autonomous underwater multipurpose ma-
nipulation”.

1.4 overview and contributions of the thesis

The remainder of this thesis is organized as follows. In Chapter 2 we re-
view the algorithms and applications of coverage path planning presented
in the literature, providing a classification of the most popular and success-
ful and pointing out directions for further research in the problem. This
review comprises foundational building blocks of the algorithms developed
in this thesis. In addition, this review represents the first coverage path plan-
ning literature survey in more than a decade. Therefore, it is an important
contribution to the field capturing the state of the art and focusing on the
breakthroughs occurred in the last ten years.

In Chapter 3 we introduce a new 2D coverage path planning method pro-
viding a principled way to account for obstacles in AUV survey path plan-
ning. The key innovation of this method is that it minimizes redundant cov-
erage incurred when sweeping the ocean floor from a constant depth. In this
situation, the vehicle’s sensor footprint varies according to the distance to
the bottom, leading to redundant coverage among the back-and-forth laps
of the coverage path. The proposed method uses information on an a priori
bathymetric map of the target region to minimize this redundant coverage.
As a result, a shorter, more efficient coverage path is obtained. The proposed
method is validated in simulation experiments conducted with a real-world
bathymetric dataset. Results show a significant increase on path efficiency in
comparison with a standard coverage path.

In Chapter 4 we present a novel 2D survey path planning algorithm for
area coverage which minimizes the robot’s position uncertainty along the
planned path. Rather than avoiding obstacles, which can be achieved with
the method presented in Chapter 3, the focus of this algorithm is to plan
a coverage path that leads to better position estimates and hence to more
accurate data products resulting from AUV surveys. The proposed algorithm
especially targets bathymetric mapping applications and respects applica-
tion constraints such as the desire to survey in parallel tracks. Our proposed
algorithm uses the saliency on an a priori map to predict how the terrain
will affect the robot’s belief at every point on the target area. Based on this
magnitude, we compute the order in which to trace parallel tracks to cover
the target area in order to minimize the overall uncertainty along the path. A
particle filter keeps track of the robot’s position uncertainty during the plan-
ning process and, in order to find useful loop-closures for mapping, crossing
tracks that visit salient locations are added when the uncertainty surpasses a
user-provided threshold. We test our method in simulation using real-world
datasets collected off the coasts of Catalonia (Spain), Greece and Australia
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and in sea trials with a real AUV in the Catalan coast. We evaluate the ex-
pected robot’s position uncertainty along the planned paths with a particle
filter and their associated mapping performance using a bathymetric map-
ping algorithm. Results show that our method offers benefits over standard
lawnmower-type paths both in terms of position uncertainty and map qual-
ity.

In Chapter 5 we introduce new 3D coverage path planning algorithms
for inspection of structures on the ocean floor that can not be successfully
surveyed in detail without resorting to a 3D workspace. Examples of such
structures include coral reefs, shipwrecks, breakwater structures in harbors
or the continental slope. We first present an off-line coverage path planning
algorithm that generates a complete coverage path suitable for covering sea
floor areas with 3D structures. The algorithm identifies high-slope regions
on an a priori bathymetric map and provides different path patterns suit-
ing both effectively planar and high-slope regions, completely covering the
target area. While most coverage algorithms operate off-line and assume
the path will be perfectly executed, the vehicle suffers from localization er-
ror and environmental disturbances during the path execution, rendering
such an assumption unrealistic. This is especially patent when navigating
amidst complex structures, where the threat of collision increases. Rather
than relying on an idealized execution of the planned path, we present two
approaches to deal with the discrepancy between a nominal 3D coverage
plan and the actual situation the AUV faces in situ during the coverage task.
The first approach is reactive and uses range sensor measurements to cover
cross-section profiles of the target surface in realtime. The second approach
uses realtime replanning to reshape the nominal coverage path according
to the actual target structure perceived during the mission via the vehicle’s
onboard sensors. We experimentally validate the proposed algorithms both
in simulation and in real-world experiments with a physical AUV in the CIRS

pool and at sea.
We conclude in Chapter 6 by summarizing the work completed, reviewing

the contributions of this thesis and the list of publications that have resulted
from it and, finally, identifying compelling areas for future work.



2
S TAT E O F T H E A RT

“What’s up?”
“I don’t know,” said Marvin,

“I’ve never been there.”

— Douglas Adams, “The Hitchhiker’s Guide to the Galaxy” (1979)

This chapter presents a survey of prior work in coverage path planning,
which is the central problem this thesis addresses. As mentioned earlier,
coverage path planning is the task of determining a path that passes over
all points of an area or volume of interest while avoiding obstacles. This
task is integral to many robotic applications, such as (just to name a few)
vacuum cleaning robots (Yasutomi et al., 1988), painter robots (Atkar et al.,
2005b), demining robots (Gage, 1994; Najjaran and Kircanski, 2000; Acar
et al., 2003), lawn mowers (Cao et al., 1988; Bosse et al., 2007), automated
harvesters (Ollis and Stentz, 1997), window cleaners (Farsi et al., 1994) and,
indeed, AUVs (Hert et al., 1996; Englot and Hover, 2012). While the survey
we present covers coverage path planning theory and applications in the
general field of robotics, it highlights as well coverage path planning re-
search focused in the underwater domain. After introducing the coverage
path planning problem in Section 2.1, we first present a thorough review
of coverage path planning methods for 2-dimensional (Sections 2.2-2.7) and
3-dimensional workspaces (Section 2.8), which comprise foundational build-
ing blocks of the algorithms developed in this thesis. We follow with a review
of coverage path planning methods focused on achieving optimal coverage
(Section 2.9) and coverage path planning methods that take uncertainty into
account and intend to reduce the accumulation of localization error while
executing the planned coverage path (Section 2.10). We then briefly review
several multi-robot coverage path planning methods (Section 2.11). We close
this chapter with a discussion of the reviewed methods placing an emphasis
on the underwater domain and providing a summary table and directions
for further research in coverage path planning (Section 2.12).

2.1 the coverage path planning problem

As mentioned earlier, the coverage path planning problem calls for finding a
collision-free path that allows a robot to pass over all points in a target area

9
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or volume of interest. In one of the earliest works on coverage path planning
found in the literature, Cao et al. (1988) defined the requirements a robot
must meet to perform a coverage operation. Albeit the target application in
the aforementioned paper is a mobile robot moving in a flat 2-dimensional
environment, the same criteria are applicable to other coverage scenarios.
The requirements are as follows:

1. Robot must move through all the points in the target area covering it
completely.

2. Robot must fill the region without overlapping paths.

3. Continuous and sequential operation without any repetition of paths
is required.

4. Robot must avoid all obstacles.

5. Simple motion trajectories (e.g., straight lines or circles) should be used
(for simplicity in control).

6. An “optimal” path is desired under available conditions.

However, it is not always possible to satisfy all these criteria in complex
environments. Therefore, sometimes a priority consideration is required.

The coverage path planning problem is related to the covering salesman
problem, a variant of the Traveling Salesman Problem (TSP) where, instead of
visiting each city, an agent must visit a neighborhood of each city (Arkin and
Hassin, 1994). Recall that, given a list of cities and the distances between each
pair of cities, the TSP calls for the shortest route that visits each city exactly
once and returns to the origin city. However, in coverage path planning, the
agent must pass over all points in the target area in contrast to visiting all the
neighborhoods. Since the TSP is NP-hard, the computational time required to
solve the problem increases drastically when the dimension of the problem
increases. Actually, finding a path to cut all the grass of a given region cov-
ered by grass, which is known as the “lawnmower problem”, is proven to be
NP-hard (Arkin et al., 2000). Notice that the lawnmower problem does not
account for obstacles. In fact, even the basic path planning problem, known
as the “piano mover’s problem”, of finding a collision-free path from a start
configuration to a goal configuration is shown to be PSPACE-hard, which
implies NP-hard (LaValle, 2006; Reif and Sun, 2001). Two additional, similar
problems related to coverage path planning are the art gallery problem and
the watchman route problem. The art gallery problem calls for the minimum
number of guards needed to station in a polygonal gallery so that each point
in the gallery is visible to at least one guard (Shermer, 1992). The watchman
route problem calls for the shortest route from a given point back to itself so
that each point in a given space is visible from at least one point along the
route (Li and Klette, 2008). Simple cases of the watchman route problem such
as covering the interior of simple polygons can be achieved in polynomial
time (Chin and Ntafos, 1991). But, in general, both the art gallery problem
and the watchman route problem are NP-hard (Shermer, 1992; Li and Klette,
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2008). Some coverage algorithms we discuss below approach coverage path
planning as the art gallery problem and the watchman route problem.

Coverage algorithms can be classified as heuristic or complete depending
on whether or not they mathematically guarantee complete coverage of the
free space. Independently, they can be classified as either off-line or on-line.
This classification was originally proposed by Choset (2001). Off-line algo-
rithms rely only on stationary information, and the environment is assumed
to be known in advance. However, assuming full prior knowledge of the
environment might be unrealistic in many scenarios. On the other hand, on-
line algorithms do not assume full prior knowledge of the environment to
be covered and utilize real-time sensor measurements to sweep the target
space. Thus, these later algorithms are also called sensor-based coverage al-
gorithms.

In certain scenarios, a valid approach to solve the problem is to random-
ize. This is an approach that some floor-cleaning robots rely on: if the floor
is swept randomly for long enough, it should become cleaned. Examples
of commercial floor-cleaning robots based fully or partially on this strat-
egy are the RC3000 by Karcher, Trilobite by Electrolux and Roomba by
iRobot (Palacin et al., 2005). These randomized strategies often combine
randomization with path templates such as wall following. Figure 4 shows
a randomized coverage path traced by a team of Roomba cleaning robots.
There are advantages to this approach, the main one being that no complex
sensors for localization nor expensive computational resources are needed.
However, for covering vast areas, and especially for underwater or aerial
robotics operations which deal intrinsically with a 3-dimensional space, it is
difficult to think that a randomized “algorithm” could be usable, as the cost
of operating the vehicle (energy and time) would be unaffordable.

Figure 4: Long-exposure photo of the randomized coverage path traced by a team
of Roomba cleaning robots using LED light sources in a dark room. Im-
age credit: Tobias Baumgartner, Marcus Brandenburger, Tom Kamphans,
Alexander Kroeller and Christiane Schmidt of the IBR Algorithm Group
at Braunschweig University of Technology.
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A considerable body of research addressing the coverage path planning
problem can be found in the literature. Choset (2001) presented a survey on
the field. However, no updated surveys on coverage path planning reflecting
its recent advances have been presented in the past ten years. This survey
bridges this gap by presenting a thorough review of the most successful cov-
erage path planning methods, focusing in the achievements made in the past
decade. Furthermore, we discuss reported field applications of the coverage
path planning methods described.

Since most coverage path planning algorithms decompose the target space
in sub-regions (called cells) to achieve coverage, Choset (2001) classified cov-
erage algorithms according to the type of decomposition used. Hence, his
taxonomy comprises heuristic and randomized approaches (which typically
do not use a representation of the environment and therefore neither use
a decomposition), and approximate, semi-approximate and exact cellular
decompositions. However, we argue that qualitatively different approaches
can be distinguished among these categories. Thus, the outline of this sur-
vey does not bear a one-to-one correspondence with Choset’s taxonomy,
but rather reflects the common underlying ideas used in the discussed ap-
proaches. Nonetheless, Choset’s taxonomy is commonly used throughout
the literature, and hence we also provide the corresponding Choset’s classi-
fication for the methods reviewed.

2.2 classical exact cellular decomposition methods

Exact cellular decomposition methods break the free space (i.e., the space
free of obstacles) down into simple, non-overlapping regions called cells.
The union of all the cells exactly fills the free space. These regions, which
contain no obstacles, are “easy” to cover and can be swept by the robot using
simple motions. For instance, each cell could be covered using a zigzag,
“mowing the lawn” pattern like the one shown in Figure 5. Generation of
these zigzag motions, also called seed-spreader motions, is well documented
in the literature (Lumelsky et al., 1990; Choset and Pignon, 1997; Acar et al.,
2002).

Figure 5: Typical “mowing the lawn” path. The shaded area indicates the area al-
ready covered (darker) and the area that will be covered (lighter) when
the robot finishes following the path.
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Two cells are said to be adjacent if they share a common boundary. An
adjacency graph can be used to represent the cellular decomposition, where
a node represents a cell and an edge represents an adjacency relationship
between two cells (see Figure 6). Exact cell decompositions can be generated
by sweeping a line through the space (e.g. from left to right). The cell bound-
aries are then formed when some event is encountered by the sweep line.
For instance, a change on the number of times the sweep line intersects with
obstacle boundaries can be used as an event.

Typically, a planner based on exact cellular decomposition generates a cov-
erage path in two steps. First, it decomposes the free space into cells and
stores the decomposition as an adjacency graph. Next, it computes an ex-
haustive walk through the adjacency graph (i.e., a sequence that visits each
node in the graph exactly once). It is worth noting that the exhaustive walk
obtained is a sequence of nodes (i.e., a sequence of cells), and not an ac-
tual coverage path. Therefore, an explicit path for covering each cell must be
derived using simple motions as discussed above.

Next, two popular off-line cellular decomposition approaches that laid
down the foundations for more advanced methods are discussed.

2.2.1 Trapezoidal Decomposition

One of the simplest exact cellular decomposition techniques which can yield
a complete coverage path is the trapezoidal decomposition (Latombe, 1991;
Choset et al., 2005), which handles only planar, polygonal spaces. Given that
it uses no sensor information, this method can be classified as off-line. In
the trapezoidal decomposition, each cell is a trapezoid, as shown in Fig-
ure 6. Thereby, simple back-and-forth motions can be used to cover each cell.
Complete coverage is guaranteed by finding an exhaustive walk through
the adjacency graph associated to the decomposition (overlaid on the de-
composition in Figure 6). Finally, a specific zigzag path to cover each cell
is generated. The exhaustive walk determines the order in which the cells
are visited to achieve complete coverage. Finally, specific paths to cover each
cell are generated, typically using back-and-forth motions in a “mowing the
lawn” manner.

Figure 6: Trapezoidal decomposition of an example workspace with its correspond-
ing adjacency graph.
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As an application example, Oksanen and Visala (2009) proposed an off-
line algorithm based on the trapezoidal decomposition for coverage path
planning in the case of agricultural fields. Their algorithm applies a trape-
zoidal decomposition of the field followed by a cell merging procedure. The
resulting cells are similar to those produced by the boustrophedon decom-
position, introduced in the next section (2.2.2). To optimize the path, they
use a path-based cost function to assess the largest cell arising in six differ-
ent trapezoidal decompositions obtained by using a sweep line inclined at
30◦ intervals. Then, the three most favorable directions are selected and the
process is repeated, with additional decompositions at 15◦ either side of the
selected headings. The process continues iteratively until the improvement
per step falls below a threshold, which for their application was achieved af-
ter 5 steps (about 1◦ accuracy), requiring 36 separate decompositions. Then,
the largest cell in the minimum-cost decomposition is removed from the tar-
get area, and the process is repeated for the remainder of the field until all
the area is covered by the path. This scheme produces effectively optimal
coverage paths for a convex field and high-quality paths for a field whose
boundaries consist of long, straight segments as well.

2.2.2 Boustrophedon Decomposition

A drawback of the trapezoidal decomposition is that it generates many cells
that, intuitively, can be merged together to form bigger cells. This is clearly
inconvenient, as the more cells are present, the longer the final coverage
path becomes, as shown in Figure 7. This happens because the trapezoidal
decomposition creates only convex cells. However, some non-convex cells
can also be completely covered by simple motions. To overcome this limita-
tion, Choset & Pignon proposed the boustrophedon cellular decomposition
(Choset and Pignon, 1997; Choset et al., 2000a). The word “boustrophedon”
comes from ancient Greek, and literally means “the way of the ox”, signify-
ing the pattern in which an ox drags a plow back and forth. The boustrophe-
don decomposition is similar to the trapezoidal decomposition introduced
above, but it only considers vertices in the environment where a vertical seg-
ment can be extended both above and below the vertex. The vertices where
this occurs are called critical points.

(a) (b)

Figure 7: A decomposition with less cells allows for shorter coverage paths. Note
how an extra strip is needed in the trapezoidal decomposition in (a) with
respect to the boustrophedon decomposition in (b).



2.3 morse-based cellular decomposition 15

By adhering to this strategy, the boustrophedon decomposition effectively
reduces the number of cells in trapezoidal decomposition. Hence, shorter
coverage paths are obtained. Notice that, as the trapezoidal decomposition,
this method assumes polygonal obstacles and the terrain to be known a priori,
and thus classifies as an off-line method.

2.3 morse-based cellular decomposition

Later, Acar et al. (2002) generalized the boustrophedon decomposition by
proposing a novel cellular decomposition approach based on critical points
of Morse functions (Milnor, 1963). In fact, they show that the boustrophedon
decomposition is a particular case of Morse decomposition. With respect to
the original boustrophedon decomposition, the Morse-based decomposition
has the advantage of handling also non-polygonal obstacles. By choosing
different Morse functions, different cell shapes are obtained, e.g. circular or
spiked cells. Theoretically, Morse decompositions can be applied to any n-
dimensional space. Moreover, they presented a method to perform coverage
of planar spaces by detecting the critical points using sensory range infor-
mation, and a motion-template-based algorithm that ensures to encounter all
the critical points in the target area. Therefore, this method allows complete
coverage on-line (Acar and Choset, 2001, 2002a).

The Morse decomposition is based on a roadmap method for start-to-goal
path planning proposed by Canny (Canny, 1988, 1993). Critical points of a
Morse function restricted to the obstacle boundaries are used to determine
the cell decomposition. Recall that, given a real-valued function h : Rm → R,
its differential at p ∈ Rm is dh(p) = [ ∂h∂x1 (p) . . .

∂h
∂xm

(p)]. A critical point is a
value p ∈ Rm where either the function is not differentiable or all its partial
derivatives are 0, i.e., ∂h∂x1 (p) = . . . =

∂h
∂xm

(p) = 0, and its Hessian ( ∂2h
∂xi∂xj

(p))
is non-singular. For instance, in the case of a single variable function, a crit-
ical point corresponds either to a local maximum, a local minimum or an
inflection. A Morse function is one whose critical points are nondegener-
ate (Milnor, 1963). Practically speaking, this means that critical points are
isolated from one another.

To determine the cell decomposition, a slice is swept through the target
space. Formally, the slice is a codimension one manifold defined in terms of
the preimage of a real-valued Morse function, h : W → R, where W is the
robot’s workspace, i.e., the space to be covered. For instance, in the plane
(W = R2), choosing h(x,y) = x will make the slice be effectively a vertical
line. Changes on the connectivity of the slice occur at critical points of the
Morse function restricted to the obstacle boundaries. To put it more simply,
at a critical point the sweep line encounters an obstacle whose surface nor-
mal is perpendicular to the sweep line, as shown in Figure 8. Morse theory
guarantees that, between critical points, the connectivity of the slice remains
unchanged. Thus, as no obstacles are located between critical points, the
space between them can be covered easily by simple motions, and critical
points can be used to determine the cell boundaries.
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Choosing different Morse functions produces different slice shapes and
hence different cell decomposition patterns. For simplicity, we will describe
the Morse-based boustrophedon decomposition (Choset, 2000), which hap-
pens in the plane. Later, we will give examples of different decomposition
patterns obtained using different Morse functions.

Sweep line 

Sweep direction 

Surface 
normal 

Critical 
point 

Figure 8: Cell boundaries in Morse decomposition are placed at critical points,
where the surface normal of the obstacle is perpendicular to the sweep
slice, and parallel to the sweep direction.

In the boustrophedon decomposition, a vertical slice, defined in terms of
the Morse function h(x,y) = x, is swept from left to right in the workspace,
i.e., along the abscissae axis. Thus, the vertical slice is determined by the pre-
image of this Morse function, Wλ = h−1(λ). The slice is parametrized by
λ ∈ R, which fixes its location in the target space. Increasing the value of the
slice parameter, λ, sweeps the slice from left to right through the workspace.

As the slice sweeps the space, it intersects (or stops intersecting) obstacles,
which divide it into smaller pieces as the slice first encounters an obstacle,
that is, the connectivity of the slice in the free space increases. Also, imme-
diately after the slice leaves an obstacle, smaller slice pieces are merged into
larger pieces (the connectivity of the slice in the free space decreases). The
points where these connectivity changes occur are the critical points. (Recall
that critical points are always located on the obstacle boundaries.) Thus, at
critical points, the slice is used to determine the cells in the decomposition.
Notice that within a cell, the slice connectivity remains constant. Figure 9a
shows how, at the critical point, the connectivity of the slice changes from
one to two, and hence the old cell is closed and two new cells are created.
In Figure 9b, at the critical point, the connectivity of the slice changes from
two to one, and hence two old cells are closed and a new cell is created.

Once the cell decomposition is constructed, an exhaustive walk through its
associated adjacency graph is determined by the planner. Then, it generates
the explicit coverage path in each cell. The coverage pattern within each
cell has three parts: motion along a slice, motion orthogonal to the slice,
and motion along the cell boundary, as shown in Figure 10. First, the robot
laps along the current slice, Wλ. Then the robot steps outward of the slice
by going orthogonally to it by an inter-lap distance, typically by a distance
of one robot sensor range; λ is also increased by this distance to form a
new slice. If the robot encounters an obstacle (i.e., the cell boundary) while
moving along the slice, the planner directs the robot to follow the obstacle
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Figure 9: Cell determination with the Morse-based boustrophedon cell decomposi-
tion method.

boundary until it has moved an inter-lap distance and then a new lap along a
new slice is started. The process repeats until the cell is completely covered.

Motion along 
the slice 

Motion orthogonal 
to the slice 

Motion along 
the boundary 

λ  λ+
δ  

λ+
2δ

 

δ 

Figure 10: Boustrophedon path construction process, where δ is the inter-lap spac-
ing and λ is the slice parameter

Figure 11 shows the Morse-based boustrophedon cell decomposition of
an example workspace with its associated adjacency graph. A key point of
Morse decompositions is that, by choosing different Morse functions to de-
fine the slice that is swept through the space, different decomposition and
coverage path patterns can be generated, such as the spiral pattern (Acar
et al., 2002). Figure 12 shows a spiral pattern obtained using the morse
function h(x,y) =

√
x2 + y2. Allowing different coverage patterns is use-

ful for vehicles with kinematic constraints. For instance, a spiral path can be
easily followed by an underactuated car-like vehicle unable to make sharp
turns (Bosse et al., 2007).

A limitation of the Morse decomposition method is that it cannot han-
dle rectilinear environments. This is because it is not possible to determine
critical points in those environments which correspond to a change in the
topology of the space (the critical points are said to be degenerate in this
case (Milnor, 1963)).
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Figure 11: Morse decomposition of an example workspace with its associated adja-
cency graph.

Figure 12: Spiral Morse decomposition obtained using the Morse function h(x,y) =√
x2 + y2.

2.3.1 On-line Morse-based Boustrophedon Decomposition

To face the sensor-based coverage problem, Acar and Choset (2002a, 2000)
gave a method to detect the critical points of a Morse-based boustrophedon
decomposition on-line using range sensor information. Furthermore, they
presented an algorithm that ensures to encounter all the critical points while
performing coverage. To detect the critical points, they use an omnidirec-
tional range sensor to look for points where the surface normals ∇m(x) of
obstacles and the sweep direction are parallel. Given a robot located at point
x, let c0 be the closest point to x on the surface of obstacle Ci:

c0 = argmin
c∈Ci

||x− c|| , (1)

and let di(x) be the distance between point x and the obstacle Ci. Now,
the gradient of di(x), ∇di(x) can be calculated as

∇di(x) =
x− c0
||x− c0||

. (2)

Recall that, by definition, a gradient is a unit vector normal to a surface at
a given point. In Equation 2, as c0 is a point on the surface of the obstacle Ci,
x− c0 is a vector pointing outward from c0 towards x. Given that c0 is the
closest point to x on the obstacle surface, the vector x− c0 is hence normal
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to the surface of the obstacle. By dividing by its norm, ||x− c0||, the result is
turned into a unit vector.

A detection of a critical point occurs when ∇di(x) is parallel to the sweep
direction. Or, in other words, when the sweep direction and the obstacle
surface normal are parallel. Figure 13 illustrates this situation.

Sweep line 

Sweep direction 

di(x) ∇ c0 

di(x) 
x 

Figure 13: Critical point detection occurs on the side of the range sensing robot,
whose heading is indicated by the rectangular mark on the circle repre-
senting the robot.

Notice the fact that critical points can only be detected when they are
the closest point on the obstacle surface from the robot compared to all
other points on the obstacle surface. This implies that they can only be de-
tected when the robot is performing wall following. Therefore, using a sim-
ple zigzag can result in some critical points being missed, as those shown in
Figure 14.

Missed critical points 

Figure 14: With Morse decomposition, a range sensing robot following a simple
zigzag path will miss the critical points in the figure unless it performs
wall following both on the top and the bottom of a cell.

To address this issue, (Acar et al., 2002) presented an algorithm that uses
repeated rectangular motion cycles with wall following on both ends of a lap,
as shown in Figure 15. The algorithm is termed “cycle algorithm”. Notice
that this cyclic path includes retracing, and hence is longer than the simple
zigzag path.

The cycle path generation process of their proposed algorithm is shown
in Figure 16. Initially (Figure 16a), the robot starts a forward phase at point
Si and moves downward. When it encounters an obstacle, it performs wall
following until it has reached the next strip or until a critical point is detected.
If a critical point is detected, the robot then enters in a reverse phase where it
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Critical points detected 

Figure 15: A path composed of rectangular cycles allows detection of all the critical
points. This pattern is used in on-line Morse decomposition and the CCR

algorithm as well.

moves upward (see Figure 16b). In this phase, if an obstacle is detected, the
robot wall-follows it. If a critical point is detected on the obstacle boundary,
the next strip is moved to where the critical point is. The motion continues
until Si is reached again on the current strip. Then, the robot starts a new
cycle at point Si+1. The algorithm is proven to detect all the critical points.
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New critical 
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Old next 
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(b) Reverse phase

Figure 16: Critical point detection using the cycle algorithm.

In order to store and incrementally construct the Morse decomposition on-
line, it is stored as a Reeb graph (Reeb, 1946). The Reeb graph is dual to the
adjacency graph in that the nodes of the Reeb graph are the critical points
and the edges connect neighboring critical points, i.e., correspond to cells.
An example Morse decomposition with its associated Reeb graph is shown
in Figure 17.

Whenever a critical point is encountered, the robot updates the Reeb graph.
When a cycle path where critical points were found is finished, the robot
looks for uncovered cells at the last encountered critical point. If the critical
point is associated with two uncovered cells, the robot picks one of the cells
associated as the next cell to cover. If there are no uncovered cells associated
with the last encountered critical point, a depth-first search is performed on
the Reeb graph. To travel to the selected uncovered cell, the robot follows
the Reeb graph and plans a path that passes through cells and critical points.
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Cp1 

Cp2 

Cp5 

Cp6 

Cp4 

Cp3 

Figure 17: Morse decomposition of an example workspace with its associated Reeb
graph. Cp1 . . . Cp6 are the critical points.

When no uncovered cells (edges) remain in the Reeb graph, the environment
is completely covered.

The cycle algorithm just described, however, may fail to detect critical
points on certain non-convex obstacles. In particular, concave critical points
such as Cp2 in Figure 18 cannot be detected by range data when the bound-
ary’s curvature is smaller than the robot’s periphery (Garcia and de Santos,
2004). However, the closest convex critical point (Cp3 in the example shown
in Figure 18) to a critical point like Cp2 in Figure 18 will indeed be detected.
This leads to adding a spurious edge to the Reeb graph that does not cor-
respond to any existing cell. As a result, the algorithm will fail to detect
the closing critical point for the newly added edge. Garcia and de Santos
(2004) proposed a solution to this issue which involves associating each crit-
ical point with its obstacle and defining unique entry and exit critical points
for each obstacle. Additionally, their paper discusses several implementation
details of the cycle algorithm.

Cell1 

Cell2 

Cell5 

Cell3 Cell4 

Cp1 

Cp2 

Cp3 

Cp4 

Cp1 

Cp3 
Cp4 

Incorrect edge 

Figure 18: A concave critical point will not be detected if the boundary’s curvature
is smaller than the robot’s periphery and will lead to an incoherent Reeb
graph. This is the case of Cp2 in this example environment, which does
not get detected and produces an incorrect edge emanating from Cp3.

Acar et al. (2003) discussed coverage path planning in relation to a demi-
ning application. In their article, they show that Morse decomposition over-
comes the randomized coverage approach in this task, which used to be
considered the state of the art on demining operations.
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2.3.2 Morse-based Cellular Decomposition Combined with the Generalized Voronoi
Diagram

Acar et al. (2001, 2006) presented a sensor-based coverage approach with
extended range sensors. As they point out, “prior work in coverage tends
to fall into one of two extremes: coverage with an effector the same size
of the robot, and coverage with an effector that has infinite range.” In this
work, they consider coverage in the middle of this spectrum: coverage with
a detector range that goes beyond the robot, and yet is still finite in range.
They term these sensors extended range sensors. In this work, coverage is
achieved in two steps: the first step considers vast, open spaces, where the
robot can use the full range of its detector; the robot covers these spaces as
if it were as big as its detector range (see Figure 19, on the right). Here previ-
ous work in using Morse cell decompositions (Acar et al., 2002) is employed
to cover unknown spaces. As explained above, cells in this decomposition
can be covered via simple back-and-forth motions, and coverage of the vast
space is then reduced to ensuring that the robot visits each cell in the vast
space. The second step considers the narrow or cluttered spaces where obsta-
cles lie within detector range, and thus the detector “fills” the surrounding
area. In this case, the robot can cover the narrow space by simply follow-
ing the Generalized Voronoi Diagram (GVD) of that space, which are sets of
points equidistant to two obstacles (Choset and Burdick, 2000; de Berg et al.,
2008) (see Figure 19, on the left). The GVD can be constructed on-line using
range sensor information and has been previously used for sensor-based ex-
ploration (Choset et al., 2000b) and inspection of 3D structures (Choset and
Kortenkamp, 1999). A hierarchical decomposition that combines the Morse
decompositions and the GVDs is introduced to ensure that the robot indeed
visits all vast, open, as well as narrow, cluttered, spaces. In their article, it is
shown how to construct this decomposition on-line using sensor data accu-
mulated while the robot covers the environment.

Figure 19: Combination of Morse decomposition and GVD for extended range sensor
coverage. In cluttered spaces (left) the robot just follows the GVD of that
space. In vast areas (right), the robot follows the pattern generated using
a Morse decomposition scheme.
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2.4 landmark-based topological coverage

Wong and MacDonald (2003) presented an on-line topological coverage al-
gorithm for mobile robots based on detection of natural landmarks. This
work is intended for simple planar environments. As in Morse decompo-
sition, their method also uses concepts introduced by the boustrophedon
decomposition. However, the topological algorithm proposed here uses dif-
ferent events to determine cell boundaries. Morse decomposition places cell
boundaries on the critical points on the obstacles surface. However, as com-
mented before, rectilinear environments cannot be handled by Morse decom-
position, as the critical points in such environments are degenerate. On the
other hand, as critical points can only be discovered on the side of the robot
while performing wall following, a rectangular coverage pattern which in-
cludes retracing is needed. By contrast, the topological approach presented
here uses simpler landmarks to determine an exact cellular decomposition
termed “slice decomposition”. Due to the use of simpler landmarks, slice
decomposition can handle a larger variety of environments, including those
with polygonal, elliptical and rectilinear obstacles. Moreover, obstacles can
be detected from all sides of the robot, allowing a simpler zigzag pattern
without retracing to be used. As a result, the generated coverage path is
shorter with this method.

2.4.1 Slice Decomposition

The slice decomposition is constructed by sweeping a line through the space.
It uses five different events to determine the cell boundaries:

1. Split event: A free space segment in the previous strip is split into two
by the emergence of an obstacle, as in Figure 20a.

2. Merge: Two free space segments in the previous strip are merged into
one by the disappearance of an obstacle, as in Figure 20b.

3. Lengthen: The current strip is much longer than the previous strip, as
in Figure 20c.

4. Shorten: The current strip is much shorter than the previous strip, as in
Figure 20d.

5. End: The previous free space segment is the final one in the current
cell, as in Figure 20e.

All these events or landmarks can be detected using a combination of
range measurements thresholding and temporal sequence comparisons (com-
paring current sensor reading with previous ones) and odometry (compar-
ing length of consecutive strips). An alternative solution that uses a neural
network to detect the events is also presented in this work (Wong, 2006).

Whenever one of the stated events occur, a cell boundary is placed along
the sweep line where the event takes place. The slice decomposition can be
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(a) Split event (b) Merge event (c) Lengthen event

(d) Shorten event (e) End event

Figure 20: Events (landmarks) in the slice decomposition. In all the events shown ci
is the current cell (shaded) and si is the current strip. The dashed arrow
indicates the sweep direction.

encoded as a topological map. A topological map is represented as a planar
graph, where the nodes represent landmarks (i.e., split, merge, end, lengthen
or shorten events) and edges indicate the types of motion required to travel
between nodes they are incident upon. For example, whether the edge is next
to a wall and which side the wall is on. They also store estimated distances
separating the two nodes they connect.

2.4.2 On-line Topological Coverage Algorithm

An algorithm that constructs the slice decomposition on-line while perform-
ing coverage is presented in Wong et al.’s work. The algorithm guarantees
complete coverage. It iteratively constructs the topological map associated to
the slice decomposition of the environment using a finite state machine with
three states: boundary, normal, and travel. Figure 21 shows its state transi-
tion diagram. The algorithm starts in the boundary state, as it is assumed
that the robot is initially located in a corner of the environment. This assump-
tion is not a shortcoming as it is easy to program a robot to look for a corner
by following simple forward and wall following motions. In the boundary
state, the robot explores the current cell boundary. The aim of the boundary
exploration is to expose all cells neighboring the current border. Whenever
the robot arrives at a landmark or at an end of the cell boundary, the topo-
logical map is updated. When the boundary exploration has finished, the
algorithm switches to the travel state. In the travel state, the robot searches
the topological map for an uncovered cell and it is directed to that cell. Then,
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the robot enters the normal state, where it follows a zigzag pattern to cover
the current cell. Again, whenever a landmark is found the topological map
is updated and the algorithm switches to the boundary state. The algorithm
finishes when there are no more uncovered cells in the topological map.

Boundary Normal 

Travel 

Event occurred 
New landmark reached 

Arrived at 
uncovered 

cell 

Boundary 
fully 

explored 

Start 

All 
covered 

Exit 

Figure 21: State transition diagram of the topological coverage algorithm.

2.5 contact sensor-based coverage of rectilinear environ-
ments

Butler et al. (1999) proposed CCR, an exact cell decomposition algorithm for
contact sensing robots (i.e., robots without range sensing capabilities) cover-
ing unknown rectilinear environments on-line. Their motivating application
for coverage of rectilinear environments is calibration of an automated as-
sembly system in which planar linear motors operate on table-like surfaces
to transfer products through a factory.

In CCR (for contact-based coverage of rectilinear environments), the robot
follows a cyclic path with retracing as shown in Figure 15. At the same time,
it iteratively constructs a cellular decomposition of the environment. An ex-
ample rectilinear decomposition produced by CCR is shown in Figure 22. In
fact, the decomposition constructed by CCR can be seen as the case of Morse
decomposition where all the critical points are degenerate, as this is the case
in rectilinear environments.

Figure 22: CCR uses an exact cell decomposition for rectilinear environments.
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Normally, CCR follows the cyclic path. An event (and hence a cell bound-
ary) occurs whenever the robot is prevented from successfully executing a
full path cycle. When such an event occurs, CCR chooses a new trajectory
based only on the robot’s environment and its current position. The next tra-
jectory is determined by a list of rules that are designed to continue coverage
in all possible cases.

A proof of completeness for CCR is given by creating a finite state machine
that describes all possible events encountered by the robot, and demonstrat-
ing that the finite state machine has no infinite loops and that it stops only
when coverage is complete.

2.6 grid-based methods

Grid-based methods use a representation of the environment decomposed
into a collection of uniform grid cells. This grid representation was first pro-
posed by Moravec and Elfes (1985) to map an indoor environment using a
sonar ring mounted on a mobile robot. In this representation, each grid cell
has an associated value stating whether an obstacle is present or if it is rather
free space. The value can be either binary or a probability (Elfes, 1987). Typi-
cally, each grid cell is a square, but also different grid cell shapes can be used,
such as triangles. As grid representations only approximate the shape of the
target region and its obstacles, Choset classified grid-based methods as ap-
proximate cellular decompositions (Choset, 2001). As a result of this approx-
imate representation, most grid-based methods are “resolution-complete”,
that is, their completeness depends on the resolution of the grid map. Fig-
ure 23 shows an example grid map.

Figure 23: An example grid map. Grid cells with obstacles present are shaded.

It is easy to create a grid map, as it can be represented as an array where
each element contains occupancy information associated with a cell. On the
other hand, it is simple to mark covered areas in a grid map. As a result,
grid-based representations are the most widely used for coverage algorithms.
Nonetheless, grid maps suffer from exponential growth of memory usage
because the resolution remains constant regardless of the complexity of the
environment (Thrun, 1998). Also, they require accurate localization to main-
tain the map’s coherency (Castellanos et al., 1997; Thrun, 2003). For these
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reasons, grid-based coverage methods are suited for indoor mobile robot
operations, as the size of the area to be covered is typically relatively small.

Usually, cells in a grid map are square in shape and robot-sized. Oh et al.
(2004) proposed a coverage algorithm that uses a grid map in which the
cells are triangles instead. The rationale behind the choice of triangular cells
is that they offer a higher resolution in comparison to rectangular cells of
similar size. However, the resolution of the grid can also be augmented by
using finer-grained squared cells. In mobile robotics, field for which the men-
tioned algorithm is intended, most mobile robots are not capable of making
very fine movement adjustments, and hence there is no need for ultra high
resolution in coverage path planning. Therefore, the extra effort devoted to
implementing a triangular grid seems not to be worthwhile.

2.6.1 Grid-based Coverage using the Wavefront Algorithm

Zelinsky et al. (1993) presented the first grid-based method for coverage
path planning. In their off-line method, they use a grid representation and
apply a complete coverage path planning algorithm to the grid. The method
requires a start cell and a goal cell. A distance transform that propagates a
wave front from goal to start is used to assign a specific number to each grid
element. That is, the algorithm first assigns a 0 to the goal and then a 1 to all
its surrounding cells. Then, all the unmarked cells neighboring the marked
with a 1 are labeled with a 2. The process repeats incrementally until the
start cell is reached by the wavefront. Figure 24a illustrates this procedure
on an example environment.

Once the distance transform is calculated, a coverage path can be found by
starting on the start cell and selecting the neighboring cell with the highest
label that is unvisited. If two or more unvisited neighbors share the same
label, one of them is selected randomly. This process to find a coverage path
is equivalent to using pseudo-gradient descent from the start point on the
numeric potential function constituted by the labeling, that is, following the
equipotential curves from top to bottom. Figure 24b shows the generated
coverage path for the example environment on Figure 24a. A unique feature
of this coverage algorithm is that a start and a goal point can be specified.

Shivashankar et al. (2011) introduced a generalization of the wavefront
algorithm to unknown environments to achieve on-line coverage with a mo-
bile robot.

2.6.2 Grid-based Coverage using Spanning Trees

Gabriely and Rimon (2002) proposed the Spiral-Spanning Tree Coverage
(STC) algorithm, an on-line approach for mobile robots which consists in
subdividing the workspace into a grid map and following a systematic spi-
ral path. This systematic spiral path is generated by following a spanning
tree of the partial grid map that the robot incrementally constructs using its
onboard sensors. The robot is able to cover every grid cell precisely once,
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(a) Wavefront distance transform for the selection of
the start position (S) goal position (G).
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(b) Coverage path generated using the wavefront
distance transform.

Figure 24: Coverage path planning using the wavefront algorithm for an example
environment.
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and travel a complete coverage path. They validate the proposal in simula-
tion. The Spiral-STC algorithm works as follows. Two different grid cell sizes
are used. Bigger cells (so called mega cells) are divided in four smaller cells,
which are the same size as the robot. This is shown in Figure 25a. To perform
coverage, the robot executes the following procedure. Starting at the current
cell, the robot chooses a new travel direction by selecting the first new mega
cell in the free space in anti-clockwise direction. Then, a new spanning-tree
edge is grown from the current mega cell to the new one. The algorithm
is called recursively. The recursion stops only when the current cell has no
new neighbors (a mega cell is considered old if at least one of its four smaller
cells is covered, it is considered new otherwise). As a result of this recursion,
the robot moves along one side of the spanning tree until it reaches the end
of the tree. At that point, the robot turns around to traverse the other side
of the tree. It is worth noticing that, when coverage is completed, the robot
returns to the start cell, facilitating its collection and storage. On the other
hand, STC never visits any small cell twice and thus minimizes the cover-
age time. Figure 25b shows an example of a coverage path generated by the
Spiral-STC algorithm.

An extension to the Spiral-STC is the Backtracking Spiral Algorithm (BSA)
by Gonzalez et al. (2005), which is also an on-line approach intended for mo-
bile robots. As an advantage in regard to the Spiral-STC algorithm, they pro-
posed an extension to cover not only unoccupied cells, but also the partially
occupied ones. This extension is based on the idea that the partially-occupied
cells are part of the external ring of the spiral path. These cells are covered
by a wall-following procedure. The proposed extension can be applied to
most grid-based coverage algorithms. Simulation experiments validate the
proposed algorithm.

Choi et al. (2009) proposed an on-line complete coverage path planning
solution based on the ideas introduced by the Spiral-STC algorithm and the
BSA algorithm. They also use systematic spiral paths to achieve coverage,
based on active wall finding. Nonetheless, they introduce a map coordinate
assignment scheme based on the history of sensor readings to improve the
time-to-completion by reducing the number of turns on the generated path.
The generated spiral paths are then linked by an inverse distance transform
they introduce. This proposal is validated in simulation and also with real-
world experiments conducted inside a room with a mobile robot.

2.6.3 Neural Network-based Coverage on Grid Maps

Luo et al. (2002) and, in a latter work, Yang and Luo (2004) propose to use
a neural network to achieve coverage path planning on-line targeted to a
floor cleaning application. They discretize a 2D space in a grid map where
the diagonal length of each grid cell is equal to the robot sweeping radius,
and then a neuron is associated to each and every grid cell. Each neuron
has connections to its immediate 8 neighbors. These concepts are shown in
Figure 26.
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(a) Approximate cell decomposition in
mega cells and robot-sized cells.

(b) Coverage path generated with the
Spiral-STC algorithm.

Figure 25: Coverage path planning using the Spiral-STC algorithm. Image credit:
Wong (2006).
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Figure 26: Schematic of the neural network used by Luo, Yang and others to achieve
coverage.

A shunting equation based on the membrane equation by Hodgkin and
Huxley (1952) determines the dynamics of each neuron in the network. The
activity landscape (i.e., the output value of all neurons at a given instant) of
the shunting model used attracts the robot to unclean areas, while the robot
is repulsed by already cleaned areas and obstacles.

The next position of the robot is determined by the current position of
the robot and the activity of the neuron associated to its current position,
without any prior knowledge about the environment. It is assumed that the
current state of the robot (if it is in a clean or dirty area, or in front of an
obstacle, and its location) can be determined via sensory information. The
state of the robot is an input to the neural network. The model used has
six parameters that can be tuned in a wide range of values at the neural
network design phase, and hence coverage is achieved without any learning
procedures. An advantage of this method is that it can handle non-stationary
environments (i.e., dynamically changing obstacles). The proposed neural
network approach is validated in simulation. In (Luo and Yang, 2008) further
simulation results are presented as well as a method to perform mapping
on-line simultaneously with coverage navigation. In this later work, they
consider a typical grid-based map and also a triangular mesh representation
of the space, such as the one used by Oh et al. (2004).

An application of this neural network-based method to an AUV covering
a 2D workspace in the seabed is proposed in (Yan and Zhu, 2011). The pro-
posal is validated in a simplistic simulation environment. Nonetheless, this
approach suffers from scalability issues since discretization in a grid map of
a vast environment such as the seabed presents a tough challenge in terms
of computational burden.

Qiu et al. (2006) added a local path planning technique on top of the bi-
ologically inspired neural network approach discussed above. In their ap-
proach, the next robot position is not determined immediately but rather a
local path planning occurs in a window comprising a determined vicinity of
the robot. By using this technique, they reduce the computational burden in
comparison with the neural-network-only approach.
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In a similar approach, Guo and Balakrishnan (2006) present a method
based on a neural network to generate continuous steering control for a
robot to completely cover a bounded region over a finite time. First, they
discretize the space in a regularly spaced, disk-shaped grid. Then, a neural
network based on the same biologically inspired shunting equation as in the
works discussed above is used to provide continuous steering to the robot.
The algorithm works for car-like robots which have non-holonomic motion
constraints. The approach is validated in simulation.

2.6.4 Hexagonal Grid Decomposition for Robots Equipped with Side-looking Sen-
sors

Paull et al. (2010, 2012) presented an on-line coverage method for robots
equipped with side-looking sensors. Their target application is MCM opera-
tions using an AUV equipped with a side-scan sonar. This coverage method
continuously directs the vehicle’s heading using multi-objective optimiza-
tion to maximize the information gain produced by the sensor measure-
ments. The optimization procedure uses a grid decomposition composed
of uniform hexagonal cells. The advantage of using a hexagonal grid is two-
fold. On one hand, distance does not need to be taken into account in the
objective functions, because the distance from a given cell to its neighbor-
ing cells is the same. On the other hand, assuming the hexagons are small
enough, visiting one cell guarantees coverage of two neighboring cells by
the side-looking sensor, minimizing the amount of partially covered cells.
Although the proposed method is able to cover target areas with non-convex
shapes, obstacles present amidst the workspace are not considered. The ef-
ficacy of this method is demonstrated in simulation and experimentally on
an AUV conducting MCM operations.

2.7 graph-based coverage

Xu (2011) presented coverage algorithms for environments that can be repre-
sented as a graph, such as a street or road network. In particular, this work
addresses the following issues in the coverage problem. First, it takes into
account that the prior map information provided as a graph might be incom-
plete. Second, it accounts for environmental constraints, such as restrictions
in certain directions in the graph (corresponding to a one-way street, for ex-
ample). Third, it provides strategies for on-line re-planning when changes
in the graph are detected by the robot’s sensors when performing coverage.
Finally, strategies for coverage using multiple robots are provided.

Graph search algorithms are proposed to solve the coverage problems con-
sidered. Optimality is addressed by assigning a cost to each edge in the
graph and either looking for the optimal solution when deliberation time
allows or rather quickly finding an approximated solution when time con-
straints apply.
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2.8 3d coverage

Most coverage path planning methods, and in particular the methods re-
viewed so far in this survey, assume that the environment can be modeled
as a simple planar surface. This assumption is valid for floor cleaning, land
mine detection, lawn mowing, etc. However, some surfaces in nature are 3-
dimensional, and 3-dimensional coverage path planning is required instead
to cover these surfaces. This is the case of an AUV covering the seabed (Hert
et al., 1996) or a robot spray-painting vehicle parts (Atkar et al., 2005b),
for instance. Next, we review several 3-dimensional coverage methods. It is
worth noticing that, except for the algorithm discussed in Section 2.8.1, the
methods discussed below actually focus on coverage of a surface of lower
dimension than the robot’s workspace. Indeed, in 3-dimensional coverage,
covering 2-dimensional surfaces embedded in 3-dimensional space such as
the boundaries of automotive parts, the boundaries of buildings, the ocean
floor, rugged agricultural fields or the boundaries of the in-water part of a
ship hull are the main focus. This contrasts with the standard coverage path
planning problem, in which all the free space must be covered.

2.8.1 3D Coverage using a Planar Coverage Algorithm in Successive Horizontal
Planes

Hert et al. (1996) presented a 3D coverage algorithm that is based on a planar
2-dimensional terrain-covering algorithm (Lumelsky et al., 1990). Their tar-
get application is an AUV imaging the sea bottom. Their solution applies to a
3D projectively planar environment by applying the planar terrain-covering
algorithm in the successive horizontal planes at different depths. The restric-
tion to projectively planar environments means that elements such as caves
are not handled by this method. Their 2D terrain-covering algorithm uses a
partial discretization of the space in where the space is divided in vertical
slices of the same width, but where the top and bottom of each slice can
have any shape. This discretization is classified as a semi-approximate cellu-
lar decomposition according to Choset’s taxonomy (Choset, 2001). A robot
following this algorithm may start at an arbitrary point in the environment
and will zigzag along parallel straight lines (grid lines) to cover the given
area. Portions of the area that either would not be covered or would be cov-
ered twice using the zigzag procedure are detected by the robot and covered
using the same procedure; that is, the procedure is applied recursively. These
smaller areas, called inlets, are covered as soon as they are detected and in-
lets within inlets are treated in the same way. Hence, the inlets are covered in
a depth-first order. By requiring the robot to remember the points at which
it enters and exits every inlet it covers (which define the inlet doorways), the
algorithm assures that each inlet is covered only once.

When entering or exiting a certain type of inlet, the robot may cover the
same area more than once, or miss some area at the inlet. Those inlets
are called diversion inlets, and special procedures are necessary for cover-
ing them effectively. The robot enters a diversion inlet by moving along its
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boundary. After covering a given diversion inlet, the robot exits it by resum-
ing its path as if the diversion inlet did not exist. When the area to be covered
is not simply connected and contains islands as well as inlets, the same basic
procedures are used, but with minor modifications to ensure that the area
surrounding every island is covered. The robot is able to convert the part of
the area around each island that would normally not be covered into an arti-
ficial inlet by remembering certain points along its path. Artificial inlets are
covered in the same way that real diversion inlets are. Figure 27 illustrates
this procedure. It is worth noticing, however, that details on how to detect
the inlets used by the algorithm using sensor information are not provided.

The work of Hert et al. (1996) was extended later by Lee et al. (2009) to
cover only areas that are close to the sea bottom surface. In this latter work,
it is assumed that the regions of interest in underwater environments are the
ones close to the sea bottom. Therefore, aiming to make the robot navigate
only in areas close to the surface, artificial obstacles (artificial islands) are
introduced in the robot’s map of the environment. This way, the volume of
water at a certain distance from the seafloor surface is discarded and a more
efficient exploration of the sea bottom is achieved.

A theoretical proof of correctness of the algorithm is given by Hert et al.
(1996) and the extension proposed by Lee et al. (2009) is validated in simula-
tion.

2.8.2 3D Cellular Decomposition

Atkar et al. (2001) considered the problem of trajectory generation for spray-
painting robots. In their initial work, they proposed an on-line, 3-dimensional
coverage path planning method for closed, orientable surfaces embedded in
R3. The method extended the ideas of Morse decomposition to non-planar
spaces. However, obstacles on the target surface are not considered in this
work. Addressing their spray-painting target application, the method does
not plan a coverage path on the target surface, but the coverage path is rather
planned in an offset surface from which the end effector will spray the tar-
get surface. That is, the path is planned on a “virtual” surface that wraps the
target object at a fixed offset distance. The coverage path is generated by in-
tersecting a slice plane with the offset surface at equally spaced intervals. At
each interval, the intersection of the slice plane with the offset surface forms
a closed one-dimensional loop around the object. The robot traces this loop
and moves to the next slice plane, and iteratively repeats the process. If the
target surface is convex, the described process will achieve complete cover-
age. However, if the surface is non-convex and includes elements such as
bifurcations, the planner will use the critical points occurring in such shape
changes to divide the surface in cells that will be covered individually. As
in the on-line Morse decomposition for planar spaces, a Reeb graph is used
to encode the topology of the target surface. When all edges in the graph
are covered, the coverage task is successfully completed. The method was
validated in simulation using target surfaces constituted by polyhedra. It is
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(a)

(b)

(c)

Figure 27: The path a robot R follows in a non-simply connected environment when
applying the algorithm proposed by Hert et al. (1996). First (a), the robot
detects an inlet at d1 and starts to cover it following a depth-first order.
A second inlet is detected at d2, and the robot starts covering it likewise.
The robot continues to cover the rest of the inlets until it goes back to
d1 (b). Here, the robot continues to cover the main region until it detects
an inlet at d3. This inlet corresponds to an island, and hence the robot
continues to circumnavigate it completely (c). Then, the robot will even-
tually pass through d3 again and there it will resume the covering of the
main area.
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worth noting that this method requires a robot equipped with a 2D omnidi-
rectional range sensor in order to detect the critical points.

In later work (Atkar et al., 2003, 2005a,b), they presented an off-line cov-
erage path planning method specifically targeted for spray-painting of auto-
motive parts. They term such surfaces pseudo-extruded surfaces. By contrast
with their initial work, the problem tackled here is the uniform coverage
problem, where the target surface not only needs to be completely covered
but also the resulting paint deposition must meet certain uniformity require-
ments. To achieve uniform coverage, their proposed method takes a CAD
model of the target automotive parts as input and segments their surface
into topologically simple cells of similar curvature. Then, individual, optimal
paint-deposition coverage paths in each cell are determined. Simulations as
well as experiments with real robots validate their proposal.

2.8.3 3D Urban Structure Coverage

Cheng et al. (2008) presented an off-line approach for planning time-optimal
trajectories for Unmanned Aerial Vehicles (UAVs) performing 3D urban struc-
ture coverage. First, they simplify the structures to be covered, namely build-
ings, into hemispheres and cylinders. Then, trajectories are planned to cover
these simpler surfaces. Their proposal is validated in hardware-in-the-loop
simulations using a fixed-wing aircraft. Figure 28 illustrates this method.

(a) Simplified model of an urban en-
vironment.

(b) Illustration of a coverage path.

Figure 28: Approach for 3D urban structure coverage. Image credit: Cheng et al.
(2008).

2.8.4 3D Coverage for Arable Farming

Jin and Tang (2011) presented coverage algorithms for arable fields repre-
sented as elevation maps. Previous work in coverage for agricultural fields
dealt with planar terrain, but many fields present 3-dimensional features
that have an impact on coverage performance. Addressing this issue, this
work provides coverage algorithms based on a seed curve that is incremen-
tally offset on both sides to generate a coverage path. The method optimizes
the seed curve selection by taking into account its associated number of



2.8 3d coverage 37

turns, the soil erosion cost and the skipped area. The method is validated on
real-world elevation maps of agricultural fields.

2.8.5 Random Sampling-based Coverage of Complex 3D Structures

In confined 3-dimensional areas where a robot cannot go through the spaces
between component structures, or where occluded areas are only visible
from a reduced set of viewpoints, modular approaches such as those de-
scribed above are unsuitable. To handle this family of problems, global path
planning strategies utilizing sampling-based planning (Danner and Kavraki,
2000) have been applied to find feasible, collision-free paths through con-
fined areas and obtain full coverage of a 2-dimensional target structure. Their
approach is based on the art gallery problem. Building upon a similar idea,
Englot and Hover (2012) introduce an off-line, sampling-based coverage algo-
rithm to achieve complete sensor coverage of complex, 3-dimensional struc-
tures. Their target application is autonomous ship hull inspection, in which
the robot must cover the in-water part of the hull surface using a sensor
such as a sonar. The sensory data collected in situ is later used to construct
an accurate 3-dimensional model where anomalies in the hull surface can
be searched for. They consider the planning problem with a fully-actuated,
6-Degree Of Freedom (DOF) hovering AUV that uses a bathymetry sonar to
inspect the structures in the ship hull. The method requires a discrete model
of the structure to be inspected provided in the form of a closed triangular
mesh. The planning is performed in two steps. First, a graph of feasible paths
for the robot is constructed using random sampling until the set of nodes
of the graph allows complete coverage of the structure. This is equivalent to
solving a variant of the art gallery problem. Then, a minimum-cost closed
walk along the graph which fully covers the structure is searched for in the
graph. This second step involves solving a variant of the TSP. By favoring a
random sampling method, they reduce the computational burden necessary
to face the high-dimensionality of the problem. It should be noted that the
generated paths cover cluttered spaces where complex structures such as
shafts and rudders are present. The approach is validated using sensor im-
agery of real vessels and with experiments conducted at sea. Furthermore,
a method for smoothing and shortening the paths initially generated is pro-
vided. This procedure can be incrementally applied while computation time
allows. Figure 29 shows examples of planned inspection paths for a ship hull
with and without smoothing.

As discussed above, the approach by Englot and Hover (2012) first gen-
erates a set of view configurations that completely cover the target surface
(by solving an instance of the art gallery problem) and then finds a path
that connects them (by solving an instance of the TSP). This might pose a
problem for robots with differential constraints, given that a path connect-
ing to a given view configuration might be infeasible. To tackle this problem,
Papadopoulos et al. (2013) presented a random sampling-based algorithm
that incrementally explores the robot’s configuration space while construct-
ing an inspection path until all points on the target surface are guaranteed to
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be covered. In contrast to the aforementioned approaches, which first plan a
set of view configurations that cover the target environment, their algorithm
generates view configurations and at the same time validates the feasibility
of the path connecting them. Only view configurations reached by feasible
paths are incorporated in the final coverage path. Additionally, this method
is probabilistically optimal with respect to a given cost function. The method
is validated in simulation.

Given the wide variety of structures that are able to handle, these ap-
proaches constitute the state of the art in coverage of complex 3-dimensional
structures.

(a) Feasible tour for full coverage of a ship running gear.
The tour is 176 m in length and contains 121 nodes.

(b) Tour of (a) after applying the refinement procedure.
The shortened tour is 102 m in length and contains 97

configurations.

Figure 29: Full-coverage inspection paths obtained with the method of Englot and
Hover (2012). Image credit: Brendan Englot.

2.9 optimal coverage

Work addressing the optimality of the planned coverage paths, in terms such
as path length and time to completion, appears in the coverage path plan-
ning literature. Notice that it is only possible to find an optimal solution for
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an a priori known environment, or partially known at least, since an antag-
onistic example can always be found for a sensor-based approach. Hence
optimal coverage methods are classified as off-line methods.

Huang (2001) presented an optimal line-sweep based method for cellu-
lar decomposition algorithms in planar spaces. This approach produces an
optimal length coverage path by allowing different sweep directions in the
lawnmower paths used to cover each cell. The main idea is to minimize the
number of turns in the path, as each turn typically implies the added cost of
the robot decelerating and accelerating again after the turn. This is achieved
by allowing a different sweep direction in each cell. The number of turns
is minimized by sweeping each cell in parallel to its maximal altitude axis.
That is, the method intends to maximize the length of the laps in the zigzag
pattern in order to minimize the number of turns. However, this approach
does not take into account the cost of traveling from cell to cell. The method
is validated in simulation.

Jimenez et al. (2007) proposed to use a genetic algorithm to achieve opti-
mal coverage. In this proposal, workspace and obstacles are assumed to be
polygonal and known beforehand. Then, the free space is divided in subre-
gions using the trapezoidal cellular decomposition method (Latombe, 1991;
Choset et al., 2005). Finally, a genetic algorithm is used to plan an optimal
path that covers all the subregions. This proposal is tested in simulation.

Mannadiar and Rekleitis (2010) proposed an algorithm based on the bous-
trophedon cellular decomposition that achieves complete coverage of known
spaces while minimizing the path of the robot. The algorithm encodes the
cells to be covered as edges of the Reeb graph. Then, the optimal solution
to the Chinese Postman Problem is used to calculate an Euler tour, which
guarantees complete coverage of the available free space while minimizing
the coverage path length.

Xu et al. (2011) presented an application of the optimal Morse-based bous-
trophedon decomposition method (Mannadiar and Rekleitis, 2010) for UAVs.
First, they generate an optimal exhaustive walk through the adjacency graph
of the cell decomposition of the terrain. Then, they cover each cell with
zigzag motions taking into account the kinematic constraints of the vehicle,
as the fixed-wing UAV they use has non-holonomic constraints. Extensive ex-
perimental results in simulation validate the presented system, along with
data from over 100 kilometers of coverage flights using a real fixed-wing
aircraft.

2.10 coverage under uncertainty

In many scenarios, the lack of a global localization system such as GPS
makes the robot accumulate drift, and hence a growing uncertainty about its
pose. Although the topological representations such as the adjacency graph
are tolerant to localization error, the performance of coverage algorithms,
even if using such representations, is still affected (Mazo and et al., 2004;
Choset, 2001). This is because the amount of coverage within a cell depends
on the direction of the zigzag pattern.
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Recent advances in SLAM have greatly improved robot localization. SLAM

uses statistical techniques to correct the robot’s pose (position and orienta-
tion) estimation. However, the problem of correcting the robot’s pose while
performing coverage has been only addressed in little research.

Acar and Choset (2002b) propose to plan the paths of their sensor-based
Morse decomposition approach by relying on the boundaries of each cell,
hence minimizing the dead-reckoning error.

Tully et al. (2010) used a fleet of three robots, each one of them equipped
with a red ball (easily detectable using standard computer vision techniques)
to follow a strategic path in formation to minimize the localization error. The
mentioned robot fleet is shown in Figure 30. The path consists of a series of
steps, or leaps. In each leap, two robots are static and serve the third one
as beacons, and this later one advances. The robots successively interchange
their roles. Real experiments show a minimization of the localization error,
reporting one of the most successful 2-dimensional coverage experiments to
date. However, obstacles are not considered in this work.

Figure 30: Team of three robots used for experimental evaluation of the leap-frog
localization and coverage strategy. Image credit: Stephen Tully.

Kim (2012) propose an active SLAM approach to coverage path planning
for ship hull inspection in a 3D scenario. The proposed algorithm drives the
robot along a pre-planned coverage trajectory on the ship hull, and during
trajectory execution the robot selects candidate locations that, once revisited,
can help reduce the robot’s pose uncertainty. The algorithm chooses to revisit
a candidate location once the pose uncertainty surpasses a user-provided
threshold, and otherwise follows the pre-planned path.

Bretl and Hutchinson (2013) suggest a way to plan modified coverage
paths for a mobile robot whose position and velocity are subject to bounded
error. Assuming a worst-case model of uncertainty they are able to guaran-
tee complete coverage. This guarantee comes at the cost of a longer path,
since paths generated by their algorithm include retracing. Nonetheless, this
work provides the first guaranteed coverage results for the case of bounded
position and velocity error.

2.11 multi-robot methods

There are advantages in using multiple robots in a coverage path planning
task. Using multiple robots clearly decreases the time to complete the task
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due to workload division. But a team of robots can go further, for example
using each other as beacons to minimize localization error. Additionally, us-
ing multiple robots improves robustness, as failure of some members of the
robot team can be compensated by others. There exist a number of multi-
robot coverage path planning proposals in the literature. Most approaches
extend single-robot ideas presented above to multiple robots by using a strat-
egy to divide the workload. In this section, we discuss multi-robot cover-
age methods based on the single-robot boustrophedon decomposition, on
spanning trees, on the biologically inspired neural-network approach and
on the graph-based approach. Nonetheless, there are genuine multi-robot
approaches which are not based in any particular single-robot algorithm,
which we also discuss below.

2.11.1 Multi-robot Boustrophedon Decomposition

Rekleitis et al. (2009) presented a collection of algorithms for the complete
coverage path planning problem using a team of mobile robots on an un-
known environment (on-line). Their algorithms aim to minimize repeated
coverage. The algorithms use the same planar cellular decomposition as the
Boustrophedon single robot coverage algorithm, but provide extensions to
handle how robots cover a single cell, and how robots are allocated among
cells. Their solution takes into account communication restrictions among
the members of the team. To achieve coverage in line-of-sight-only commu-
nications, the robots take two roles: some members, called explorers, cover
the boundaries of the current target cell, while the other members, called
coverers, perform simple back-and-forth motions to cover the remainder of
the cell, as shown in Figure 31. For task/cell allocation among the robots,
a greedy auction mechanism is used. Experimental results from different
simulated and real environments are provided to illustrate their proposed
approach.

Figure 31: Explorer/coverer approach, where two explorer robots outline the top
and bottom boundaries while the remaining robots (coverers) execute
simple back-and-forth coverage of the target cell.
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2.11.2 Multi-robot Contact Sensor-based Coverage of Rectilinear Environments

A strategy for covering rectilinear environments using robots equipped only
with contact sensors was proposed by Butler et al. (2000). The strategy is
based on CCR, discussed in Section 2.5, and is called DCR. DCR decouples
cooperation and coverage by executing CCR individually on each robot and
adding a higher-level coordinator, termed the “overseer”, which is in charge
of controlling the cooperation among the robots. The overseer operates in
such a way that coverage directed by CCR on each robot can continue with-
out CCR being aware that cooperation is occurring. A proof of completeness
for DCR is provided in this work.

2.11.3 Multi-robot Spanning Tree Coverage

The STC method was generalized to multi-robot teams using a heuristic ap-
proach by Hazon and Kaminka (2005). They termed their algorithm Multi-
robot Spanning Tree Coverage (MSTC). Zheng et al. (2005) presented an im-
proved (with respect to MSTC) method to find a coverage tree for a team
of robots to cover known terrain. In this work they also provide an upper
bound on the performance of a multi-robot coverage algorithm on known
terrain, guaranteeing a performance of at most eight times the optimal cost.
Their reported experimental results show their method to perform signifi-
cantly better than MSTC. Agmon et al. (2006) propose a spanning tree con-
struction algorithm that provides efficient paths in terms of distance. The
spanning tree construction algorithm can be used as base for MSTC. An exten-
sion of MSTC to terrain with non-uniform traversability (that is, terrain where
traversing certain areas is costlier than others) was presented by Zheng and
Koenig (2007). Hazon et al. (2006) presented an on-line, robust version of
MSTC. They show analytically that the algorithm is robust, guaranteeing cov-
erage as log as a single robot is able to move. Empirical results validating
the algorithm are reported.

A more recent off-line spanning tree-based multi-robot coverage method
presented by Fazli et al. (2010) deals with the case where the robots have a
limited visibility range. This approach is shown to be complete and robust
with respect to robot failure.

2.11.4 Multi-robot Neural-network-based Coverage

Luo and Yang (2002) presented a straightforward adaptation of the biolog-
ically inspired neural network approach for coverage tasks to multi-robot
scenarios where the robots see each other as moving obstacles. In a later
work (Luo et al., 2003), an extension was provided to avoid deadlock situa-
tions between the robots. Their approach is validated in simulation.
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2.11.5 Multi-robot Graph-based and Boundary Coverage

Extensions of the graph-based techniques discussed in Section 2.7 for cover-
age using multiple robots were provided by Xu (2011). In a previous multi-
robot graph-based coverage approach, Easton and Burdick (2005) discuss a
2-dimensional boundary coverage algorithm for multiple robots. It is worth
mentioning that, as in the majority of 3-dimensional coverage methods dis-
cussed in Section 2.8, this work focuses on covering only the boundary of
the target environment. In the multi-robot boundary coverage problem, in-
troduced in this work, a team of robots must inspect all points on the bound-
ary of the 2-dimensional target environment. A motivating application of the
multi-robot boundary coverage problem is inspection of separated blade sur-
faces inside a turbine. The boundary coverage problem is converted into an
equivalent graph representation where a heuristic search is used to plan the
inspection routes of every robot. The planned routes provide complete cover-
age of the boundary while balancing inspection load among the robots. The
algorithm is validated in simulations.

2.11.6 Bio-inspired Multi-robot Coverage

Several muli-robot coverage path planning proposals have been presented
which are inspired by behaviors found in nature. Many of them are in-
spired by ant behavior, using evaporating traces to achieve an emergent cov-
erage behavior (Wagner et al., 1999, 2008; Menezes et al., 2007). In (Batalin
and Sukhatme, 2002) two algorithms are presented which are based on the
premise that to achieve coverage the team of robots must “spread out” over
the environment. The authors note that “this premise is loosely inspired by
the diffusive motion of fluid particles”. Using these algorithms robots per-
form obstacle avoidance and at the same time are mutually repelled by each
other within their sensor range. These bio-inspired works are validated in
simulation, but their practical application has been very limited up to date.

2.11.7 Multi-robot Coverage for Aerial Robotics

A considerable body of research has addressed multi-robot coverage path
planning for fleets of aerial robots, taking into account the particulars of this
domain. In these works it is typically assumed that the vehicles fly at a safe
altitude, and hence obstacles are not considered.

Ahmadzadeh et al. (2006) proposed a coverage algorithm for surveillance
using a fleet of UAVs. Their proposal takes into account the limited maneu-
verability of the aerial platforms and visibility constraints on the body-fixed
cameras imposed by the application at hand. The problem is posed using
the integer programming formalism, which provides a convenient represen-
tation for the aforementioned constraints. The solution of the integer pro-
gramming problem instance produces a control policy for the UAV fleet to
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accomplish the surveillance task operating within the constraint limits. The
efficacy of this approach is validated by simulation and experimental results.

Maza and Ollero (2007) proposed a terrain coverage strategy using a het-
erogeneous fleet of UAVs. First, their method generates a polygonal partition
of the target area. The partition takes into account the capabilities of each
individual vehicle, such as flight endurance and range. Each polygon in the
partition is assigned to an UAV which will cover it using a zigzag pattern.
Each vehicle plans its zigzag pattern according to the geometric character-
istics of its assigned polygonal area to determine a sweep direction that
minimizes the number of turns. An important consideration in this work is
low complexity of the algorithms used, seeking operation in near-real time.
The proposed method is validated in simulation.

Targeting remote sensing in agriculture, Barrientos et al. (2011) presented
an approach to area coverage using fleets of mini aerial robots. Regarding
multi-robot coverage, they first present a task scheduler to partition the
global target area into k non-overlapping subtasks for the k UAVs. By con-
trast with the work by Maza and Ollero (2007), this partition procedure is
based on a negotiation process in which each robot claims covering as much
area as possible, rather than on geometric considerations. After a partition
is obtained, the wavefront algorithm discussed in 2.6.1 is used to cover each
subarea.

2.12 discussion

In this survey, we have seen that the coverage path planning problem has
been addressed using many different approaches. For planar spaces, the
trapezoidal decomposition guarantees complete coverage for a known polyg-
onal environment. An improvement to the trapezoidal decomposition is the
“classical” boustrophedon decomposition, which generates shorter complete
coverage paths for the same class of environments. The Morse-based cellular
decomposition provides complete coverage paths for environments whose
obstacle boundaries are differentiable. A method to detect the critical points
that determine the cell boundaries using range sensor information allows to
perform Morse-based cellular decomposition coverage on-line. Furthermore,
Morse decomposition allows generation of different coverage patterns, such
as spiral patterns, that can simplify path following for vehicles with motion
constraints.

However, the Morse-based cellular decomposition method cannot handle
rectilinear environments, and the cyclic rectangular paths used to detect
all the critical points include retracing, which makes them longer than a
standard zigzag path. This limitations are overcome by the landmark-based
topological coverage approach. This method uses a cellular decomposition
based on natural landmarks of the environment which determine the cell
boundaries. An algorithm is given to perform coverage on-line on unknown
environments using this technique.
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For the particular case of robots with only contact sensors (i.e., with no
range sensing capabilities) operating in rectilinear environments, the CCR
algorithm guarantees complete on-line coverage.

Grid-based methods such as the wavefront algorithm, the Spiral-STC al-
gorithm and its derivatives, and the described neural-network-based and
hexagonal decomposition approaches, provide complete coverage on a dis-
cretized representation of the target environment. However, the grid repre-
sentation of the environment used is highly sensitive to localization error
and incurs an exponential memory consumption. On the other hand, it is
easy to create and operate with a grid map. It is worth noticing, as a unique
capability among the reviewed methods, that the discussed neural network-
based methods are able to handle environments with moving obstacles.

The work of Xu (2011) provides coverage algorithms for environments that
can be represented as a graph, such as a street or road network.

Some methods aimed to cover 3-dimensional environments have been re-
viewed. Hert’s algorithm can completely cover projectively planar 3D envi-
ronments. However, details on how to detect the inlets used by the algorithm
using sensor data are not provided, making it difficult to implement. Mod-
ular approaches, such as the coverage methods targeted at spray-painting
tasks proposed by Atkar et al. or the simplified model of a urban envi-
ronment used by Cheng et al. can achieve complete coverage of certain 3-
dimensional environments. The coverage algorithm for arable farming by Jin
et al. provides coverage of 3-dimensional environments taking into account
application-specific constraints. However, in confined 3-dimensional areas
where a robot cannot go through the spaces between component structures,
or with occluded areas only visible from a reduced set of viewpoints, these
modular approaches do not suffice. To overcome this limitation, Englot et al.
introduced a sampling-based coverage algorithm to achieve complete sen-
sor coverage of complex, 3-dimensional structures. The paths generated us-
ing this method are able to cover cluttered spaces where complex structures
such as shafts and rudders are present. The approach is validated using trian-
gular mesh models constructed using sensor imagery of real-world vessels.
Building also upon the idea of sampling-based coverage, Papadopoulos et
al. presented an algorithm that generates coverage paths for complex struc-
tures suitable for vehicles with differential constraints. Furthermore, their
algorithm is proven asymptotically optimal with respect to a given cost func-
tion. These two later approaches constitute the state of the art in coverage
of complex 3-dimensional structures due to the high complexity of the envi-
ronments they can handle.

We have discussed several approaches to generate optimal coverage paths
in planar spaces and to reduce localization error while performing coverage.

Finally, we have reviewed some multi-robot coverage methods in which
time to completion is reduced by dividing the workload among the individ-
ual robot team members, besides providing increased robustness guarantees.

The features of the most relevant coverage path planning methods re-
viewed in this article are summarized in Table 1. For each method (rows),
the table underlines (columns from left to right) its category, its approach,
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its main bibliographical references, whether it can be used on-line or not, the
kind of environments it can handle and some remarks.

Probabilistic sampling-based algorithms have revolutionized the state of
the art in path planning in the recent years, and they have proven to be ex-
tremely powerful as demonstrated in the work by Englot et al. on ship hull
inspection. Therefore, exploiting these techniques opens the door to devel-
oping algorithms able to realize coverage tasks of unprecedented complexity.
On the other hand, in real-world applications, a robot often does not have
perfect knowledge about its location nor its environment. This is especially
patent in the underwater domain, where the lack of ubiquitous absolute po-
sitioning such as GPS and the limited accuracy of typical AUV sensors dra-
matically constrain the precision of the vehicle’s perception. In this situation,
incorporating uncertainty in future location estimates in the planning phase
can significantly improve motion performance. Although several research
works have explored taking uncertainty into account in path planning prob-
lems, little attention has been paid to incorporating uncertainty in coverage
path planning methods. Hence, this remains as an important open subject
for further research.
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survey summary

category approach reference(s) on/off-line environments remarks

Classical Exact
Cell Decomposi-
tion

Trapezoidal
Decomposition

(Choset et al.,
2005)

Off-line Polygonal

Introduces the concept of using
events to determine cell divisions,
a concept a number of other ap-
proaches are based upon.

Boustrophedon
Decomposition

(Choset and
Pignon, 1997)

Off-line Polygonal
Generates less cells and hence
shorter paths than the trapezoidal
decomposition.

Morse-based Cell
Decomposition

Morse Decompo-
sition & Cycle al-
gorithm

(Acar et al., 2002) On-line

Polygonal and
differentiable
boundaries (non-
rectilinear)

Allows for generation of different
decomposition and coverage path
patterns.

Morse Decompo-
sition + GVD

(Acar et al., 2006) On-line

Polygonal and
differentiable
boundaries (non-
rectilinear)

Avoids generation unnecessary
zigzag paths in narrow environ-
ments.

Natural
Landmark-based
Topological
Coverage

Landmark-based
Coverage Algo-
rithm

(Wong and Mac-
Donald, 2003)

On-line
Generic planar
obstacles

Handles a large variety of environ-
ments (including rectilinear envi-
ronments).
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Contact Sensor-
based Coverage

Rectilinear de-
composition
(CCR algorithm)

(Butler et al.,
1999)

On-line Rectilinear
Targeted for robots equipped only
with contact sensors.

Grid-based
Coverage

Wavefront Algo-
rithm

(Zelinsky et al.,
1993)

Off-line Grid-discretized
Simple, easy to implement algo-
rithm.

Spiral-STC Algo-
rithm

(Gabriely and Ri-
mon, 2002)

On-line Grid-discretized
Minimizes repeated coverage by
visiting each grid cell only once.

Neural Network

(Luo et al., 2002;
Yang and Luo,
2004; Luo and
Yang, 2008)

On-line Grid-discretized Handles dynamic obstacles.

Hexagonal Grid
(Paull et al.,

2012)
On-line Grid-discretized

Maximizes information gain along
the path.

Graph Coverage
Various graph
search algo-
rithms

(Xu, 2011) On-line
Environmental
constraints

Applies to environments that can
be represented as a graph, such as
a street or road network.
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3-dimensional
Coverage

2.5D covering al-
gorithm

(Hert et al., 1996) On-line 2.5D
Theoretically proven, but no details
on detection of events provided.

3D cellular de-
composition

(Atkar et al.,
2001)

On-line
Closed, ori-
entable surfaces
embedded in R3

Theoretically proven. Demon-
strated in simulation on simple 3D
surfaces.

Hierarchical seg-
mentation

(Atkar et al.,
2009)

Off-line Car-like parts
Targeted at coverage of automotive
parts, uniform paint deposition.

Planning on sim-
plified 3D sur-
faces

(Cheng et al.,
2008)

On-line
Urban environ-
ments

Suitable for covering urban struc-
tures with sufficient clearance.

Coverage for
Arable Farming

(Jin and Tang,
2011)

Off-line Elevation maps
Minimizes application-specific
costs.

Random
sampling-based

(Englot and
Hover, 2012)

Off-line
Complex 3D
structures

Allows for coverage of complex 3-
dimensional structures such as a
ship propeller.

Random
sampling-based

(Papadopoulos
et al., 2013)

Off-line
Complex 3D
structures

Can handle differential constraints
and probabilistically guarantees
optimality.



5
0

s
t

a
t

e
o

f
t

h
e

a
r

t

Optimal
Coverage

Cell decomposi-
tion with variable
sweep direction

(Huang, 2001) Off-line Polygonal
Takes into account “cell height” to
select the optimal sweep direction.

Trapezoidal de-
composition +
genetic algorithm

(Jimenez et al.,
2007)

Off-line Polygonal
A genetic algorithm quickly finds a
specific coverage paths among the
cells.

Morse decompo-
sition + optimal
adjacency graph
traversal

(Mannadiar and
Rekleitis, 2010)

On-line

Polygonal and
differentiable
boundaries (non-
rectilinear)

Finds an optimal walk through the
adjacency graph.

Coverage
under
Uncertainty

Exploiting criti-
cal points

(Acar and
Choset, 2002b)

On-line

Polygonal and
differentiable
boundaries (non-
rectilinear)

Efficiently increases actual percent
coverage achieved.

Active SLAM (Kim, 2012) On-line Ship hull
Decides when to revisit a salient
feature when executing coverage to
reduce uncertainty.

Leap-frog strat-
egy

(Tully et al.,
2010)

On-line
Obstacles not
considered

Robots in a team use each other as
beacons alternatively.

Modified bous-
trophedon paths

(Bretl and
Hutchinson,
2013)

Off-line Planar
Guarantees complete coverage un-
der bounded position and velocity
error.
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Multi-robot
Coverage

Boustrophedon-
based

(Rekleitis et al.,
2009)

On-line

Polygonal and
differentiable
boundaries (non-
rectilinear)

Extension of Morse decomposition
to multi-robot teams.

Contact sensor-
based

(Butler et al.,
2000)

On-line Rectilinear
Extension of CCR using a decou-
pled high-level coordinator.

Spiral-STC-based
(Zheng et al.,

2005)
Off-line Grid-discretized

Extension of Spiral-STC to multi-
robot teams.

Spiral-STC-based
(Hazon et al.,

2006)
On-line Grid-discretized

On-line extension of Spiral-STC to
multi-robot teams.

Neural-network-
based

(Luo et al., 2003) On-line Grid-discretized
Robots see each other as moving
obstacles.

Boundary cover-
age

(Easton and Bur-
dick, 2005)

Off-line 2D
Focused on coverage of obstacle
boundaries.

Bio-inspired
(Wagner et al.,

2008) and others
On-line 2D

Validated in simulation, but of lim-
ited practical application.

Aerial
(Ahmadzadeh

et al., 2006) and
others

Off-line
Aerial (obstacle-
free)

Account for limited maneuverabil-
ity and for load balancing in het-
erogeneous teams.

Table 1: Survey summary.
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Hey, laser lips,
your mama was a snow blower.

— Number 5

“Short Circuit” (1986)

In this chapter we introduce a new 2D coverage method based on the
Morse boustrophedon cell decomposition of Acar et al. (2002), discussed
in Section 2.3, that provides AUV survey path planning with a principled
way to account for obstacles. The key advantage of our proposed method
is that it minimizes redundant coverage incurred when sweeping the ocean
floor from a constant depth. After introducing the problem in Section 3.1,
the method is detailed in Section 3.2. Section 3.3 presents results obtained
in simulation experiments conducted with a real-world bathymetric dataset
that show a significant increase on path efficiency in comparison with a
standard boustrophedon coverage path.

3.1 introduction

As mentioned earlier, many marine robotics applications require coverage
of a region on the ocean floor. While performing this task, there are situa-
tions in which the vehicle is required to cover the target region navigating
at a constant depth. This is the case of Autonomous Surface Vehicles (ASVs),
that always navigate at the water surface level. Nonetheless, AUVs are also
required to operate at constant depth in certain scenarios, for instance when
GPS fixes via an antenna sticking out from the surface are required or when
communication constraints with a surface vessel or with another AUV apply.
As seen in Chapter 2, most existing coverage algorithms sweep the free space
(the space free of obstacles) in the target region using lawnmower-like back-
and-forth motions. This motion pattern is convenient in most applications
since it is predictable and easy to implement. When using this lawnmower-
type pattern the spacing between the back-and-forth laps is determined by
the robot’s sensor footprint. However, while covering the seafloor surface by
navigating at a constant depth, the sensor’s footprint varies depending on
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the distance to the ocean floor. Therefore, to ensure full coverage one would
need to use the inter-lap spacing determined by the shallowest point (i.e., the
maximum sea floor height) on the target surface, resulting in undesired, inef-
ficient and redundant coverage overlapping among the back-and-forth laps.
This problem is illustrated in Figure 32. Next, we propose a novel method
based on the Morse cell decomposition (Acar et al., 2002) to minimize this
redundant coverage. Note that we propose an off-line method that takes a
bathymetric map as input to plan the coverage path. Only well under 10% of
the ocean has been bathymetrically charted, therefore this method is only ap-
plicable in a limited subset of the oceanic environment. However, the avail-
ability of bathymetric charts is increasing as ocean exploration technology
progresses. Therefore, so does the applicability of our method. Finally, our
method does not take into account potential inaccuracies of the map. Thus
its effectivity depends on the resolution and accuracy of the prior map.

w1 
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path 
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!"
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Figure 32: Coverage overlapping problem. As the torpedo-shaped AUV navigates
from right to left with a sensor FOV angle α, vehicle altitude varies from
a1 to a2. The FOV corresponding to a2, w2, is considerably wider than
the FOV corresponding to a1, w1. As the inter-lap spacing is fixed and
limited by w1, undesired coverage overlapping appears.

3.2 efficient 2d coverage path planning for marine vehicles

The method we propose generates an efficient path to cover a projectively
planar surface of interest on the seafloor, by means of an autonomous ma-
rine vehicle (namely an ASV or AUV) that navigates in a plane at a constant
depth and above such surface. We assume the vehicle is equipped with a
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down-looking sensor with a certain FOV, able to image the seafloor from the
navigating depth. Thus, a coverage path in the plane in which the vehicle
navigates will be determined. Naturally, protruding parts of the underlying
seafloor raising above the navigating plane are considered as obstacles that
must be avoided.

Our method is detailed in Algorithm 1. We use information on an a priori
bathymetric map of the target region to minimize the coverage overlapping.
The coverage path planning process begins by segmenting the target sur-
face in regions of similar depth (line 2). By segmenting the surface we seek
to minimize the difference between the biggest and smallest possible sensor
footprints in a region, and to maximize the inter-lap spacing as a result. Cov-
erage of each segmented region is then addressed as an individual coverage
path planning problem (line 3). The Morse decomposition method described
in Section 2.3 is applied to each segmented region (line 4) and the sweep ori-
entation to cover each cell is selected to be perpendicular to the principal sea
floor gradient (line 6). By sweeping perpendicularly to the underlying sea
floor gradient, the difference between the shallowest and the deepest point
along a lap is minimized, and hence so is the coverage redundancy. In addi-
tion, the inter-lap spacing in the lawnmower-like paths used to cover each
cell is maximized on a lap-by-lap basis (line 7), hence obtaining a shorter,
more efficient coverage path.

Algorithm 1: Efficient 2D Coverage Path Planning for Marine Vehicles
Input: Bathymetric map, B and workspace, WS (obstacle map)
cellPaths← ∅1

regions← SEGMENT(B)2

foreach r ∈ regions do3

cells← MORSE DECOMPOSITION(r,WS)4

foreach c ∈ cells do5

orientation← SWEEP ORIENTATION(c,B)6

path← MAXIMIZED SPACING PATH(c,B,orientation)7

cellPaths← cellPaths∪ path8

finalPath← LINK INDIVIDUAL PATHS(cellPaths,WS)9

return finalPath10

Next, we describe our proposed method by showing the effect of every
step on a real-world bathymetric dataset we introduce in Section 3.2.1. Sec-
tions 3.2.2 and 3.2.3 describe the environment and vehicle models, respec-
tively, used in the coverage path planning process. Section 3.2.4 shows how
the a priori map is segmented in regions of similar depth. Finally, Section 3.2.5
describes how a coverage path is generated for each segmented region by
applying Morse decomposition, selecting an appropriate sweep orientation,
and maximizing the inter-lap spacing on a lap-by-lap basis.
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3.2.1 Real-World Dataset

We use a real-world dataset to demonstrate the successive steps of our cov-
erage path planning method. This dataset is a bathymetric map constructed
with data collected near the Formigues islands by CIRS members of the Uni-
versity of Girona in July 2009 (Hurtos, 2009). The Formigues islands are an
archipelago of sixteen little islets located about 1300 m off the Canet cape
in the Costa Brava in Girona, Catalonia (Spain). A photo of the Formigues
islands is shown in Figure 33.

Figure 33: The Formigues islands. Image credit: Primeralinea SIE, S.L.

A 253 m width, 148 m height rectangular area was mapped, with its lower-
left corner located at 41

◦
51’ 34.35” N, 3

◦
10’ 38.30” E. The map’s abscissae

and ordinates axis are aligned with the Earth’s geographical latitude and
longitude coordinate system. Depth in the mapped area ranges from about
5.5 m down to 16 m. The bathymetric data were obtained by means of a
system composed of a down-looking multi-beam sonar, an Attitude and
Heading Reference System (AHRS) and a GPS receiver. The whole system
was attached to the hull of a vessel that was used to survey the area. For
the purpose of demonstration of our coverage path planning method and to
obtain a complete map, basic image processing techniques were applied to
filter out noise originally present in the data and missing data points were
interpolated. Figure 34 shows the post-processed bathymetric map.

3.2.2 Environment Modeling

We use an environment model in our coverage path planning method com-
posed of the 2.5D surface of interest (namely the seabed) and the planar
surface in which the vehicle navigates (the vehicle’s workspace). We model
the 2.5D surface of interest as a heightmap, H, where the elevation values
are negative downwards, as shown in Figure 34. The planar navigation sur-
face, i.e. the vehicle’s workspace, WS, is modeled as an occupancy grid corre-
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Figure 34: Bathymetric map obtained near the Formigues islands.

sponding to a horizontal slice of the heightmap at the constant vehicle depth,
D, such that for a location (x,y) in the heightmap

WS(x,y) =

{
1 if H(x,y) > D

0 if H(x,y) < D
.

In other words, a point in the workspace is an obstacle (i.e. it is occupied)
if the elevation of the surface of interest is above the vehicle’s constant depth.
Figure 35 shows the workspace obtained by slicing the target surface at D =

−8.5 m.

Figure 35: Planar workspace obtained by slicing the target heightmap at depth D =

−8.5 m.

3.2.3 Vehicle Modeling

We model the vehicle as a fully actuated, point-mass system, i.e. having
no volume nor weight. Nonetheless, the generated path can be followed by
a vehicle with controllability in the surge (motion along the X axis) and
heading (rotation about the Z axis) DOFs only, such as a typical torpedo-
shaped AUV. It is reasonable to model the vehicle as a point-mass, since the
workspace obstacles can be “grown” by an offset distance to accommodate
the actual vehicle’s radius. The vehicle has a down-looking sensor with a
footprint determined by a certain viewing angle, α. It is assumed that, from
any given point in the planar navigation surface, the sensor range can reach
the underlying surface of interest.
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3.2.4 Surface Segmentation

The first step of the algorithm (Algorithm 1, line 2) consists in segmenting
the heightmap in n regions of similar depth. We use the K-means clustering
algorithm (Lloyd, 1982) to obtain an initial segmentation. The number of
regions, n, can be selected by the user on a trial-and-error basis, but it can
be more convenient to automatically optimize said parameter using the Gap
statistic criterion (Tibshirani et al., 2001). Then, we post-process the initial
segmentation using the dilate and erode morphological operations (Serra,
1982) with an appropriate structuring element to smooth the region borders
and to ensure that the regions are simply connected. Figure 36 shows the
segmentation of the bathymetric map shown in Figure 34 with n = 3 regions.

Figure 36: Segmentation of the bathymetric map shown in Figure 34 with n = 3

regions. The workspace obstacles are shown in black.

3.2.5 Coverage Path Generation for Every Region

Once the surface segmentation is obtained, we actually tackle n different
coverage path planning problems, one for each region. As we mentioned,
this contributes to minimize the coverage overlapping along the generated
path. Each individual coverage path in a region is planned by adhering to the
following steps. First, the Morse-based boustrophedon cell decomposition
method discussed in Section 2.3 is applied to each region to obtain its cellular
decomposition. Second, the sweep orientation in each cell is determined by
the gradient of the underlying surface. Third, using the determined sweep
directions, a boustrophedon path is generated to cover each cell where the
inter-lap spacing is maximized on a lap-by-lap basis. Fourth and last, the
individual paths in each region are concatenated to obtain the final coverage
path.

3.2.5.1 Region Cell Decomposition

The cellular decomposition of each region is obtained by applying the Morse-
based boustrophedon cell decomposition method (Algorithm 1, line 4). Fig-
ure 37 shows the cellular decompositions obtained for each region of the
surface segmentation shown in Figure 36. Exhaustive walks through the ad-
jacency graphs associated to the decompositions (also displayed in Figure 37)
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are computed. These exhaustive walks determine the order in which the cells
are covered.

(a) Region 1 decomposition. (b) Region 1 adjacency graph.

(c) Region 2 decomposition. (d) Region 2 adjacency graph.

(e) Region 3 decomposition. (f) Region 3 adjacency graph.

Figure 37: Cell decompositions and associated adjacency graphs of the segmented
regions shown in Figure 36. Each cell is shaded with a distinct color.

3.2.5.2 Sweep Orientation

Once the cell decomposition of the region is obtained, we compute the sweep
orientation of the individual boustrophedon paths used to cover each cell to
be perpendicular to the principal seafloor surface gradient in the cell (Al-
gorithm 1, line 6). The rationale behind this choice is that, as illustrated in
Figure 38, navigating perpendicularly to the surface gradient allows for max-
imizing the inter-lap spacing, as steep bottom surface ascends or descends
under a lap are minimized and hence the difference between the lowest and
highest surface elevation under a lap is smaller.

The principal sea floor gradient P in a cell is computed as the mean surface
gradient under the current cell using the a priori map:

P =

∑
∀(x,y)∈C

∇B(xi,yi)

|C|
, (3)
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(a) Sweeping parallel to the terrain’s principal gradient (longer cov-
erage path, inefficient).

(b) Sweeping perpendicular to the terrain’s principal gradient
(shorter coverage path, desired).

Figure 38: Comparison of coverage parallel and perpendicular to the main gradient
of the sea floor. When the vehicle sweeps the terrain at constant depth
parallel to its principal gradient, the inter-lap spacing is limited by the
FOV in the shallow region (a). By contrast, when sweeping perpendicu-
larly to the principal gradient (b), the inter-lap spacing can be maximized
on a lap-by-lap basis, leading to a more efficient coverage path.
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where B(xi,yi) is the a priori map function that returns the elevation at
point (xi,yi) on the map, C is the set of points on the map belonging to a
given cell and the gradient ∇B is given by definition as

∇B =
∂B

∂x
~i+

∂B

∂y
~j, (4)

where~i,~j are the standard unit vectors in the X and Y axis, respectively.
Intuitively, P provides a measure of the orientation of the main slope in

the terrain. We set the sweep orientation of a given cell to be perpendicular
to P.

3.2.5.3 Variable Inter-Lap Spacing Boustrophedon Paths

Next, we generate the individual boustrophedon paths to cover each cell
where the inter-lap spacing varies according to the minimum distance to the
bottom surface under each lap (Algorithm 1, line 7). That is, the spacing
between the current lap and the next lap is determined by the highest point
on the seafloor surface under the current lap, where the minimum sensor
FOV width occurs. By adhering to this variable inter-lap spacing strategy we
guarantee full coverage of the cell while minimizing the redundant coverage
among the laps, hence obtaining a shorter, more efficient path. Figure 39

shows coverage paths obtained for each cell in the decompositions shown in
Figure 37.

3.2.5.4 Final Coverage Path

The three steps we just described are applied to all the regions in the surface
segmentation. Finally, we concatenate the individual coverage paths com-
puted for each cell in the decompositions (Algorithm 1, line 9). The well-
known “start-to-goal” path planner A* (see Section C.1 in the appendix for
an introduction to A*) is used to compute a collision-free path from the last
point of a cell coverage path to the first point of the next cell’s coverage path.
The same planner is used to connect the coverage paths of each segmented
region. Figure 40 shows the final coverage path obtained after connecting
all the coverage sub-paths in comparison to the standard boustrophedon
coverage path.

3.3 results

To validate our coverage method, we compare our variable inter-lap spacing
approach to the standard Morse-based boustrophedon decomposition for
planar spaces. Seeking a fair comparison, we use the smallest possible sensor
footprint in each cell to determine the inter-lap spacing (that is, the footprint
obtained when the vehicle is located over the highest point on the seafloor
surface).

Our comparison is twofold. On one hand, we quantitatively measure both
paths in terms of length. On the other hand, we provide coverage density
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(a) Region 1 coverage paths.

(b) Region 2 coverage paths.

(c) Region 3 coverage paths.

Figure 39: Coverage paths for each cell of the cellular decompositions shown in
Figure 37.
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(a) Standard boustrophedon coverage path.

(b) Coverage path planned using our method.

Figure 40: Standard boustrophedon coverage path and final coverage path planned
using our method for the workspace shown in Figure 35 overlapped on
the target bathymetric map.
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maps generated by following the paths computed by each method and tak-
ing into account the vehicle’s sensor footprint in every point. In other words,
the coverage density maps show, for a given path on the workspace, how
many times has every point on the workspace been covered.

Table 2 shows the quantitative comparison of both methods. The vehicle
navigates at depth D = −8.5 m and the target seafloor surface is segmented
in n = 3 regions.

method path length

Constant inter-lap spacing 15846.08 m

Variable inter-lap spacing 10349.63 m

Table 2: 2D coverage path length comparison.

These results show that, for the real-world environment considered in this
work, our method performs approximately 34% better than the boustrophe-
don approach for planar spaces in terms of path length.

Figure 41 shows the comparison of the coverage density maps obtained
using the “naive” boustrophedon decomposition method and the novel ap-
proach proposed here. Ideally, each point in the target space should be cov-
ered once and hence be represented in a dark blue color. The coverage den-
sity map corresponding to the “naive” boustrophedon method (Figure 41a)
shows a high amount of overlapping, denoted by yellow and red colors. By
contrast, the coverage overlapping is highly reduced with our method, as
denoted by the blue colors on Figure 41b.
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(a) “Naive” boustrophedon method.

(b) Our method.

Figure 41: Coverage density map comparison.
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Bodies are for hookers and fat people!

— Bender

“Futurama”, “A Head in the Polls” (1999)

AUV navigation techniques such as Terrain-Relative Navigation (TRN) or
SLAM, which seek to match sensor measurements to an a priori map or to pre-
viously visited locations, respectively, are key to enhancing the autonomy of
AUVs. Inherently, when using such techniques the uncertainty of the vehicle
position estimates at every time step is critically affected by the characteris-
tics of the terrain being traversed. For instance, high variability terrain pro-
vides discriminative measurements that lead to estimating the vehicle loca-
tion with high probability, whereas a flat, feature-less terrain typically leads
to a more uncertain, lower probability estimate. However, current survey
path planning techniques for AUVs do not take this into account when plan-
ning the mission, leading to potentially very inaccurate data products (such
as maps or 3D reconstructions). After detailing this problem in Section 4.1,
this chapter presents a novel survey path planning technique for area cov-
erage which minimizes the robot’s position uncertainty along the planned
path in Section 4.2. Reducing this uncertainty leads to a better position esti-
mate, and hence to more accurate data products resulting from AUV surveys.
Note that, rather than avoiding obstacles, which can be achieved with the
method presented in Chapter 3, the focus in this chapter is to reduce the un-
certainty associated to the planned coverage path. The proposed technique
especially targets bathymetric mapping applications and respects applica-
tion constraints such as the desire to survey in parallel tracks. We present
results of our method in Section 4.3 using real-world datasets collected off
the coasts of Catalonia (Spain), Greece and Australia and in real-world sea
trials with the GIRONA 500 AUV in the Catalan coast. We evaluate the ex-
pected robot’s position uncertainty along the planned paths with a particle
filter and assess their associated mapping performance using a bathymet-
ric mapping algorithm. Results show that our method offers benefits over
a standard lawnmower-type path both in terms of position uncertainty and
map quality.
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4.1 introduction

Due to the absence of a ubiquitous global localization system such as GPS
in underwater environments, AUV navigation is confined to these three pri-
mary methods: (1) dead-reckoning, (2) time of flight acoustic navigation, and
(3) geophysical navigation techniques. The most obvious and longest estab-
lished technique is dead-reckoning, which consists in integrating vehicle ve-
locity measurements from a sensor such as a Doppler Velocity Log (DVL) to
obtain new position estimates. The problem with exclusive reliance on dead
reckoning is that position error increases without bound as the distance trav-
eled by the AUV increases. Since acoustic energy propagates well in the ocean,
acoustic transponders can be deployed and used as beacons to guide the mo-
tion of an AUV. Long BaseLine (LBL), in which a vehicle triangulates its posi-
tion from acoustic ranges within a network of transponders, and Ultra-Short
BaseLine (USBL) acoustic navigation, in which a sonar array is employed to
determine the range and bearing to the vehicle, are the primary time of flight
acoustic navigation systems used today. However, these systems typically re-
quire mooring transponders to the ocean floor and the intervention of one
or several surface vehicles, which is costly. For these reasons, advances in
environmentally-based, geophysical navigation techniques such as TRN and
SLAM has rendered this techniques popular and successful in AUV navigation.
Terrain relative, or landmark relative navigation matches realtime sensing to
a terrain or landmark map (topographic, magnetic, gravitational or of other
geodetic data) to determine vehicle position. SLAM exploits sensing capabil-
ities of robots to correct for accumulated odometric error by localizing the
robot with respect to landmarks in the environment. These techniques elimi-
nate the need for additional infrastructure and bound position error growth,
which are prerequisites for truly autonomous navigation. Since these tech-
niques rely on the robot’s perception of the environment, the path followed
by the robot during area coverage critically affects the quality of the position
estimates.

For scientific data collected in the ocean to be useful, the location where
the data were collected needs to be known accurately. A key task in under-
water robotics clearly affected by this requirement is bathymetric mapping.
Recall that bathymetric mapping is the measurement of underwater depth
of lake, river or ocean floors. Bathymetric mapping supports safe naviga-
tion, helps protect and monitor marine areas of biological interest and is key
to geology, archaeology and military applications, to name a few (Escartin
et al., 2008; Bingham et al., 2010; Yoerger et al., 2000; Williams, 2010). Indeed,
incorporating uncertainty when planning a survey path for an AUV map-
ping mission can lead to more accurate maps. This is because bathymetric
mapping algorithms rely on the vehicle pose estimates during a mission to
build the map. Therefore, the more accurate the vehicle pose estimates are
the more accurate the resulting map will be.

While the general problem of path planning under uncertainty has been
addressed in several research works, little attention has been paid to incor-
porating uncertainty when planning paths for area coverage. In fact, a con-
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siderable body of recent research has addressed the general problem of mo-
tion planning under uncertainty. However, these works address the “start-to-
goal” path planning problem rather than area coverage. Some uncertainty-
aware coverage algorithms were already discussed in Section 2.10, but they
are limited to planar environments and do not account for the aforemen-
tioned particulars of underwater environments and bathymetric mapping.

Regarding path planning under uncertainty, many researchers propose ex-
tensions to the sampling-based Rapidly-exploring Random Tree (RRT) and
Probabilistic Roadmap (PRM) path planning algorithms (LaValle and Kuffner,
2000; Kavraki et al., 1996) to handle uncertainty. (See Section C.2 in the
appendix for an introduction to these algorithms.) The RRT extensions by
Melchior and Simmons (2007) and Kewlani et al. (2009) explicitly handle
uncertainty associated with terrain parameters (e.g., friction). By taking this
uncertainty into account these planners try to avoid rough terrain. However,
sensing or state observation uncertainty is not considered in these works.
Huang and Gupta (2008) combined an extension to the RRT algorithm with
a particle-based SLAM algorithm used to expand the tree. This integrated
approach explicitly accounts for sensor, localization and environment un-
certainty in the planning stage. In a later work, Huang and Gupta (2009)
extended the PRM algorithm to compute paths of minimum probability of
collision in the context of a robotic arm with uncertainty in its mobile base
location. Generalizations of the RRT and PRM algorithms were proposed by
Chakravorty and Kumar (2011) to obtain hybrid hierarchical motion plan-
ners that are robust to the motion uncertainty and to the uncertainty in the
environment. However, the generalizations proposed in this work assume
perfect knowledge about the state of the robot.

Other path planners focus on the uncertainty in the map of the environ-
ment to generate paths with minimum probability of collision with obsta-
cles (Missiuro and Roy, 2006; Burns and Brock, 2006; Guibas et al., 2008;
Nakhaei and Lamiraux, 2008).

Active perception algorithms increase robot localization efficacy by specif-
ically considering the expected uncertainty of the localization algorithm
while planning the next control input the robot will receive (Burgard et al.,
1997; Roy et al., 1999; Valencia et al., 2012). Particularly related to the under-
water domain are the next-best-view visual SLAM approach by Kim (2012)
and the active localization technique using multibeam sonar by Fairfield
and Wettergreen (2008). However, these algorithms select a control action
to minimize uncertainty at the next time step, but do not optimize over an
entire path.

Another class of approaches use Markov Decision Processes (MDPs) with
motion uncertainty to define a global control policy over the entire robot’s
workspace, providing a connection between planning and control (Alterovitz
et al., 2007). In order to also include sensing uncertainty, Partially Observable
Markov Decision Processes (POMDPs) can be used (Kurniawati et al., 2008;
Candido and Hutchinson, 2010; van den Berg et al., 2012). Although POMDPs

are theoretically satisfactory, these approaches require the discretization of
the environment, and as a result they suffer from scalability problems.
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Some planners seek to maximize the probability of success or rather to
minimize an expected cost by taking into account the sensing uncertainty
(Pepy and Lambert, 2006; Gonzalez and Stentz, 2009; Prentice and Roy, 2009;
Platt et al., 2010; Carrillo et al., 2012). However, these approaches, either
implicitly or explicitly, assume that maximum likelihood measurements are
received from the sensors. As a result, the probability distributions of the
robot’s state are only approximated. By considering the controller used to
execute the path, van den Berg et al. (2011) could compute the true a priori
probability distributions of the robot’s state along its future path. By using
these probability distributions, their method can select a path among several
candidates such that maximizes the probability of arrival to the goal and at
the same time minimizes the probability of collision.

Most approaches mentioned above assume the belief of the robot to be
Gaussian, parametrized by mean and covariance. This restricts the type and
degree of uncertainty that can be considered. Nonetheless, some recent non-
Gaussian approaches have been proposed (Candido and Hutchinson, 2010;
Platt et al., 2012), and so is the particle-filter-based approach we present in
this work.

In relation to the graph structure we use in our method to represent par-
allel tracks, coverage path planning algorithms for environments that can
be represented as a graph, such as a street or road network, were presented
by Xu (2011), as described in Section 2.7. Nonetheless, uncertainty is not
considered in these algorithms.

In summary, no uncertainty-aware path planning algorithms account for
the application constraints of bathymetric mapping, such as the desire to
survey in parallel tracks and to avoid turns on the target area to maximize
the quality of sonar readings and to find useful loop-closures for a map-
ping algorithm. In fact, off-the-shelf AUV survey design tools typically plan
a lawnmower-type path on the target area completely ignoring uncertainty.
Optionally, one or more crossing tracks are then appended seeking to pro-
vide loop-closures for the mapping process. However, these crossing tracks
are placed arbitrarily, again ignoring uncertainty.

Aiming to bridge this gap, we present an off-line survey path planning
technique which takes into account the robot’s motion and sensing uncer-
tainty and seeks to minimize this uncertainty along the planned path. Multi-
beam sonars provide noisy, highly corrupted range measurements under
pronounced orientation changes. Therefore, our method operates on a par-
allel track basis to confine turns to the boundaries of the target area. We
compute the saliency for every point of an a priori bathymetry of the target
area* using the saliency map (Itti et al., 1998), a tool borrowed from the Com-
puter Vision community. Based on the saliency, we provide an algorithm to
decide the order in which to trace the parallel tracks to minimize uncertainty
while also keeping extra path length into account. Once the order is deter-
mined, the algorithm uses a particle filter with the a priori bathymetry and

* It is common in marine robotics applications to have prior knowledge of the target area in the
form of low resolution bathymetry. The objective of a mapping mission is usually to obtain
a more refined data product.
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simulated multibeam sonar measurements to estimate the robot’s position
uncertainty. Whenever the uncertainty after a parallel track exceeds a user-
provided threshold, a crossing track through a salient area is inserted, seek-
ing to reduce uncertainty and to find useful loop-closures for mapping. This
contrasts with traditional survey path planning methods, which concatenate
arbitrarily placed crossing tracks to a lawnmower-type path.

Most existing uncertainty-aware path planning techniques assume the be-
lief of the robot to be Gaussian. By contrast, our algorithm uses particle fil-
tering methods with an a priori map of the target area and simulated multi-
beam sonar measurements to keep track of the robot’s belief. This allows
the consideration of arbitrary beliefs, given a sufficient number of particles.
This capability is essential when performing bathymetry-based localization,
which often leads to multi-modal posteriors.

We test our algorithm in simulation using real-world datasets collected off
the Formigues islands in Catalonia (Spain); the Santorini island in Greece;
Tasmania in Australia and in real-world sea trials with the GIRONA 500 AUV

off the Costa Brava in Sant Feliu de Guı́xols, Girona, Catalonia. We calculate
the position uncertainty along the planned paths using terrain-aided particle
filter localization and compare them to standard lawnmower-type paths. Ad-
ditionally, we compare the mapping performance of a path planned using
our method to a standard survey path on one of the datasets using a bathy-
metric mapping algorithm. Results show that our method offers benefits in
terms of position uncertainty and map quality over a standard lawnmower-
type path.

4.2 uncertainty-driven survey path planning

As stated earlier, our method deals with the application constraints of sur-
veying the target area in parallel tracks and avoiding turns in the target area
in order to maximize the quality of the sonar readings. We therefore operate
on a parallel track basis by constructing a graph representing the parallel
tracks required to cover the target area, which we call the “coverage graph”.
Then, we plan a survey path in the two following steps:

1. Find the best possible order in which to cover the parallel track edges
of the coverage graph which minimizes the overall uncertainty along
the path;

2. Insert crossing track edges in the path found in the first step if, after
tracing a parallel track, the uncertainty surpasses a given threshold.

Finding the order in which to trace the parallel track edges raises two
important concerns that need to be addressed. First, note that finding the
optimal coverage path implies dealing with n! candidate solutions, for a cov-
erage graph with n edges, which is an intractable problem (Ausiello et al.,
1999). Therefore, finding the optimal solution is computationally infeasible
and some heuristic must be applied in order to find a good approximation
in reasonable time. Second, commonly used heuristics do not apply to this
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problem due to the expansion and contraction of uncertainty (that is, the
uncertainty throughout the path is non-monotonic). We address these con-
cerns by determining the parallel track order based on the saliency of the
terrain, which can be computed quickly. Then, we keep track of the robot’s
belief uncertainty along the determined path using a particle filter. When the
estimated uncertainty surpasses a user-provided threshold, a crossing track
that visits salient locations of the terrain is inserted, seeking to reduce the
uncertainty.

Next, we first describe the construction of the coverage graph in Sec-
tion 4.2.1. Then, we discuss how the saliency map is used to compute the
average saliency associated to each parallel track and to determine salient
locations upon which to trace crossing tracks (Section 4.2.2). The vehicle and
measurement models and the particle filter algorithm used to keep track
of the robot’s position uncertainty are described in Section 4.2.3 and Sec-
tion 4.2.4, respectively. Finally, we describe our proposed survey path plan-
ning algorithm (Section 4.2.5), which builds upon the coverage graph, the
saliency map, the models and the particle filter.

4.2.1 Coverage Graph Construction

We construct a coverage graph consisting of equally spaced, parallel edges
(tracks) with vertices lying on their endpoints. The vertices on each side of
the parallel edges are then linked with the other vertices on the same side
by vertical edges, forming a connected graph. The altitude from the seafloor
together with the sonar swath aperture determine the inter-track spacing.
The coverage graphs on the datasets we later use to test our algorithm can
be seen in Section 4.3 below.

4.2.2 Saliency Calculation

When using the terrain’s elevation profile for localization and/or mapping,
we observe that profile measurements are less uncertain where the terrain is
more salient. Based on this observation, in this work we propose to use the
saliency map (Itti et al., 1998) over the a priori bathymetry as an estimation
of the effect of the terrain on the robot’s belief uncertainty. The saliency map
assigns a saliency score to every pixel in an image (the bathymetry in this
case).

We use the saliency map in two respects. First, for each parallel track,
we compute the average saliency score in the region determined by the
bathymetry sonar footprint and the parallel track itself. Second, we deter-
mine key salient points through which our algorithm will later trace cross-
ing tracks. We select regions surpassing a user-provided saliency threshold
δ on the saliency map and take the weighted centroid of each high-saliency
region as a key point. As far as at least one region is identified, our method
can deal with many high-saliency regions in the map, since always the clos-
est to the current robot position is visited by the algorithm. Figure 42 shows
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the saliency map, its corresponding segmentation (δ = 0.5) and key salient
points for a real-world bathymetric dataset.

(a)

(b)

(c)

Figure 42: Saliency computation for a bathymetric map (a): saliency map (b) and
saliency map segmentation with δ = 0.5 (c). The weighted centroids of
each segmented region are marked with an “x”.

4.2.3 Vehicle and Measurement Models

Given a bathymetric map, B, and a path to be analyzed defined as a sequence
of K 3-dimensional waypoints, Π = [x0,y0, z0]�, [x1,y1, z1]�, ..., [xK,yK, zK]�,
we define a vehicle model and a measurement model as follows.
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4.2.3.1 Vehicle Model

The state vector st of the vehicle model is the 3 DOFs vehicle position at path
step k:

sk = [xk,yk, zk]>. (5)

This state vector is updated according to a constant-velocity vehicle model

sk = f(sk−1,uk) +N(0,σf), (6)

f(sk−1,uk) = sk−1 + uk, (7)

where σf is additive Gaussian noise and uk is the control vector at step k,
in this case determined by the last and current path steps:

uk = Πk −Πk−1. (8)

4.2.3.2 Measurement Model

We model a typical multibeam sonar providing an array of beams spread in a
downward-facing swath perpendicular to the vehicle’s direction of travel. At
path step k, the vector of range measurements corresponding to the beams
is given by rk = [rk,1, . . . , rk,N]

> and the measurement model for each beam
i is given by

rk,i = Bi(x,y) − dk +N(0,σr), ∀1 6 i 6 N, (9)

where Bi(x,y) is the map elevation at the point where the sonar beam i in-
tersects the map surface, N is the number of beams, dk is the vehicle’s depth
and σr is measurement noise which is assumed to be Gaussian. We simulate
the sonar beams by shooting multiple rays against the map and computing
their intersections. In order to speed-up the ray intersection computation, we
use an axis-aligned bounding boxes data structure.

4.2.4 Particle Filter

We use a particle filter based on the the sequential importance resampling
filter (Ristic et al., 2004) to estimate the position and uncertainty of the robot
along a given path Π. The distribution on the state sk is approximated by
the weighted set of M particles s(i)k ,w(i)

k , i ∈ [1,M] as

p(sk|Rk) =

M∑
i=1

w
(i)
k δs(i)k

(sk), (10)
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where Rk = r0:k. The particle weights are recursively updated according to
the equations (Ristic et al., 2004)

ŵ
(i)
k = w

(i)
k−1

p(s
(i)
k |s

(i)
k−1)g(rk|s

(i)
k )

q(s
(i)
k |s

(i)
k−1,Rk)

, (11)

w
(i)
k =

ŵ
(i)
k∑M

i=1 ŵ
(i)
k

(12)

where the prior p(s(i)k |s
(i)
k−1) is given by Equation (6), q(·|·) represents the

proposal distribution and g(·|·) represents the likelihood function. Here, we
use the prior distribution as the proposal distribution which results in sim-
plification of the weight update. The particles are sampled according to

s
(i)
k ∼ N(f(s

(i)
k−1,uk),σ2fI3), i ∈ [1,M]. (13)

The likelihood function is given by

g(rk|s
(i)
k ) = N(rk; r̂(i)k ,σ2rIN) (14)

where r̂(i)k is the vector of expected elevations:

r̂
(i)
k = [r̂

(i)
k,1, . . . , r̂(i)k,N], (15)

r̂k,i = Bi(x
(i)
k ,y(i)k ) − dk. (16)

Resampling with replacement is carried out at each time to limit the degen-
eracy of the particles.

In this work, we are interested only in the uncertainty of the robot’s belief
rather than in the position estimate. We estimate the uncertainty by evaluat-
ing the trace of the sample covariance of the distribution p(sk|Rk) as

tr(Σk) = tr(
1

M− 1

M∑
i=1

(s
(i)
k − s̄k)(s

(i)
k − s̄k)

T ). (17)

4.2.5 Survey Path Planning Algorithm

Our survey path planning algorithm addresses the aforementioned intractabil-
ity and application constraints with a saliency-based heuristic. It first sorts
the n parallel track edges in two groups of n2 or n2 − 1 edges each: one with
the highest saliency edges and one with lowest saliency edges (the edges
being scored as described in Section 4.2.2). Then it alternatively selects one
edge from each group to construct the path. The idea behind this heuristic is
that the uncertainty growth incurred by a low saliency edge will be compen-
sated by the high saliency of the next edge, avoiding high uncertainty peaks.
To take also path length into account, the closest edge on the next group is
selected at every step.

To further bound the uncertainty, the algorithm estimates the robot’s posi-
tion uncertainty by tracing the parallel tracks in the order determined by the
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heuristic using the particle filter. If, after a track, the uncertainty surpasses
a user-provided threshold α, a crossing track through the closest key salient
point is inserted before continuing on the next parallel track.

It is worth noticing that our heuristic, inherently, does not guarantee an
optimal path with respect to uncertainty. However, it tackles the intractabil-
ity of the planning problem by producing a low uncertainty solution, as
demonstrated by our experimental results (see Section 4.3 below). On the
other hand, small values of the uncertainty threshold α can lead to longer
paths due to the addition of multiple crossing tracks seeking to reduce the
uncertainty. Nonetheless, our results show that even reasonably restrictive
values of α do not lengthen the resulting path significantly. The choice of
α strongly depends on the uncertainty tolerance of the target application.
Evaluation of the effect of several values of α on the path produced by the
algorithm can be used to determine a good fit for the application at hand.

The survey planning algorithm is detailed in Algorithm 2. The algorithm
takes as input a coverage graph as a list of edges and an a priori bathymetry
and the uncertainty and saliency thresholds as parameters. The parallel track
edges are classified in two groups according to their average saliency using
the saliency map in line 2 (a low saliency group, EL, and a high saliency
group, EH). Key salient points on the map are identified in line 3. The parti-
cle filter’s particles, P, and weights, W, are initialized according to an initial
distribution (line 4). The coverage path to be constructed, Π̂, is initialized
in line 5. The algorithm runs while there are edges to be processed in any
of the groups. In line 8 the closest edge from each group is alternatively
selected according to the h flag and removed from the group. The selected
edge is appended to the path (line 10) and analyzed using the particle filter
(line 11). If the uncertainty computed by the particle filter, tr(Σk), surpasses
the α threshold, a crossing track through the closest key salient point and
toward the next edge to be covered is concatenated to the path (lines 12-15).
Note that, in line 13, the appropriate edge is accessed, but it is not removed
from the group. This is in contrast with line 8, where an edge is selected and
removed from the group. Lastly, the planned coverage path, Π̂, is given as
output in line 16.

4.3 results

We show the effectiveness of our proposed method in regions of interest
of four different real-world bathymetric datasets collected at sea. For each
dataset, we generate a survey path using our method and compare its per-
formance to a standard lawnmower-type path. We perform the comparison
using both trajectories executed in simulation and in a real-world experi-
ment conducted at sea with the GIRONA 500 AUV (see Chapter A in the
Appendix for an introduction to the GIRONA 500 AUV). To quantitatively
evaluate the effect of the trajectories on the robot’s belief uncertainty, we use
the particle filter algorithm presented above to keep track of the sample co-
variance of the particles as given in Equation 17. Additionally, on one of the
datasets, we compare the effect on mapping performance of the uncertainty-
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Algorithm 2: Uncertainty-driven Survey Path Planning
Input: List of parallel track edges in the coverage graph, E.
A priori bathymetry, B.
Parameters: Uncertainty and saliency thresholds: α, δ.
S← SaliencyMap(B)1

(EL,EH)← ClassifyEdges(E,S)2

Λ← KeySalientPoints(S,δ)3

(P,W)← InitParticleFilter()4

Π̂← ∅5

h← true6

while not EL.empty() and EH.empty() do7

e← PopClosestNextEdge(EL,EH,h)8

h← not h9

Π̂.append(e)10

(P,W,Σk)← ParticleFilter(e,P,W)11

if tr(Σk) > α then12

n← GetClosestNextEdge(EL,EH,h)13

c← BuildCrossingTrack(e,n,Λ)14

Π̂.append(c)15

return Π̂16

driven paths planned using our method to a standard path. Next, we first
describe the four bathymetric datasets we use to validate our method (Sec-
tion 4.3.1). We then perform simulation experiments evaluating uncertainty
and mapping performance with three of the four datasets. Lastly, using the
remaining dataset, we evaluate our method in terms of uncertainty with data
obtained in real-world AUV surveys.

4.3.1 Bathymetric Datasets

The four bathymetric datasets we use to evaluate our proposed planning
method were collected: (1) near the Formigues islands off the Costa Brava,
Girona, Catalonia (Spain), in the Mediterranean Sea; (2) in the Santorini
caldera, Greece, in the Aegean Sea; (3) off the island of Tasmania, Aus-
tralia, in the Pacific Ocean; and (4) at “El Jardı́” and “l’Amarrador” area
nearby the harbor of Sant Feliu de Guı́xols in the Costa Brava, Girona, Cat-
alonia (Spain), in the Mediterranean Sea. These four bathymetric datasets are
shown in Figure 43 with their coverage graphs and their key salient points,
obtained using a saliency threshold δ = 0.5. We found out, empirically, that
this threshold value successfully identifies the salient locations on all the
datasets used in these experiments. The parallel tracks of the coverage graph
keep a constant 6 m altitude from the bottom in all datasets except for “El
Jardı́” and “l’Amarrador” area, where they keep a constant 5 m depth. The
inter-track spacing is determined by the footprint of a down-looking 120◦

swath aperture multibeam sonar modeled after the Imagenex Delta T device
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the real-world GIRONA 500 AUV is equipped with. The Formigues islands
dataset (Figure 43a) has been introduced already in Section 3.2.1. A brief
description of the remaining three datasets is given below. The Formigues,
Santorini and Tasmania datasets are used in the simulation experiments. The
“El Jardı́” and “l’Amarrador” dataset is used in the real-world experiments.

(a) Formigues islands dataset.

(b) Santorini dataset.

Figure 43: Bathymetric datasets used to test our algorithm with their corresponding
coverage graph and key salient points (marked as “x”).

4.3.1.1 The Santorini Caldera Dataset

The Santorini caldera bathymetric map (Figure 43b) was obtained during
the Caldera 2012 sea trials, which took place from July 13th to July 23rd that
year within the caldera of the Santorini island in Greece. These sea trials were
part of a joint project involving an international and multidisciplinary team,
formed by the Institut de Physique du Globe de Paris (France), the Univer-
sity of Girona (Catalonia, Spain), the Woods Hole Oceanographic Institute
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(c) Tasmania dataset.

(d) “El Jardı́” and “l’Amarrador” dataset.

Figure 43: Bathymetric datasets used to test our algorithm with their corresponding
coverage graph and key salient points (marked as “x”).
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(USA) and the University of Athens with infrastructure support from the
Hellenic Centre of Marine Research (Greece). During the Caldera 2012 trials,
the GIRONA 500 AUV was used for characterization of hydrothermal activ-
ity within the caldera via mapping and for collection of other oceanographic
data. In one of the missions, GIRONA 500 AUV gathered this bathymetric
dataset in an area of high volcanic activity in the vicinity of the caldera. The
vehicle mapped the area navigating at a safe altitude of 15 m from the bot-
tom. The mapped area is 427.5 m by 406.5 m, with depths ranging from 284

m to 363 m.

4.3.1.2 The Tasmania Pockmarks Dataset

The Tasmania dataset (Barkby et al., 2012), shown in Figure 43c, was kindly
provided by the School of Aerospace Mechanical and Mechatronic Engineer-
ing of the University of Sydney. The experiment was performed in 2009 with
the Sirius AUV (Williams et al., 2009) off the coasts of Tasmania island, in
Australia. The mapped area features several geological pockmarks, which
are craters in the seabed caused by fluids (gas and liquids) erupting and
streaming through the sediments.

4.3.1.3 “El Jardı́” and “l’Amarrador” Dataset

This dataset maps “El Jardı́” and “l’Amarrador”, two popular diving sites
located approximately 1 Km off the harbor of Sant Feliu de Guı́xols in the
Costa Brava of Girona, Catalonia (Spain). “El Jardı́” (featured in the top-left
of Figure 43d) is a submerged rock formation emanating from the coastal
cliffs and extending throughout an area of 150 m by 100 m, approximately.
“l’Amarrador” (featured in the bottom-right of Figure 43d) consists of an
isolated underwater boulder approximately 12 m high, rising from 40 m
depth up to 28 m. Both sites feature a rich diversity of marine life. Although
we had performed bathymetric surveys in the area using GIRONA 500, we
used a bathymetric map obtained from a surface vessel instead. This way
the data could be georeferenced via GPS, which is important since this is the
dataset we use in our real-world experiments at sea. As in the Formigues
dataset, a vessel equipped with the very same multibeam sonar as GIRONA
500, GPS and AHRS was used to survey the area.

4.3.2 Simulation Experiments

Next, we present simulation experiments conducted using the Formigues,
Santorini and Tasmania datasets. We first present an evaluation in terms of
position uncertainty on all three datasets and then, in addition, an evaluation
of mapping performance using the Formigues dataset.

4.3.2.1 Position Uncertainty Results

We run our algorithm on each dataset, using the coverage graphs depicted
in Figure 43, with an uncertainty threshold α = 20. We compare the paths
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planned using our method with a standard lawnmower-type path, the con-
struction of which was discussed in Section 2.2 and is well-documented in
the literature (Lumelsky et al., 1990; Acar et al., 2002). We append the same
number of equally-spaced crossing tracks to the standard survey path as
crossing tracks are inserted by our algorithm. Figures 44, 45 and 46 show
the standard and uncertainty-driven coverage paths for the Formigues, San-
torini and Tasmania datasets, respectively.

Figure 47 shows the belief uncertainty, tr(Σk), and its mean vs. path length
for a standard lawnmower-type path and a path planned using our proposed
method on each dataset. It can be observed that our method produces a
path with a lower average uncertainty than the standard lawnmower-type
path. We also note that our method tends to avoid the high uncertainty
peaks associated to the standard lawnmower-type paths. Regarding path
length, our crossing track insertion procedure lengthens the path due to the
requirement of visiting a (potentially distant) key salient point. However, the
extra length is compensated by the enhancement in navigation quality.

4.3.2.2 Mapping Results

We next compare the mapping performance associated to a path planned
using our uncertainty-driven method to the mapping performance of a stan-
dard survey path on the Formigues islands dataset.

We do so by executing the paths in simulation using UWSim (Prats et al.,
2012a), an open source tool for visualization and high-fidelity simulation
of underwater robotic missions. UWSim allows us to use models of the
GIRONA 500 AUV, a multi beam sonar and a navigation sensor suite to
collect a complete bathymetric dataset in simulation. Moreover, UWSim is
seamlessly integrated with GIRONA 500’s control architecture (Palomeras
et al., 2012), which means that the very same software that runs onboard
the AUV in real missions is used in our simulations. See Chapter A in the
Appendix for more details about UWSim and GIRONA 500’s control archi-
tecture.

After executing the paths in simulation we apply a mapping algorithm
to the multibeam sonar data collected along the paths. Once the maps are
constructed we assess their quality and compare the results obtained using
each type of path. We use the mapping algorithm by Zandara et al. (2013)
to build the bathymetric map and assess the map error. The application of
this mapping algorithm to the data collected in simulation was carried out
by colleague Albert Palomer at CIRS, coauthor of the aforementioned paper.
The outcomes of the mapping algorithm are presented here for the purpose
of demonstrating the effectiveness of the proposed uncertainty-driven cov-
erage path planning approach. The map error is calculated as the standard
deviation of the map points inside each and every cell of the 3-dimensional
grid forming the map. The maps obtained with our method and with the
standard survey path are shown in Figure 48, whereas Figure 49 shows
their associated map errors. The path planned using our method produces
a higher quality map, with an average map error of 0.0893m in contrast to
the average error of 0.1136m produced by the standard survey path.
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(a) Standard coverage path.

(b) Uncertainty-driven coverage path.

Figure 44: Distance-colored (from black to white) standard coverage path and
uncertainty-driven coverage path planned for the Formigues islands
dataset. A, . . . ,C indicate, sequentially, the locations where the uncer-
tainty surpasses the threshold and a crossing track is added to the path.
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(a) Standard coverage path.

(b) Uncertainty-driven coverage path.

Figure 45: Distance-colored (from black to white) standard coverage path and
uncertainty-driven coverage path planned for the Santorini caldera
dataset. A, . . . , F indicate, sequentially, the locations where the uncer-
tainty surpasses the threshold and a crossing track is added to the path.
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(a) Standard coverage path.

(b) Uncertainty-driven coverage path.

Figure 46: Distance-colored (from black to white) standard coverage path and
uncertainty-driven coverage path planned for the Tasmania pockmarks
dataset. A, . . . ,E indicate, sequentially, the locations where the uncer-
tainty surpasses the threshold and a crossing track is added to the path.
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(a)

(b)

(c)

Figure 47: Belief uncertainty, tr(Σk), and mean vs. path length for a standard
lawnmower-type path and a path planned using our proposed method
on each dataset: (a) Formigues islands dataset, (b) Santorini Caldera
dataset, (c) Tasmania pockmarks dataset.
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(a) Map (standard survey path).

(b) Map (our method).

Figure 48: Mapping results for the Formigues islands dataset: map obtained with
a standard lawnmower-type path (a) and map obtained with the path
planned using our method (b).
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(a) Mapping error (standard survey path).

(b) Mapping error (our method).

Figure 49: Mapping results for the Formigues islands dataset: map error obtained
with a standard lawnmower-type path (a) and map error obtained with
the path planned using our method (b).
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4.3.3 Real-world Validation

We validate our method in the real world with the GIRONA 500 AUV at
“El Jardı́” and “l’Amarrador” area, which is shown in Figure 50. As in the
simulation experiments reported above, we apply our algorithm to the bathy-
metric dataset, using the coverage graph depicted in Figure 43d, with an un-
certainty threshold α = 20. Nonetheless, by contrast, we compare the paths
planned using our method with a standard lawnmower-type path by actu-
ally executing them in situ with the GIRONA 500 AUV and evaluating their
associated uncertainty. Rather than using simulated navigation and multi-
beam measurements (as in the experiments discussed above), here we use
the actual multibeam measurements and trajectory estimation formed on-
board the vehicle during the mission to evaluate the effect of the planned
paths on the robot’s belief. That is, we feed these real-world data (multi-
beam measurements and trajectory estimation) to our particle filter in order
to perform the evaluation.

The sea trials we next report on took place in October 2013. Figure 51

shows GIRONA 500 being deployed at “El Jardı́” and “l’Amarrador” area
during the trials.

Figure 50: Panoramic view of “El Jardı́” and “l’Amarrador” area from GIRONA
500’s support surface vessel.

(a) Deployment from the support vessel. (b) GIRONA 500 initiating a survey.

Figure 51: Deployment of the GIRONA 500 AUV during the uncertainty-driven cov-
erage path planning trials.

A standard coverage path and an uncertainty-driven coverage path were
planned and executed in the target area. The standard and uncertainty-
driven planned paths are shown in Figure 52. To provide the big picture
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of the geographical location where these experiments take place, Figure 53

shows the uncertainty-driven coverage path overlaid on satellite imagery.
Figure 54 shows the actual execution of each planned path by the vehicle,
as estimated by its localization system using its onboard sensors. Note the
small differences from the planned path due to the path following controller
used to maneuver the vehicle. Nonetheless, these differences are not signifi-
cant in relation with the scale of the survey.

The belief uncertainty associated with each path is shown in Figure 55.
Note how, as in the simulation experiments, the average uncertainty of the
path planned with our method is kept below that of the standard path. In ad-
dition, the standard path presents a high uncertainty peak at approximately
900 m caused by the traversal of two roughly feature-less tracks, whereas
the uncertainty-driven path avoids this undesirable effect.
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(a) Standard coverage path.

(b) Uncertainty-driven coverage path.

Figure 52: Distance-colored (from black to white) standard coverage path and
uncertainty-driven coverage path planned for the “El Jardı́” and
“l’Amarrador” dataset. A,B indicate, sequentially, the locations where
the uncertainty surpasses the threshold and a crossing track is added to
the path.
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Figure 53: Uncertainty-driven coverage path for “El Jardı́” and “l’Amarrador”
dataset plotted on satellite imagery from Google Maps.
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(a) Execution of the standard coverage path.

(b) Execution of the uncertainty-driven coverage path.

Figure 54: Path execution of the planned paths by the GIRONA 500 AUV during “El
Jardı́” and “l’Amarrador” experiments as estimated using the vehicle’s
onboard sensors. Both paths include an initial phase in which the vehicle
navigates to the path’s first waypoint from its deployment location.
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Figure 55: Belief uncertainty vs. path length for a standard lawnmower-type path
and a path planned using our proposed method executed by GIRONA
500 at “El Jardı́” and “l’Amarrador” area.





5
3 D C O V E R A G E O F C O M P L E X S T R U C T U R E S I N
U N D E RWAT E R E N V I R O N M E N T S

Beware of bugs in the above code;
I have only proved it correct, not tried it.

— Donald E. Knuth (1979)

Up to this point, this thesis has addressed coverage problems in 2D sce-
narios. However, there are plenty of structures on the ocean floor, natural
and man-made as well, that can not be successfully surveyed in detail with-
out resorting to a 3D workspace. Examples include coral reefs, ship wrecks,
breakwater structures in harbors or the continental slope, to name but a
few. In this chapter, we present 3D* coverage path planning algorithms for
inspection of such structures. After introducing the 3D coverage path plan-
ning problem in the context of underwater robotics in Section 5.1, we present
an off-line coverage path planning algorithm that generates a complete cov-
erage path suitable for covering sea floor areas including 3D structures (Sec-
tion 5.2). The algorithm identifies high-slope regions on an a priori bathymet-
ric map and provides different path patterns suiting both effectively planar
and high-slope regions, completely covering the target area. Most coverage
algorithms rely on the assumption of an idealized path execution. However,
the vehicle suffers from position error and environmental disturbances dur-
ing the path execution, rendering such an assumption unrealistic. This is
especially patent when navigating amidst complex 3D structures, where the
threat of collision increases. Rather than relying on an idealized execution
of the planned path, we present two approaches to deal with discrepancy
between a nominal 3D coverage plan and the actual situation the AUV faces
in situ during the coverage task. The first approach (Section 5.3) is reactive
and uses range sensor measurements to follow cross-section profiles of the
target surface in realtime. The second approach (Section 5.4) uses realtime
replanning to reshape the nominal coverage path according to the actual tar-
get structure perceived on the site via the vehicle’s onboard sensors. Finally,

* Strictly speaking, our algorithms operate mostly in a 2.5D scenario (a bathymetric map),
although after realtime path execution they enable a full 3D perception of the target environ-
ment. Bearing that in mind and that coverage of 2.5D environments requires a 3D workspace,
we use the term “3D coverage” throughout this chapter.

95



96 3d coverage of complex structures in underwater environments

we present an experimental validation of the proposed methods using the
real-world AUV GIRONA 500 in Section 5.5.

5.1 introduction

At present, in most AUV survey missions the vehicle covers an area with
its payload sensors by following a pre-planned lawnmower-like survey path
while keeping a safe altitude from the sea bottom. This is a valid approach
for seafloor areas that are effectively planar at the survey scale. However,
flying at a conservative altitude imposes serious limitations for a number of
emerging applications requiring fine-scale seafloor surveys of rugged terrain
in close proximity that allow acquisition of high-resolution imagery or even
object grasping. Examples include monitoring of cold water coral reefs, oil
and gas pipeline inspection, harbor and dam protection and object search
and recovery. Therefore, techniques that allow the AUV to maneuver in close
proximity to the seabed without compromising vehicle safety are desired.

On the other hand, following the elevation profile of the seabed does not
provide satisfactory results when surveying rugged, high-relief terrain such
as coral reefs or ship wrecks. These sites present very steep slopes that can-
not be imaged with acceptable quality from an overhead point of view. As
illustrated in Figure 56, a survey at a safe altitude from the bottom provides
an askew angle of incidence with respect to the bottom’s surface normal,
which results in poor imaging. It is rather desired that the AUV places its
sensor so that a viewing angle close to the surface normal of the target struc-
ture is achieved.

Therefore, in order to meet these requirements, flying at a conservative
distance from the seabed is no longer an option. The AUV must rather navi-
gate amidst bulges sticking out of the bottom. Obviously, this increases the
threat of collision.

Approaches to plan a coverage path accounting for obstacles have been
proposed in the literature, as discussed in Chapter 2. However, they typically
assume perfect knowledge of the environment or perfect sensing, which
are unrealistic assumptions in the vast majority of scenarios and especially
in underwater environments, even when using techniques such as TRN or
SLAM for enhanced localization. This limits real-world application of those
approaches to very constrained, controlled environments. Hereby, the rest of
this chapter will present algorithms that seek to push the envelope in this
matter.

It is worth noting that the algorithms in this chapter have been designed
with a hovering-capable AUV in mind. With such a capability it is easier to
orientate the vehicle’s static sensors to provide a more rich perception than
with typical torpedo-shaped vehicles. However, when using torpedo-shaped
vehicles to follow our planned paths a pan and tilt unit can be used to enable
a proper orientation of the sensor footprint.
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(a)

(b)

Figure 56: Askew angle of incidence provided by constant, safe altitude survey (a)
in contrast to the fair viewing angle obtained by imaging the surface in
parallel to its normal (b).
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5.2 coverage path planning on bathymetric maps

Our proposed off-line coverage path planning method operates on a bathy-
metric map, B(x,y), provided as input. For every point (x,y) on the mapped
area, B(x,y) returns its depth. The proposed coverage path planning method
is a three-step process, as illustrated in Figure 57. First, the terrain (bathymet-
ric map) is classified into high-slope regions and effectively planar regions.
Next, a coverage path that follows the horizontal cross-sections of the sur-
face is generated in the high-slope (3D) regions using a slicing algorithm
we put forth. Finally, a coverage path is planned for the remaining effec-
tively planar (2D) regions of the target surface. This later coverage path is
generated using the Morse-based boustrophedon cellular decomposition ap-
proach (introduced in Section 2.3), where the high-slope regions are treated
as obstacles.
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Figure 57: Diagram of the proposed coverage path planning algorithm for bathy-
metric maps.

5.2.1 Terrain Classification

We classify the terrain into high-slope and effectively planar regions using a
“slope map”, S(x,y). The slope map is calculated for the mapped area as the
norm of the gradient of B, that is:

S(x,y) = ||∇B|| =
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where�i,�j are the standard unit vectors in the X and Y axis, respectively.
Then, we apply a user-defined slope threshold, δs, to S to obtain an initial

binary classification:

T(x,y) =

{
1 if S(x,y) � δs

0 if S(x,y) < δs
.

The choice of δs strongly depends on the scale of the mapped area. A valid
option is to normalize S into the [0 . . . 1] range and select δs = 0.5.
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In order to filter out small regions and potential artifacts in the initial
classification, we apply the dilate and erode morphological operations (Serra,
1982) to T using an appropriate structuring element.

Let us illustrate this terrain classification process with the simple example
shown in Figure 58. First, according to the target surface (Figure 58a), the
slope map is computed and normalized into the [0 . . . 1] range (Figure 58b).
Then, a slope threshold δs = 0.5 is applied to the slope map to obtain an
initial classification (Figure 58c). Lastly, morphological operations are used
to obtain the final classification (Figure 58d). Note how the morphological
operations eliminate the holes of the high-slope regions in the initial classi-
fication. However, a hole (a planar region “inside” a high-slope region) can
be also covered by the coverage algorithms described below. The subsets of
the original surface corresponding to each class (high-slope and effectively
planar) are shown in (Figures 58e and 58f).

5.2.2 Covering High-Slope Regions using a 2.5D Slicing Algorithm

We propose a slicing algorithm to generate an in-detail coverage spath for
each identified high-slope region. The proposed algorithm draws inspiration
from the algorithm of Atkar et al. (2001). The main idea is to intersect a hor-
izontal slice plane with the target surface at incremental depths, and then
link these intersections. The resulting intersections correspond to contour
lines, or level curves, of the target bathymetric surface, accumulating data
contour-by-contour along the vertical spatial dimension of the workspace.
As a result, the path enables acquisition of a clear and continuous data prod-
uct, simplifying the tasks of post-processing and analysis for both humans
and automated procedures.

Consider a robot equipped with a limited FOV sensor. The sensor FOV is
determined by an aperture angle, α, and a maximum range rmax, as shown
in Figure 59. To image the target surface with the sensor, the robot navigates
at a user-defined fixed offset distance, Ω < rmax, from the target surface.
The sensor footprint on the target surface determines the spacing between
successive slice planes, ∆λ (where λ is the current slice plane depth). Note
that the footprint extent depends on the curvature of the target surface on
the imaged area. We approximate the footprint extent as a circle of radius
r = Ω tan α2 , and therefore ∆λ = 2r.

The slicing algorithm is detailed in Algorithm 3. The algorithm is applied
to each identified high-slope region of the bathymetric map. For each high-
slope region, the algorithm takes as input the corresponding subset of the
bathymetric map Br (for the example described above, the subset depicted
in Figure 58e), the offset distance, Ω, and the slice plane spacing, ∆λ.

An example run of the algorithm on the high-slope regions of Figure 58e
is illustrated in Figure 60. First, the algorithm initializes the horizontal slice
plane depth, λ, as the minimum depth (the shallowest) in Br (line 1). The
set of intersection edges, E, is initialized as empty in line 2. The algorithm
runs at incremental values of λ until λ surpasses the maximum depth in
Br (line 3). That is, from the shallowest down to the deepest point in Br
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(a) Example bathymetric surface. (b) Slope map.

(c) Raw segmentation via thresholding. (d) Segmentation after applying morphological
operations.

(e) Areas classified as high-slope. (f) Areas classified as effectively planar.

Figure 58: Example of terrain classification into high-slope and effectively planar
regions on a synthetic bathymetric surface. The white regions in (c) and
(d), delimited by their bounding boxes (in green), correspond to high-
slope areas; the black regions correspond to effectively planar areas.
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Figure 59: Sensor FOV of a robot located at an offset distance Ω from the target sur-
face. The sensor footprint determines the distance between slice planes,
∆λ.

(see Figures 60a-60b). At each depth level, a horizontal plane is intersected
with the bathymetric surface (line 4). The function Intersect() returns the
set of edges composing the intersection, as illustrated in Figure 60c. The
intersection edges of the current slice plane are added to E. Recall that these
edges correspond to the level curves of Br at the current depth λ, and that
these edges are not necessarily closed. In fact, these intersections can be
determined using an off-the-shelf contour drawing algorithm, such as that
implemented by MATLAB’s CONTOURC function.

Notice that, when the while loop exits, the intersection edges lie exactly on
the bathymetric surface. To obtain a coverage path at the desired offset dis-
tance, the edges are then projected onto the offset surface by OffsetEdges(),
which projects all points in the edges outward from the target surface by an
offset distanceΩ, as shown in Figure 60d. To do so, each point in the original
edge is offset along the projection of the bathymetric surface normal vector
on the corresponding horizontal plane.

Lastly, the final coverage path is generated by linking all edges in the set
(function LinkEdges(), line 6). The function LinkEdges() links all edges in E
in a greedy manner. Starting at the first edge in the set, belonging to the first
depth level, it will link it to the closest edge in the set, and do so repeatedly
for all remaining edges until all of them have been linked. To link a given
pair of edges, LinkEdges() simply traces a straight line path from the first
edge to the second. If the straight line intersects the bathymetric surface, it
traces the projection of the line on the bathymetric surface. The result of this
linkage procedure is shown in Figure 60e.

5.2.3 Covering the Effectively Planar Regions using the Boustrophedon Decompo-
sition Algorithm

Since high-slope regions will be covered by the slicing algorithm, we gen-
erate a coverage path for the remaining effectively planar regions treating
the (already addressed) high-slope regions as obstacles. To do so, we use the
Morse-based boustrophedon decomposition coverage algorithm (Section 2.3).
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(a) Slice planes (slanted view). (b) Slice planes (side view).

(c) Intersection edges on the bathymetric sur-
face.

(d) Offset intersection edges.

(e) Final coverage path.

Figure 60: Application of the slicing algorithm on an example bathymetric surface.
The target high-slope regions are intersected with the slice planes (a)-(b),
producing a set of intersection edges (c). The intersection edges are then
offset by the desired offset distance Ω (d). Lastly, the final coverage path
is obtained by linking the offset edges (e).



5.3 3d coverage with sensor-based profile following 103

Algorithm 3: Slicing Algorithm
Input: High-slope region of a bathymetric map, Br(x,y)
Parameters: Offset distance, Ω. Slice plane spacing, ∆λ.
λ← minBr(x,y) +∆λ1

E← ∅2

while λ < maxBr(x,y) do3

E← E∪ Intersect(λ,Br)4

λ← λ+∆λ5

E← OffsetEdges(E,Ω)6

p← LinkEdges(E)7

return p8

We apply the boustrophedon decomposition to the 2D workspace com-
posed by the terrain classification procedure, where high-slope regions repre-
sent obstacles. Following on the example introduced above, Figure 61 shows
the execution of the algorithm. The workspace (Figure 61a) is decomposed
into cells (Figure 61b), which are encoded as an adjacency graph (Figure 61c).
Then, an exhaustive walk through the graph is determined to obtain the or-
der in which to cover the cells, and finally individual coverage paths are
generated within each cell (Figure 61d) and linked according to the exhaus-
tive walk. Notice how the boustrophedon path maintains a constant offset
distance from the bottom.

5.2.4 Final Coverage Path

The union of both coverage paths (the coverage path for high-slope areas
and the coverage path for effectively planar areas) provides full coverage of
the target bathymetric surface, using different coverage patterns according
to the terrain’s slope and providing the AUV with suitable viewpoints for
imaging tasks. Figure 62 shows the coverage paths for both high-slope and
effectively planar areas generated on the example target surface introduced
above.

5.3 3d coverage with sensor-based profile following

As stated earlier, assuming an idealized execution of the planned path for
3D coverage is not a feasible option. Due to error in the a priori map used to
plan the path, position error accumulated during the path execution and en-
vironmental disturbances, the vehicle is exposed to a threat of collision with
the target structure. Next, we propose a method to address this problem
based on profile estimation and following using range sonar information in
realtime. The key idea of the method is, as in Algorithm 3, to follow the
cross-section profiles of the target structure, such as those resulting from
the intersections of the slicing plane with the structure in Figure 60. How-
ever, rather than following a coverage path planned off-line consisting of
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(a) Workspace (terrain classi-
fication).

(b) Cell decomposition.

(c) Adjacency graph. (d) Coverage paths within
each cell.

(e) Final coverage path for the effectively planar regions.

Figure 61: Application of the Morse-based boustrophedon decomposition algorithm
for coverage of effectively planar areas on an example bathymetry.
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(a) Top view.

(b) Slanted view.

Figure 62: Coverage path for both high-slope and effectively planar areas.
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a list of waypoints and relying on the vehicle’s navigation accuracy to do
so, we propose to follow each actual contour perceived in situ using range
measurements from a profiling sonar. That way the AUV does not need to
rely on near-perfect localization and control, being able to survey the target
structure using its range sonar measurements.

The bottom following problem, that is, following the vertical profile of
the sea bottom, described as “maintaining a fixed altitude above an arbi-
trary surface whose characteristics may or may not be known” (Bennet et al.,
1995), has been addressed in prior work using different sensors, such as
high-frequency pencil beam profiling sonars (Caccia et al., 1999) or a pair of
altimeters to estimate the profile (Caccia et al., 2003). In regard to AUV con-
trol, a variety of different schemes have been proposed for bottom following.
Creuze et al. (2001) proposed a seabed-following trajectory generation algo-
rithm for torpedo-shaped vehicles. Their algorithm computes trajectories us-
ing simple geometric functions and interpolation curves called “semi-forced
cubic splines.” Melo and Matos (2012) presented a basic guidance approach
to provide depth and pitch references to, as in the aforementioned work, a
torpedo-shaped vehicle. Other works propose more complex control tech-
niques such as nonlinear output regulation (Adhami-Mihosseini et al., 2011).
Recently, Houts et al. (2012) presented a technique for aggressive seabed ter-
rain following. Estimates from a terrain-based navigation system are used
to anticipate the terrain. As in this work, their method pursues closer prox-
imity seabed following. However, their technique is concerned only with
the seabed’s vertical profile. Karras et al. (2013) proposed a robust control
scheme for wall profile (horizontal) following using sonar measurements.

Nonetheless, little attention has been paid to following horizontal profiles,
as required by our coverage method. Moreover, the existing approaches for
bottom following are basically targeted at traditional torpedo-shaped AUVs,
and do not take into account the hovering capabilities of recent AUV de-
velopments. This limits the profile following fidelity provided by these ap-
proaches.

By exploiting hovering capabilities of recent AUV developments, our pro-
posed method is able to survey the target structure in close proximity while
avoiding collision. Moreover, besides horizontal profile following, it can be
used for vertical sea floor profile following as well. The proposed method
builds and maintains a local map of the immediate AUV surroundings using
sonar range information. The map allows to filter out noisy sonar range mea-
surements and provides a convenient representation to estimate the profile
using previously sensed ranges as new data becomes available. An estimate
of the local profile to follow is obtained by means of simple linear regression.
Then we use horizontal and vertical profile following controllers which re-
act to the profile estimates and provide the appropriate commands to the
vehicle’s thrusters. We next describe the profile estimation (Section 5.3.1)
and profile following (Section 5.3.2) schemes. Then, we detail how these
profile estimation and following techiques are integrated with the slicing al-
gorithm introduced above and with the control architecture of GIRONA 500

to achieve 3D coverage on-line (Sections 5.3.3 and 5.3.4).
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5.3.1 Profile Estimation

Our profile estimation method is targeted at AUVs equipped with a pencil-
beam sonar or a sonar array providing range information in a circular sector
of 180◦. Although we focus on AUVs equipped with sonar in this article, the
same strategy we propose can be used with other range-and-bearing sensors,
such as stereo cameras. We use a two-module profile estimation process.
First, a mapping module uses the sonar range information to construct and
maintain a local map of the profile to follow. Second, a profile estimation
module performs linear regression on certain regions of the local map to
obtain an estimate of the profile around the vehicle.

5.3.1.1 Local Mapping

We use the sonar range information to construct and maintain a local, prob-
abilistic occupancy-grid map of the structure profile to follow. The prob-
abilistic map serves two main purposes. First, it allows to deal with noisy
measurements by assigning a higher likelihood to cells that have been consis-
tently reobserved as either occupied or free and hence filtering out outliers.
Second, it provides a convenient representation upon which to perform pro-
file estimation at a higher rate than the sensed ranges arrival rate (the later
being typically slow in the case of mechanically scanning devices).

In fact, depending on configuration settings, mechanically scanning pencil-
beam sonars take up to several seconds to provide a scan. It is the case of the
pencil-beam sonar we use in our experiments (see Section 5.5 below), which
takes up to 4 seconds to provide a 180◦ scan. Waiting for a whole sector scan
to become available delays the subsequent profile estimation process on the
recently collected sonar beams. We tackle this problem by feeding subse-
quent small sub-sector scans (of about 10◦, depending on configuration) to
the mapping framework. By doing so we obtain more frequent map updates,
enabling the profile estimation module to promptly incorporate recent sonar
readings. To correct the distortion induced by the vehicle motion, we use the
vehicle position estimates obtained during the scan time. (The reader can
refer to Appendix B for more details on the sonar technology used in this
work.)

It is worth noting that, even if using a fast sensor (such as a multibeam
sonar or a stereo camera) to perceive the profile, the probabilistic map repre-
sentation is still beneficial in dealing with noisy measurements and obtain-
ing a reliable perception as the environment is reobserved.

We use the Octomap Hornung et al. (2013) probabilistic mapping frame-
work to construct and maintain our 3D map, which uses an octree map
compression method to keep the 3D model compact and quickly accessible.
Figure 63 shows a snapshot of a local map constructed in our laboratory’s
pool.
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Figure 63: Local mapping module running on our laboratory’s pool. The lightest
(green) points show the latest incorporated sonar sub-scan and the red
points show the occupied cells (with probability > 0.5) in the map. A
real-sized model of the GIRONA 500 AUV and the world and vehicle
coordinate frames are also shown.

5.3.1.2 Profile Estimation on Regions of Interest

The profile estimation module operates on different regions of interest on
the map, providing a local profile estimation for each region. Then, these
estimates are appropriately used by the profile following modules. The hor-
izontal profile estimation module operates on two regions, one in the front
of the vehicle and one on the right of the vehicle, as depicted in Figure 64.

Figure 64: Regions of interest for horizontal profile estimation.

The vertical profile estimation module operates on the three regions shown
in Figure 65: one below the vehicle, termed “bottom region”; one in front of
the vehicle, termed “cliff region”; and one above the vehicle, termed “ceiling
region”.

The size (width and height) of these regions is determined by the size of
the vehicle and by the desired offset distance at which the profile needs to be
followed. The 3D coordinates of the occupied cells (with probability > 0.5)
of the map are projected on a 2D horizontal or vertical plane depending on
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Figure 65: Regions of interest for vertical profile estimation.

the current profile following mode. Then the profile is estimated on the 2D
projection.

We estimate the local profile on each projected map region of interest by
fitting a line to the points in the region. A line y = ax+ b is fitted to the N
points (xi,yi) in the region via least squares, with slope a and intercept b
given as follows:

a =

∑
yi − b

∑
xi

N
,

b =
N
∑

(xiyi) − (
∑
xi)(
∑
yi)

N
∑
x2i − (

∑
x)2

.

More complex interpolation methods, such as splines Bartels et al. (1987),
could be used for profile estimation. These techniques could be beneficial
when the AUV is following a profile from far enough so it perceives a large
piece (in the order of several meters) of the profile after one sensor scan.
However, our target application (inspection of underwater structures) re-
quires following the profile in close proximity, and therefore only a small
piece of the profile is visible to the vehicle at any given time. In this situa-
tion the profile can be effectively approximated as a straight line. Moreover,
line fitting can be computed quickly and provides a compact two-parameter
representation.

Additionally, we compute the average distance from the points to the ve-
hicle’s reference frame, d̂. Figure 66 shows the profile estimation procedure
operating on a 3D structure in a simulated environment.

5.3.2 Profile Following

We have designed and implemented two profile following modules, one for
horizontal profile following and one for vertical profile following. It is as-
sumed that the vehicle is hovering-capable and can be controlled in the
surge (X), sway (Y), heave (Z) and heading (yaw) DOFs. The modules use
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(a) Simulated environment. (b) X-Y plot showing the plane-projected
map points and the estimated line corre-
sponding to the scene shown in (a).

Figure 66: Profile estimation.

the output from profile estimation and are designed as a set of coordinated
behaviors which use proportional-integral (PI) controllers to generate speed
commands in the appropriate DOFs. The speed commands generated by the
behaviors are not sent directly to the vehicle’s thrusters, but rather sent to
a low-level velocity controller which merges and coordinates all the com-
mands sent from all the modules of the robot’s control architecture.

5.3.2.1 Horizontal Profile Following

The horizontal profile following module consists of a single behavior oper-
ating on the surge (X), sway (Y) and heading (yaw) DOFs. It assumes that an
external module controls the vehicle to keep a certain constant depth.

The module seeks to advance the vehicle along the frontal region profile
while keeping a certain desired distance, δh, from the frontal profile and
facing perpendicularly to the profile (that is, keeping the profile slope, a,
close to 0). The vehicle is advanced along the profile counter-clockwise (from
an overhead viewpoint).

As shown in Figure 67, a PI controller operating on the X DOF is fed the
frontal distance error, ehf = δh − d̂, which it seeks to keep to 0. A second
PI controller on the heave DOF is fed the slope, a. When both ehf and a

are below user-provided tolerances, the vehicle advances in the Y DOF at
constant speed, Vy. Together with Vy, the desired speeds in the X and yaw
DOFs (Vx and Vyaw, respectively) are sent as setpoints to the vehicle’s low-
level velocity controller.

The module keeps track of the average distance to the profile in the right
region. If a profile is detected on the right region and the distance to that
profile is less than δh, it turns the robot 90◦ clockwise. This effectively moves
the front region to where the right region was located, allowing the robot to
successfully react to highly non-convex profiles. Indeed, using this strategy
avoids performing profile estimation in regions where a linear fit is difficult
to be reliably maintained (such a sharp “V” in the profile). After the 90◦ turn,
the profile following continues. This procedure is illustrated in Figure 68.
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Figure 67: Horizontal profile following block diagram.

(a)

(b)

Figure 68: 90◦ turn maneuver on detection of a profile in the right region during
horizontal profile following.
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Very acute corners on the profile are seen by the profile estimation mod-
ule as discontinuities. In practice, that means that the profile vanishes in
presence of such corners, from the point of view of the robot’s perception.
In case that, during profile following, the profile estimation module fails to
detect the profile, the module steers the vehicle to trace a circular trajectory
with radius equal to δh (the vehicle’s surge axis facing always its center).
The robot traces the trajectory for a minimum sector angle (provided as a
parameter), ignoring any potential profile estimation information. Then, it
continues tracing the circular trajectory until the profile is detected. This al-
lows the robot to continue profile following on the presence of very acute
angles. This profile recovery maneuver is illustrated in Figure 69.

Figure 69: Horizontal profile recovery maneuver.

5.3.2.2 Vertical Profile Following

The vertical profile following module is implemented as a set of three coor-
dinated behaviors: bottom following, cliff following and ceiling following. It
is assumed that the robot is kept heading at a constant angle by an external
module during vertical profile following.

Figure 70 shows a diagram of the vertical profile following module. A
multiplexor selects which of the three behaviors takes over according to the
profile estimation, that is, it enables the behavior for which a profile is de-
tected in its associated region. If more than one behavior meets the condition,
the behavior with the most recent associated profile estimation takes over. PI
controllers in the X and Z DOFs are used by each behavior to keep the robot
at a constant average distance, δv, from the profile (that is, they seek to keep
δv − d̂ = 0).

To avoid steering the vehicle backwards in the surge axis, the ceiling fol-
lowing behavior makes the vehicle turn 180◦ in yaw when it is engaged.
Then, it proceeds steering the vehicle forward and keeping the appropriate
distance from the ceiling. When the behavior is disengaged, it reverts the
initial turn. This procedure allows the robot to surge forward in a direction
well suited for its hydrodynamic configuration.
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Figure 70: Vertical profile following block diagram.

5.3.3 Integration with Coverage Path Planning

In integrating our profile following scheme with coverage path planning, we
make use only of the horizontal profile following part. The vertical profile
following part has been introduced to show the applicability of our tech-
nique to the classical bottom following problem. To achieve a 3D coverage
task with our profile following techniques we apply a simple two-step pro-
cess. First, we use an a priori bathymetric map and the slicing algorithm to
determine a coverage plan consisting of the inter-profile spacing, the number
of cross-section profiles to be followed and the order in which they will be
followed. Second, we execute profile following on-line on each determined
cross-section profile of the target structure using the scheme presented above
in Sections 5.3.1 and 5.3.2.

By applying the slicing algorithm (Algorithm 3), we obtain M intersection
edges eλi,1, eλi,2, . . . , eλi,M for each horizontal plane λi (recall Figure 60). A
starting point where the robot will initiate horizontal profile following is
assigned to each intersection edge. Once the cross-section profiles to be cov-
ered and their starting points have been determined, the AUV proceeds to
cover them using our profile estimation and following method on-line. Ini-
tially, the AUV approaches the first starting point by diving towards it from
the surface. Then, the horizontal profile following behavior is engaged and
the coverage task begins. The vehicle’s onboard navigation system is used
to estimate its trajectory and determine when a complete cross-section pro-
file has been completed. When the profile is entirely covered, the vehicle
approaches the starting point of the next profile and repeats the profile fol-
lowing process until all profiles determined in the off-line planning phase
have been covered.
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5.3.4 Integration with GIRONA 500’s Control Architecture

As detailed in Appendix A, GIRONA 500 is driven by a control architec-
ture termed Component-Oriented Layer-based Architecture for Autonomy
(COLA2), developed at CIRS. A simplified diagram of COLA2 highlighting its
components involved in profile following for inspection tasks is shown in
Figure 71. To address an inspection task, the off-line coverage planning mod-
ule first generates a coverage plan using the slicing algorithm. The coverage
plan is fed to the Task Execution component, which decides when to en-
gage each profile following component according to the plan. The profile
following components send commands to the low-level velocity controller,
which then generates and sends velocity setpoints to the vehicle’s thrusters.
The navigation and mapping modules estimate the vehicle’s trajectory and
map its environment, respectively. These trajectory estimates and local maps
are used by the profile estimation component to estimate the profile to be
followed and feed it to the profile following components.

Figure 71: GIRONA 500’s control architecture components for coverage tasks using
profile following.

5.4 3d coverage with realtime replanning

Next, we present a new 3D coverage path planning method for inspection
of complex structures on the ocean floor using AUVs which does not rely
on the unrealistic assumption of an idealized path execution. Here, rather
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than directly reacting to range sensor measurements as in Section 5.3, we
propose a replanning algorithm to reshape the path according to the actual
target structure perceived on site using the vehicle’s onboard sensors. Ini-
tially, the method takes as input a nominal coverage path planned off-line
using the algorithm presented above in Algorithm 3. Recall that the planned
coverage path follows the structure contours on the map at uniformly spaced
depths maintaining a fixed offset distance from the target surface, accumu-
lating data contour-by-contour along the vertical spatial dimension of the
workspace. To handle the vehicle’s position, environmental, and control un-
certainty during path execution, we use stochastic trajectory optimization to
adapt the initially planned coverage path in realtime. The resulting path is
smooth and provides successful coverage under bounded position error.

5.4.1 Problem Description

Recall that the problem we tackle in this work calls for planning and exe-
cuting a path that allows an AUV to pass its sensor payload over all points
of the exterior boundary surface of a 3D underwater structure charted as a
bathymetric map. The AUV is able to perceive the target structure with range
sensors providing measurements at least in the vehicle’s horizontal plane.
When the AUV executes the path, its position estimate in the X (surge) and Y
(sway) DOFs at time t, (xt,yt), is given by its true position (x̂t, ŷt) subject to
a random error εt:

(xt,yt) = (x̂t, ŷt) + εt, (18)

where we assume εt is bounded by

|εt| 6 εmax∀t. (19)

In a real-world AUV, εt is typically brought about by GPS error while at
the surface and by dead-reckoning drift while underwater. The upper bound
εmax can be determined according to the accuracy of the AUV’s navigation
sensors and by the mission duration. Note that we assume the position errors
in the remaining DOFs are negligible.

Given εmax, the objective is for the AUV to provide full coverage of the
exterior boundary surface of the 3D target structure.

5.4.2 Choosing an Appropriate Offset Distance

A key point of our method is the choice of the offset distance Ω in the off-
line coverage path planning phase. Of course, Ω must be greater than the
vehicle’s radius to avoid collisions, assuming a rigid vehicle modeled as a
sphere. Ω must also lie within the payload sensors range limits. But, as we
will discuss below, for our realtime replanning strategy to succeed Ω must
be chosen such that for an error |εt| 6 εmax, the coverage path does not
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intersect the target surface. This has two implications. On one hand, Ω must
be greater than εmax. On the other hand, sufficient clearance between our
target structure and potential neighboring structures is required.

5.4.3 Realtime Replanning

Once a nominal coverage path has been planned off-line, we propose an it-
erative replanning method to adapt the path in realtime according to range
sensor information. To obtain a convenient representation of the environ-
ment for our replanning method we incrementally construct and maintain a
3D map of the target structure onboard the vehicle in realtime using range
data. As in the sensor-based approach described in Section 5.3, we use the
Octomap (Hornung et al., 2013) probabilistic mapping framework. At each
iteration, our algorithm operates on the section of the nominal path yet to
be processed within a given range from the robot. That piece of the nominal
path is then reshaped using a trajectory optimization algorithm that, given
an appropriate cost function, produces a smooth trajectory that keeps the
vehicle at the desired offset distance from the actual target structure. The
vehicle then executes the optimized trajectory. The process repeats until the
end of the nominal path is reached. Next, we first describe the trajectory opti-
mization algorithm (5.4.3.1) and the cost function we use in the optimization
process (5.4.3.2). Then, building upon those two elements, we detail our cov-
erage path replanning algorithm (5.4.3.3).

5.4.3.1 Stochastic Trajectory Optimization

We use the Stochastic Trajectory Optimization for Motion Planning (STOMP)
algorithm (Kalakrishnan et al., 2011) to reshape the nominal coverage path so
it adapts to the actual target structure perceived on site via onboard sensors.
STOMP explores the space around an initial trajectory by generating noisy
trajectories, which are then combined to produce an updated trajectory with
lower cost in each iteration. Consider the example in Figure 72, where a
cost designed to repel obstacles is used. At each iteration, the trajectory is
updated to obtain a lower cost, achieving the effect of keeping it away from
the obstacle (shaded in blue in Figure 72).

STOMP optimizes a cost function based on a combination of smoothness
and application-specific costs, such as obstacles (as in the example above),
constraints, or motor torques. An important characteristic of this algorithm
is that it does not use gradient information, and so general costs for which
derivatives are not available can be included in the cost function.

STOMP considers trajectories of a fixed duration, T , discretized into N way-
points equally spaced in time. For simplicity in the notation, we describe the
algorithm for a 1-dimensional trajectory in Algorithm 4; this extends natu-
rally to multiple dimensions. This 1-dimensional trajectory is represented as
a vector θ ∈ RN. The algorithm takes as input the start and goal positions
(which are kept constant during the optimization process), an initial trajec-
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Figure 72: Example execution of the STOMP algorithm.

tory from start to goal (which can be as simple as a straight line) and a cost
function (which we detail below in 5.4.3.2 for our case).

STOMP represents smoothness costs as a positive semi-definite matrix θ,
such that θ>Rθ is the sum of squared accelerations along the trajectory.
The accelerations are obtained by means of a second-order finite difference
matrix that when multiplied by the position vector θ, produces accelerations
θ̈:

A =



1 0 0

−2 1 0

1 −2 1

· · ·
0 0 0

0 0 0

0 0 0
...

. . .
...

0 0 0

0 0 0

0 0 0

· · ·
1 −2 1

0 1 −2

0 0 1


(20)

θ̈ = Aθ (21)

θ̈
>
θ̈ = θ>(A>A)θ. (22)

Selecting R = A>A ensures that θ>Rθ respresents the sum of squared
accelerations along the trajectory. In each iteration of STOMP (Algorithm 4),
first a set of K noisy trajectories is generated by sampling the noise from
a zero mean normal distribution with R−1 as its covariance matrix (line
2). Figure 73 shows a representation of the R−1 matrix and of the noisy
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trajectories generated to explore the space around the initial trajectory. This
keeps the generated trajectories smooth and does not allow them to diverge
from the start or goal.

(a) (b)

Figure 73: STOMP’s trajectory exploration. (a) Each curve depicts a column/row of
the symmetric matrix R−1. (b) 20 random samples of ε, drawn from a
zero mean normal distribution with covariance Σε = R−1.

For each trajectory, its cost per time-step S(θ̃k,i) is computed (line 4). Based
on this cost, a probability P(θ̃k,i) is assigned to each trajectory, per time-step
(line 5). The parameter λ regulates the sensitivity of the exponentiated cost,
and is optimized to maximally discriminate between the experienced costs
by computing the exponential term in line 5 as:

e−
1
λS(θ̃k,i) = e

−h
S(θ̃k,i)−minS(θ̃k,i)

maxS(θ̃k,i)−minS(θ̃k,i) , (23)

with h = 10 as suggested by Kalakrishnan et al. (2011). The update for each
time-step is computed in line 7 as the probability-weighted combination of
the noisy trajectories for that time-step. In line 8 the update is smoothed
using the M matrix, which is formed by scaling each column of R−1 such
that the largest element in the column has magnitude 1/N. Multiplication by
M ensures that the updated trajectory remains smooth. Finally, the trajectory
parameter vector is updated in line 9 and the cost for the updated trajectory
is computed in line 10.

5.4.3.2 Cost Function

Our cost function seeks to keep all the points in the optimized trajectory at
the desired offset distance Ω from the target structure. The distance between
a point x and the boundary surface of the target structure S is the shortest
distance between x and all points si in S. Such distance is given by the
following function:

d(x,S) = min
si∈S

||x− si|| . (24)
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Algorithm 4: STOMP
Input:

• Start and goal positions x0 and xN.

• An initial 1-D discretized trajectory vector θ.

• A state-dependent cost function q(θi).

Precompute:

• A: second-order finite difference matrix (Equation 20).

• R−1 = (A>A)−1.

• M = R−1, with each column scaled such that the maximum element
is 1/N.

while not convergence of trajectory cost Q(θ) do1

Create K noisy trajectories, θ̃1, . . . , θ̃K with parameters θ+ εk, where2

εk ∼ N(0,R−1)

for k = 1 . . . K do3

S(θ̃k,i)← q(θ̃k,i)4

P(θ̃k,i)← e
− 1
λ
S(θ̃k,i)∑K

l=1 [e
− 1
λ
S(θ̃l,i)]5

for i = 1 . . . (N− 1) do6

[δ̃θ]i ←
∑K
k=1 P(θ̃k,i)[εk]i7

δθ←Mδ̃θ8

θ← θ+ δθ9

Update trajectory cost Q(θ) =
∑N
i=1 q(θi) +

1
2θ
>Rθ10

return θ11
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We define our cost function so it penalizes the difference between the
distance from the trajectory points to the target surface and the desired offset
distance:

q(θ) =

T∑
t=0

|d(θt,S) −Ω|, (25)

where d(θt,S) is calculated according to the current map. Recall that the
additional smoothness cost θ>Rθ is already incorporated in Algorithm 4.

5.4.3.3 Realtime Coverage Path Replanning Algorithm

We propose an iterative realtime replanning algorithm that uses range sensor
data to reshape the nominal path to the actual target structure perceived in
situ. The resulting path is smooth and keeps the desired offset distance Ω
from the target structure. Recall that our replanning algorithm assumes that
for an error |εt| 6 εmax, the nominal coverage path does not intersect the
actual target surface. The algorithm reshapes, in each iteration, the section
of the nominal path yet to be processed within a range R from the vehicle’s
position. The magnitude of R must be smaller than the maximum sensor
range used to perceive the target structure since the environment is still
unknown beyond that limit. Once optimized, the vehicle executes the path
assuming the environment’s map representation does not change for the
duration of the path execution. Therefore, R can be chosen to regulate the
length of the replanning “steps” so newly incorporated range measurements
providing a more up-to-date map can be taken into account early in the next
iteration.

Algorithm 5 details our realtime coverage path replanning algorithm. In
each iteration, the algorithm takes the section of the nominal path composed
of all unprocessed waypoints within the given range R from the vehicle (lines
4-8). Next, an initial trajectory is built based on this path section (line 9). We
do so by first building an initial geometric path. To construct this initial ge-
ometric path, the last waypoint (the most distant from the vehicle) in the
current nominal path section is projected along the surface normal so it lies
at the desired distance Ω from the target structure. This step is necessary
because the goal of the initial trajectory remains constant during the opti-
mization process. Then, the initial path is composed by: 1) a straight line
connecting the current vehicle position to the first waypoint of the current
path section; 2) the current path section itself; and 3) a straight line connect-
ing the last waypoint of the current path section to its projection along the
surface normal. This initial path is then discretized into time-steps to obtain
an initial trajectory. This initial trajectory generation procedure is illustrated
in Figure 74.

Next, the initial trajectory is optimized using the STOMP algorithm (line 10).
The optimization takes place in the vehicle’s horizontal (X-Y) plane, leaving
the vertical (Z) coordinates of the nominal path unchanged. The current
map M is passed as an argument to compute the cost function given in
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Figure 74: Illustration of the initial trajectory construction in a replanning step (top
view).

Equation 25. Finally, the optimized trajectory is executed (line 11) and the
process repeats until the end of the nominal path is reached.

Algorithm 5: Realtime Coverage Path Replanning
Input:

• Nominal coverage path as a list of K waypoints w0 . . . wK.

• Current environment’s map, M.

• Replanning step range, R.

Navigate to initial waypoint w01

i ← 02

while i < K do3

x ← GetRobotPosition()4

pathSection ← ∅5

while Distance(x, wi) < R and i < K do6

pathSection.append(wi)7

i ← i+ 18

θ ← InitialTrajectory(pathSection, x)9

optimizedTrajectory ←STOMP(θ, M)10

Execute(optimizedTrajectory)11

5.5 experimental outcomes

We next present experimental outcomes to validate the 3D coverage path
planning techniques introduced above. Section 5.5.1 discusses results ob-
tained with our off-line 3D coverage path planning method only, Section 5.5.2
discusses results obtained with our sensor-based profile following approach
and Section 5.5.3 discusses results obtained with our realtime replanning ap-
proach. Finally, Section 5.5.4 presents a combination of all these techniques
applied to the same target scenario in both simulation and real-world exper-
iments to achieve complete coverage.
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5.5.1 Off-line 3D Coverage Outcomes

We validate our off-line 3D coverage path planning technique using the San-
torini caldera dataset introduced in Section 4.3.1.1. A 100 m by 250 m Re-
gion Of Interest (ROI) on the mapped area is selected for further in-detail
inspection. The selected ROI comprises the boundary of the caldera, and is
therefore of high geological interest. Figure 75 shows the bathymetric maps
of the entire mapped area and of the selected ROI.

(a)

(b)

Figure 75: 3D view of the Santorini caldera bathymetric dataset: (a) complete bathy-
metric map of the Santorini caldera with the selected ROI indicated by its
approximate bounding box; (b) bathymetric map of the selected ROI.
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We apply our proposed 3D coverage path planning technique to the se-
lected ROI of the bathymetric map introduced above. The objective is to
obtain a coverage path on the ROI at an offset distance Ω = 2m from the
target surface to collect imaging data with the GIRONA 500 AUV. (Recall the
reader can refer to Appendix A for an introduction to the GIRONA 500 AUV.)
It is assumed that the vehicle uses a 60◦ aperture angle camera to image the
surface.

The slope map, S(x,y), of the ROI is shown in Figure 76a, with values rang-
ing between 0.001 and 0.622. The slope map is classified using a threshold
δs = 0.5, which yields a single high-slope region after applying the described
morphological operations as shown in Figure 76b.

(a) (b)

Figure 76: Slope map of the Caldera 2012 bathymetric dataset (a) and its terrain
classification showing a single high-slope region (b).

The slicing and boustrophedon decomposition algorithms are then ap-
plied to the corresponding regions. Figure 77 shows the boustrophedon
decomposition process on the effectively planar areas of the Caldera 2012

scenario, while Figure 78 illustrates the slicing algorithm process.
The resulting coverage path after combining the outcome from the boustro-

phedon decomposition algorithm with that of the slicing algorithm is shown
in Figure 79, while a standard lawnmower-type path is shown in Figure 80.
The algorithms are implemented in unoptimized MATLAB and generate the
full coverage path in less than 5 seconds on a standard PC.

To obtain a quantitative evaluation of the coverage path, we compare the
path obtained using our bathymetric coverage path planning technique and
a standard constant-altitude lawnmower-type survey path in Table 3, where
the path lengths and average viewing angles for each region, for the full cov-
erage path and for the lawnmower survey path are reported. The viewing
angles are calculated as shown in Figure 56, assuming a down-looking sen-
sor is used to cover the effectively planar areas and that a forward-looking
sensor is used to cover the high-slope areas (a down-looking sensor is as-
sumed for the standard lawnmower-type path). Recall that the ideal viewing
angle is 0◦.

Note that, although the standard lawnmower-type survey path is shorter,
it incurs a significantly higher average viewing angle. This is mainly due to
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(a) Workspace (terrain classification). (b) Cell decomposition.

(c) Adjacency graph. (d) Coverage paths within each cell.

(e) Coverage path for effectively planar ter-
rain on the bathymetric map.

Figure 77: Application of the Morse-based boustrophedon decomposition algorithm
for coverage of effectively planar areas on the Caldera 2012 scenario.
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(a) Slicing planes. (b) Intersection edges.

Figure 78: Application of the slicing algorithm for coverage of high-slope areas on
the Caldera 2012 scenario.

Figure 79: In-detail 3D coverage path for the selected ROI of the Caldera 2012 dataset.
The coverage path for the high-slope region is indicated with thicker
lines.
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Figure 80: Standard lawnmower-type coverage path for the selected ROI of the
Caldera 2012 dataset.

the sudden depth changes the vehicle needs to tackle when covering high-
slope terrain following this path. By contrast, our method generates a path
with a lower viewing angle, suiting better imaging applications.

path path length average viewing angle

High-slope region 5864.9 m 9.3◦ (σ = 4.5◦)

Planar region 4973.6 m 12.3◦ (σ = 6.6◦)

Total

(both regions)
10838.5 m 10.8◦ (σ = 5.6◦)

Standard

lawnmower path
9834.2 m 23.2◦ (σ = 7.1◦)

Table 3: Coverage path length and viewing angles comparing our coverage method
and a standard lawnmower-type survey path.

5.5.2 3D Coverage with Sensor-based Profile Following Outcomes

Next, we show results of our profile following method obtained both in sim-
ulation and in pool trials with the GIRONA 500 AUV. (Recall the reader
can refer to Appendix A for an introduction to the GIRONA 500 AUV.)
First, we show results obtained in simulation of our vertical profile follow-
ing scheme on a man-made object model. We test our horizontal profile
following scheme in a simulated 3D coverage task of an underwater boulder.
We use a model of a real-world underwater boulder built from a bathy-
metric dataset autonomously recorded by GIRONA 500 in the target area.
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We finally report on two in-water trials conducted in our lab’s pool, where
GIRONA 500 follows the vertical and horizontal profiles of the pool.

For the simulation experiments we use the UWSim (Prats et al., 2012a)
underwater robotics simulation package, which provides a high-fidelity sim-
ulation environment. We import into UWSim a dynamic model of GIRONA
500 and a rotating pencil-beam sonar sensor model after the Tritech’s SeaK-
ing profiler GIRONA 500 is equipped with (see Appendix A). The very same
software architecture which runs on GIRONA 500 during sea trials is used
in conjunction with UWSim to carry out the simulation, thus allowing for
seamless transition from simulation to real-world missions.

5.5.2.1 Simulated Vertical Profile Following

Figure 81 shows the trajectory traced by GIRONA 500 when using the pro-
posed method to follow the vertical profile of a man-made object model. The
desired offset distance is 2 m. As can be observed in Figure 81, by exploiting
the hovering capability of GIRONA 500 our profile following method is able
to successfully maneuver the vehicle to completely follow the “C” profile of
the object. Due to the presence of a totally vertical profile traditional bottom
following techniques would not be able to handle it, leading to a collision
threat for the vehicle. Our method favors hovering-capable AUVs, being able
survey structures in closer proximity than traditional bottom following sur-
veys typically used in torpedo-shaped vehicles. Note that the robot makes a
180◦ turn to avoid navigating backwards when the ceiling following behav-
ior is engaged.

Figure 81: Trajectory traced by GIRONA 500 while following the vertical profile of
a man-made object in simulation.

5.5.2.2 In-Water Profile Following Trials

We tested our method in a real-world setting with the GIRONA 500 AUV

following the vertical and horizontal profiles of our pool at CIRS. As shown
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in Figure 82, the pool has a “V” shaped bottom. A supervision room with a
window under the water level allows to keep track of the AUV operation.

(a)

(b)

Figure 82: GIRONA 500 at the CIRS facility of the University of Girona. (a) and a
blueprint of the testing pool therein (b).

The horizontal profile following module was tested at a constant 4 m
depth. Figure 83 shows a sequence of photos of GIRONA 500 following the
horizontal profile of the pool, seen from the supervision room. The frontal
distance and slope errors of two complete circumnavigations of the pool’s
horizontal profile are shown in Figure 84. Despite the sharp 90◦ corners in
the pool’s profile, our profile following method is able to keep the estimated
front distance within 1 m of the desired nominal distance.

The vertical profile following module was tested along the profile of the
pool. Figure 85 shows the estimated frontal distance to the profile (in the cliff
region) during the vertical profile following in the pool. The AUV started in
the shallow region of the pool (left of Figure 82b, moving to the right), where
the pencil-beam sonar faced both the opposite ramp and the farthest wall of
the pool. As a result, sonar energy returns from said ramp and wall lead to
a spread occupied area on the local map and, consequently, to a poor esti-
mation of the actual profile. Effectively, returns from the wall and from the
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Figure 83: Photo sequence (left to right, top to bottom) of GIRONA 500 following
the horizontal profile of our lab’s pool.

(a)

(b)

Figure 84: In-pool horizontal profile following: frontal distance (a) and slope (b) vs.
time.



130 3d coverage of complex structures in underwater environments

ramp were being confused in the vehicle’s perception. Due to this situation,
a region of high error appears in Figure 85 during the first 20 seconds of the
experiment. Once the vehicle reaches the first ramp on the pool’s profile and
the vehicle dives the sonar measurements start to match the actual environ-
ment and the vehicle can adjust its distance to the estimated profile. For the
same reason, at second 40 another error peak arises when the vehicle reaches
the end of the second ramp. The error in this experiment could have been
reduced by using a pencil-beam sonar with a narrower beam, providing a
more accurate mapping of the profile. We note, however, that due to the
relatively big size of GIRONA 500 in comparison with the profile followed
and the non-convex and confined environment this was a challenging profile
following task.

Figure 85: In-pool vertical profile following: distance to cliff (frontal wall) vs. time.

5.5.3 3D Coverage with Realtime Replanning Outcomes

Our replanning algorithm has been implemented in Python and integrated
with the rest of GIRONA 500’s software architecture using the Robot Oper-
ating System (ROS) framework (ROS, 2013). The implementation produces
an optimized path at each replanning step in less than a second. To present
our results, we replay the mission logs using Rviz, the visualization package
provided in the ROS framework. We have tested our method by performing
two coverage tasks with the GIRONA 500 AUV at sea†. In the first task we
cover a concrete block of a breakwater structure in a harbor. In the second
task, we cover “l’Amarrador” underwater boulder, already targeted by the
experiments in Chapter 4. Next we present the minimum validation results
obtained in the concrete block scenario, while the results involving the un-
derwater boulder scenario are presented in the next section below.

The a priori bathymetric charts used to plan the nominal coverage paths
were created by members of CIRS using a vessel equipped with GIRONA
500’s Delta T multibeam sonar. GIRONA 500’s pencil-beam and multibeam
sonars were used to perceive the target structure with the maximum range

† A video showcasing these experiments can be found at
http://www.youtube.com/watch?v=2REWf6jbdZ0

http://www.youtube.com/watch?v=2REWf6jbdZ0
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set at 20 m. (The reader can refer to Appendix B for more details on the
sonar technology used in these experiments.) The replanning range is set at
R = 5 m. The stereo camera and multibeam sonar of GIRONA 500, which
were mounted in a side-looking manner, were used as payload sensors to
gather both optical and range data from the structures. The GIRONA 500

AUV is shown in Figure 86 equipped with the sensors used in these sea trials.
In both experiments, we estimate to be dealing with a maximum GPS error
smaller than 5 m, whereas the estimation for the total maximum error εmax
varies depending on each particular setup, as we detail below.

(a)

(b)

Figure 86: The GIRONA 500 AUV during the 3D coverage with replanning sea trials.
(a) Standard configuration with the pencil-beam sonar protruding on the
top-left. (b) Payload configuration with side-looking multibeam sonar
and stereo camera.

We validate the benefits of our method for 3D mapping using both bathy-
metric and optical techniques. Our 3D mapping results show how the paths
planned with our method are useful in mapping complex 3D structures,
not amenable for traditional 2.5D mapping of marine environments. On one
hand, the unorganized range data collected by the multibeam sonar pro-
motes the use of 3D surface reconstruction techniques. More precisely, we
apply the screened Poisson method (Kazhdan and Hoppe, 2013) to recover
a triangle mesh resembling the surface described by the range data. On the
other hand, we apply another mapping technique based on optical data only.
Using solely images, we follow a sequential pipeline composed by a camera
trajectory estimation via structure from motion (Nicosevici et al., 2009), fol-
lowed by a dense point set sampling through multiple-view stereo (Yang
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and Pollefeys, 2003), the surface reconstruction (Kazhdan and Hoppe, 2013)
and a final per-vertex texture mapping. All the data products we show are
the direct result of the automatic 3D mapping techniques we use, without
any manual tuning or refinement. The 3D maps here presented were gen-
erated by colleague Ricard Campos from the Underwater Vision Lab of the
Computer Vision and Robotics Institute at the University of Girona, using
the data collected with our coverage path planning technique in the sea trials.
They are included and discussed in this thesis for the purpose of demonstrat-
ing the effectiveness of our 3D coverage path planning method in obtaining
rich data for 3D mapping applications.

As previously mentioned, the first coverage task in which we test our
method serves as a minimal test of our implementation. The target struc-
ture is a concrete block of a breakwater structure composed of twenty of
such blocks. Each block’s footprint is approximately 5 m × 5 m, spanning
from 2 m above the surface down to the sea bottom at 10 m depth. This
structure is in the harbor of Sant Feliu de Guı́xols, in the Costa Brava in
Catalonia (Spain). It is located next to its main pier and provides protection
from the effects of bad weather and longshore drift. Figure 87 shows the
a priori bathymetric chart (overlapped on satellite imaging) we use to plan
a nominal coverage path (also shown in Figure 87) for this task using our
off-line planning method. In this minimal validation experiment, we target
the right-most block of the structure and we plan a coverage path of a sin-
gle contour at 5 m depth, which will allow the multibeam sonar to image
most of the in-water part of the block. Aiming to capture optical data of the
structure, and since we deal with a somewhat controlled environment in this
experiment, we use a relatively short offset distance Ω = 6.0 m to plan the
nominal path (hence assuming εmax < 6.0 m). The nominal path resulting
from the off-line planning phase is also shown in Figure 88. Note that the
path is not closed (it resembles a semi-circle) since there is not enough clear-
ance between the concrete blocks for the vehicle to go through. Therefore,
the path provides coverage on only three of the four vertical faces of the
block.

The trajectory followed by the robot during the realtime replanning phase
is shown in Figure 88 with the on-line map and the depth-colored raw range
data acquired by the side-looking multibeam sonar. It can be observed that
the map includes many outliers, mainly due to surface reflections of the
pencil-beam sonar beams. Nonetheless, the resulting trajectory provides full
sensor coverage of the targeted in-water part of the structure. Along this
coverage trajectory, and according to the on-line map, the AUV kept a mean
distance to the target structure of 7.71 m, with a standard deviation of 2.03

m.
Figure 89 shows the surface reconstructed from the raw range data. Note

how the point cloud depicted in Figure 88 is far from ideal, as it contains
high levels of noise and outliers coupled with registration errors. Prior to
reconstruction, and since the method used (Kazhdan and Hoppe, 2013) re-
quires oriented point sets, we computed per-point normals with the method
of Hoppe (Hoppe et al., 1992), using a neighborhood of k = 200 points. De-
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Figure 87: Bathymetric map of the area surrounding Sant Feliu harbor’s breakwa-
ter structure overlapped on satellite imagery (provided by Google Earth).
The nominal coverage path, targeting the right-most block of the break-
water structure, is shown in red.

Figure 88: Realtime replanning on the concrete block coverage experiment at the
last replanning step of the task: nominal coverage path (blue-dotted line);
optimized trajectory which the robot is executing at that particular in-
stant (red-dotted line); overall trajectory (white arrows); occupied cells in
the on-line map (white cubes). The depth-colored range data acquired by
the multibeam sonar is also displayed.
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spite the defect-laden nature of the input data, the screened Poisson method
is able to recover the surface with reasonable accuracy. However, data defects
cause some non-existent artifacts to show up in the top- and bottom-most
parts of the model and some undesirable roughness in its front wall.

(a) Top view

(b) Slanted view

Figure 89: Surface reconstruction of the concrete block from range data. Image
credit: Ricard Campos.

Finally, we used the on-board stereo camera to reconstruct a 3D model
of the site using just optical data. Due to low visibility conditions brought
about by water turbidity, we are only able to obtain a partial reconstruction
of the structure. This produces a less complete model than its bathymetric
counterpart. Additionally, for the same reason, the model suffers from small
defects caused by accumulating cascading errors in the processing pipeline
stages. Nevertheless, Figure 90 shows intermediate results in the pipeline
stages and the final recovered model, where we can see how the front face
of the block is reconstructed with more detail and less error than in the
model obtained using range data.
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(a)

(b)

(c)

Figure 90: Slanted views of the optical reconstruction on the concrete block dataset.
(a) Dense point set with per-vertex texture mapping. (b) Surface. (c) Tex-
tured surface. Image credit: Ricard Campos.
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5.5.4 All Together: Testing at “l’Amarrador” Site

We now show results obtained in simulation and in real-world experiments
at l’Amarrador underwater boulder, a diving site off the Costa Brava in Sant
Feliu de Guı́xols, Girona, Catalonia (Spain). It is the same site targeted by the
experiments reported in Chapter 4. Recall that the underwater boulder rises
from 40 m depth up to 28 m, being approximately 12 m high. We will apply
to this scenario, subsequently, our off-line 3D coverage path planning algo-
rithm (Section 5.5.4.1), our profile following scheme (Section 5.5.4.2) and our
realtime replanning algorithm (Section 5.5.4.3). The particular dataset used
in these experiments for off-line planning and in simulation was collected
by GIRONA 500 following a pre-planned standard survey path with a multi-
beam sonar at 5 m depth in April 2013. The bathymetric chart of the site
obtained from the data gathered during the survey mission is shown in Fig-
ure 91. Each cell in the uniform grid composing the bathymetric model is
40-by-40 cm.

Figure 91: Bathymetric map of l’Amarrador site. Data were collected by GIRONA
500.

5.5.4.1 Off-line 3D Coverage Path Planning at “l’Amarrador”

We start by generating a coverage path for the entire site the technique intro-
duced in Section 5.2. We use a desired offset distance Ω = 10 m. The terrain
classification for “l’Amarrador” site is shown in Figure 92. The application
of the boustrophedon algorithm for coverage of effectively planar areas is
illustrated in Figure 93, while Figure 94 shows the application of the slicing
algorithm for coverage of the high-slope areas. The final off-line, nominal
coverage path for the site is shown in Figure 95. The plan consists of 2 con-
tours spaced 2 m apart in the vertical axis. This spacing provides redundant
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coverage, which is of interest for testing SLAM and 3D reconstruction algo-
rithms.

(a) Slope map (b) Terrain classification

Figure 92: Slope map and terrain classification for “l’Amarrador” site.

5.5.4.2 Simulated 3D Coverage using Profile Following and “l’Amarrador” Bathy-
metric Dataset

Next, we demonstrate our profile following strategy at “l’Amarrador” in
simulation using a model of the site and UWSim. Since this is a simulation
in idealized sea state conditions, we create a coverage plan at a less conserva-
tive distance of Ω = 5 m. To generate the plan, we use the slicing algorithm
(Algorithm 3) to yield two cross-section profiles, the first at a constant 5 m
depth below the summit of the underwater boulder and the second at 3 m
below the summit. This off-line coverage plan is illustrated in Figure 96 with
the triangle mesh model of the site used in simulation. The desired offset
distance is Ω = 5 m, and it is assumed that the vehicle is using a payload
sensor with a 60◦ FOV, such as a typical camera.

The trajectory traced by GIRONA 500 during the profile-following-based
coverage experiment is shown Figure 97 and Figure 98 shows the distance
and slope errors during profile following in the diving site. The trajectory
presents some sharp features induced by the low resolution and roughness
of the 3D model of the underwater boulder used in the simulation. For this
very same reason, the method eventually needs a few seconds to deal with a
highly non-convex region of the profile. This situation arose around second
450 in our experiment (see Figure 98), where a high-frequency period of ap-
proximately 20 seconds takes place until the method is able to successfully
detect a profile to the right of the vehicle and perform the 90◦ turn maneu-
ver described in Section 5.3.2.1. We hypothesize that in the real-world site
this situation is less likely to happen since the actual profile of the underwa-
ter boulder is smoother than that of the 3D model used in the simulation.
Overall, this experiment shows how our method can successfully cover the
target structure by following its complex profiles within 1.5 m of the nominal
desired distance.
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(a) Cell decomposition. (b) Adjacency graph.

(c) Coverage paths within each cell. (d) Coverage path for effectively planar ter-
rain on the bathymetric map (top).

(e) Coverage path for effectively planar ter-
rain on the bathymetric map (slanted).

Figure 93: Application of the Morse-based boustrophedon decomposition algorithm
for coverage of effectively planar areas on the “l’Amarrador” scenario.
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(a) Slice planes. (b) Offset coverage edges.

Figure 94: Application of the slicing algorithm for coverage of high-slope areas on
the “l’Amarrador” scenario.

This experiment serves as a proof of concept of coverage of a protruding,
rugged region of the seabed using our profile following method at incremen-
tal depths. Indeed, by following the trajectory obtained with our method the
AUV is able to image the target surface using a forward-looking sensor. Since
the profile following method orientates the vehicle along the profile normal,
an appropriate viewpoint for imaging purposes is obtained. This contrasts
with the askew angle of incidence obtained from an overhead viewpoint
using traditional bottom profile following.

5.5.4.3 Coverage of “l’Amarrador” Underwater Boulder with Realtime Replan-
ning

Next, we report on our second coverage with realtime replanning task tar-
geting “l’Amarrador” underwater boulder. The nominal coverage path for
the site is shown in Figure 95. There are two important factors to take into
account when choosing an offset distance to plan this task. On one hand, this
site is in an open sea environment and there exist a threat of strong currents.
On the other hand, the mission is significantly longer, incurring a potentially
bigger error due to dead-reckoning drift. For these reasons, we use a more
conservative offset distance than in the previous task: Ω = 10 m. Unfortu-
nately, at this offset distance, the water turbidity conditions did not allow for
optical imaging of the underwater boulder. Therefore, only the sonar range
data is of interest in this experiment.

Figure 99 shows two instants of the realtime replanning phase together
with the nominal path, which GIRONA 500 is reshaping so it agrees with the
perceived sonar range data of the underwater boulder. As can be observed
in the figure, the vehicle starts at the surface, dives down to the depth of
the first coverage edge of the plan in a safe area, and starts the coverage
task. Due to resource constraints, only the deepest coverage edge of the plan
was executed in this experiment. Along the overall coverage trajectory in
this experiment, and according to the on-line map, the AUV kept a mean
distance to the target structure of 9.41 m, with a standard deviation of 0.93

m. The trajectory executed to cover the deepest coverage edge of the plan is
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(a) Slanted view

(b) Top view

Figure 95: Off-line coverage plan for “l’Amarrador” site.
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Figure 96: 3D triangle mesh model of l’Amarrador site with the off-line coverage
plan for profile-following-based coverage consisting of 2 target cross-
section profiles: one at 5 m below the summit and another at 3 m below
the summit. The desired offset distance is Ω = 5 m.

shown in comparison with the off-line plan in a top view in Figure 100, and
in slanted views in Figure 101. Note how the coverage trajectory, by contrast
with the off-line plan, adapts to the actual shape of the boulder perceived on
site. The trajectory provides successful coverage of the underwater boulder,
allowing a full 3D perception of the target structure as demonstrated in the
resulting 3D maps below.

Indeed, Figure 102 shows the reconstructed surface from the raw range
data in Figure 99, with normals computed with a neighborhood of k = 100

points. The overall surface faithfully represents the shape of the surveyed
underwater boulder, increasing by far the resolution from the off-line model
in Figure 95. However, we note that undersampled parts are overly extrap-
olated (in particular at the top of the mount) and outliers and registration
errors create some small artifacts.



142 3d coverage of complex structures in underwater environments

(a)

(b)

Figure 97: Path traced by GIRONA 500 when performing coverage of l’Amarrador
site using horizontal profile following in simulation: path after follow-
ing the deepest profile (a) and path after finishing following the second
profile (b).
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(a)

(b)

Figure 98: Simulated coverage using horizontal profile following at l’Amarrador
site: frontal distance (a) and slope (b) given by our profile estimation
process vs. time.
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(a)

(b)

Figure 99: Realtime replanning on “l’Amarrador” underwater boulder at the be-
ginning (a) and at the end (b) of the deepest coverage edge: nominal
coverage path (blue-dotted line); optimized trajectory which the robot
is executing at that particular instant (red-dotted line); overall trajectory
(cyan arrows); occupied cells in the current on-line map (white cubes);
and last processed waypoint of the off-line plan (yellow cube). The cur-
rent pose of the vehicle is represented by the red-green-blue 3D axis. The
depth-colored range data acquired by the multibeam sonar is also dis-
played.
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Figure 100: Coverage trajectory on “l’Amarrador” underwater boulder (top view):
nominal coverage path (blue-dotted line) and overall trajectory (cyan
arrows). The current pose of the vehicle is represented by the red-green-
blue 3D axis. The depth-colored range data acquired by the multibeam
sonar is also displayed.
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(a) Slanted view.

(b) Opposite angle.

Figure 101: Coverage trajectory on “l’Amarrador” underwater boulder (slanted
views): nominal coverage path (blue-dotted line) and overall trajectory
(cyan arrows). The current pose of the vehicle is represented by the
red-green-blue 3D axis. The depth-colored range data acquired by the
multibeam sonar is also displayed.
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(a) Top view

(b) Slanted view

Figure 102: Surface of “l’Amarrador” underwater boulder, recovered from the raw
range data. Image credit: Ricard Campos.





6
C O N C L U S I O N

Real stupidity beats artificial intelligence every time.

— Terry Pratchett, “Hogfather” (1996)

This chapter concludes this thesis by presenting a summary of work com-
pleted in Section 6.1, reviewing the contributions of the thesis in Section 6.2
and the publications that have resulted from it in Section 6.3. Finally, com-
pelling areas for future work are outlined in Section 6.4.

6.1 summary of work completed

This thesis has addressed the coverage path planning problem in the under-
water domain, working in 2D and 3D environments with different require-
ments. In Chapter 2 we reviewed the state of the art of coverage path plan-
ning, providing a classification of the most popular and successful coverage
path planning algorithms and applications, providing a novel classification
and pointing out directions for further research in the problem. The review
puts an emphasis on the underwater domain and represents the first compre-
hensive review of the coverage path planning literature presented in more
than ten years, reflecting the recent breakthroughs in the field.

In Chapter 3 we proposed a novel algorithm for 2D coverage of a target
region on the ocean floor using an AUV that provides AUV survey planning
with a principled way to account for obstacles. The main advantage of this
method is that it minimizes the redundant coverage arising when the vehi-
cle surveys the area at constant depth. By segmenting the target surface in
regions of similar depth and addressing them as individual coverage path
planning problems, the method is able to adjust the inter-lap spacing and
orientation of the lawnmower-type paths used to cover the area, leading to
a more efficient, shorter path. The proposed method has been validated in
simulation using a real-world bathymetric dataset, showing a significant in-
crease in path efficiency in comparison to a standard lawnmower-type path.

In Chapter 4 we have introduced a new survey path planning method
for area coverage aimed at minimizing the uncertainty in the vehicle posi-
tion estimates which takes into account the application constraints of bathy-
metric mapping. We compared the proposed method performance to stan-
dard lawnmower-type paths in terms of position uncertainty along the path

149



150 conclusion

in simulation with different real-world datasets and in sea trials with the
GIRONA 500 AUV. Additionally, we compared the mapping performance
associated to our method to a standard survey path using a bathymetric
mapping algorithm. Results showed the benefit of incorporating uncertainty
in the survey path planning phase both in terms of position uncertainty and
mapping quality enhancement. Although our algorithm focuses on bathy-
metric mapping, we believe that many underwater robotic applications can
benefit from it, especially those relying on the AUV trajectory estimate such
as optical and sonar mosaicing. Likewise, data products obtained with differ-
ent sensors, such as Forward-Looking Sonar (FLS) and Side-Scan Sonar (SSS),
can benefit from the improved trajectory estimates enabled by our planning
method.

In Chapter 5 we presented an off-line 3D coverage path planning method
including two algorithms for coverage of bathymetric surfaces. The method
takes into account the slope of the areas on the bathymetric surface and
generates paths suiting the characteristics of effectively planar regions and
high-slope regions. In high-slope regions, the planned coverage path follows
cross-sections of the target structure at a given offset distance, being able to
provide a clear and continuous data product. We demonstrated the feasibil-
ity of the method by planning a coverage path on a real world bathymetric
dataset from the Caldera 2012 trials. Given that a perfect execution of the
coverage path is not a realistic assumption in a real-world scenario due to
uncertainty, we proposed two different methods to adapt a nominal coverage
path in realtime using range sensor measurements perceived in situ by the
AUV. On the one hand, we have presented a seabed profile estimation and
following technique using a hovering-capable AUV. The proposed profile esti-
mation technique uses a local map and simple linear regression to obtain an
estimate of the profile in certain regions of interest around the robot. The pro-
file estimation information is then used by profile following modules which
reactively guide the vehicle to follow the estimated profile. Our method is
suited for both vertical and horizontal profile following, enabling inspec-
tion of seabed structures in close proximity. The method has been tested
both in simulation and in-water trials using the GIRONA 500 AUV, which
have demonstrated the effectiveness of this approach and its applicability to
3D coverage tasks. The method performed well both in structured (swim-
ming pool) and unstructured (diving site) scenarios. On the other hand, we
proposed a 3D coverage path replanning method for inspection of complex
underwater structures. The method takes a nominal 3D coverage path as
input and uses stochastic trajectory optimization to reshape it in realtime
during the mission. Provided a bound for the vehicle’s position error, the
replanning algorithm is able to adapt the nominal path according to range
sensor measurements onboard the vehicle. Our method has proven success-
ful in two coverage experiments at sea with the GIRONA 500 AUV, involving
coverage of a part of a breakwater structure and of an underwater boulder
rising from 40 m up to 28 m depth. Moreover, we have presented 3D models
of the inspected sites that show the benefits of our coverage path planning
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method for 3D mapping of complex structures, not amenable for traditional
bathymetric mapping.

6.2 review of contributions

This thesis has contributed to coverage path planning and to the field of
underwater robotics in five main respects.

literature review This thesis has presented a thorough, comprehensive
review of the coverage path planning literature. The review classifies
the methods according to their target workspace and approach and
reports on application experiments. Remarkably, the review presented
in this thesis represents the first survey on coverage path planning in
more than a decade.

efficient 2d coverage with obstacles This thesis has proposed 2D
survey path planning methods for maritime vehicles, providing a prin-
cipled way to account for obstacles and ensure complete, efficient cov-
erage by reducing coverage overlapping.

uncertainty-driven auv survey planning A 2D off-line survey plan-
ning method has been proposed that minimizes the uncertainty in the
vehicle position estimates induced by the path, leading to more ac-
curate data products. The proposed method goes beyond traditional
survey planning, where uncertainty is ignored in the planning phase.

coverage of 3d structures This thesis has proposed a set of methods
for planning and executing coverage paths in realtime for 3D struc-
tures on the ocean floor. The resulting 3D coverage plans are adapted
on site using the AUV onboard sensors and provide close proximity
inspections with appropriate viewing angles for imaging applications.

experimental evaluation This thesis has provided experimental eval-
uation of the proposed methods with a physical AUV, demonstrating
their field applicability in real-world environments.

6.3 review of publications

Next, we review the list of publications that have resulted from this thesis
and connect them to the content of this document. The list of publications
below is first organized by theme and, therein, chronologically from newest
to oldest.

Literature Review

• [ras’13] Enric Galceran and M. Carreras. A Survey on Coverage Path
Planning for Robotics. Robotics and Autonomous Systems. Volume 61,
Issue 12, December 2013, Pages 1258-1276.
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The literature review presented in this thesis in Chapter 2 has been pub-
lished in the Robotics and Autonomous Systems top robotics journal, especially
reflecting the advances in coverage path planning occurred in the last decade
and serving as a reference for researchers in the field.

2D Coverage Path Planning

• [oceans’12] Enric Galceran and Marc Carreras Coverage Path Plan-
ning for Marine Habitat Mapping. OCEANS’12. Hampton Roads (VA),
USA. October 2012.

• [iros’12] Enric Galceran and Marc Carreras. Efficient Seabed Cover-
age Path Planning for ASVs and AUVs. Intelligent Robots and Systems
(IROS). Vilamoura, Portugal. October 2012.

• [oceans’11] Emili Hernández, Marc Carreras, Enric Galceran and
Pere Ridao. Path Planning with Homotopy Class Constraints on Bathymet-
ric Maps. OCEANS’11. Santander, Spain. June 2011.

The [iros’12] paper presented the efficient 2D coverage path planning
method introduced in Chapter 3, while the [oceans’12] paper suggested
an extension of this method for covering regions of interest in marine habi-
tats for monitoring purposes. The [oceans’11] paper included a collabora-
tion of the author in generating 2D workspaces from bathymetric maps.

Uncertainty-driven Coverage

• [iros’13] Enric Galceran, Sharad Nagappa, Marc Carreras, Pere Ridao
and Albert Palomer. Uncertainty-driven Survey Path Planning for Bathy-
metric Mapping. Intelligent Robots and Systems (IROS). Tokyo, Japan.
November 2013.

This [iros’13] paper presented the uncertainty-driven AUV survey plan-
ning algorithm introduced in Chapter 4 to the robotics community.

3D Coverage

• [icra’14] Enric Galceran, Ricard Campos, Narcı́s Palomeras, Marc
Carreras and Pere Ridao. Coverage Path Planning with Realtime Replan-
ning for Inspection of 3D Underwater Structures. International Conference
on Robotics and Automation (ICRA). Hong Kong, China. June 2014 (to
appear).

• [jbr’13] Enric Galceran, Narcı́s Palomeras and M. Carreras. Profile
Following for Inspection of Underwater Structures. Paladyn Journal of Be-
havioral Robotics. Volume 4, Issue 4, December 2013, Pages 209-220.

• [martech’13] Enric Galceran, Ricard Campos and Marc Carreras.
Automating Seafloor Inspection using Autonomous Underwater Vehicles. Fifth
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International Workshop in Marine Technology (MARTECH). Girona,
Catalonia (Spain). October 2013.

• [oceans’13] Enric Galceran, Marc Carreras, Narcı́s Palomeras and
Pere Ridao. Complex Structure Profile Estimation and Following with the
GIRONA500 AUV. OCEANS’13. Bergen, Norway. June 2013.

• [icra’13a] Enric Galceran and Marc Carreras. Planning Coverage Paths
on Bathymetric Maps for In-Detail Inspection of the Ocean Floor. Interna-
tional Conference on Robotics and Automation (ICRA). Karlsruhe, Ger-
many. May 2013.

In regard to 3D coverage, the [icra’13a] paper presented the 3D off-line
coverage path planning method introduced in Section 5.2. The work in pro-
file following for coverage described in Section 5.3 was first presented in the
[oceans’13] paper, and later extended and published as a journal paper
in [jbr’13]. The coverage path planning with realtime replanning approach
introduced in Section 5.4 has been published in the [martech’13] and
[icra’14] papers.

Other Publications

• [icra’13b] Ross Hatton, Ross A Knepper, Howie Choset, David Rollin-
son, Chaohui Gong and Enric Galceran. Snakes on a Plan: Toward Com-
bining Planning and Control. International Conference on Robotics and
Automation (ICRA). Karlsruhe, Germany. May 2013.

• [automar’12] Enric Galceran. Coverage Path Planning for In-Detail
Seafloor Inspection. V Jornadas Automar. Girona, Catalonia (Spain). De-
cember 2012.

• [ngcuv’12] Enric Galceran, Vladimir Djapic, Marc Carreras and David
P. Williams. A Real-time Underwater Object Detection Algorithm for Multi-
beam Forward Looking Sonar. IFAC’s workshop on Navigation, Guidance
and Control of Underwater Vehicles (NGCUV). Porto, Portugal. April
2012.

As a result of his research stay at Carnegie Mellon University (CMU) in
2012, the author collaborated in the [icra’13b] paper about integrated path
planning and control for snake robots. The [automar’12] paper presented
a recap of the work completed as part of this thesis as of late 2012, includ-
ing mainly efficient 2D coverage and off-line 3D coverage ([iros’12] and
[icra’13a] papers). The [ngcuv’12] paper resulted from a stay at NATO
Undersea Research Centre (NURC) in 2011, where the author worked in us-
ing sonar technology for detection of objects on the sea floor. The contents
of this later paper and a report of the work completed during the stay at
NURC are available in Chapter B in the Appendix. The author was hosted by
Howie Choset at CMU and by Vladimir Djapic at NURC.
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6.4 compelling areas for future work

The work completed in this thesis opens the door to an array of compelling
areas for future work.

future work in 2d coverage with obstacles The 2D coverage path
planning method we presented in Chapter 3 showed success in simula-
tion, providing a path that successfully avoids obstacles and minimizes
redundant coverage. The feasibility of the coverage path planning also
presented therein was demonstrated in simulation as well. Evaluating
the performance of these methods in real-world experiments is defi-
nitely an interesting subject for further research.

future work in uncertainty-driven coverage The method for
generating survey paths for coverage of marine environments account-
ing for sensing uncertainty we introduced in Chapter 4 can easily be in-
tegrated into common survey planning tools for marine robotics, such
as MB-System (MBARI, 2013), which is freely available to the scientific
community. The integration of this method can endow the users with
a tool that capitalizes on the benefits of incorporating uncertainty in
maritime survey planning. Therefore, short-term efforts will explore
this possibility. Further work will consider incorporating a priori map
errors into the robot’s belief estimation, thereby accounting for the un-
certainty in the environment’s map. Exploring the theoretical uncer-
tainty and optimality bounds of the proposed method is also a topic
for future work. Finally, we would like to study the possibility of us-
ing multi-objective optimization techniques to balance the trade off
between uncertainty and path length in our planning method.

future work in 3d coverage In regard to the methods for realtime re-
planning of nominal 3D coverage paths we presented in Chapter 5, on
one hand, we will focus our immediate efforts on testing the profile
estimation and following techniques proposed therein at sea, inspect-
ing natural structures of interest. At longer term, we are interested in
exploring control techniques to increase the profile following accuracy
of our method. On the other hand, we are currently testing further the
realtime coverage replanning method in several challenging sites of in-
terest and using different sensor configurations. In particular, we are
interested in incorporating the multibeam sonar data in the realtime
map construction process. This would yield a more dense map of the
3D structure and help filtering outliers that prevent a more accurate
replanning. In the future, we plan to incorporate map uncertainty in
the cost function to obtain safer trajectories with smaller probability of
collision. A theoretical analysis of the presented replanning method is
also a subject for future research.

future work in auv motion planning in general The path plan-
ning algorithms introduced in this thesis generate geometric paths in a
workspace that do not take into account the controller used during the
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execution of the path nor potential kinodynamic constraints brought
about by the vehicle at use. That is, these issues are left for the lower-
level path following controllers. As a result, the generated paths might
not be readily feasible for a particular AUV. On the other hand, envi-
ronmental disturbances such as currents might severely affect the vehi-
cle’s control. Therefore, incorporating kinodynamic constraints of the
vehicle and information about the control algorithms that will be used
to execute the path in the planning phase, and using robust control
algorithms for execution can lead to a more reliable transition from
planning to execution. This issue remains as a subject for further re-
search.
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A
E X P E R I M E N TA L P L AT F O R M : T H E G I R O N A 5 0 0 A U V

The GIRONA 500 AUV has been the main platform for the development and
experimental evaluation of the algorithms proposed in this thesis. Next, we
describe the design and capabilities of GIRONA 500 (Section A.1), its control
architecture (Section A.2) and the UWSim underwater simulation package
(Section A.3), which provides high-fidelity simulation of the GIRONA 500

AUV and its environment.

a.1 the girona 500 auv

GIRONA 500 (Ribas et al., 2012), shown in Figure 103, is a reconfigurable
AUV developed at CIRS which is designed to operate at depths up to 500 m.
The vehicle is composed of an aluminum chassis supporting three torpedo-
shaped hulls (0.3 m in diameter and 1.5 m in length) and the thrusters. This
design offers good hydrodynamic performance and room for housing equip-
ment while keeping the vehicle compact, allowing deployment from small
vessels. The overall dimensions of the AUV are 1 m height, 1 m width, 1.5
m length and a weighs under 200 kg, depending on configuration. The two
upper hulls, which contain the flotation foam and the electronics, are pos-
itively buoyant, whereas the lower one contains the heavier elements such
as batteries and payload. This particular arrangement of the components
separates the center of gravity from the centre of buoyancy by about 11 cm,
which is significantly more separation than that found in a typical torpedo
shape design. This provides the vehicle with passive stability in pitch and
roll, making it suitable for tasks that will benefit from a steady platform such
as underwater manipulation.

The most remarkable characteristic of the GIRONA 500 is its capability to
be easily reconfigured for different tasks. In its standard configuration, the
vehicle is equipped with a typical navigation sensor suite (DVL from Tele-
dyne, AHRS from Tritech, pressure gauge and sound velocity sensor from
Valeport and USBL from EvoLogics) and basic survey equipment (Delta T
multibeam sonar and side-scan sonar from Imagenex, video camera from
Tritech and a Bumblebee 2 stereo camera from Point Grey). In addition to
these sensors, almost half the volume of the lower hull is reserved for pay-
load equipment that can be added to the vehicle to meet the requirements of
a particular mission. For instance, in can be equipped with a robotic arm for
intervention tasks, as shown in Figure 104. The same philosophy has been
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(a)

(b)

Figure 103: The GIRONA 500 AUV. (a) The vehicle in its first sea trial. (b) CAD
model showing the structure and components of the vehicle. Image
credit: Ribas et al. (2012).
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applied to the propulsion system, which is also reconfigurable. The basic lay-
out is composed of four thrusters, two vertically oriented thrusters actuating
in the heave and pitch DOFs and two horizontally oriented thrusters for the
heading and surge DOFs. However, it is possible to reconfigure the vehicle to
operate with only three thrusters (one vertical and two horizontal) and with
up to eight thrusters to control all six DOFs.

Figure 104: The GIRONA 500 AUV performing an intervention task on a valve panel
equipped with a robotic arm.

a.2 the cola2 control architecture

The Component-Oriented Layer-based Architecture for Autonomy (COLA2)
(Palomeras et al., 2012), GIRONA 500’s control architecture, drives the AUV

during survey and intervention missions. A block diagram describing the
architecture is shown in Figure 105. The architecture consists of a Perceive-
Plan-Act module connected to the device drivers for sensors an actuators.
The Perceive-Plan-Act module constructs a representation of the world using
sensor measurements including images, point clouds and ranges, estimates
the vehicle trajectory, plans actions according to them and executes said ac-
tions. It maintains an estimate of the robot’s trajectory via the Navigation
component, and this estimate is used by the Object Recognition and Map-
ping components. The Object Recognition component uses a priori knowl-
edge to seek for matchings between sensor measurements and object mod-
els. The Mapping component maintains a multi-modal 3D representation of
the world and uses it to provide feedback to the Navigation component via
SLAM. The Mission Planning component receives and monitors the execu-
tion of a mission plan consisting of a sequence of tasks from the user via
the Human-Machine Interface and Communications components. The Task
Execution component executes each task during a mission making use of
the Path Planning and Coverage Path Planning components (this later one
implementing the coverage path planning methods proposed in this thesis),
which generate collision-free Cartesian paths. The Task Execution compo-
nent also receives input from the Learning component when performing
manipulation tasks. The tasks are executed by sending position setpoints to
the Guidance and Low-level Control components, which generate velocity
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setpoints. In particular, the Guidance component includes the implemen-
tation of the profile following strategy presented in Section 5.3. Finally, the
Velocity Controller component transforms the desired velocity setpoints into
commands that are sent to the actuators. The architecture is implemented in
C++ and Python using the ROS framework.

Figure 105: COLA2: GIRONA 500’s control architecture.

a.3 simulation with uwsim

UWSim is a tool for testing and integrating perception and control algo-
rithms for marine vehicles before running them in the real world. UWSim
visualizes an underwater virtual scenario that can be configured using stan-
dard 3D modeling software. Support for realistic effects such as the ocean
surface, water turbidity, water color, silt particles and crepuscular rays and
physics simulation (e.g. collision, force feedback) is provided. Controllable
underwater vehicles, surface vessels and robotic manipulators, as well as
simulated sensors, can be added to the scene and accessed externally through
network interfaces, including support for missions with multiple vehicles.
This allows to easy integration with existing control architectures. An exam-
ple environment with a model of the GIRONA 500 AUV controlled by the
COLA2 architecture is shown in Figure 106.

UWSim provides support and includes off-the-shelf models for 4- and 7-
DOF arms, positioning sensors, cameras, range-sensing sonars (such as multi-
beams and mechanically-scanning profilers) and DVL devices, which can be
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Figure 106: The GIRONA 500 AUV executing a mission in UWSim with a model of
the CIRS facilities.

integrated with the vehicles and interfaced by external applications. In fact,
all the different robots, sensors and actuators can be interfaced with exter-
nal software through the network. ROS support is provided, and through the
network interfaces, it is possible to access/update any vehicle position or ve-
locity, move arm joints, access the images generated by virtual cameras and
ultimately, interface all the components involved in the simulation.





B
U N D E RWAT E R O B S TA C L E D E T E C T I O N

Detection of obstacles in the environment is an integral component of any
robotic system that is to perform a coverage path planning task. In this the-
sis we have mainly used range sensing sonars (multibeam and profilers)
to perceive the environment. However, having dramatically evolved in the
last two decades, there exist nowadays a wide range of sensors enabling au-
tonomous maritime vehicles to perceive underwater environments. This ap-
pendix presents a concise review of sonar technology suitable for detecting
obstacles in underwater environments. Furthermore, as an illustrative ap-
plication of sonar technology to underwater obstacle detection, we present
a realtime underwater man-made object detection algorithm developed in
the framework of this thesis. The bulk of the work here presented was car-
ried out during 2011 at NURC, now known as Centre for Maritime Research
and Experimentation (CMRE), in La Spezia, Italy, where acoustic real-world
datasets from state-of-the-art sonars could be collected and analyzed and
testing could be carried out on physical vehicles at sea. The sonar technol-
ogy review is presented in Section B.1 and the realtime object detection al-
gorithm is presented in Section B.2.

b.1 review of acoustic sensing for underwater obstacle de-
tection

Most coverage path planning methods reviewed in Chapter 2 rely on range
detection sensors for perceiving the environment and drive the robot ac-
cordingly. Usually, these sensors are assumed to be perfect by coverage al-
gorithms, that is, providing no noisy measurements and arbitrary precision.
This is a fair assumption in many ground and aerial robotics applications,
where laser-based range sensors and cameras provide a precise perception
of the robot’s environment. However, the applicability of such technology is
very limited in the underwater domain, where the lack of visibility and the
particularities of the environment restrict the accuracy of the sensorial infor-
mation. By contrast, this very same lack of visibility due to light attenuation
in underwater environments makes acoustic perception the most reliable
and widely used technology for sensing such environments. Active sonars
work by transmitting an acoustic signal. Objects within the path of the acous-
tic beam then reflect some of the energy back toward the sonar transducer
(this effect is known as backscatter). The fast propagation of sound through
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water makes possible for an acoustic wave to travel hundreds of meters with-
out the signal losing significant energy, allowing to perceive the environment
at long ranges even in turbid and poorly illuminated water conditions.

In regard to the backscattered signals, two different kinds of information
can be obtained from them. On one hand, range-sensing record the two-way
travel time of the reflected acoustic pulse and convert it to distance assum-
ing a particular sound velocity in water. On the other hand, imaging sonars
can also measure the intensity of the returning pulses which and obtain
an “acoustic image” describing the composition of the scanned terrain. It is
worth to underline that, despite the increased range with respect to “light-
based” sensors in underwater environments, sound transmission underwa-
ter is also attenuated, especially when using high frequencies. Therefore, a
tradeoff exists between a longer range provided by a low frequency sonar
and the higher resolution provided by a high frequency sonar.

Next, we concisely review the principal types of sonar sensors suitable
for underwater obstacle detection aiming to introduce their main character-
istics, configuration and applications. We discuss range-sensing sonars in
Section B.1.1 and imaging sonars in Section B.1.2. For a more thorough re-
view on acoustic sensing the reader can refer to Lurton (2002).

b.1.1 Range-sensing Sonars

b.1.1.1 Single-beam Sounders

Single-beam sounders, used since the 1920’s, are the most basic and common
underwater acoustic systems. They are usually mounted on a vessel’s hull
facing downwards in order to measure the ocean depth. However, they can
be used to detect approaching obstacles from the front by mounting it in a
horizontal plane parallel to the vessel’s motion. For instance, an approaching
wall is an obstacle feasible to be detected by a single-beam sounder.

Single-beam sounders use a single transducer that emits a short sound
pulse (typically between 10−4 s and 10−3 s) a beam of narrow aperture
(typically between 5

◦ and 15
◦), as illustrated in Figure 107. This transducer

receives the echo signal and a corresponding range is computed. The oper-
ating frequencies of single-beam sounders depend on the working ranges.
Usually they range from 12 kHz for deep waters (up to 11000 meters) to 400

kHz or even more for shallower waters (from 1 to 50 meters). There are also
dual-frequency transducers available in the market. The range resolution de-
pends on the emitted pulse duration but typically ranges between 0.075 and
0.75 meters.

With only a single beam, these devices are not a precise obstacle detection
instrument as they can easily miss obstacles approaching from nonorthog-
onal directions to the beam direction. However, they can be integrated in
small vehicles and their data can be processed quickly. As a result, single-
beam sounders are popular in a great number of underwater robotics appli-
cations.
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Figure 107: Obstacle perception with a single-beam sounder. Image credit: Miquel
Rusca.

b.1.1.2 Mechanically-scanning Profilers

Mechanically-scanning profilers are composed of a mechanically actuated
transducer which can be sequentially oriented at different angles and pro-
duces a series of range measurements. They can be thought as a rotary single-
beam sounder. Usually, the size of the scan sector can be selected from a few
degrees to a complete 360

◦ scan around the transducer, which is particu-
larly interesting for obstacle detection. When mounted in a down-looking
position, they can also be utilized to collect bathymetric data. With a me-
chanically scanned profiler a point cloud corresponding to the incidence of
the beams along the profile of an obstacle can be obtained. An important is-
sue that has to be taken into account when using these devices is that some
time is necessary for a scan to complete. Hence, if the vehicle is moving at
high speeds, the range measurements get distorted as a consequence of the
vehicle’s motion.

b.1.1.3 Multibeam Sonars

Motivated by the limitations of single beam sounders, multibeam sonars
appeared in the 1970’s and since then have greatly evolved and are nowadays
a widespread system for seafloor mapping tasks. However, their application
to obstacle detection is somewhat limited.

As mechanically scanned profilers, multibeam sonars produce a series of
range measurements along a scan sector. By contrast, however, they provide
multiple readings at a single time step rather than using a rotary beam. That
is, multibeam sonars transmit a swath of individual acoustic beams (usu-
ally 200-400 beams, between 1

◦ and 3
◦ each), obtaining an array of range

information around the transducer, as illustrated in Figure 108). The swath’s
aperture angle typically ranges from 90

◦ to 180
◦. Usually a multibeam sonar

is composed of two transducer arrays, one for transmission and one for re-
ception. In this way, the information provided by a single beam sounder is
obtained at multiple angles at once. A multibeam sounder provides a point
cloud corresponding to the incidence of each beam along the profile of the
obstacle. As an advantage over mechanically-scanning profilers, multibeam
sonars are much less affected by motion-induced distortion.
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Figure 108: Obstacle perception with a multibeam sonar. Image credit: Miquel
Rusca.

b.1.2 Imaging Sonars

b.1.2.1 Forward-looking Sonars

FLSs are similar to single beam and multibeam technologies but they usually
provide imagery data rather than range information (see Figures 109 and
110). FLSs have been used for many years in ROVs, obstacle avoidance and
naval mine detection. The major advantage of this type of sonar is its capa-
bility of detecting objects or seabed features, such as protruding rocks on the
ocean floor, at large distances so they can be observed in subsequent scans
and tracked. Unfortunately, an important limitation for FLS range is depth;
due to surface and bottom echo interference, FLSs can generally see ahead
only about six times the depth of the water column. Two main types of FLS

are available: mechanically-scanning imaging sonars and multibeam FLS.

Figure 109: Obstacle perception with a multibeam FLS. Image credit: Miquel Rusca.

Mechanically-scanning imaging sonars consist of a single transducer which
is mechanically rotated along an axis. The returns are then used to create
an image. Most systems provide the user with the option of choosing the
size of the sector to scan and with some degree of control on the resolu-
tion. However, as in mechanically-scanning profilers, mechanically-scanning
sonars suffer from motion-induced distortion.

Multibeam FLS use a fixed array of transducers, processed electronically,
which allows much update rates (e.g., the Seabat 6012 multibeam FLS pro-



B.1 review of acoustic sensing for underwater obstacle detection 169

vides up to 30 times a second). These sonars are more costly than mechani-
cal systems; nevertheless their popularity in the underwater community has
been growing in the recent years. Automatic methods for obstacle avoidance,
motion estimation, image recognition and sonar mosaicing using multibeam
FLS imagery have already appeared in the literature (Hurtos et al., 2014). Fast
update rates make distortion due to motion practically negligible in these de-
vices.

Some high-frequency multibeam FLSs have recently appeared on the mar-
ket, termed “acoustic cameras” in regard to their capability to provide acous-
tic video imagery (high refresh rates and high resolution at short ranges).
The cost of this sort of sensors is still quite high (almost three times the
cost of a standard multibeam FLS), but as their size and price decreased they
become an increasingly interesting option for AUV applications.

(a) An anchor lying in the seafloor. (b) Three obstacles casting prominent
shadows, indicating a consider-
able height.

(c) A pier. (d) A pipe-like obstacle.

Figure 110: Several sonar images captured with BlueView FLS devices.

b.1.2.2 Side Scan Sonars

SSS is a category of imaging sonar systems used to efficiently create an im-
age of large areas of the sea floor. This contrasts with FLS, which provides
coverage at a smaller scale. SSS is a helpful tool to detect debris items and
other obstructions on the seafloor that may be hazardous to shipping or to
seafloor installations. SSSs use a transducer that emits conical or fan-shaped
pulses down toward the seafloor across a wide angle perpendicular to the
path of the sensor through the water (track), as shown in Figure 111. The
intensity of the acoustic reflections from the seafloor of these fan-shaped
beams are recorded in a series of cross-track slices. When stitched together
along the “along track” direction, these slices form an image of the sea bot-



170 underwater obstacle detection

tom within the swath (coverage width) of the beams. The sound frequencies
used in SSS usually range from 100 to 500 kHz.

Figure 111: Sea floor perception using SSS imagery. Sonar imagery credit: EdgeTech.

b.1.2.3 Synthetic Aperture Sonars

Synthetic Aperture Sonars (SASs) build upon the same working principle as
SSSs but use sophisticated post-processing techniques to obtain higher res-
olution imagery. SASs combine a number of acoustic pings to form an im-
age with much higher resolution than conventional SSSs, typically 10 times
higher. To achieve increased resolution, SAS illuminates the same spot on
the sea floor with several pings. By coherent reorganization of the data
from all the pings, a synthetic image is produced with improved along-track
resolution. In contrast to conventional SSS, SAS processing provides range-
independent along-track resolution.

b.2 realtime underwater object detection using fls

The capability of perceiving underwater environments even in very poor
visibility conditions has proven particularly useful for the detection of un-
derwater man-made objects. With recent advances in maritime technology,
the sonar data used to address this task can be collected by an ASV or an AUV

with no human intervention. Detection and intervention on man-made ob-
jects are costly tasks and imply inherent danger and time constraints. Thus,
to equip the autonomous vehicle with intelligence so that it can immediately
react to the data it collects is a priority. Before this goal can be realized, how-
ever, an algorithm is needed that can perform object detection in realtime
onboard.

Two sorts of sonar technology in particular have proved useful for auto-
matic man-made object detection. On one hand, long range, high resolution
imagery provided by SSS and especially by SAS allows for performing detec-
tion in vast survey areas (i.e. hundreds of meters long survey tracks). On



B.2 realtime underwater object detection using fls 171

the other hand, multibeam FLS allows for a closer, more detailed inspection
of possible man-made object locations. A typical approach to the problem
consists in first detecting possible object locations in SSS or SAS imagery, and
then performing reacquisition of these locations by means of FLS to assess
that there are in fact objects of interest in such locations, and perhaps carry-
ing out some intervention task on them.

Hayes and Gough (1992) showed that the high-resolution imagery pro-
vided by SAS is suitable for the detection of man-made objects on the seabed.
In the past few years, several man-made object detection methods have been
proposed for SSS and SAS imagery (Dobeck et al., 1997; Reed et al., 2003;
Fawcett et al., 2006; Maussang et al., 2007; Groen et al., 2009; Williams and
Groen, 2011). These methods are suitable for detecting possible locations of
man-made objects on vast surveyed areas of the sea floor. Nonetheless, after
this large-scale detection one might need to reacquire the detected targets for
a closer and more in-detail inspection task, for which FLS is a more suitable
option than SSS or SAS. Therefore, there is a need to perform automatic detec-
tion also with FLS in order to conduct fully autonomous detection missions
with an ASV or an AUV.

Some generic obstacle detection methods for FLS have been proposed as
well. Lu and Sang (1998) make use of image processing techniques and the
near field acoustic scattering principles of underwater targets to estimate the
two-dimensional position and size/shape of nearby targets. Guo et al. (1998)
use the continuous image sequences generated by an electronic scanning FLS

to achieve the aim of obstacle avoidance and visual navigation for an AUV.
Here, they use a track-before-detect strategy to extract information contained
in image sequences to estimate the dynamics of the AUV, then they apply a
dynamic programming algorithm to solve the problem of detection. This
method aims to reduce the computational cost to meet the realtime demand
on obstacle avoidance and navigation of an AUV system.

However, the critical demand for realtime signal processing and the uncer-
tainties of the AUV’s dynamics make online detection of obstacles a challeng-
ing task. Martin et al. (2000) propose an obstacle detection method where the
FOV of the FLS is sub-divided into various cells. The cells are filled with the
raw intensity data collected from the FLS sensor. For each filled cell, a cell
signature is computed. The maximum signature cell is extracted from the
grid. This cell contains transformed target information such as range, bear-
ing to target, and cell signature. Petillot et al. (2001) describe a framework for
segmentation of sonar images, tracking of underwater objects and motion es-
timation. The realtime data flow (acoustic images) acquired with multibeam
FLS is first segmented and relevant features are extracted. This framework is
applied to the design of an obstacle avoidance and path planning system for
underwater vehicles.

However, little attention has been paid to the specific problem of man-
made object detection with FLS. Moreover, the aforementioned methods suf-
fer from several limitations that preclude them from being a suitable option
for seabed man-made object detection. In particular:
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• Most detection algorithms rely on training data from a different area
and hence do not take into account the particular environmental con-
ditions where the surveying takes place. Thus, such methods are not
able to dynamically deal with different seabed compositions in differ-
ent regions.

• Generic obstacle detection algorithms do not consider domain-specific
geometrical and physical knowledge about the man-made object to be
detected.

Aiming to address and overcome these limitations, we propose a novel ob-
ject detection algorithm for reacquisition of man-made objects on the seabed
using multibeam FLS. To achieve this objective, we borrow ideas from the de-
tection algorithm for SAS imagery proposed by Williams and Groen (2011).
Our proposed method explicitly takes into account environmental character-
istics and other geometrical knowledge about the problem domain.

Next, the proposed detection algorithm is described in Section B.2.1. Ex-
perimental results on real autonomous missions conducted at sea with the
Gemellina ASV are presented in Section B.2.2. Lastly, directions for possible
extensions of the proposed algorithm are given in Section B.2.3.

b.2.1 Proposed Detection Algorithm

We propose a detection algorithm whose overall objective is to detect under-
water man-made objects of interest on FLS imagery. The algorithm needs to
be made fast as it is intended to run in realtime onboard an autonomous
vehicle with (possibly) limited computational resources. Since no human
intervention is allowed, the algorithm is designed to deal with changing en-
vironmental conditions that have a direct effect on the collected sonar data.
At the same time, the proposed method addresses the limitations stated in
the previous section.

The main idea of the algorithm is to locate echo highlights that are lo-
cally higher than their background. As in the object detection algorithm
intended for SAS imagery presented by Williams and Groen (2011), the suc-
cessive phases of the algorithm are concatenated in such a way that compu-
tational costs are minimized by operating on smaller portions of the image
at each phase. Also as in the aforementioned work, the integral-image rep-
resentation is used to speed up the algorithm. We take advantage of the a
priori knowledge about the object (i.e., shape, size, etc.) by applying filtering
steps in order to consider only highlights corresponding to an actual object
of interest. The following sections will describe each step of the detection
algorithm that resulted from these considerations. Each step will be demon-
strated on an example FLS image (see Figure 112).

b.2.1.1 Region of Interest of the Sonar Image

The proposed algorithm is designed to work on a rectangular ROI of the
sonar images. This design criteria is based on two reasons. First, it allows
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avoidance of noisy or poor-quality areas of the sonar image produced by
some sonars at certain ranges. Second, it aids speeding up the detection by
not processing the entire image, but only a subregion of it. Hence, from the
very beginning, every step discussed hereafter will be applied only inside
the predetermined ROI.

The rectangular ROI is specified by the position of its top-left corner in a
Cartesian coordinate system with origin at the sonar head. This coordinate
system will be used by all the subsequent phases of the algorithm. In our
particular case, using a maximum range of 25 m the top-left corner (xr,yr)
of the rectangle was located at xr = −11.5 m, yr = 23 m from the sonar head,
with a width, wr = 23 m and a height, hr = 11 m (see Figure 112a).

Naturally, the ROI can be enlarged to the entirety of the image if the partic-
ular sonar images used are of good quality all along the sonar range and if
the computational resources of the vehicle allow for realtime processing of
entire images.

b.2.1.2 Integral Image

An integral image (Viola and Jones, 2004), also called a summed area table,
is a representation of an image that allows for fast computation of the sum
of pixel values in a given rectangular area of the image. In subsequent stages
of the algorithm, we will exploit this image representation for quickly assess-
ing certain distinguishing characteristics of objects, such as background and
echo levels. The fast calculations allowed by the use of the integral-image
representation also make realtime detection possible. Thus, rather than op-
erating on the pixel-based system of the sonar image, we immediately trans-
form to an integral-image system, which contains equivalent information.

The corresponding integral image, I, of an original sonar image, A, is con-
structed as follows. The value at a location (x,y) in the integral image corre-
sponds to the sum of pixel values above and to the left of (x,y), inclusive, in
the original image, A. That is,

I(x,y) =
∑

x′6x,y′6y

A(x′,y′). (26)

The integral image is quickly generated by applying the following recur-
sive relation:

I(x,y) = I(x− 1,y) + z(x,y), (27)

where z(x,y) is the cumulative sum of pixels in a row of the original
image,

z(x,y) = z(x,y− 1) +A(x,y). (28)

As can be noticed, the integral image is computed in only one pass over
the original image. Using the integral image, the sum of pixel values in
any arbitrary rectangle in the image can be computed with only four array
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references to the integral image (without the need for referencing all the
involved pixels in the original image). We will take advantage of this fact in
our algorithm. The integral-image representation corresponding to the ROI

of the sonar image in Figure 112a is shown in Figure 112b overlapped on the
original image. It is worth noticing that once the integral image is calulated,
the algorithm uses this representation in the subsequent stages rather than
the original image.

b.2.1.3 Background Estimation

The first use of the integral image, I, is in the estimation of the sonar-image
background map, B. The purpose of the background map is to establish the
seabed reverberation level. Once established, the reverberation level will be
used subsequently to determine locations of echo highlights in the image.

The reverberation level strongly depends on the seabed composition. Thus,
using a predefined threshold for all possible seabed types to determine
which pixels correspond to the seabed is not a reliable option. For exam-
ple, the reverberation level of a soft muddy bottom will be lower than that
of a bottom of hard-packed sand (Williams and Groen, 2011).

For this reason, an approach that defines the background level accord-
ing to some global intensity average over the sonar image could fail catas-
trophically. Rather than using some global threshold, we argue that the back-
ground estimation should be performed locally in the image.

We do this local estimation by using two different-sized, concentric sliding
windows: a bigger, outer window with an inner, smaller window laying in-
side the bigger one. For each pixel in the ROI of the sonar image, we compute
the mean pixel value of the neighbor pixels laying in the bigger window, but
we ignore the pixels laying in the inner window. Pixels in the inner window
are ignored because, if an object were present, they would correspond to a
high-intensity echo return related to the object.

Window sizes can be adjusted according to the object we want to search
for. In our particular case, the bigger, outer window has width, box = 4

m in the sonar’s X axis and height, boy = 4 m in the sonar’s Y axis; the
smaller, inner window has width, bix = 1 m and height, biy = 1 m. The
background score at location (x,y), B(x,y), is then the mean pixel value in
the bigger window centered around (x,y), ignoring pixels laying inside the
smaller window.

The calculation of the two rectangles involved in the background value at a
given location can be computed quickly using the integral-image representa-
tion. A total of only eight array references to the integral image are necessary
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to compute the values for the two rectangles (four references per rectangle).
Specifically, the background score at pixel location (x,y) is calculated as

B(x,y) = (no −ni)
−1×
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(29)

where δox, δoy, δix and δiy are the number of pixels that correspond to
box,boy,bix and biy, respectively, and no and ni are the total number of
pixels involved in the sums of the outer window rectangle and the inner
window rectangle, respectively, so that the result is the mean pixel value of
the pixels laying inside the outer window but not in the inner window*. The
background map corresponding to the ROI of the sonar image in Figure 112a
is shown in Figure 112c.

b.2.1.4 Echo Estimation

Once the background estimation is ready, the integral image is used again
to construct an echo map. The purpose of the echo map is to help determine
locations of high-intensity echo returns in the image that might have been
produced by objects of interest.

The echo map is constructed using a single sliding window. The size of the
sliding window used to construct the echo map is related to the size of the
object we want to detect. Here, we use a window with width, ex = 1.5m and
height, ey = 1.5 m. For each pixel in the ROI of the sonar image, we compute
the mean pixel value of the neighboring pixels laying in the window. The
echo map value at location (x,y), E(x,y), is then the mean pixel value in the
window. Again thanks to the integral-image representation, each value can
be computed quickly with only four array references to the integral image.
Specifically, the echo map value at location (x,y) is calculated as

E(x,y) = (ne)
−1×
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(30)

where δex and δey are the number of pixels that correspond to ex and
ey, respectively, and ne is the total number of pixels involved in the sum of

* After the sea trials discussed below, we figured out that the background score calculation in
Equation 29 does not produce the expected result. Instead, the calculation should be either
performed on the original image or rather on the integral image but using the four rectangles
that actually contribute to the background scoring.
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the rectangle so that the final echo value is the mean pixel value inside the
rectangle.

The echo map corresponding to the ROI of the sonar image in Figure 112a
is shown in Figure 112d.

b.2.1.5 Potential Alarms Determination

After a background map, B, and an echo map, E, are constructed, the re-
gions of the image that may possibly contain targets of interest are deter-
mined. Any pixel for which the echo map value is sufficiently higher than
the corresponding background map value is declared to be a ROI that will
receive further investigation. Specifically, if E(x,y) > βB(x,y), then the pixel
(x,y) is considered to be part of an echo highlight and therefore a potential
alarm that will receive further examination. The scaling factor β adjusts the
severity of the requirement for echo highlights. (Essentially, this defines that
an echo highlight is when the pixel value is a certain amount more than
the average value of the surrounding background.) We use β = 1.2 in our
particular application.

This test is the first data-reduction stage of the detection process. It achieves
a considerable reduction in pixels that must be examined further. In practice,
more than 80% of the pixels are usually removed in this step. Thus, compu-
tational costs on all the subsequent stages are greatly reduced.

The binary result of the background and echo map comparison is shown
in Figure 112e, where white pixels correspond to regions of potential alarms
that will be investigated further. Also in this very same phase, a standard
labeling algorithm is applied to the resulting binary image. Therefore, on
the subsequent stages we will only work with the potential alarm “blobs”
determined here. As can be noticed, there are three such blobs in Figure 112e
in our case.

b.2.1.6 Geometrical and Morphological Filtering

Next, the determined potential alarm regions are filtered according to their
geometrical and morphological properties. The purpose of this step is to
filter out potential alarm regions with a geometry and/or morphology that
do not correspond to the object we want to detect.

We use the major axis length and the minor axis length of the potential
alarm region to determine if it must be discarded. Specifically, a region will
be discarded if any of the following conditions is met:

• Region’s major axis length is longer than a certain maximum major
axis length, Mmax.

• Region’s major axis length is shorter than a certain minimum major
axis length, Mmin.

• Region’s minor axis length is longer than a certain maximum minor
axis length, mmax.
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• Region’s minor axis length is shorter than a certain minimum minor
axis length, mmin.

Depending on the objects we want to detect, other region properties can
be used for filtering, e.g. the circularity coefficient or the area. The map of
potential alarms that remain after this stage are shown in Figure 112f.

b.2.1.7 Echo Scoring and Thresholding

Next, the echo score is calculated for the remaining potential alarms. For
each alarm, i, its echo score, si, is the mean pixel value of all the pixels in
the region, that is:

si =
∑

∀(x,y)∈Ai

(x,y), (31)

where Ai is the set of pixels, (x,y) constituting the potential alarm i.
As the potential alarm blobs are not rectangular regions in general, the

integral-image representation can not be used. Here however, the amount
of pixels in each blob is typically small (as ensured by the previous geo-
metrical and morphological filtering step), and therefore the computational
performance of the algorithm is not compromised.

The echo scores are directly related to the intensity strength of the ob-
jects, which means that a detection threshold can be determined rigorously.
Specifically, the threshold can be set such that we wish to detect any object
for which the intensity strength exceeds a given level.

The final stage of the detection process removes those areas for which the
echo score is below the desired threshold. The map of potential alarms that
remain after this stage are shown in Figure 112g.

b.2.2 Experimental Results

In October 2011, NURC conducted the Autonomous Neutralization Trials
(ANT’11) off the coast of Isola d’Elba, Italy. During this sea trial, four tar-
gets of two different shapes were deployed on the seafloor: cylinder shape
and truncated cone shape. Targets were laying at depths ranging from 5 to
12 m. Multi-beam forward-looking sonar data were collected and processed
in real time by the Gemellina ASV, which is equipped with a BlueView P900-
130 900 kHz sonar. The sonar is mounted on a variable-depth pole (0 to 2 m
depth) in the center of the ASV. The sonar can also be oriented by means of
a pan and tilt unit (see Figure 113).

The detection system presented here was implemented and fully inte-
grated into Gemellina’s software system, hence being able to run in real time.
The algorithm was implemented in C++ and integrated in the Gemellina’s
Mission Oriented Operating Suite (MOOS)-based (Newman, 2007) architec-
ture.

In order to test the proposed detection algorithm, several autonomous
detection missions were carried out with Gemellina ASV. Those missions



178 underwater obstacle detection

(a) Original sonar image. (b) Integral image.

(c) Background map. (d) Echo map.

(e) Potential alarms after comparison. (f) Potential alarms after geometrical and
morphological filtering.

(g) Final result after echo thresholding.

Figure 112: Object detection algorithm using FLS. A ROI of the original sonar im-
age defined in the sonar coordinates system (a) is converted into its
equivalent integral-image representation (b), which is then used to gen-
erate a background map (c) and an echo map (d). The comparison of
the background map and the echo map generates a map of potential
alarms (e). These potential alarms are then filtered according to their
geometry and morphology (f). Next, an echo score is given to each re-
maining potential alarm. Finally, echo scores are thresholded producing
discrete detections (g).
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Figure 113: The Gemellina ASV being deployed. 1: variable-depth pole; 2: pan and
tilt unit; 3: BlueView P900-130 sonar.

consisted of navigating around an a priori known target location tracing one
of the two following target reacquisition patterns:

• The ASV circles around the target location, always keeping the target in
the field of view of the sonar (see Figure 114a). Circle radius is 15 m.

• The ASV traces a cross pattern centered on the target location. Each arm
of the cross is 40 m long and the vehicle goes along each arm of the
cross twice. The target is not always in the field of view of the sonar.
See Figure 114b.

The maximum range of the sonar was set to 25 m in all missions because
from the field trials in these environmental conditions we concluded that
this was the limit for this type of sonar.

(a) Circle-around mission (b) Cross-pattern mission

Figure 114: Trajectory patterns traced by the ASV around the known target locations.

During every mission, the detection algorithm was run in every sonar
ping, at a rate of approximately 2 pings per second. If a positive detection
occurred, its location in the world coordinate frame (i.e., UTM coordinates)
was stored for further examination. At the end of the mission, the mean
position of all the stored detections was computed. Here we assume that
most of the detections will be true positives, i.e., its location will correspond
to the real target since the targets were deployed on a flat, sandy bottom
without clutter around them.
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A total of eight missions, four for each type of target (cylinder and trun-
cated cone), were run to test the algorithm. Table 4 shows, for each mission,
the pattern traced by the ASV, the target depth and the distance error of the
computed location with respect to the a priori known location.

mission pattern target type target depth distance error

Circle Trunc. cone 6 m 3.8 m

Circle Trunc. cone 10 m 1.6 m

Circle Cylinder 5 m 1.1 m

Circle Cylinder 12 m 3 m

Cross Trunc. cone 6 m 2.6 m

Cross Trunc. cone 10 m 1.4 m

Cross Cylinder 5 m 0.6 m

Cross Cylinder 12 m 1.6 m

Table 4: Target detection mission results.

b.2.3 Possible Extensions

A novel algorithm for the detection of underwater man-made objects on FLS

imagery able to run in real time has been presented. The proposed pioneer-
ing and promising approach addresses limitations of existing generic under-
water object detection algorithms by considering specific domain knowledge
of the problem. By taking advantage of integral-image representations and
by progressively reducing the computational burden at every stage, the algo-
rithm allows for realtime detection onboard an ASV or an AUV, as has been
demonstrated in real experiments conducted at sea.

If one can assume that the objects to be detected will not be located in
cluttered environments, we believe it is interesting to investigate the possi-
bility of adding density filtering to the algorithm, that is, to ignore alarms
concentrated on a certain small area.

Considering shadows casted by objects on the seabed can potentially help
reduce the number of false alarms. To achieve this, an extra step might be
added to the algorithm’s cascaded architecture to make only objects that cast
a shadow prevail.

Finally, we believe that the presented algorithm can be extended to per-
form detection and tracking of a mid-water target, such as a moving Un-
manned Underwater Vehicle (UUV). Promising preliminary experimental re-
sults were already obtained in this regard during the ANT’11 sea trials.
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S TA RT- T O - G O A L PAT H P L A N N I N G A L G O R I T H M S

“Start-to-goal” path planning algorithms that find a collision-free path from
a start state to a goal state have been used or mentioned throughout this
thesis , by contrast to coverage path planning that seeks to cover an area.
For instance, the A* path planner was used in Chapter 3 to connect coverage
paths in different cells or regions. Here, we provide an introduction to some
of these path planning algorithms.

c.1 search-based planning : the a* algorithm

A* (Hart et al., 1968; Russell and Norvig, 2003) extends Dijkstra’s algorithm
by incorporating a heuristic to the cost estimation of paths from each node of
a graph to the goal. (Dijkstra’s algorithm (Dijkstra, 1959) is an efficient search
algorithm for finding the optimal path in a graph when no other information
apart from a graph is given.) That is, A* operates in a discrete or discretized
environment, such as an occupancy grid. Each node is ordered according
to the sum of its current path cost from the start and a heuristic estimation
of its path cost to the goal. The node with the minimum value is evaluated
first, since it is the most promising to belong to an optimal path from the
start node to the goal node. When applied to path planning, the algorithm
uses an optimistic heuristic to ensure that the shortest path is found. For
instance, the straight line distance from a node to the goal can be used as an
optimistic heuristic. A* is complete and optimal, that is, it tells whether or
not a path to the goal exists and, if so, find the optimal path.

The complete A* algorithm is given in Algorithm 6. The algorithm plans
a path from an initial state sstart ∈ S to a goal state sgoal ∈ S, where S
is the set of states in some finite state space, such as a graph or a grid. To
do this, it stores an estimate g(s) of the path cost from the initial state to
each state s. Initially, g(s) = ∞ for all states s ∈ S. The algorithm begins by
updating the path cost of the start state to be zero and then places this state
onto a priority queue known as the OPEN list. Each element s in this queue
is ordered according to the sum of its current path cost from the start, g(s),
and a heuristic estimate of its path cost to the goal, h(s, sgoal). The state with
the minimum such sum is at the front of the priority queue. The heuristic
h(s, sgoal) typically underestimates the cost of the optimal path from s to
sgoal and is used to focus the search. The algorithm then pops the state s at
the front of the queue and updates the cost of all states reachable from this
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state through a direct edge (its neighbors). If the cost of state s, g(s), plus
the cost of the edge between s and a neighboring state s ′, c(s, s ′), is less than
the current cost of state s ′, then the cost of s ′ is set to this new, lower value.
If the cost of a neighboring state s ′ changes, it is inserted into the OPEN list.
The algorithm continues popping states off the queue until it pops off the
goal state. At this stage, if the heuristic is admissible, i.e. guaranteed to not
overestimate the path cost from any state to the goal, then the path cost of
sgoal is guaranteed to be optimal. The path found by the algorithm can be
then retraced from the goal state via backtracking. Figure 115 illustrates the
execution of A* on an example environment.

Algorithm 6: A*
Input: sstart and sgoal states.
foreach s ∈ S do1

g(s)←∞2

g(sstart) = 03

OPEN = ∅4

Insert sstart into OPEN with value g(sstart) + h(sstart, sgoal)5

while arg min
s∈OPEN

(g(s) + h(s, sgoal)) 6= sgoal do
6

Remove state s from the front of OPEN7

foreach s ′ ∈ Neighbors(s) do8

if g(s ′) > g(s) + c(s, s ′) then9

g(s ′) = g(s) + c(s, s ′)10

Insert s ′ into OPEN with value g(s ′) + h(s ′, sgoal)11

return12

c.2 sampling-based planning : prm and rrt

Deterministic algorithms such as A*, described above in Section C.1, rely on
an explicit representation of the geometry of the space free of obstacles. Be-
cause of this, as the dimension of the configuration space grows, these plan-
ners become impractical. Therefore, these planners fail to find a solution in
reasonable time in high-dimensional state spaces or for systems with differ-
ential constraints, such as a 7-DOF robotic arm or a second-order car model.
Sampling-based path planning algorithms were developed to address these
problems. These algorithms explore the space free of obstacles by taking
collision-free samples at random and seeking to locally connect them with
simple paths in order to obtain a global path from a start state to a goal
state. This strategy capitalizes on the fact that it is much faster to check a
given state for collision than explicitly constructing a path and has proven
tremendously successful in the last two decades. However, these algorithms
are not complete, that is, they do not report whether a solution exists or not.
They can only be proven probabilistically complete, meaning that they will
find a solution as the number of samples approaches infinity.
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(a) (b)

(c) (d)

Figure 115: Execution of the A* algorithm on an example environment at succes-
sive steps of the exploration process (a)-(c). (d) The path recovered via
backtracking from the goal. Image credit: Hernandez (2012).
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We next describe two of the most popular sampling-based path planning
algorithms: Probabilistic Roadmap (PRM) (Kavraki et al., 1996) and Rapidly-
exploring Random Tree (RRT) (LaValle and Kuffner, 2000). PRM constructs a
graph representation of the free space by taking collision-free random sam-
ples of the workspace and connecting them with simple paths. Then, given
a planning query with a start and a goal, the start and the goal are con-
nected to the graph and the graph is searched for a solution using a stan-
dard graph search algorithm. By contrast, RRT incrementally grows a tree
structure guided by random sampling and stops when the tree reaches the
goal.

c.2.1 The PRM Algorithm

The PRM algorithm is given in Algorithm 7. It constructs a graph representa-
tion of the free space (called a roadmap) by taking a set of collision-free ran-
dom samples. Then these samples are connected to their nearest neighbors
by a local path planning generating simple paths that observe any dynamic
constraints on the robot, e.g. straight line paths. Only the collision-free local
paths are added to the roadmap. Once the roadmap is constructed, it can be
searched using standard graph search algorithms (e.g. Dijkstra’s algorithm)
to find a solution to a given planning query consisting of a start state and a
goal state. Note that the same roadmap can be reutilized for multiple plan-
ning queries, with no need to building it from scratch for each query. The
PRM path planning procedure is illustrated in Figure 116.

c.2.2 The RRT Algorithm

The RRT algorithm, listed in Algorithm 8, is a random sampling-based al-
gorithm useful for exploring large states spaces that cannot be searched ex-
haustively. It iteratively chooses a random point p in the state space (by
means of the RANDOM STATE function) and attempts to extend the cur-
rent search tree toward that point, as depicted in Figure 117a. The extension
is performed by considering the random point p, and its nearest neighbor
q, within the tree T . The NEW STATE function determines a control in-
put unew that observes any dynamic constraints on the robot, and which,
when applied to the robot at state q, results in some new state xnew. If
NEW STATE finds a new state and control input without violating dynamic
constraints or colliding with an obstacle, the new state and input are added
to the tree. This process of selecting a node and extending the tree from there
repeats until a state within some tolerance of the goal, xgoal, is added to the
tree. An example execution of the algorithm is shown in Figure 117b.
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Algorithm 7: PRM

Input:

• n: number of nodes to put in the roadmap

• k: number of closest neighbors to examine for each configuration

Output: A roadmap G = (V ,E)
V ← ∅1

E← ∅2

while —V— ¡ n do3

repeat4

q← a random configuration5

until q is collision-free6

V ← V ∪ {q}7

foreach q ∈ V do8

Nq ← the k closest neighbors of q chosen from V according to some9

distance measure
foreach do10

if (q,q ′) /∈ E and CONNECT(q,q ′) 6= ∅ then11

E← E∪ {(q,q ′)}12

return G13

Algorithm 8: RRT

T .init(xstart)1

while xgoal /∈ T do2

p← RANDOM STATE()3

q← NEAREST NEIGHBOR(p, T )4

if NEW STATE(p,q, xnew,unew) then5

T .add vertex(xnew)6

T .add edge(q, xnew,unew)7

return T8
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 116: Execution of the PRM algorithm. Starting with a map of the environ-
ment (a), a set of random samples throughout the workspace is ob-
tained (b). After checking them for collisions (c), only the samples in
the free space are considered (d). Each sample (node of the PRM) is con-
nected to its nearest neighbors by simple paths (edges) (e), only keeping
the collision-free edges. As a result, a graph representing the free space
of the environment is obtained (f). To solve a planning query, the start
and goal states are connected to their nearest node in the graph, re-
spectively, (g) and the graph is searched to obtain a solution (h). Image
credit: Department of Electrical Engineering, University of Linköping
(http://www.matlabinuse.com/11519).

http://www.matlabinuse.com/11519
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(a) (b)

Figure 117: Execution of the RRT algorithm. (a) An RRT extension. (b) Example path
found with the RRT algorithm.





B I B L I O G R A P H Y

Acar, E. and Choset, H. (2002a). Sensor-based coverage of unknown environ-
ments: Incremental construction of morse decompositions. International
Journal of Robotics Research, 21(4):345–366. 15, 18

Acar, E., Choset, H., and Atkar, P. (2001). Complete sensor-based coverage
with extended-range detectors: a hierarchical decomposition in terms of
critical points and voronoi diagrams. In Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, volume 3, pages 1305

–1311 vol.3. 22

Acar, E. U. and Choset, H. (2000). Critical point sensing in unknown environ-
ments. In Proceedings of the 2000 IEEE International Conference on Robotics &
Automation. 18

Acar, E. U. and Choset, H. (2001). Robust sensor-based coverage of unstruc-
tured environments. In Proc. IEEE/RSJ International Intelligent Robots and
Systems Conference, volume 1, pages 61–68. 15

Acar, E. U. and Choset, H. (2002b). Exploiting critical points to reduce posi-
tioning error for sensor-based navigation. In Proc. IEEE Int. Conf. Robotics
and Automation ICRA 2002, volume 4, pages 3831–3837. 40, 50

Acar, E. U., Choset, H., and Lee, J. Y. (2006). Sensor-based coverage with
extended range detectors. IEEE Transactions on Robotics, 22(1):189–198. 22,
47

Acar, E. U., Choset, H., Rizzi, A. A., Atkar, P. N., and Hull, D. (2002). Morse
decompositions for coverage tasks. International Journal of Robotics Research,
21(4):331–344. 12, 15, 17, 19, 22, 47, 53, 54, 81

Acar, E. U., Choset, H., Zhang, Y., and Schervish, M. (2003). Path plan-
ning for robotic demining: Robust sensor-based coverage of unstructured
environments and probabilistic methods. International Journal of Robotics
Research, 22(7-8):441–466. 9, 21

Adhami-Mihosseini, A., Aguiar, A., and Yazdanpanah, M. (2011). Seabed
tracking of an autonomous underwater vehicle with nonlinear output reg-
ulation. In Decision and Control and European Control Conference (CDC-ECC),
pages 3928 – 3933. 106

Agmon, N., Hazon, N., and Kaminka, G. (2006). Constructing spanning trees
for efficient multi-robot coverage. In Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on, pages 1698 –1703.
42

189



190 bibliography

Ahmadzadeh, A., Keller, J., Jadbabaie, A., and Kumar, V. (2006). An
optimization-based approach to time critical cooperative surveillance and
coverage with unmanned aerial vehicles. In International Symposium on
Experimental Robotics. 43, 51

Alterovitz, R., Simeon, T., and Goldberg, K. (2007). The stochastic motion
roadmap: A sampling framework for planning with markov motion un-
certainty. In Robotics: Science and Systems III (Proc. RSS 2007). 69

Amat, J., Monferrer, A., Batlle, J., and Cufi, X. (1999). Garbi: a low-cost
underwater vehicle. Microprocessors and Microsystems, 23(2):61–67. 6

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2006). The Travel-
ing Salesman Problem: A Computational Study. Princeton University Press.

Arkin, E. M., Fekete, S. P., and Mitchell, J. S. (2000). Approximation algo-
rithms for lawn mowing and milling. Computational Geometry, 17(1-2):25 –
50. 10

Arkin, E. M. and Hassin, R. (1994). Approximation algorithms for the geo-
metric covering salesman problem. Discrete Applied Mathematics, 55(3):197–
218. 10

Atkar, P., Choset, H., and Rizzi, A. (2003). Towards optimal coverage of 2-
dimensional surfaces embedded in ir3: choice of start curve. In Intelligent
Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ Interna-
tional Conference on, volume 4, pages 3581 – 3587 vol.3. 36

Atkar, P., Conner, D., Greenfield, A., Choset, H., and Rizzi, A. (2009). Hier-
archical segmentation of piecewise pseudoextruded surfaces for uniform
coverage. Automation Science and Engineering, IEEE Transactions on, 6(1):107

–120. 49

Atkar, P., Greenfield, A., Conner, D., Choset, H., and Rizzi, A. (2005a). Hier-
archical segmentation of surfaces embedded in r3 for auto-body painting.
In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pages 572 – 577. 36

Atkar, P., Greenfield, A. L., Conner, D. C., Choset, H., and Rizzi, A. (2005b).
Uniform coverage of automotive surface patches. The International Journal
of Robotics Research, 24(11):883 – 898. 9, 33, 36

Atkar, P. N., Choset, H., Rizzi, A. A., and Acar, E. U. (2001). Exact cellular
decomposition of closed orientable surfaces embedded in r3. In Proc. Int.
Conf. Robotics and Automation, volume 1, pages 699–704. 34, 49, 99

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
and Protasi, M. (1999). Complexity and Approximation. Combinatorial opti-
mization problems and their approximability properties. Springer Verlag. 71

Bang, F. (1956). A bacterial disease of limulus polyphemus. Bulletin of the
John Hopkins Hospital, 98(5):325–351. 2



bibliography 191

Barkby, S., Williams, S., Pizarro, O., and Jakuba, M. (2012). Bathymetric par-
ticle filter slam using trajectory maps. The International Journal of Robotics
Research. 80

Barrientos, A., Colorado, J., del Cerro, J., Martinez, A., Rossi, C., Sanz, D.,
and Valente, J. (2011). Aerial remote sensing in agriculture: A practical ap-
proach to area coverage and path planning for fleets of mini aerial robots.
Journal of Field Robotics, 28(5):667–689. 44

Bartels, R. H., Beatty, J. C., and Barsky, B. A. (1987). An Introduction to Splines
for Use in Computer Graphics &Amp; Geometric Modeling. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. 109

Batalin, M. A. and Sukhatme, G. S. (2002). Spreading out: A local approach
to multi-robot coverage. In Proceedings of the 6th International Symposium on
Distributed Autonomous Robotics Systems, pages 373–382. 43

Batlle, J., Ridao, P., Garcia, R., Carreras, M., Cufı́, X., El-Fakdi, A., Ribas, D.,
Nicosevici, T., Batlle, E., Oliver, G., Ortiz, A., and Antich., J. (2004). Automa-
tion for the Maritime Industries, chapter URIS: Underwater Robotic Intelli-
gent System, pages 177–203. Instituto de Automática Industrial, Consejo
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