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Abstract—In this paper, we present a new framework for mul-
timodal volume visualization that combines several information-
theoretic strategies to define both colors and opacities of the
multimodal transfer function. To the best of our knowledge, this
is the first fully automatic scheme to visualize multimodal data.
To define the fused color, we set an information channel between
two registered input data sets and, afterwards, we compute the
informativeness associated with the respective intensity bins. This
informativeness is used to weight the color contribution from
both initial 1D transfer functions. To obtain the opacity, we
apply an optimization process that minimizes the informational
divergence between the visibility distribution captured by a set
of viewpoints and a target distribution proposed by the user.
This distribution is defined either from the data set features,
from manually set importances, or from both. Other problems
related to the multimodal visualization, such as the computation
of the fused gradient and the histogram binning, have also been
solved using new information-theoretic strategies. The quality
and performance of our approach is evaluated on different data
sets.

Index Terms—Multimodal visualization, Multimodal fusion,
Transfer function design, Information theory, Kullback-Leibler
distance.

I. INTRODUCTION
Multimodal visualization aims at combining the most rel-

evant information from different volumetric data sets into a
single one that provides as much information as possible [1].
This technique is of great interest, especially in a medical
context where complementary information from different med-
ical devices, such as computed tomography and magnetic
resonance, can be combined in a single model to enhance
diagnosis and treatment.
Multimodal visualization techniques require two main pro-

cesses. The first one is the information fusion which reduces
the information of spatial-aligned input data sets into a single
value. To carry out this fusion different methods have been
proposed [1], [2]. The second process is the transfer function
definition that assigns graphical attributes (color and opacity)
to the fused model to determine which structures of each
volume will be visible and how these will be rendered. The
definition of this transfer function is a complex task since
it is not always easy to understand the relationship between
the structures of the input models nor determine which of
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them have to be visualized and how. Generally, to tackle this
problem, advanced transfer function editing tools are proposed
and main decisions are relegated to the user who modifies the
parameters until the desired rendering effects are reached. A
main drawback of this edition process is the high degree of
user interaction which may introduce errors and also makes
the reproducibility of the method difficult. To overcome these
limitations, the automation of both the fusion and the transfer
function design is needed.
In this paper, we present a new approach to automate both

the information fusion process and the transfer function design
for multimodal data sets. This approach combines several
information-theoretic strategies to define colors and opacities.
These strategies are based on the information maps introduced
by Bramon et at. [3] to represent the informativeness associ-
ated with the intensity values of the input data sets. To compute
these maps, we establish an information channel between two
registered input data sets and calculate the informativeness
using two different information measures, that correspond to
two different decompositions of the mutual information of the
channel.
In order to obtain the fused color, we weight the original 1D

transfer functions according to the informativeness associated
to each intensity. This fusion is analyzed using different color
spaces and color fusion strategies. While in Bramon et al. [3]
the information maps were only used to select the most
informative color from two input data sets, in this paper they
are used to weight the fusion of the colors. Then, to define the
opacity function, we have extended the approach presented by
Ruiz et al. [4] to deal with multimodal information. Similar to
this previous work, we propose an optimization procedure that
minimizes the informational divergence between the visibility
distribution (i.e., the normalized visibility histogram) captured
by a set of viewpoints and a target distribution proposed by the
user. The target distribution represents an importance-based
description of what the user expects to be visualized. It is
important to emphasize that, in this stage, the extension to
multimodality forces us to introduce two preliminary steps: a
binning strategy to reduce the number of bins of the data sets
and a new gradient fusion method to obtain a single value for
the gradient magnitude associated with each voxel.
The main contribution of our approach is the definition

of a general framework for the automatic transfer function
definition in multimodal visualization. It is general in the
sense that it is not limited to specific image modalities nor
to particular anatomical regions, and, thus, it can be applied
to any type of multimodal image pair. This feature is very
valuable in real medical environments. As far as we know, this
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is the first attempt to define an automated pipeline that finds
an optimal transfer function for two multimodal data sets.
This paper is organized as follows. In Section II, we

review related work on multimodal visualization and some
applications of information theory to visualization. In Section
III, we describe the information maps computation. In Section
IV, we overview the proposed approach. In Sections V and VI,
we explain in detail the main processes of our proposal: color
fusion and opacity computation, respectively. In Sections VII
and VIII, we show the experimental results and discuss the
strengths of our method. Finally, in Section IX, we present
our conclusions and future work.

II. RELATED WORK

In this section, we present previous work on multimodal
volume rendering and review some information-theoretic ap-
plications in visualization.

A. Multimodal Volume Rendering
The main goal of multimodal visualization is to provide in

a single image the most important features of different input
data sets [1], [2]. To reach this goal, a fusion process that
combines the input data is required. For each position, this
process can consider single or multiple properties. In the first
case, the property can be selected by a user-defined criterion,
as proposed by Burns et al. [5] and Brecheisen et al. [6],
or by an automatic method, such the one introduced by [3].
In the second case, the fusion can occur at different levels
of the volume rendering pipeline [1], [7]. Cai and Sakas [1]
defined three levels: image level intermixing, when two images
are merged; accumulation level intermixing, when sample
values are calculated in each volume along a ray and their
visual contributions are mixed; and illumination model level
intermixing, which consists in opacity and intensity calculation
at each sampling point directly from a multi-volume illumina-
tion model. This approach requires multidimensional transfer
functions capable of balancing the visual contributions from
the input data sets.
Although multidimensional transfer functions are com-

monly used for volume visualization, their definition is not
trivial. The concept of 2D transfer function, where the second
dimension is given by the gradient magnitude, was introduced
by Levoy [8]. More general multi-dimensional transfer func-
tions were suggested by Kindlmann and Durkin [9], and Kniss
et al. [10]. Kniss et al. [11] also proposed an extension of
preintegrated volume rendering for multidimensional transfer
functions, which was limited to transfer functions specified
by Gaussian primitives. Tory et al. [12] proposed the use
of an interface based on parallel coordinates to explicitly
represent the visualization parameter space of a transfer func-
tion. Haidacher et al. [13] introduced the decomposition of
mutual information for transfer function design in multimodal
volume visualization. They proposed a new 2D space for
manually defining transfer functions. Bruckner and Möller [14]
introduced isosurface similarity maps to present structural
information of a volume data set by depicting similarities

between individual isosurfaces quantified by mutual informa-
tion. The maps are used to guide the transfer function design
and the visualization parameter specification. Based on the
mutual information as a measure of the isosurface similarity
between different modalities, Haidacher et al. [15] defined
a similarity space that provides a concise overview of the
differences between modalities, and also serves as the basis
for an improved selection of features.
To guide the transfer function design, different authors have

proposed to use the data set visibility. Correa and Ma [16]
introduced the notion of visibility histogram, which represents
the contribution of each sample in the final resulting image,
as an interactive aid to generate effective transfer functions.
Correa and Ma [17] also generalized the notion of visibility
histogram along a number of dimensions and proposed a
semiautomated method that progressively explores the transfer
function space towards the goal of maximizing the visibility
of important structures. Ruiz et al. [4] also used the visibility
as a main parameter to be considered for the transfer function
specification. They proposed an information-theoretic frame-
work for automatic transfer function design that, based on
a user-defined target distribution, obtains the opacity transfer
function whose visibility distribution minimizes the informa-
tional divergence to the target. Our purpose is now to extend
this approach to multimodal volume visualization aiming to
automate as much as possible the multimodal transfer function
design. In this extension, the information maps proposed by
Bramon et al. [3] play a fundamental role to define the fusion
strategy.

B. Information Theory in Visualization
In 1948, Claude E. Shannon published a paper entitled “A

mathematical theory of communication” [18] that marks the
beginning of information theory. In this paper, he introduced
the concepts of entropy and mutual information that have
been used in many fields, such as physics, computer science,
neurology, image processing, and computer graphics. The
application of information theory to computer graphics and
scientific visualization has been reviewed by Sbert et al. [19],
Chen and Jänicke [20], and Wang and Shen [21].
Information theory has been applied to different areas in sci-

entific visualization, such as view selection, flow visualization,
time-varying volume visualization, multimodal visualization,
and transfer function design. Next, we refer some applications
to these areas. In view selection, Bordoloi et al. [22] and
Takahashi et al. [23] introduced the entropy to evaluate the
quality of a viewpoint, and Viola et al. [24] proposed the
mutual information of the information channel between a set of
viewpoints and a set of objects to calculate the representative-
ness of a viewpoint. In flow visualization, Xu et al. [25] used
entropy to measure the information content in the local regions
across a vector field and conditional entropy to evaluate the
effectiveness of streamlines to represent the input vector field,
and Lee et al. [26] used entropy for viewpoint selection and
view-dependent streamline placement. In time-varying volume
visualization, Ji and Shen [27] applied entropy to dynamic
view selection, and Wang et al. [28] introduced the conditional
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entropy to quantify the information a data block contains with
respect to other blocks in the time sequence. Finally, different
works mentioned in Section II-A have used mutual information
for multimodal visualization [13], [14], [15], [3] and applied
the informational divergence for transfer function design [4].

III. INFORMATION MAPS

Since the concept of information map, introduced by Bra-
mon et al. [3], constitutes the kernel of our approach, in this
section we briefly review it.
The relationship between two multimodal data sets can be

represented by a communication channel X ! Y between the
random variables X (input) and Y (output), which represent,
respectively, the set of intensity bins X of the data set X
and the set of intensity bins Y of the data set Y. The three
basic components of this channel are the input distribution
p(X) = {p(x)}=

n

n(x)
N

o

, where n(x) is the number of voxels
corresponding to bin x and N is the total number of voxels, the
conditional probability matrix p(Y |X) = {p(y|x)}=

n

n(x,y)
n(x)

o

,
where n(x,y) is the number of voxels with intensity x such
that the corresponding voxel in the data set Y has intensity
y, and the output distribution p(Y ) = {p(y)}=

n

n(y)
N

o

, where
n(y) is the number of voxels corresponding to bin y.
From this channel, the mutual information I(X ;Y ) between

the two data sets is defined by

I(X ;Y ) = H(Y )�H(Y |X), (1)

where H(Y ) and H(Y |X) are, respectively, the entropy of Y and
the conditional entropy of Y when X is known [29]. Mutual
information provides us the amount of information that is
transferred or shared between X and Y .
To quantify the specific information associated with each

intensity value, I(X ;Y ) can be decomposed as

I(X ;Y ) = ∑
x2X

p(x)I(x;Y ), (2)

where I(x;Y ) is the specific information of x. Thus, I(X ;Y ) can
be seen as a weighted average over individual contributions
from particular intensities. Three specific information mea-
sures, called surprise (I1), predictability (I2) and entanglement
(I3), were previously introduced in the field of neural systems
to investigate the information associated with stimuli and
responses (see [30], [31]). Bramon et al. [3] introduced these
measures in the field of multimodal fusion and concluded
that the best performance was achieved by a procedure that
combines the measures predictability and entanglement. Tak-
ing this fact into account, we focus our attention on these
two measures, that will be used in this paper to produce the
information maps of each data set.
From Equation 1 and 2, the specific information I2 [30],

called also predictability in [3], is defined by

I2(x;Y ) = H(Y )�H(Y |x)
= � ∑

y2Y

p(y) log p(y)+ ∑
y2Y

p(y|x) log p(y|x),

(3)

(a) Input CT (b) I2 map (c) I3 map

(d) Input MR (e) I2 map (f) I3 map
Fig. 1. From left to right, the original CT and MR head data sets and their
corresponding I2 and I3 information maps.

where H(Y |x) expresses the entropy of Y when the output x is
known. The specific information I2(x;Y ) expresses the change
in uncertainty about Y when x is observed. Note that I2(x;Y )
can take negative values. This means that certain observations
x do increase our uncertainty about the state of the variable
Y . Intensity values x with high I2(x;Y ) greatly reduce the
uncertainty in Y and, thus, they are very significant in the
relationship between X and Y .
Butts [31] introduced the stimulus specific information

I3, also obtained from the decomposition of I(X ;Y ). This
measure, called entanglement in [3], is defined by

I3(x;Y ) = ∑
y2Y

p(y|x)I2(y;X). (4)

A large value of I3(x;Y ) means that the intensity values of Y
associated with x are very informative in the sense of I2(y;X).
That is, the most informative input values x are those that are
related to the most informative outputs y. Note that I3(x;Y )
can also take negative values.
Thus, for each data set, we can obtain two information

maps given by the specific information measures I2 and I3,
respectively. To avoid negative values in the information maps,
the value range of each map has been shifted so that its
minimum value is equal to 0. These information maps will
enable us to fuse the initial gradients of both data sets into a
single value, and the colors of both transfer functions into a
single color. Figure 1 shows the I2 and I3 information maps for
the CT and MR head data sets. These maps have been colored
using a thermal scale, where warm colors (red) correspond to
high values of the evaluated measure and cool colors (blue)
to low ones.

IV. OVERVIEW
In Bramon et al. [3], given two input data sets, the in-

formation maps were proposed to select for each voxel the
most informative source data set that has to be visualized. In
that case, there were no fusion at the voxel level since only
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Fig. 2. Main processes of the proposed multimodal visualization approach.

the information of one of the input data sets is visualized,
discarding the other one. On the other hand, we propose now
to apply the information maps to fuse the input data sets and
to create a multimodal visualization where both inputs are
represented at each voxel.
The objective of our approach is the automation of the

multimodal transfer function design. Given two registered
volume data sets, X and Y, their pre-defined 1D transfer
functions, TFX and TFY , and their information maps, our
approach is composed of two main steps (see Figure 2):
1) Color fusion. This process weights the contribution of
the colors provided by the initial 1D transfer functions
to obtain the final fused color function. The combination
of colors is guided by the information maps.

2) Opacity computation. This step computes the final
opacity function using an iterative strategy that mini-
mizes the informational divergence (or Kullback-Leiber
distance) between the visibility distribution captured by
a set of viewpoints and a target distribution proposed by
the user to obtain the color opacity function.

A more detailed description of these steps is given in the
next sections.

V. COLOR FUSION

To obtain the final fused color, the contribution of the colors
provided by the initial 1D transfer functions is guided by the
I2 and I3 information maps of the input data sets. The study
carried out by Bramon et al. [3] showed the good performance
of an asymmetric fusion strategy based on I2(x;Y ) and I3(x;Y ).
In this approach, for each pair of matched voxels with inten-
sities x and y, the graphical attributes of x were selected when
I2(x;Y )> I3(x;Y ), and the ones of y when I2(x;Y ) I3(x;Y ).
In our method, this approach is extended to fuse the gradient
values. Thus, given a reference data set X, the gradients of
the voxels of X and Y are respectively weighted by I2(x;Y )
and I3(x;Y ) from the previously computed information maps.
As we have mentioned in Section III, the values of I2 and I3
have been shifted to avoid negative values.
At each voxel, the fused data set takes a color c that is a

combination of colors cX(x) and cY (y) coming from the initial

transfer functions. The fused color c is defined by

c(x,y) =
I2(x;Y )cX (x)+ I3(x;Y )cY (y)

I2(x;Y )+ I3(x;Y )
, (5)

where, as stated in Section III, I2(x;Y ) measures the pre-
dictability of the intensity value x over the variable Y , and
I3(x;Y ) gathers the predictability of the intensity values of
Y associated with intensity x. Note that the proposed color
fusion strategy will generate new colors and this may lead
to misinterpretation when viewing the final color transfer
function. This limitation is inherent to any color fusion tech-
nique. We have studied different color fusion techniques. First,
Equation 5 has been applied using RGB and CIELab color
spaces. CIELab (abbreviation for the CIE 1976) color space
is perceptually uniform and has been designed to approximate
human vision. Second, we have also studied the hue-preserving
color blending strategy proposed by Chuang et al. [32] in HSL
color space. They proposed a perception-guided compositing
operator for color blending, denoted by �, which maintains the
same rules for achromatic compositing as standard operators,
but it modifies the computation of the chromatic channels in
order to preserve the hue of the input colors. This strategy
requires to slightly modify Equation 5 replacing the traditional
component-wise addition by the new operator:

c(x,y) =
I2(x;Y )cX (x)� I3(x;Y )cY (y)

I2(x;Y )+ I3(x;Y )
. (6)

Figure 3 presents, in the first row, the original MR-T1 and
MR-T2 data sets and, in the second row, from left to right,
the results obtained using the RGB and CIELab spaces, and
the hue-preserving color blending strategy. Observe that the
results using RGB and CIELab color spaces are very similar,
although a more natural hue transition and a more uniform
color distribution are obtained using CIELAB color space. On
the other hand, note that the hue-preserving color blending
strategy tends to produce gray values that can be hard to be
interpreted as Chuang et al. described in [32]. From these
results, we consider that the CIELab color space is the best
option because it enables to identify the origin of the colors
better than using the hue-preserving color blending strategy.
From Equation 5, observe that if I2(x;Y ) > I3(x;Y ) then x

is more informative than y and, thus, has to have a greater
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(a) MR-T1 (b) MR-T2

(c) RGB (d) CIELab (e) Hue-preserving
Fig. 3. Multimodal visualization of (a) MR-T1 and (b) MR-T2 in (c)
RGB and (d) CIELab color spaces, and (e) the hue-preserving color blending
strategy.

contribution to the final result, while I2(x;Y ) < I3(x;Y ) indi-
cates that the values y corresponding to x are more informative
than x and must have a greater contribution. Remember that
I3(x;Y ) has a low value when the values y corresponding to x
are uninformative in the sense of I2. Note the asymmetric role
of X and Y since both measures I2 and I3 are taken from X.
This means that, prior to the fusion, we have to select the
reference data set. From the experiments carried out in Bramon
et al. [3], it can be seen that the best results are achieved when
the reference data set corresponds to the one whose structures
of interest are more contrasted.
To quantify the contrast of a data set, for each voxel, the

variance of the intensities on a small window centered in the
voxel is computed. This value can be seen as a measure of
local non-uniformity. Thus, the mean of the local variance for
all the voxels can be used as an inverse measure of contrast.
The lower the mean local variance the higher the contrast.
For normalization purposes, we compute this measure on the
segmented volumes, since in this case both data sets take
values in the same intensity range. In our framework, the most
contrasted image is taken as the reference image by default,
but the user can easily modify this automatic selection.

VI. OPACITY COMPUTATION
To calculate the opacity values of the multimodal transfer

function, we present a method that is based on the transfer
function design technique for single data sets introduced by
Ruiz et al. [4]. In this approach, opacities are obtained by an
optimization procedure that minimizes the informational di-
vergence between the average projected visibility distribution
from all viewpoints and a target distribution which expresses
an importance-based description of what the user expects to
be visualized. The main modifications to extend this approach
to multimodal visualization are due to the fact that we have
to consider pairs of intensity values at each voxel instead of

single values. In addition to the mathematical reformulation
of the method, two new steps will be required to solve the
high-dimensionality associated to the problem: the binning of
the intensities and the gradient fusion.

A. Multimodal Opacity Optimization
The main steps of this process are represented in the opacity

computation module of Figure 2. This process begins with a
default multimodal transfer function, obtained from a weighted
average of the opacity values from the 1D input transfer
functions TFX and TFY . Similar to the color fusion (see
Equation 5), the weights are given by the I2 and I3 information
maps. This new 2D multimodal transfer function is used to
compute the visibility distribution for a set of viewpoints.
Then, the informational divergence or Kullback-Leibler dis-
tance [29] between the obtained visibility distribution and
the target distribution is evaluated. The target distribution
represents an importance-based description of what the user
expects to be visualized, i.e., the probability of each bin
in the final visualization. From the informational divergence
value, the optimizer, based on the steepest gradient descent
algorithm, assesses a new transfer function in the direction of
the divergence gradient. The process is repeated until the value
of the informational divergence is below a given threshold or
a given number of iterations has been performed.
The computation of the informational divergence is carried

out in the framework on an information channel V ! B
between random variables V and B that are respectively
defined over the alphabets V (set of viewpoints) and B (set
of bins), where each bin corresponds to the set of voxels that
have the same pair (x,y) of intensity values or the same triplet
(x,y,g) of intensities and gradient. It is assumed here that all
the volume data sets are centered in a sphere of viewpoints
and the camera is looking at the center of this sphere. The
main elements of the channel V ! B are the conditional prob-
abilities p(b|v), given by the normalized projected visibility of
intensity bin b over a viewpoint v, the input probability p(v),
given by the normalized projected visibility of the data set
over a viewpoint v, and the output probability p(b), given by
p(b) = ∑v2V p(v)p(b|v) that expresses the average projected
visibility of intensity bin b from all viewpoints. For more
details, see [4].
In this paper, three different target distributions have been

used:
• Occurrence of the intensities: the target distribution ob-
tained from the occurrence of each intensity bin b is
defined as

q(b) =
occur(b)

∑i2B occur(i)
, (7)

where occur(b) stands for the occurrence of bin b. This
approach requires that each intensity bin, i.e., each pair of
intensities (x,y), is visualized according to its probability
in the volume data set. Note that the original resolution
of the intensities can not be used (as it was in the
original paper of Ruiz et al.) due to the high number of
different pair combinations. Thus, a binning strategy has
to be applied. In our framework, we used an information
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bottleneck-based approach, which is described in more
detail in Section VI-B.

• Gradient magnitude: the previous target distribution is
extended by using the 3D transfer function generated by
the intensity pair and the gradient. Using this extension,
the target distribution obtained from the gradient values
weighted by the occurrence distribution is defined by

q(b) =
grad(b)occur(b)

∑i2B(grad(i)occur(i))
, (8)

where grad(b) stands for the gradient component g of
the bin b. Note that B represents now the joint variable
(x,y,g). In this case, the voxels with a high gradient (i.e.,
those that are borders of anatomical structures) can be
highlighted. Note that each input data set has a different
gradient magnitude and a fusion scheme is needed also
in this case. We propose to fuse them based on the
information maps. Section VI-C describes this technique
in more detail.

• Importance function: the previous target distributions can
be weighted by an importance function imp(b) defined
by the user. For instance, weighting the second one by
importance, we obtain the following target distribution:

q(b) =
imp(b)grad(b)occur(b)

∑i2B(imp(i)grad(i)occur(i))
. (9)

In this way, a priori knowledge of the data, such as the
intensity range of the relevant structures, is combined
with statistical features of the data.

The informational divergence or Kullback-Leibler dis-
tance [29] measures the distance between the visibility dis-
tribution and a target distribution q(B). From this measure,
two different approaches can be defined depending on how
the visibility is estimated:

• Global informational divergence (GID), which is defined
as

DKL(p(B),q(B)) = ∑
b2B

p(b) log
p(b)
q(b)

, (10)

where p(b) is the average projected visibility of intensity
bin b from all viewpoints, and thus p(B) represents the
mean visibility of each intensity bin considering all the
viewpoints.

• Viewpoint informational divergence (VID), which only
considers the current viewpoint v. Thus, Equation 10
becomes

DKL(p(B|v),q(B)) = ∑
b2B

p(b|v) log p(b|v)
q(b)

, (11)

where p(B|v) represents the visibility of each intensity
bin considering only the current viewpoint. Note that
this measure is view-dependent and will have to be
recomputed each time the viewpoint changes.

Ruiz et al. [4] proposed to add an opacity constraint term
to the information divergence to ensure a high degree of
opacity of the final transfer function. In our framework this
term has not been added since the method does not lead to
very transparent results without this term. Thus, our objective

(i.a) CT, 16 bins (i.b) CT, 32 bins

(ii.a) MR, 16 bins (ii.b) MR, 32 bins
Fig. 4. CT and MR head data sets of Figure 1(a) and 1(d) are shown after
applying the binning step with (a) 16 bins and (b) 32 bins.

is to minimize the informational divergence by modifying
the opacities of the multimodal transfer function. This opti-
mization procedure is performed using the steepest gradient
descent method and using an estimation of the gradient of the
informational divergence to speed up the process. For more
details see [4].

B. Binning Algorithm
Given the information channel between two registered data

sets presented in Section III, the number of bins of each data
set is reduced by applying the one-sided clustering algorithm
introduced by Bardera et al. [33]. On the one hand, the
necessity of this process is due to the computational difficulty
of dealing with the high number of bins that result from the
combination of two input data sets. On the other hand, the
one-sided clustering algorithm, designed for multimodal image
segmentation, allows us to obtain a more accurate result than
a regular binning approach.
This binning algorithm, based on the agglomerative in-

formation bottleneck method [34], is a greedy hierarchical
clustering algorithm that merges the histogram bins of one
data set by minimizing the loss of mutual information between
both data sets. The main idea behind the algorithm is that the
final segments of one data set correspond to the structures
that are most relevant from the perspective of the other data
set, called control data set. For more details, see [33]. Figure 4
shows, for the original CT and MR head data sets of Figure 1,
the results obtained after applying the binning process with 32
and 16 bins. Observe how the main structures of the original
images have been preserved.

C. Gradient Computation
In volume rendering, the gradient is needed to obtain the

normals for the shading calculation. In addition, the gradient
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(a) CT (b) MR (c) Fused
Fig. 5. From left to right, the representation of the gradient magnitudes of
the input CT and MR head data sets, and the fused data set.

magnitudes can be used to define the transfer function. In the
multimodal visualization scenarios, each data set contributes
with a gradient value and, therefore, a strategy to fuse these
multiple values in a single one is required.
To obtain the fused gradient, we use the fusion strategy

proposed in Section V for color fusion. Thus, the fused
gradient magnitude g in voxel (i, j,k) is defined by

g(i, j,k) =
I2(x;Y )gX(i, j,k)+ I3(x;Y )gY (i, j,k)

I2(x;Y )+ I3(x;Y )
, (12)

where gX(i, j,k) and gY (i, j,k) stand for the gradient magni-
tudes in the voxel (i, j,k) of data sets X and Y , respectively.
The fused gradient direction is also computed in a similar way.
For the computation of gX and gY , the 4D linear regression

algorithm proposed by Neumann et al. [35] has been applied
to the original data sets (before the binning step). With this
method we obtain a more accurate gradient approximation
than using the standard finite difference method [35]. Figure
5 shows the gradient magnitude for the input CT and MR
head data sets, and the fused gradient. Note that the fused
gradient preserves the main structures of the input models
without disruptive discontinuities.
Observe that the gradient associated with the intensity

value x of the reference data set contributes more when its
predictability is greater than the predictability of the intensity
values y associated with x, and vice versa. As we discussed
in Section V, due to the asymmetric role of X and Y, prior to
the fusion we have to select the reference data set.

VII. RESULTS
In this section, we present a set of experiments that have

been carried out to evaluate the proposed approach. We have
considered two testing data sets, the first composed of medical
data and the second of industrial data.

A. Medical Applications
For the medical experiments, we have used CT, MR, and

PET data sets from the Osirix database [36] and we have
analyzed both the CT-MR and the CT-PET fusions. In the
CT-MR fusion, CT detects dense structures, such as bones,
giving the general shape of objects but few details on the soft
tissues, while MR images are used to depict the morphology of
soft tissues being rich in detail. Generally, in CT-MR fusion,
physicians want to see the dense structures from CT and the
soft tissues from MR. In the CT-PET fusion, PET provides

information of metabolism activity patterns while CT provides
high quality spatial context information. Generally, in the CT-
PET fusion, physicians want to see the functional active areas
from PET, and bone and other anatomical structures from CT.
The proposed approach has been integrated in a multimodal

visualization platform. Its user interface, developed using
Qt [37], integrates two lateral viewers to present the input data
sets and a central viewer with the multimodal visualization.
The user interacts with the main viewer and all the actions are
reproduced to the other ones. We use GPU-based ray casting to
render the input models and CPU-based ray casting to render
the fused data set based on VTK [38]. Note that multimodal
transfer functions have, in general, three input variables: the
intensities of both input data sets and the gradient magnitude
and, for each triplet, a color and an opacity scalar value have
to be shown. The visualization of this information is not a
simple task and physicians, who are not very used to deal
with this kind of information, could have some difficulties to
correctly interpret them. To overcome this limitation, in our
experiments we always provide to the users the multimodal
visualization together with the original input data sets.
In our experiments, we have used by default the global

informational divergence (GID), a stopping threshold value of
the informational divergence measure equal to 0.001, and 6
uniformly distributed viewpoints. The first experiment eval-
uates the CT-MR fusion using a CT (512⇥512⇥174) and
MR (176⇥224⇥244) head data sets. In a preprocessing step,
these data sets have been registered and the MR-head has
been resampled to the CT resolution using linear interpolation
(see Figures 6(a)). To apply the proposed approach, the CT
data set has been considered as the reference data set, since
it is more contrasted than MR data set. Different number of
intensity and gradient bins have been used in order to evaluate
the effect of the binning process. Figures 6(b-c) show the
obtained results using both the target distributions given by
occurrence and occurrence weighted by gradient, respectively.
To better illustrate the results, a cutting plane at the level of
the damaged area has been set. With respect to the target
distributions, note that when only occurrences are taken into
account (Figure 6(b)) no insight of the lesion is visible. On
the contrary, when gradient is considered (see Figure 6(c)), the
method assigns a lower opacity around the damaged area and
this is perfectly delineated. This effect is due to the contrast
injected to the patient, in order to enhance the lesion detection.
Therefore, for data sets with highly contrasted structures,
the proposed approach will achieve better results using the
occurrences weighted by gradient as the target distribution.
Figure 6(d) has been obtained using occurrences weighted by
gradient and assigning importance 1 to the lesion and 0.5 to
the rest for the MR, and 1 to the bone and 0.2 to the rest
for the CT. In this way, the importance of each pair of the
fused data set is obtained by multiplying the importances of
each single data set. As it can be seen, the bone and the
lesion are notably highlighted in the final rendering. Finally,
we can evaluate the effect of the binning process by comparing
Figures 6(i.b-i.d) and Figures 6(ii.b-ii.d). We observe that the
different number of bins only slightly affects the final colors
of the transfer function. Thus, although the binning process
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(i.a) Input CT (i.b) occur (i.c) occur ⇤ grad (i.d) occur ⇤ grad ⇤ imp
16⇥16 16⇥16⇥32 16⇥16⇥32

(ii.a) Input MR (ii.b) occur (ii.c) occur ⇤ grad (ii.d) occur ⇤ grad⇤ imp
32⇥32 32⇥32⇥8 32⇥32⇥8

Fig. 6. Multimodal visualization of (i.a) CT and (ii.a) MR data sets using different target distributions: (b) occurrence, (c) occurrence weighted by gradient,
and (d) occurrence weighted by gradient and importance. Results (i.b-d) are obtained using 16 non-uniform intensity clusters for each data set and 32 uniform
bins for the gradient magnitude, and (ii.b-d) using 32 non-uniform intensity clusters for each data set and 8 uniform bins for the gradient magnitude.

(a) CT-MR fusion (b) MR-CT fusion
Fig. 7. Comparison of multimodal visualizations of CT and MR head data
sets of Figure 6(a) using occurrence weighted by gradient and considering (a)
CT and (b) MR as the reference model, respectively.

implies a loss of information, it has no relevant impact to
the final result. Using the same pair of data sets, we have
also evaluated the difference of using either CT or MR as the
reference data set. As we can see in Figure 7, the results are
very similar and, thus, the selection of the reference model
does not substantially affect the quality of the final rendering.
The next experiment evaluates the CT-PET fusion con-

sidering the PET as the reference data set since the PET
is more contrasted than the CT. The original data sets (see
Figures 8(a-b)) are correctly registered and have a resolution
of (168⇥168⇥344). In this experiment we use 64 non-uniform
intensity clusters for each data set. To obtain the fusion we
use the target distribution given by the occurrence, assigning
importance 0.7 to the bone of the CT and 0.1 to the rest,
and 0.8 to the high activity area of the PET and 0.1 to the
rest. The result is shown in Figure 8(c). As it was expected,
the integration of the anatomical context from CT makes the
interpretation of PET information easier.

The third experiment also evaluates a CT-PET fusion.
These data sets are registered and have a resolution of
(512⇥512⇥267). As in the previous case, PET is considered
as the reference for the computation of the information maps,
and we use 32 non-uniform intensity clusters for each data set
and 8 uniform bins for the gradient magnitude. Figure 9 shows
the multimodal visualization using the target distribution of
occurrences weighted by gradient and assigning importance
0.7 to the CT bone and 0.1 to the rest. Note how the
assignation of importance and the application of the gradient
improve considerably the skeleton visualization.

B. User Evaluation
To evaluate the proposed approach in a medical context,

we have presented the obtained results to a group of experts
from the Hospital Josep Trueta of Girona. The validation
of multimodal visualization is a difficult task due to the
lack of ground truth data. Moreover, observer’s evaluation
can be influenced by the diagnostic situation, the observer’s
experience, training, and preference. Therefore, our evaluation
have been based on the capability of the expert to obtain
information from the testing images that could be relevant for
the diagnosis.
In a first evaluation, we have presented the CT-MR fused

data sets obtained with our approach (Figure 6) and also with
the classical weighted average visualization, and checkerboard
visualization (alternatively visualizing one voxel of each input
model) manually modulating the opacities to generate compa-
rable results to our approach. All experts agreed that the most
valued image is the Figure 6-ii.c since perfectly delineates the
right intra-cerebral mass providing a visualization similar to
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(a) CT (b) PET (c) CT-PET fusion
Fig. 8. Multimodal visualization of (a) CT and (b) PET data using occurrence
weighted by importance considering the (c) PET as the reference model.

the one obtained with a parietal craniotomy. Moreover, this
result was not reproducible with the classical visualization.
Figure 6-ii.d has been less valued since loses details of the
pathologic mass although it better represents the bone structure
and vascular details. Figure 6-ii.a has been directly discarded
since it does not provide relevant information for the diagnosis.
In a second experiment, they have analyzed the CT-PET

fused data (Figure 8) obtained with our approach and the stan-
dard methods previously described. Experts have considered
that the active areas of the PET are better represented with
the proposed approach than with the standard methods, since
these areas have a higher image contrast.
As a conclusion, experts have pointed out the quality of our

images and have considered them especially useful for surgical
and radiotherapy planning, and for treatment monitoring.

C. Industrial Applications
To show the wide applicability of our method, this has

also been tested with an industrial data set. In the industrial
area, the dual energy CT (DECT), which performs a high
and low energetic measurement simultaneously, has become
a novel technique for dimensional measurement of industrial
components. The high energy scan is almost free of artifacts
but suffers from reduced precision and noise, and the low
energy scan has high precision but is affected by severe arti-
facts [39]. The purpose of fusion is to combine the advantages
of both models in a single one. Figures 10(a-b) show the
low and high energy scans of a 400 V power connector with
a resolution of (256⇥256⇥895). The transfer functions used
in these visualizations have been obtained with the method
proposed by Ruiz et al. [4]. Figures 10(c-d) illustrate the
corresponding I2 and I3 information maps of both scans. As it
was expected, the low energy information maps present severe
artifacts while the high energy ones are free of artifacts but
suffer from noise. Since the presence of artifacts makes the
fusion more difficult, we take the high energy scan as the
reference data set. Figure 11 shows the multimodal fusion of
DECT data set using the target of occurrence weighted by
gradient with both the VID (i.e., only one view is considered)
and the GID (6 and 20 views are considered) measures. In

Fig. 9. Two different views of a multimodal visualization of CT-PET
fusion using as a target distribution the occurrence weighted by gradient and
importance.

(a) (c)

(b) (d)
Fig. 10. Visualizations of the (a) low energy and (b) high energy CT scans
of a power connector and (c-d) their corresponding I2, I3 information maps.

these experiments we use 16 non-uniform intensity clusters for
each data set and 32 uniform bins for the gradient magnitude.
When the GID measure is used (see Figures 11(c-d) and (e-
f)), a unique transfer function is obtained, while with the
VID measure (see Figure 11(a-b)) a new transfer function is
defined for each viewpoint. Note how the transfer functions
are clearly dependent on the selected viewpoints. In the case of
one viewpoint, all structures are visible from each viewpoint,
while considering more viewpoints, occlusions do not allow
us to perceive all structures from a single viewpoint. We can
also observe that the difference using 6 or 20 viewpoints is
minimal and, hence, the use of 6 viewpoints is a good trade-
off between quality and speed for the global informational
divergence.
Table I collects the computation time in seconds for each

step of the proposed approach and different data sets. From
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(a) (c) (e)

(b) (d) (f)
Fig. 11. Multimodal visualization of a dual energy CT scan of a power
connector with the target of occurrence weighted by gradient considering (a-
b) one view, (c-d) 6 views and (e-f) 20 views.

left to right, columns report evaluated data sets with different
configurations and target distributions, data preparation steps
(information maps, binning, and gradient), color computation,
and opacity computation. In this last column, we considered
two different distances to stop the process (d < 0.01 and
d < 0.001) and, for each configuration, we collect the compu-
tation time in seconds and the number of iterations required
by the opacity process. The performance of our method only
benefits from the GPU in the implementation of the visibility
computation. Note that in most cases the results converge in
less than 50 iterations. All the experiments were carried out on
a PC equipped with an Intel Core 2 Quad Q9550 CPU, 4GB
of RAM, and a NVIDIA GeForce GTX 280 graphics card.

VIII. DISCUSSION
As we have mentioned in Section II, some approaches have

been proposed to assist in multimodal transfer function design.
Some previous works [13], [14], [15] present a simplification
of the multimodal transfer function space to facilitate the
manual definition, even though this is still required. Some
other approaches have been proposed for automatic transfer
function design. These approaches, that only consider one
input data set, deal with the problem of minimizing a cost
function while optimizing the opacity values in the transfer
function definition. For instance, Correa et al. [17] and Ruiz et
al. [4] propose to minimize, respectively, an energy function
and the informational divergence between a given visibility
function and the visibility obtained with the transfer function.
In our framework, we define a general pipeline to solve

the problems related to the multimodal visualization. First,
the informativeness of the intensity values of both input
data sets is used to obtain a fused gradient function, that
is required to compute the illumination and to define the

transfer function. Second, a non-regular histogram binning
strategy is proposed to reduce the number of entries of the
joint histogram required for the optimization of the transfer
function opacities. Third, the informativeness values together
with the original colors of both 1D transfer functions are used
to generate the color assignment in the multimodal transfer
function definition. And fourth, the opacities of the multimodal
transfer function are automatically computed from a target
distribution by minimizing the informational divergence.
The theoretical fundamentals used in this paper are based

on information theory. This theory is used to relate different
random variables by defining an information channel between
them. Note that, while the information maps and the binning
algorithm are obtained from the information channel created
between the two input data sets, the informational divergence
is computed in the context of an information channel between
a set of viewpoints and the bins of the multimodal data set.
In our approach, the problems related to the multimodal vi-

sualization are solved by defining a few number of parameters.
First, for the binning process, the final number of bins has to
be fixed. As it has been shown in Figure 6, the final results are
not very sensitive to this parameter and, in our experiments,
we have used a default value of 32 bins. Second, the reference
image has to be chosen. From our tests, we have observed
that the best results are achieved when the most contrasted
image is considered as the reference one. For instance, in the
visualization of a CT-PET image pair, the best performance is
obtained when the PET image is taken as the reference one
instead of the CT image. Finally, in the optimization process, a
target distribution have to be defined. The choice of the target
distribution requires that the user decides which features have
to be enhanced.
Focusing on real medical applications, a current limitation

of our approach, which is inherent to any color fusion strategy,
is the color interpretation of the multimodal visualization.
Since new colors are generated, the physician could have
difficulties to interpret them. To tackle this problem we can
simultaneously visualize the original input data sets with their
transfer functions and emphasize the explored area in the fused
model to the original data sets.

IX. CONCLUSIONS

We have introduced a novel pipeline to automate the infor-
mation fusion and the transfer function design required in mul-
timodal visualization. The proposed approach, that combines
several information-theoretic strategies to define colors and
opacities, is basically composed of the following processes.
First, the information maps between two input registered data
sets are computed. Second, the fused color is computed from
the combination of the original colors using the information
maps. Finally, the opacity values are generated by minimizing
the informational divergence between the visibility distribution
and a target distribution proposed by the user. Before this
optimization process, a binning step has been applied to reduce
the number of bins of the input data sets and both gradients
from the input data sets have been fused to a single gradient
value. As future work, we will study the generalization of
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Data set Data preparation Color computation Opacity computation (sec.,it)
binsX⇥binsY⇥gradient (target) Information maps Binning Gradient d < 0.01 d < 0.001
CT-MR 1.27 10.32 10.40 0.01 - -
32⇥32⇥1 (1) (44.67, 26) (48.97, 28)
32⇥32⇥8 (2) (110.53, 30) (173.49, 47)
CT-PET 0.83 4.34 17.74 0.02 - -
64⇥64⇥1 (3) (134.79, 34) (458.45, 101)
Prostatix 0.87 5.82 15.02 0.01 - -
32⇥32⇥8 (4) (88.13, 36) (128.96, 53)
DECT 1.98 18.41 14.35 0.01 - -
16⇥16⇥32 (2) 1 viewpoint (15.98, 22) (30.93, 40)
16⇥16⇥32 (2) 6 viewpoints (96.61, 29) (158.60, 48)
16⇥16⇥32 (2) 20 viewpoints (316.29, 31) (507.32, 50)

TABLE I
TIME COST IN SECONDS REQUIRED FOR THE MAIN STEPS OF THE FUSION PROCESS. TARGET DISTRIBUTIONS ARE: (1) OCCURRENCE, (2) OCCURRENCE

WEIGHTED BY GRADIENT, (3) OCCURRENCE WEIGHTED BY IMPORTANCE, AND (4) OCCURRENCE WEIGHTED BY GRADIENT AND IMPORTANCE.

this approach to the visualization of more than two data
sets. This extension requires a detailed analysis of the mutual
information decomposition for more than two variables. We
will also investigate the improvement of the color fusion
strategy in order to facilitate the interpretation of the color
in a multimodal visualization.
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