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Abstract. We study the lysis timing of a bacteriophage population by means
of a continuously infection-age-structured population dynamics model. The
features of the model are the infection process of bacteria, the natural death
process, and the lysis process which means the replication of bacteriophage
viruses inside bacteria and the destruction of them. We consider that the
length of the lysis timing (or latent period) is distributed according to a gen-
eral probability distribution function. We have carried out an optimization
procedure and we have found the latent period corresponding to the maximal
fitness (i.e. maximal growth rate) of the bacteriophage population.

1. Introduction

Most Bacteriophage viruses (etymologically “bacteria eater”) replicate inside
bacteria causing the death of their host. This process starts when a phage (for
short) is adsorbed by the receptors of the cell membrane and injects its genetical
material through it. After some time interval the cell machinery of the bacterium
synthesizes copies of the virus nucleic acid, the proteins of the capsules and the
tails of the new phages. Finally the bacterium lyses (“explodes” and dies) re-
leasing an amount of new virions (called burst size) which widely varies between
5 and 250 depending on the strain. This process, replication of phages linked
to destruction of bacteria, obviously indicates that the treatment of bacterial
infections using phages can be useful as a therapeutic tool. Indeed, after being
almost forgotten due to the discovery of antibiotics, the so called phage therapy
is nowadays becoming more popular since the emergence of the antibiotic resis-
tances. In particular, this work, though it has no therapeutic implications, was
partially motivated by a research project of the Department of Genetics and Mi-
crobiology at the Universitat Autònoma de Barcelona, whose goal is the control
of Salmonella infections in animal farms by means of bacteriophages.

The already mentioned period of time between the infection (the adsorption
of a virus particle by a bacterium) and the lysis is called lysis timing or latent
period. According to experimentalists, the average length of the lysis timing is
from 15 minutes (such a short latency time has been observed in the adsorption
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of a phage called C78 by a strain of Salmonella enterica) up to 45 minutes in
the case of other Salmonella phages for instance. In this paper we focus on
this latent period and how is related to the virus population growth rate. More
precisely, we compute the latent period giving the maximal growth rate of the
phage population (the maximal fitness), among a very general form of latent
periods. In [8] a similar computation was performed in order to find the optimal
age of sex-reversal in sequential hermaphrodite populations, also assuming an a
priori very general form of the possible distributions of age of sex-reversal.

In many papers of epidemiological models, the latent periods (understood in
general as the period when infected individuals are not infectious yet) are typically
assumed to be either exponentially distributed or fixed. This assumptions yield
ordinary differential equations systems in the first case, and delay differential
equations in the second one.

In the present paper we introduce and analyze a structured bacteriophage
population model where we extend the previous assumption in the sense that we
consider a general probability distribution function for the length of the latent
period.

In the literature we find several papers on the dynamics of marine plankton
bacteriophage infections. In [5] the latent period is assumed to be exponentially
distributed and in [6] instead, the latent period has a fixed length. Moreover, in
[10] the authors include in addition spatial diffusion of the population.

On the other hand, see [1, 2, 18, 17] for models and experimental results on
the latent period from the evolutionary point of view.

The paper is organized as follows. In Section 2 a bacteriophage infection is de-
scribed and an (infection age)-structured population model with a general lysis
timing is introduced. Two versions of the system are stated depending on either
the probability distribution of the latent period is assumed to be absolutely con-
tinuous (to have a density function) or not. In the first case the model reduces
to an age-structured population dynamics system given by a partial differential
equation coupled to an integro-differential equation whereas the second, which
includes the former as a particular case, is directly formulated as a delay equation.
Existence and uniqueness of global solutions, which yield a strongly continuous
semigroup, is shown in Appendix A through the reduction to a single integral
equation for the number of phages. In Section 3, the bacteriophage fitness is
defined as the growth bound of the solution semigroup. Exponentially growing
solutions (separate variables solutions) are computed. The control of this growth
bound is reduced to the computation of the eigenvalues of the infinitesimal gener-
ator. There exists at most one real eigenvalue. Finally, in Section 4 the maximal
latent period is computed and corresponds to a fixed length period even if the
lysis process may take place at a different infection-age for each bacterium.
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2. Model formulation

We consider a micro-epidemiology model made up by free bacteriophage viruses
infecting a population of bacteria with variable lysis timing (also called latent
period) as the main new feature of the model.

In the lytic cycle, the interaction between phages and bacteria is described
as follows: viruses attack susceptible bacteria which get infected in the sense
that a virus successfully injects its genetical material (adsorption) through the
bacterial membrane. Then, after an eclipse period E ≥ 0 (where the bacterium is
forced to manufacture viral products which will become part of the new virions),
the assembly of new virions starts until the bacterium dies by lysis, that is, the
bacterium explodes releasing new virions which are then free to attack other
infected-free bacteria. The number of particles released in each lysis is called
the burst size. See the diagram in Figure 1 for an schematic representation of
the process. Let us remark that we are considering a type of bacteriophages
(e.g. T4 phages) that inhibits the replication of the infected bacteria, so only
uninfected bacteria are capable of reproducing by division, see [17] p. 22, or [2]
p. 4234. We think these populations inhabiting in a solution and measured in
units of number of viruses/bacteria per unit of volume.

The variability of the lysis timing in the bacterial population is incorporated
into the model by considering that this latent period T > 0, which is defined as
the time elapsed between infection and lysis, is a positive random variable with
a given probability distribution function P (T ≤ τ) = F (τ) where τ is the time
since infection. So, the precise meaning of the latent period in the present paper
is the random period between the moment of being infected and the moment of
releasing the infecting agent. The eclipse period E (i.e. from infection until the
appearance of new virions inside the bacterium) constrains the random latent
period in the sense that P (T ≤ E) = 0.

Bacteria are divided according to the disease stage: uninfected (susceptible)
S(t) and infected (but not infectious). Since we are considering that the lysis
timing (latent period) may differ from one bacterium to another, we introduce
the variable v(τ, t) as the density of infected bacteria with respect to the infection
age (i.e. the time that has passed since the infection) at time t. On the other
hand, the infecting agent is the free bacteriophage virus population P (t).

We also consider the demographic process of natural mortality in both popu-
lations: let δ,m > 0 be the constant per capita mortality rates for viruses and
bacteria respectively.

Finally, let us point out that we are considering populations homogeneously
distributed in space, and that super-infections are ignored.

For a general non-linear model, one can consider that the dynamics for the sus-
ceptible bacteria in absence of viruses is given by S ′(t) = r(S(t), t) with the latter
function being defined according to a specific situation, whereas in case of viral
infection one has S ′(t) = r(S(t), t) − kS(t)P (t) if we assume that the incidence
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rate (number of new infected bacteria per unit of time) follows the law of mass
action. The proportionality factor k > 0 represents the adsorption rate. However,
in the present paper, we will assume that the population of susceptible bacteria
is at equilibrium S(t) = S∗. For simplicity, on the forthcoming we will denote by
S the constant S∗. For instance one can think in a laboratory population where
there is a suitable inflow of uninfected bacteria in order to maintain constant this
population. Also one can think in the initial phase of the infection where a small
amount of phages are introduced in a population of totaly infected-free bacteria
at equilibrium and a linear exponential growth/decay of the infected bacteria and
phages takes place.
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Figure 1. Viral-Bacteria model. Free bacteriophages (“bacteria-
eater”) encounter susceptible bacteria that become infected at a
rate kSP , where k is the adsorption rate. The latent period T , the
time-span from infection to lysis which include an eclipse period E,
is taken as a random variable. After lysis, new virions are released

according to L(t) =
∫ l

0
B(τ) v(τ, t) dF (τ)

1−F (τ)
, where B(τ) is the burst

size and F (τ) is the probability distribution of the latent period.

Now, let us assume for a while that the latent period T > 0 is an absolutely
continuous random variable, i.e. its probability distribution function is an ab-
solutely continuous function. In this case the (infection age)-structured model
can be described by the following linear system which is a combination of a first
order partial differential equation with a boundary condition and an ordinary
differential equation:
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(1)





∂v

∂t
(τ, t) +

∂v

∂τ
(τ, t) = −δ v(τ, t) −

F ′(τ)

1 − F (τ)
v(τ, t) , τ < l ,

v(0, t) = kSP (t) ,

dP

dt
(t) = −mP (t) − kSP (t) +

∫ l

0
B(τ) v(τ, t) dF (τ)

1−F (τ)
.

We recall that the latent period is distributed according to F (τ) (which is non-
decreasing and F (0) = 0) and, accordingly, the maximum age of infection l (> E)
is given by l := sup{τ : F (τ) < 1} ≤ ∞, that is, the lysis may occur between 0

and l, and the rate F ′(τ)
1−F (τ)

represents the per capita virus-induced mortality rate

or the per capita lysis rate. Notice that if the maximum age of infection is finite
(the maximum value of the latent period) then it is l = F−1(1), with the latter
being the generalized inverse of F .

On the other hand, the burst size B(τ) (the amount of new virions released
per lysis) as a function of the infection age at lysis is assumed to be bounded and
continuous, B(τ) ≡ 0 for τ ≤ E, and strictly increasing with B′′(τ) < 0 for τ > E.
Moreover, the maximum burst size limτ→lB(τ) = R > 1 since otherwise there is
no possibility for the spread of the infection. The quantity R is interpreted as a
measure of the quality of the bacteria. The total amount of new virions released

per unit of time is given by
∫ l

0
B(τ) v(τ, t) dF (τ)

1−F (τ)
=
∫ l

0
B(τ) v(τ, t) F ′(τ)

1−F (τ)
dτ .

The lysis rate and the number of particles released are derived as follows.
The number of lysis occurred in the time interval from t to t + dt of bacteria
with infection age between τ < l and τ + dτ is the number of bacteria with
infection age between τ and τ +dτ , at time t, times the probability that a τ -aged
bacterium at time t dies by lysis between t and t+dt. In symbols, v(τ, t) dτ P (τ <

T ≤ τ + dt | T > τ) = v(τ, t) dτ P (τ<T≤τ+dt)
P (T>τ)

= v(τ, t) dτ F (τ+dt)−F (τ)
1−F (τ)

. Therefore,

dividing by dt and taking the limit as dt → 0, one has that the measure of lysis

per unit of time is v(τ, t) F ′(τ)
1−F (τ)

dτ = v(τ, t) dF (τ)
1−F (τ)

, that is, the instantaneous lysis

rate at infection age τ is v(τ, t) F ′(τ)
1−F (τ)

. Finally, multiplying the measure of lysis

by the burst size and integrating over the age-span, one gets the total number of

new virions released per unit of time
∫ l

0
B(τ) v(τ, t) dF (τ)

1−F (τ)
. Let us point out that

this total number, for some initial condition (v(τ, 0), P (0)) = (v0(τ), P0), with
v0(·) ∈ L1

+(0, l) and P0 ≥ 0, and for a particular probability distribution, could
be infinite.

In order to extend the model to a general random variable T > 0, e.g. not
necessarily absolutely continuous, we can write an ‘integrated’ version of system
(1) where the derivative F ′ of the probability distribution of the latent period
disappears from the system. Indeed, defining ν := m + kS > 0, integrating
along the characteristic lines the partial differential equation in (1), and using
the variation of the constants formula to the ordinary differential equation in (1),
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we get the following general (linear) system

(2)





v(τ, t) =





kSP (t− τ)(1 − F (τ)) e−δτ , τ < t ,

v0(τ − t)
1 − F (τ)

1 − F (τ − t)
e−δt , τ > t ,

P (t) = P0e
−νt +

∫ t

0
L(s)e−ν(t−s) ds , L(t) =

∫
(0,l]

B(τ) v(τ, t) dF (τ)
1−F (τ)

,

where dF is defined by P (τ1 < T ≤ τ2) =
∫
(τ1,τ2]

dF (τ) as it is usual in prob-

ability/measure theory. The system above is interpreted as follows. The first
equation says that the density of bacteria with infection age τ < t at time t is
equal to the density of bacteria infected at time t− τ , v(0, t− τ) = kSP (t− τ),
times the probability of not yet lysed at age τ and times the probability of sur-
viving to age τ . On the other hand, the second equation says that the density
of bacteria with infection age τ > t at time t is equal to the initial density of
bacteria with infection age τ − t, v(τ − t, 0) = v0(τ − t), times the probability of
not yet lysed at age τ provided that it has no lysed at age τ − t, and times the
probability of surviving from age τ − t to age τ . The third equation in (2) is just
the integral version of the linear inhomogeneous ordinary differential equation
in (1).

If the latent period T > 0 is an absolutely continuous random variable, it can
be shown that systems (1) and (2) are equivalent in the sense that all solution of
(1) with initial condition (v0(·), P0) is also solution of (2), and that all solution of
(2) fulfills the differential system (1) taking into account that the left hand side
of the partial differential equation is understood as the ‘directional derivative’
in the direction of the vector (1, 1), and understanding that a solution of (1)3 is
given by the variation of the constants formula by definition.

In Appendix A, we show the existence and uniqueness of global solutions to
the general model (2) which are non-negative and yield a strongly continuous
semigroup of bounded (linear) operators. The key point is that system (2) can
be rewritten as a single integral equation for the number of phages P (t):

P (t) = P0e
−νt +

∫ t

0

(
kS

∫

(0,s̄]

B(τ)P (s− τ) e−δτdF (τ)+

+ e−δs

∫

(s̄,l]

B(τ) v0(τ − s)
dF (τ)

1 − F (τ − s)

)
e−ν(t−s) ds ,

(3)

with s̄ := min{s, l}. Once we know the solution of (3), the density of infected
bacteria v(τ, t) is recovered by the first equation in (2).

Next, let us illustrate two examples which are particular cases of the present
model.

Firstly, if we assume a latent period exponentially distributed thereafter the
eclipse period, that is, F (τ) = 1 − e−α(τ−E) for τ ≥ E, α > 0, then the expected
latent period turns out to be E[T ] = E + 1

α
. If in addition we replace the burst
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size by its mean value B̄ (> 1) and introduce two new state variables I0(t) :=∫ E

0
v(τ, t) dτ and IE(t) :=

∫∞

E
v(τ, t) dτ , then the linear system (1) reduces to the

following system of linear delay differential equations

(4)





dI0
dt

(t) = kSP (t) − v(E, t) − δI0(t) ,

dIE
dt

(t) = v(E, t) − (δ + α)IE(t) ,

dP

dt
(t) = −νP (t) + αB̄IE(t) ,

with v(E, t) := kSP (t − E) e−δE for E < t, and v(E, t) := v0(E − t) e−δt for
E > t. We recall that ν := m + kS and notice that if the eclipse period is
neglected, i.e. E = 0, then the system further reduces to a planar system of
ordinary differential equations for the population sizes of infected bacteria and
phages. In [5] an ode based ecological model of marine bacteriophages is studied,
where the latent period is taken exponentially distributed.

The second example is the following. If we assume a fixed latent period instead,
that is, F (τ) = X[l,∞)(τ) with E[T ] = l > E, and introduce a new state variable

I(t) :=
∫ l

0
v(τ, t) dτ which is the total number of infected bacteria, then from (3)

and (2), the model reduces to the following system of linear delay differential
equations

(5)





dI

dt
(t) = kSP (t) − v−(l, t) − δI(t) ,

dP

dt
(t) = −νP (t) +B(l) v−(l, t) ,

with v−(l, t) := kSP (t − l) e−δl for l < t, and v−(l, t) := v0(l − t) e−δt for l > t.
Indeed, the second equation in (5), which is uncoupled from the first one, is the
differential version of equation (3) at F = X[l,∞), and the first equation in (5) is

the differential form of I(t) = kS
∫ t̄

0
P (t − τ) e−δτdτ + e−δt

∫ l

t̄
v0(τ − t)dτ , with

t̄ := min{t, l}, which comes from the first equation in (2) also at F = X[l,∞). See
[6] and [10] where the previously cited model is treated assuming a fixed value
of the latent period which leads to delay equations as in (5). Even though in
[10] the authors already suggest the possibility of considering the latent period
as given by a probability distribution function, as in systems (1) and (2).

3. Bacteriophage fitness

3.1. Growth bound of the solution semigroup. From the evolutionary point
of view, we are interested in the optimal probability distribution function of the
latent period, in the sense that this probability distribution gives the maximal
growth rate of the viral population (i.e. the maximal growth bound of the solution
semigroup of (2)).
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In order to reduce the control on the growth bound of the semigroup, denoted
by S(t), to the computation of the eigenvalues of its infinitesimal generator, it is
very useful the definition of the so-called essential growth bound:

ωe = lim
t→0+

ln(d(S(t),K))

t
,

where K is the set of all compact linear operators and, for a bounded linear
operator B, the distance to this set is defined by d(B,K) = infK∈K ||B − K||.
Indeed, the following holds:

ω0 = max{ωe, s(A)} ,

where s(A) is the spectral bound, i.e. the supremum of the real parts of the
spectral values of the infinitesimal generator A. Moreover, any spectral value
with real part larger than ωe is necessarily an eigenvalue (see for instance [9],
Prop. 8.6). Next we show

Proposition 3.1. The essential growth bound of the solution semigroup S(t) of
system (2) is less than or equal to −δ (the mortality of infected bacteria).

Proof. As usual in structured population dynamics, this follows from a decom-
position of the solution semigroup in the form

(6) S(t)

(
v0(·)
P0

)
:=

(
v(·, t)X[0,min{t,l})(·)

P (t)

)
+

(
v(·, t)X[min{t,l},l](·)

0

)
,

where v(τ, t) is given by (2). The second term on the right hand side is obviously
exponentially decaying at a rate at least equal to −δ. The first one is, for a
fixed t, a compact operator in X := L1(0, l) × R since it can be written as a
composition of three bounded linear operators, the second of which is compact.
Namely, T1 mapping the initial condition (v0, P0) in X to the function P in
W 1,1(0, t) (see Appendix A), T2 mapping W 1,1(0, t) to L1(0, t)×R and defined by

T2P =

(
P
P (t)

)
, where the first component is the compact Sobolev embedding

and the second is the evaluation at the final point of the interval (continuous,
and obviously compact, in W 1,1(0, t)) and, finally, T3 mapping L1(0, t) × R in
L1(0, l) × R, its first component given by the first equation in (2) extended to
(0, l) as in (6), and the second one by the identity operator in R. �

As a consequence, the existence of an eigenvalue with a real part larger than
−δ will imply ω0 = s(A), which is a (real) eigenvalue (the spectral bound of a
positive semigroup always belongs to the spectrum of the generator), and hence,
it will reduce the computation of ω0 to finding the maximal real solution of the
characteristic equation (see below) whenever we show that there is a real solution
larger than ωe of this equation. Actually we will show that the characteristic
equation has at most a real solution.
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3.2. Characteristic equation. In this section we are going to compute the
point spectrum of the infinitesimal generator of the solution semigroup, in order
to determine the growth bound of the semigroup.

Let A be the infinitesimal generator of the solution semigroup S(t). If λ is an
eigenvalue of A then eλt is an eigenvalue of the operator S(t). So, the eigenfunc-
tions, c (ϕ(τ), 1) with c an arbitrary constant, corresponding to an eigenvalue λ
are computed as solutions of system (2) in the form:

(7)

{
v(τ, t) = eλtϕ(τ)
P (t) = eλt .

Therefore,

(8)





eλtϕ(τ) =





kSeλ(t−τ)(1 − F (τ))e−δτ τ < t

ϕ(τ − t)
1 − F (τ)

1 − F (τ − t)
e−δt τ > t

λ = −ν + L̂, L̂ =

∫

(0,l]

B(τ)
ϕ(τ)

1 − F (τ)
dF (τ) ,

where the first equality follows by direct substitution whereas the second one
comes from an explicit integration in (2)2 after substitution of (7). For fixed τ
and t > τ , the first equation in (8) yields ϕ(τ) = kSe−(λ+δ)τ (1 − F (τ)), which
solves the second part for τ > t, as it is easily checked.

Accordingly, L̂ = kS
∫
(0,l]

B(τ) e−(λ+δ)τ dF (τ) and we get the following charac-

teristic equation for λ ∈ C:

(9) λ = −ν + kS

∫

(0,l]

B(τ) e−(λ+δ)τdF (τ) .

Notice that this equation can be written as

1 =
kS
∫

(0,l]
B(τ)e−(λ+δ)τdF (τ)

λ+m+ kS
,

where the expression in the right hand side at λ = 0 is the parameter R0 which is
interpreted here as the expected number of virions produced by a phage during
its lifetime.

To end up the section, let us show two results about equation (9) which will
be used in the next section.

Firstly, let us show that equation (9) implicitly defines a real function λF , i.e.
a real eigenvalue as a function of the probability distribution F . Let us define
the function G as

(10) G(λ, F ) := λ+ ν − kS

∫

(0,l]

B(τ) e−(λ+δ)τdF (τ) ,

for Re(λ) ≥ −δ and for all probability distribution function F . For every proba-
bility distribution F , if there exists a real value λF such that G(λF , F ) = 0 then
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it is unique. Indeed, it follows from the fact that the real function λ ∈ (−δ,∞) 7→
G(λ, F ) is strictly increasing and continuous, and either there exists no zero of
the function or there exists only one.

Now, let us see that we can restrict the characteristic equation to real values if
we are interested in the rightmost eigenvalue (i.e. the eigenvalue with larger real
part).

Lemma 3.1. If λ ∈ C \ R is such that G(λ, F ) = 0, then there exists a unique

real value λ̃ with Re(λ) < λ̃ fulfilling G(λ̃, F ) = 0.

Proof. First notice ReG(λ, F ) ≥ G(Reλ, F ), and that equality implies

supp dF ⊂ {τ > 0 : cos(τ Imλ) = 1} ⊂ {τ > 0 : sin(τ Imλ) = 0}

and hence, ImG(λ, F ) = Imλ. Since λ is not real and G(λ, F ) = 0, it follows
that G(Reλ, F ) < 0. Finally, since for real z, G(z, F ) strictly increases and has
an infinite limit at infinite, the latter gives the claim. �

4. Optimization of the latent period

If condition m − δ ≥ kS(R − 1) holds then the growth bound of the solution
semigroup ω0 ≤ −δ < 0. Indeed, let us assume the contrary ω0 > −δ, which
implies that the growth bound is equal to the dominant eigenvalue of the infini-
tesimal generator and therefore it coincides with the unique real solution of the
characteristic equation. However, this is not possible since the function G(λ, F )
is strictly increasing in λ and

G(−δ, F ) = −δ + ν − kS

∫

(0,l]

B(τ) dF (τ) > −δ + ν − kSR

= m− δ − kS(R − 1) > 0 ,

and therefore the claim follows.
Moreover, since here ω0 < 0 then it follows that the bacteriophage virus pop-

ulation P (t) goes to extinction. Let us remark that in this case it would make
sense to find the probability distribution that optimizes the decay of the pop-
ulation of phages in the sense that the extinction of the phages occurs in the
slowest possible way. Nevertheless, we will concentrate on the biologically more
interesting case which follows to suppose the strict opposite inequality since then
the growth bound of the semigroup can be positive. In this new situation, i.e.

(11) m− δ < kS(R− 1) ,

we can readily assure that there exists some probability distribution functions F
whose real eigenvalue λF exists and λF > −δ. For instance, one can take the
distribution F (τ) := X[τ0,∞)(τ) with τ0 any number fulfillingm−δ<kS(B(τ0)−1).
So, we will assume (11) throughout this section.

If F is a probability distribution such that λF > −δ then, since ωe ≤ −δ, λF

is the growth bound of the solution semigroup and also the dominant eigenvalue
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of the infinitesimal generator (i.e. the unique real solution of the characteristic
equation (9)). Next, we will focus on the computation of the probability distri-

bution F̂ which maximizes the non-linear functional F 7→ λF , implicitly defined
by G(λ, F ) = 0, see (10).

Let M̃ be the vector space of the real functions F (x) = µ([0, x]) for some real
measure µ on R+ such that the norm ||F ||fM

:=
∫∞

0
e−x |F (x)| dx is finite. Notice

in particular that these functions are right-continuous. In this space let us define
the following subsets:

M := {F ∈ M̃ : non-decreasing and F (x) ∈ [0, 1]}

and M1 the subset of M of the functions satisfying in addition that

lim
x→∞

F (x) = 1 .

Proposition 4.1. The set M is a compact subset of the normed vector space M̃ .

Proof. Let us consider a sequence {Fn} ∈M . We have to show that there exists a
subsequence which is convergent in M . By the Helly-Bray Theorem (see e.g. the
appendix in [8]), there exists a subsequence {Fnk

} such that converges pointwise
to a non-decreasing and right-continuous function F from R+ to [0, 1], for all
continuity points of the limit function and hence almost everywhere in R+.

On the one hand, Fnk
tends to F : ||Fnk

−F ||fM
=
∫∞

0
e−x|Fnk

(x)−F (x)| dx→ 0
by the dominated convergence theorem. On the other hand, obviously F ∈ M .
Therefore M is a compact set. �

Lemma 4.1. Let µ be a measure on R+ and let ϕ(x) be a C1 function, µ-integrable
and such that limx→∞ ϕ(x) = 0. Then

∫

[0,∞)

ϕ(x)dµ(x) = −

∫ ∞

0

ϕ′(x)µ([0, x]) dx.

Proof. By the Theorem of Fubini, one has that
∫

[0,∞)

ϕ(x)dµ(x) = −

∫

[0,∞)

(
lim

y→+∞
ϕ(y) − ϕ(x)

)
dµ(x)

= −

∫

[0,∞)

∫ ∞

x

ϕ′(y)dy dµ(x)

= −

∫ ∞

0

ϕ′(y)

∫

[0,y]

dµ(x) dy

= −

∫ ∞

0

ϕ′(y)µ([0, y]) dy . �

Let us rewrite the function G defined in (10) as follows

G(λ, F ) = λ+m+ k S(1 − L(λ)F ) ,
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where

(12) L(λ)F :=

∫

R+

B(τ)e−(λ+δ)τdF (τ) .

Proposition 4.2. The following holds:

(1) The functional L(λ) : M → R is well-defined for all λ ≥ −δ and it is
continuous if and only if λ > −δ.

(2) The function G : (−δ,∞) ×M → R is continuous.

Proof. (1) The first part of the claim is obvious. Now, let λ > −δ and let
{Fn} ∈ M be a convergent sequence with limit F ∈ M . Let us show
L(λ)Fn → L(λ)F .

First notice that, by Lemma 4.1, L(λ)Fn =
∫∞

0
g(x)Fn(x) dx and

L(λ)F =
∫∞

0
g(x)F (x) dx, where g(x) = ((λ+ δ)B(x)−B′(x))e−(λ+δ)x is

an integrable function since λ > −δ. So L(λ)Fn is a bounded sequence of
real numbers. Let us consider any convergent subsequence L(λ)Fnk

and

note that, as Fnk
tends to F in M̃ , i.e., e−xFnk

(x) tends to e−xF (x) in
L1, we then have, for a subsequence, that e−xFnkl

(x) → e−xF (x) a.e. (see

[16]), and consequently, g(x)Fnkl
(x) → g(x)F (x) a.e. . By the dominated

convergence theorem,

L(λ)Fnkl
=

∫ ∞

0

g(x)Fnkl
(x) dx→

∫ ∞

0

g(x)F (x) dx = L(λ)F ,

and hence L(λ)Fnk
→ L(λ)F too. Thus, any convergent subsequence of

L(λ)Fn has the same limit and the claim follows.
On the other hand, if λ = −δ then the functional L(λ) is not continu-

ous. Indeed, for instance a sequence of translated Heaviside functions Hn

consisting of unitary steps at x = n, converges to zero in M̃ :

||Hn||fM
=

∫ ∞

n

e−x dx = e−n ,

but L(−δ)Hn =
∫

R+ B(x) dHn(x) = B(n), which tends to R > 0.
(2) If suffices to show the continuity of (λ, F ) 7→ L(λ)F . Let (λ, F ) ∈

(−δ,∞) × M and let (λn, Fn) a sequence tending to the former. Now
let ǫ > 0, we have that

|L(λn)Fn − L(λ)F | ≤ |L(λn)Fn − L(λ)Fn| + |L(λ)Fn − L(λ)F | .
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The second term of the right hand side is less than ǫ
2

for n large enough
by part 1. The first term can be bounded as follows

|L(λn)Fn − L(λ)Fn)| =
∣∣∫

R+ B(τ)(e−(λn+δ)τ − e−(λ+δ)τ )dFn(τ)
∣∣

≤ R
∫

R+ |e−(λn+δ)τ − e−(λ+δ)τ |dFn(τ)

≤ c |λn − λ| <
ǫ

2
,

for a suitable positive constant c whenever n is sufficiently large. Here,
we have used the mean value theorem:

|e−xτ − e−x′τ | ≤ τe−τ min(x,x′)|x− x′| ≤
1

emin(x, x′)
|x− x′| ,

and the fact that inf
n

(λn + δ) > 0.

�

Now we are concerned with the continuity of the functional λF defined on a
compact subset. Let us start by choosing a δ̃ < δ sufficiently close to δ in order
that G(−δ̃, F ) ≤ 0 for some F ∈ M . Notice that the latter is possible under
assumption (11).

Let us define the set

MK := {F ∈M : G(−δ̃, F ) ≤ 0} .

This set is obviously non-empty and closed by Prop. 4.2 Part (2), and hence
compact using Prop. 4.1.

Lemma 4.2. Under the condition m−δ < kS(R−1), the range of the functional
F 7→ λF restricted to the compact set MK is contained in the interval

[−δ̃, kS(R− 1) −m] .

Proof. For all F ∈ MK , we have that λF ≥ −δ̃. On the other hand,
G(kS(R−1)−m,F )=kS(R−L(λ)F ) > 0 = G(λF , F ). Hence λF ≤ kS(R−1)−m
since the function λ 7→ G(λ, F ) is increasing. �

Proposition 4.3. Under the condition m− δ < kS(R− 1), the following holds:

(1) The functional F 7→ λF is continuous on the compact set MK .
(2) The functional F 7→ λF restricted to MK has an absolute maximum

point F̂ .

Proof. Let {Fn} ∈MK be a sequence with limit F ∈MK .

Let us consider λn := λFn
≥ −δ̃ fulfilling G(λn, Fn) = 0. By Lemma 4.2

there exist convergent subsequences {λnk
}. It suffices to see that their limit

λ̃ ≥ −δ̃ is equal to λF . Since G(λ, F ) is continuous at (λ̃, F ) by Prop. 4.2 then

0 = G(λnk
, Fnk

) → G(λ̃, F ) = 0, and hence G(λ̃, F ) = 0. Therefore λ̃ = λF . �

Concerning with the maximum of the previous proposition, we have the
following
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Proposition 4.4. Let F̂ be an absolute maximum point of the continuous func-

tional F 7→ λF restricted to MK . Then F̂ is also an absolute maximum point of
the continuous functional F 7→ L(λ bF )F defined on M .

Proof. Let first assume that F ∈ MK . Since F̂ is an absolute maximum point
of λF , λF ≤ λ bF

and since G(λ, F ) is an increasing function of λ, one has that

G(λ bF
, F̂ ) = 0 = G(λF , F ) ≤ G(λ bF

, F ), and therefore

0 ≤ G(λ bF , F ) −G(λ bF , F̂ ) = kS(−L(λ bF )F + L(λ bF )F̂ ) .

On the other hand, if F ∈MrMK thenG(λ bF
, F̂ ) = 0 < G(−δ̃, F ) ≤ G(λ bF

, F ),

using that λ bF
≥ −δ̃. Consequently, L(λ bF

)F̂ ≥ L(λ bF
)F in both cases. �

Before stating the main result of the section we still need the following

Lemma 4.3. Let ψ : R+ → R+ be a continuous function with a unique absolute
maximum point x̂. Then the functional on M defined by T (F ) :=

∫
[0,∞)

ψ dF has

a unique absolute maximum point Hbx(x) := H(x− x̂) where H is the Heaviside
function.

Proof. If F = pHbx with p ∈ [0, 1) then obviously T (F ) < T (Hbx). On the other
hand, if F ∈M is different from pHbx for any p then there exists a closed interval
I with µ(I) > 0 (where µ is the real measure associated to F ) such that x̂ /∈ I
and

T (F ) =

∫

[0,∞)

ψdF =

∫

Ic

ψdF +

∫

I

ψdF

< ψ(x̂)µ(Ic) + ψ(x̂)µ(I) = ψ(x̂) = T (Hbx)

inequality follows from the fact that maxI ψ < ψ(x̂). �

Next theorem assures the existence and uniqueness of the optimal latent period
in a bacteriophage infection where the lysis timing may be variable. Moreover,
we are going to show that the optimal latent period is decreasing with respect
to both the number of susceptible bacteria (under a suitable bacterial mortality)
and the quality of bacteria quantified by the parameter R as in [18].

Let us recall the assumptions on the burst size given in Section 2. B(τ) is a
bounded and continuous function, B(τ) ≡ 0 for τ ≤ E, strictly increasing with
B′′(τ) < 0 for τ > E and the maximum burst size limτ→lB(τ) = R. Let us
rewrite the burst size as B(τ) = R b(τ) so that the function b(τ) represents a
normalized burst size with limτ→l b(τ) = 1. Now we are ready to state the main
result of the section.

Theorem 4.1 (optimal latent period). Under condition m−δ < k S(R−1), there

exists a unique probability distribution function F̂ such that the growth bound of
the solution semigroup of (2) λF is maximal. Moreover,
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(1) F̂ has the form F̂ (τ) = X[bl,∞)(τ) where l̂ > E is the unique solution of

the non-linear equation

(13)
b′(l)

b(l)
+m− δ = kS

(
R b(l)e

− b′(l)
b(l)

l
− 1

)
,

that is, the optimal latent period is l̂ with probability 1.

(2) The optimal latent period l̂ is strictly decreasing with respect to R. On the
other hand, there exists a critical value δc > m of the bacterial mortality

such that l̂ is strictly decreasing with respect to the number of susceptible
bacteria S if and only if δ < δc.

Proof. Let condition m− δ < k S(R− 1) hold.
If F ∈ M1 \MK then either λF does not exist and the growth bound of the

solution semigroup is less than or equal to −δ, or G(−δ̃, F ) > 0 and λF < −δ̃.
Therefore we can restrict the optimization of the growth bound to F ∈MK .

By Prop. 4.3 the functional F 7→ λF restricted toMK has an absolute maximum

point F̂ with value λ̂ := λ bF , which by Prop. 4.4 is also an absolute maximum

point of the functional F 7→ L(λ̂)F defined on M . According to the definition in
(12),

L(λ̂)F =

∫

R+

ψ(τ) dF (τ)

with

(14) ψ(τ) := Rb(τ)e−(bλ+δ)τ .

The continuous function ψ : R
+ → R

+ defined above has a unique absolute

maximum point l̂ > E. Indeed,

ψ′(τ) = Re−(bλ+δ)τ
(
b′(τ) − (λ̂+ δ)b(τ)

)

and thus we have that the critical points are the solutions of

(15) λ̂ =
b′(τ)

b(τ)
− δ , τ > E .

Finally, there exists a unique critical point l̂ > E of ψ(τ) since according to

the assumptions on the burst size, the function b′(τ)
b(τ)

, τ > E, in (15) is strictly

decreasing and takes all the positive values. Moreover, the critical point l̂ > E is

a maximum point since ψ′′(l̂) < 0.

Now, by Lemma 4.3 with ψ defined by (14), the functional F 7→ L(λ̂)F has

a unique absolute maximum point X[bl,∞), with l̂ > E being the solution of (15).

Therefore F̂ , which is an absolute maximum point given by Prop. 4.3, must be
X[bl,∞). Furthermore, this probability distribution function is the unique absolute

maximum point of the functional λF since if there exists another one F then
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it will be also an absolute maximum point of the functional F 7→ L(λF )F but

λF = λ bF
= λ̂ and consequently F = X[bl,∞).

To end up, we have that

(1) Combining the characteristic equation (9) at F =X[bl,∞), that isG(λ̂,X[bl,∞))

= 0, with the condition of critical point λ̂ = b′(bl)

b(bl)
− δ, we get that l̂ > E is

a solution of the scalar non-linear equation (13). Actually, it is the unique
solution according to the type of monotonicity assumed on the burst size.

(2) To prove the second part of the claim we have to compute the sign of two

derivatives. Indeed, the optimal latent period l̂ > E is strictly decreasing
with respect to R since

(16)
d l̂

dR
=

−kSb(l̂)e
− b′(bl)

b(bl)
bl

kSR l̂e
− b′(bl)

b(bl)
bl b′2(l̂) − b(l̂)b′′(l̂)

b(l̂)
+
b′2(l̂) − b(l̂)b′′(l̂)

b2(l̂)

is negative according to the type of monotonicity that we have assumed
on the normalized burst size, i.e. b′′(τ) < 0 for τ > E. The expression in
(16) follows from the equation (13) as an implicit derivative.

On the other hand, the fact that the optimal latent period l̂ > E
is strictly decreasing with respect to S is derived as follows. Implicitly
differentiating in equation (13), we have that

(17)
d l̂

dS
=

k

(
1 − Rb(l̂)e

−
b′(bl)

b(bl)
bl

)

kSR l̂e
−

b′(bl)

b(bl)
bl b′2(l̂) − b(l̂)b′′(l̂)

b(l̂)
+
b′2(l̂) − b(l̂)b′′(l̂)

b2(l̂)

,

which is negative if and only if

(18) Rb(l̂)e
− b′(bl)

b(bl)
bl
> 1 .

Now, one has that l̂ > E which is the unique solution of (13), is also the

unique root of the right hand side of (13), i.e. Rb(l)e−
b′(l)
b(l)

bl = 1, if and

only δ = δc := m + b′(bl)

b(bl)
> m (a critical value of the bacterial mortality).

Moreover, condition (18) holds if and only if δ < δc. These results follow
from an analysis of the left and right hand sides of (13) as functions of
l > E. * �

According to (15) at τ = l̂, once we know the optimal latent period l̂ as the
solution of equation (13), the maximal fitness (the maximal growth bound of
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the solution semigroup) is given by

λ̂ =
b′(l̂)

b(l̂)
− δ =

B′(l̂)

B(l̂)
− δ > −δ .

Appendix A. Existence and uniqueness of solutions

In this appendix we are going to show the existence and uniqueness of solutions
of the model described by system (2), or equivalently by (3) as a single equation.
Let us consider an initial condition (v0(·), P0) ∈ X := L1(0, l) × R and a fixed
interval [0, tf ] with tf < l. Now equation (3) for P (t), 0 ≤ t ≤ tf , reads as

P (t) = P0e
−νt +

∫ t

0

(
kS

∫

(0,s]

B(τ)P (s− τ) e−δτdF (τ)

+ e−δs

∫

(s,l]

B(τ) v0(τ − s)
dF (τ)

1 − F (τ − s)

)
e−ν(t−s) ds .

(19)

We recall that ν := m + kS > 0, supτ≥0B(τ) = R, and F (τ) is a general
probability distribution function. Let C := C([0, tf ],R) be the Banach space of
continuous functions with the supremum norm. Let B : C → C be the following
linear operator

(BP )(t) := kS

∫ t

0

e−ν(t−s)

∫

(0,s]

B(τ)P (s− τ)e−δτ dF (τ) ds ,

and, for v0 ∈ L1(0, l) and P0 real value, let V0 be the function

V0(t) := P0e
−νt +

∫ t

0

e−ν(t−s)−δs

∫

(s,l]

B(τ)v0(τ − s)
dF (τ)

1 − F (τ − s)
ds .

Thus, equation (19) is written in short as

(20) P (t) = (BP )(t) + V0(t) .

Proposition A.1. The operator B is well-defined and V0(·) ∈ C.

Proof. Firstly, we have to show that if P (·) ∈ C then (BP )(·) ∈ C. Indeed, let us

define L1(s) :=kS
∫
(0,s]

B(τ)P (s−τ)e−δτdF (τ), then (BP )(t)=
∫ t

0
e−ν(t−s)L1(s) ds.

It suffices to show that L1(·) ∈ L1(0, tf):
∫ tf

0
|L1(s)| ds ≤ kS

∫ tf

0

∫
(0,s]

B(τ)|P (s− τ)|e−δτdF (τ) ds

≤ kSR
∫
(0,tf ]

∫ tf
τ

|P (s− τ)| ds dF (τ)

= kSR
∫
(0,tf ]

∫ tf−τ

0
|P (σ)| dσ dF (τ) ≤ kSR ||P ||L1(0,tf ) .(21)

On the other hand, let us show the continuity of V0 by a similar argument.
Making the linear change of variables τ − s = σ, τ = τ to the double integral
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∫ tf

0

∫
(s,l]

v0(τ−s)
dF (τ)

1−F (τ−s)
ds, the region of integration is transformed into {(τ, σ) ∈

[0, l]2 : τ − tf < σ < τ} and therefore
∫ tf

0

∫

(s,l]

v0(τ − s)
dF (τ)

1 − F (τ − s)
ds

=

(∫ l−tf

0

∫ σ+tf

σ

+

∫ l

l−tf

∫ l

σ

)
v0(σ)

1 − F (σ)
dF (τ) dσ

=

∫ l−tf

0

F (σ + tf) − F (σ)

1 − F (σ)
v0(σ) dσ +

∫ l

l−tf

1 − F (σ)

1 − F (σ)
v0(σ) dσ

≤ ||v0||L1(0,l) .

(22)

Thus it follows that the function L0(s) := e−δs
∫
(s,l]

B(τ)v0(τ−s)
dF (τ)

1−F (τ−s)
belongs

to L1(0, tf) with

(23) ||L0||L1(0,tf ) ≤ R ||v0||L1(0,l) .

Then V0(·) ∈ C, using the same argument as before, with norm

(24) ||V0||C ≤ max(1, R) ||(v0, P0)||L1(0,l)×R .* �

Theorem A.1. For any initial condition (v0(·), P0) ∈ X, system (2) has a unique
local solution. Moreover, if the initial condition is non-negative then the solution
is non-negative.

Proof. Firstly, let us show the existence and uniqueness of solution of equation
(20). We can compute P (t) from (20) if the operator (Id−B) is invertible since
P (t) =

(
(Id − B)−1V0

)
(t). If ||B|| < 1 then the linear operator (Id − B) is

invertible.

||B|| = sup
||φ||C≤1

||(Bφ)(t)||C

= sup
||φ||C≤1

sup
t∈[0,tf ]

∣∣∣∣kS
∫ t

0

e−ν(t−s)

∫

(0,s]

B(τ)φ(s− τ)e−δτdF (τ) ds

∣∣∣∣

≤ kSR sup
||φ||C≤1

sup
t∈[0,tf ]

∫ t

0

∫

(0,s]

|φ(s− τ)|dF (τ) ds

≤ kSR sup
||φ||C≤1

||φ||C tf = kSR tf .

So, taking tf < 1
kSR

then we can assure that ||B|| < 1. In this fixed period
of time [0, tf ], the solution can be written as P (t) =

∑
n≥0(B

nV0)(t) showing
that the solution is non-negative if it is the initial condition, i.e. (v0(·), P0) ∈
L1

+(0, l) × R+. Once we know the solution of (20), the solution of system (2) is
readily recovered. �
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Let us remark that for the usual initial conditions used in laboratory
experiments, i.e. v0(τ) ≡ 0 and P0 > 0, then V0(t) = P0e

−νt and the so-
lution of (2) is given by P (t) = P0 (Id − B)−1 exp(−νt) > 0, and v(τ, t) =
kSP0 (1 − F (τ)) e−δτ (Id− B)−1 exp(−ν(t− τ)), τ < t, and zero otherwise.

A standard (and tedious) computation shows that the solution of system (2)
defines a family of bounded linear operators in X,

S(t)

(
v0(·)
P0

)
:=

(
v(·, t)
P (t)

)
,

which fulfills the (local) semigroup condition. Next let us show that the strong
continuity condition is also satisfied. We have

Proposition A.2. The solution semigroup of system (2) yields a strongly con-
tinuous (local) semigroup of bounded linear operators in X.

Proof. We have to show that

lim
t→0+

S(t)

(
v0(·)
P0

)
=

(
v0(·)
P0

)
in X.

The second component of the limit, limt→0+ P (t) = P0, is trivial using Prop. A.1.
On the other hand, the first component, i.e. limt→0+ ||v(·, t)− v0(·)||L1(0,l) = 0, is
derived as follows. From (2) and t < l

∫ t

0

∣∣kSP (t− τ)(1 − F (τ)) e−δτ − v0(τ)
∣∣ dτ

+

∫ l

t

∣∣∣∣v0(τ − t)
1 − F (τ)

1 − F (τ − t)
e−δt − v0(τ)

∣∣∣∣ dτ .

The first integral tends to 0, as time t tends to 0+, since P and v0 are integrable
functions. Regarding the second one,
∫ l

t

∣∣∣∣v0(τ − t)
1 − F (τ)

1 − F (τ − t)
e−δt − v0(τ)

∣∣∣∣ dτ

=

∫ l−t

0

∣∣∣∣v0(s)
1 − F (t+ s)

1 − F (s)
e−δt − v0(s+ t)

∣∣∣∣ ds

≤

∫ l−t

0

∣∣∣∣v0(s)
1 − F (t+ s)

1 − F (s)
e−δt − v0(s)

∣∣∣∣ ds+

∫ l−t

0

|v0(s+ t) − v0(s)| ds .

Now, since
(
v0(s)

1−F (t+s)
1−F (s)

e−δt − v0(s)
)
X[0,l−t](s) tends pointwise to 0 as time t

tends to 0+ if s 6= l is a continuity point of F , and its absolute value is bounded
above by |v0(s)|, then by the dominated convergence theorem we can conclude
that the convergence is in the L1(0, l) sense. Finally, the second integral above
also tends to 0, as t tends to 0+, by a well known property of the integral. �
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Finally, we have the existence and uniqueness of global solutions which follows
as a corollary of the previous statements. Indeed, using the uniqueness of solu-
tions, the semigroup property and the fact that the existence time tf > 0 does
not depend on the initial condition, we have the following

Theorem A.2. The local solution of system (2) given by Theorem A.1 is actually
a global solution and defines a strongly continuous linear semigroup.
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