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Abstract
We present a non-equilibrium theory in a system with heat and radiative fluxes. The
obtained expression for the entropy production is applied to a simple one-dimensional
climate model based on the first law of thermodynamics. In the model, the dissipative
fluxes are assumed to be independent variables, following the criteria of the Extended
Irreversible Thermodynamics (BIT) that enlarges, in reference to the classical express-
ion, the applicability of a macroscopic thermodynamic theory for systems far from
equilibrium. We analyze the second differential of the classical and the generalized
entropy as a criteria of stability of the steady states. Finally, the extreme state is
obtained using variational techniques and observing that the system is close to the
maximum dissipation rate.

Introduction

In the late 60's and in the 70's the development of one-dimensional climate models
based on the first law of thermodynamics had its apogee. The importance of these
simple models was centered in the possibility to understand the weight of the
parameters that intervene in the climate system [1-5]. These previous works led
scientists to create more sophisticated climate models with two and three dimensional
variables [6-10] until arriving to the present General Circulation Models (GCM), that
suffer of a high level of complexity with the intention to simulate all the physical
processes present in the atmosphere. Thus, different types of GCMs have been used to
diagnose the laws that govern the interactions between the elements of the climate
system and to predict possible climate evolution in different possible scenarios [11-12].
However, due to their complexity these models do not permit a direct application of
new concepts in the study of climate. On the other hand, the one-dimensional climate
models do not give quantitative solution for the climate but are very useful tools for
introducing new parameters and for observing how the new terms affect and modify the
state of the system. Following this way, some authors have recently studied the role of
entropy in climate. Li and Chylek [13] have used a one-dimensional latitudinal-
dependent climate model developed by North [3] for obtaining the expression of the
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Entropy production in thermodynamic climate models 63

rate of entropy production. Furthermore, Li et al. [14] consider a one-dimensional
radiative-convective model to observe the vertical distribution of the rate of entropy
production. Looking for the possibility of an extremal of the dissipation in the clipiate
system, formerly claimed by Paltridge [15-18], Stephens and O'Brien [19] have
calculated the contribution of the radiative flux of entropy using satellite data and
comparing them with analytical results. Later, O'Brien and Stephens [20] use a
Paltridge box model pointing out that it follows the principle of maximum dissipation
proposed by Ziegler [21]. Paltridge developed a box-model assuming that the climate
system is close to the maximum dissipation rate. With this constraint, the Paltridge
model gives values of temperature and cloud cover extraordinarily close to the real
ones as has been shown by Grassl [22], introducing the ice-albedo feedback.

Therefore, our purpose is to formulate a non-equilibrium climate model in order to
obtain a general expression of the rate of entropy production outside equilibrium. We
will follow Nicolis and Nicolis [23] to explore wether or not the climate system is
governed by an extremal principle related with the entropy production. Moreover, with
the aim of doing a rigorous deduction according to the most recent macroscopic
theories, we will assume the dissipative fluxes of the system to be independent variables.
Thus, a macroscopic expression will be obtained in the framework of the Extended
Irreversible Thermodynamics (EIT). This theory has been successfully used in a wide
range of macroscopic systems but it has never been used in climatic systems. In Section
2, a general expression of the rate of the generalized entropy production outside
equilibrium is obtained in a system with heat and radiative fluxes. In Section 3, a
one-dimensional climate model is developed following the one proposed by North
[3-4] with the intention of evaluating a qualitative behaviour of the rate of entropy
production. In the horizontal diffusive model used the horizontal heat flux is approxi-
mated using a Fourier's law type equation. As this model is vertically averaged, it is not
necessary to know the radiation flux, only its divergence. We will introduce, then, an
expression for the radiative flux in order to apply the development proposed by EIT.
When its divergence is averaged vertically the parameterization of North's model is
obtained. Then we will be able to define a generalized entropy with an expected larger
range of validity than the expressions used before. Both, the rate of the classical and
extended entropy production, are compared in Section 4 where we also study their time
evolution for different cases. They present different behaviours when different initial
conditions are chosen. Thus, at the steady state a maximum or a minimum in the rate of
entropy production is obtained in function of the values assumed for the initial
conditions. Even, the attainment of this extremal at the steady state in reference to the
time evolution is not always fulfilled.

In Section 5, we discuss the possibility of using the second differential of the generalized
entropy as a stability criteria for the climate system. The classical expression has been
largely used in thermodynamic fluid systems for obtaining the stability at stationary
conditions. This hypothesis applied to the climate has been initially proposed by
Nicolis and Nicolis [23]. The second differential of the generalized entropy has been
studied by Jou et al [24] where the convexity requirement implies a maximum
permissible value for the dissipative fluxes, directly related with the range of applicabil-
ity of the EIT theory. Here, the classical and the generalized expression of the second
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64 T. Pujol, J.E. Llebot

differential of the entropy are studied and their obviously 4ifferent behaviour is
emphasized.
On the other hand, a maximum entropy production at the steady state can be obtained
which is a minimum in reference to the time evolution. It is due to the existence of an
extremal entropy production for fixed conditions, which value has been calculated at
the steady state using variational techniques (Sect. 6). We have analyzed three
expressions related to the rate of entropy production: the global, the thermal and the
difference between the radiative flux and the radiative energy contribution of entropy.
Furthermore, the time evolution of the rate of entropy production is shown in
comparison with the extremal value obtained using the variational principle. This
calculation is only acceptable for a time evolution close to the steady state presuming
that the extremal conditions are also applicable not very far from the equilibrium.
However, a variational principle outside the steady state is applied with some addi-
tional restrictions, obtaining a good approach of the extremal values to the observed
ones along the time evolution. In Section 7, finally, we conclude the work with the
discussion of the results obtained.

2. Generalized entropy production

In the last years the common acceptance of studying the climate through complex
2-dimensional and 3-dimensional models, to take into account the great quantity of
physical phenomena present in the atmospheric system, has not permitted to introduce
new concepts. There have been some attempts to investigate the role of the rate of
entropy production in the climate system using simple 1-dimensional models [13-14,
23] or using it as a fundamental part for the calculation of the variables in a box model
[15-20,22]. In a closed thermodynamic system the study of the behaviour of the rate of
entropy production has been extensively used [25]. However, in an open system with a
radiation field (e.g., the climate) it is still unclear how the entropy production will evolve
and wether it is of importance for the states reached by the system. Thus, it is not clear
wether or not the system follows an extreme principle at the steady state [23, 26, 27];
also it is unclear wether the rate of entropy production can be expressed'as a bilinear
form, though there have been attempts to do so [28, 29]. Even in the treatment of the
entropy on the climate, some authors have considered only the thermal part [23]
pointing out that the radiative contribution has no relevance on the dynamics of the
system and, in consequence, on the state that it is led to [20]. The assumption of a
thermodynamic 1-dimensional model permits a great technical simplification, with
only three thermodynamics variables: the temperature, the heat and the radiative
fluxes. However, there have been attempts to find an extremal behaviour of the rate of
entropy production in simple dynamic models [30, 31] with the intention to obtain a
principle equivalent to the principle of minimum entropy production proposed by
Prigogine [32], not necessarily restricted to closed systems [25]. Nevertheless, the
existence of the radiation field in the climate implies a great difficulty and raises doubts
in the success of this task.

Here, we will obtain a general expression of entropy production for non-equilibrium
situations, assuming an open system with two perpendicular fluxes, the heat flux and
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Entropy production in thcrmodynamic climate models 65

the radiative flux. When the system is outside the steady state, the classical phenom-
enological laws are not satisfied and we consider the fluxes as independent variables.
The thermodynamic theory that assumes the introduction of the fluxes as independent
variables has been called Extended Irreversible Thermodynamics (BIT) because, in
principle, it is an extension of the classical non-equilibrium thermodynamics based on
the local equilibrium hypothesis. HIT mainly deals with a generalized entropy,
obtained from a generalized Gibbs equation. This generalized thermodynamics has
enlarged the applicability of a macroscopic theory in the study of multiple physical
systems (e.g., fluids, rheology, cosmology,...) and has obtained significant agreements
with mesoscopic theories (kinetic theory, statistical mechanics and information theory)
[24]. Now, we try to use it in a climatic system.

We assume the generalized expression of the rate of entropy production to be not only a
function on the extensive variables as the classical expression but also of the dissipative
fluxes. Then, s* = s* + s* where the subscripts r and m indicate the radiation and the
matter part respectively and * denotes the generalized entropy. With the assumption
that 5* = s*(u, Q, R), the generalized Gibbs equation has the form

(1)

where Q is the heat flux and 1? the radiative flux, u is the internal energy of the system
and ρ its density. Many authors consider only as acceptable a Gibbs equation related to
the respective material parts of the internal energy and entropy but, as Fort and Llebot
[33] remark, it is possible to assume a Gibbs equation to hold for the total, i.e. radiation
including entropy and internal energy. However, if we only adopt a Gibbs equation for
the material part, the expression of the rate of entropy production that we will obtain,
would be modified by the introduction of local time derivatives in the material part of
the internal energy and entropy. However, once calculated their values, in the cases
assumed in Section 4, and being applied to the climate system, we would observe a
considerable lower contribution than the additional terms obtained using the HIT
theory.

The first term on the rhs of (1) corresponds to the classical entropy. The coefficients AQ
and AR are obtained relating (1) to the balance equation for the entropy, as follows:

ñ = - í · / 5 + ó. (2)

Here Js is the entropy flux and ó the rate of entropy production. From (1) and (2), σ can
be calculated as

- ' Tat T dt T dt'

The variation of the internal energy of the system is related to the dissipative fluxes
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66 T. Pujol, J.E. Llebot

through the first law of thermodynamics as follows

p^=_V- -V- . (4)
at

We divide the entropy flux into a thermal and radiative part

/s = f+", (5)

where Q/T and H are the thermal and the radiative part respectively. The main
problem of a thermodynamic treatment of the radiation is that the radiative flux of
entropy is not linearly related with the radiative flux of energy [34]. However, in next
sections we will assume a proportionality of both expressions through effective
temperatures chosen conveniently [13, 27]. With (5) and (4), equation (3) can be
expressed as

„„1 ^u^Q VR AK dR

For the coefficients AQ and AR, we assume a linear dependence on the fluxes [24]:

^Q = aQ +aQK , (7a)

AR = aRR + aRQQ. (7b)

The coefficients OLQR and aKQ are identically zero because the two fluxes Q and R in the
simple 1 -dimensional model are assumed to be perpendiculars (Q horizontal heat flux,
R vertical radiation flux) [13]. Therefore, equation (6) takes the form

2^1 rj-i Ô» Ë* É ' \ Ô» ΗΓ Jf I \ T / "

Note that we here implicitly have assumed an independence between the fluxes and the
temperature. Let us now consider an evolution equation commonly used for the heat
flux and including a relaxation time TQ,

doτ -\- f)= λ' VT (9)

where ë'â is the thermal conductivity of the system.

Equation (9) is a Maxwell-Cattaneo equation [24, 35] that in the steady state has the
form of Fourier's law. For the radiation field, we accept a similar form to (9) [33,36-37],

dR

In fact (10) can be directly deduced from the radiative transfer equation choosing
suitably the values of λκ and τκ. An expression similar to (10) has been used by Fort and
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Entropy production in thermodynamic climate models 67

Llebot [33] applying a generalized expression for the entropy in studying the radiative
transfer equation.

With (9) and (10) and with the intention of obtaining a bilinear form of ó in terms of the
fluxes, the coefficients áâ and áê are identified as

The generalized expression of entropy production is then

00 R R (12)

However, this is not a bilinear form for σ due to the non-linear dependence of Hin R
[34]. Nevertheless, some authors have accepted a bilinear form at the steady state,
developing the radiative terms on the wavelength, the solid angle and the spectral
energy radiance [28, 29].

3. Entropy production in the climate model

In Section 2 we have obtained the rate of a generalized entropy production outside
equilibrium in a system where the dissipative fluxes, the thermal flux and the radiative
flux, are perpendicular to each other. In order to consider how this expression modifies
the results found by the classical equation [13], it would be of interest to apply it to a
simple climate model. The one-dimensional latitudinal-dependence Energy Balance
Models (EBM) are the adequate tools for using (12) because these models do not take
into account the dynamics of the system. Here, we will use a diffusive EBM model
developed by North [4]. This branch of EBM models assumes the heat flux to be
described by Fourier's law with a definite value of the conductivity-diffusivity of the
system [13,23]. The simplicity of these models encouraged many authors to use them
for observing the behaviour of variables such as the entropy in the climate system.
Following Budyko [1] we consider a linear parameterization of the long-wave
radiative divergence in function of the temperature as

A and B being empirical constants and T the surface temperature in degrees Celsius.
Equation (13) can be accepted in the atmospheric range of temperatures, taking into
account the dependence of the atmospheric emissivity on them. For the short-wave
radiative divergence we have

V R s = Sa, (14)

where S represents the insulation function, the solar constant for the whole system, and
a the coalbedo (a = 1 — a, with a the albedo).
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68 T. Pujol, J.E. Llebot

Despite the fact that the diffusive EBMs seem to be the adequate fnodels to develop the
formulation done in Section 2, these models can not be used to obtain the rate of
entropy production outside equilibrium. The reason is that these models do not
consider an explicit formula for the radiative flux. Aiming to overcome this problem, we
introduce a former 2-dimensional (vertical and latitudinal) model which after integra-
tion along the vertical axis will give us the classical diffusive EBM. Then, we postulate a
dependence for the three thermodynamic variables on the coordinates ( t, x, r), with ß as
the time, ÷ the sine of the latitude (0<x< 1) and r the axial radius, as

T(t, x, r) = T(t, xK -— — , (15a)

(15b)

R(t.x.r)=tR(t,x)f(r). (15c)

Here the constant cl has the unit of length and the dimensionless function/(r) denotes
the behaviour of the attenuation of the radiation along the vertical. H is the width of the
atmosphere and Hp is a constant with unit of length that will correspond to the height
where the radiative divergence takes its maximum value. JRt is the surface radius of the
earth. Although in (15a) a dependence on r for the temperature has not been assumed, it
does not invalidate equations (15a-c). These have been chosen according to the
condition to reach to the classical models after integrating along the vertical with a
plausible value for the radiative flux.

We have also used the gradient operator in spherical coordinates, that takes the form

(l-x2)1/2 d
V = ax~ - — IT+^IT (16a)r dx dr

l d(l-x2)1/2 l dr2
í·=á*--^ — — +ar~2^r~ (16b)r dx r2 dr ^ '

where ax and ar are unit vectors towards the pole and the zenith respectively.
Using (15b) and (16a), equation (9) has the following form

where we have redefined the conductivity of the system as

Ë λ ο
*Q=R- (18)ßíé

From (17) we obtain

(19)
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Entropy production in thermodynamic climate models 69

with V being now a dimensionless operator. A similar equation to (19) has been used
instead of Fourier's law in a EBM giving self-sustained oscillations for a definite range
of response time [38]. Now, we introduce the first law of thermodynamics, equation (4),
used in the EBM models

C— = -V-Q-(A + BT-Sa). (20)
ot

Here C is the heat capacity of the system and
R(t, x) = RL (t, x) + Rs (t, x) = (A + BT- Sa)ar , (21)

•wiihf(r) being due to the condition
(22)

where Rf is the terrestrial radius at the top of the atmosphere, assuming for conveni-
ence f(r = Rt ) = 0. Going back to (10) and following Ciancio and Verh s [36-37], we
obtain for a very anisotropic radiation field

with c being the velocity of light, σΑ the absorption coefficient and UR the internal
radiative energy per unit volume of the atmosphere, that can be expressed as

é Ã Ã= - \άλc J J (25)
Ù

Here λ is the wave-length, Ù the solid angle and /(/L) the spectral energy radiance. The
results for the long-wave and the short-wave radiation obtained from (25) taking into
account the different values of the solid angle are

, (26a)

As above, the subscripts Land S correspond to the long- wave and the short-wave
radiation respectively.

Due to (26a-b), (21) and (15a, c) λκ takes the form

λ - l '~

where Tis only a function of f and x.
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70 T. Pujol, J.E. Llebot

The short-wave term can be calculated from the expression assunied for the coalbedo a
in the diffusive EBM models

a(xs, x) = a(x) θ (χ, - ÷) + b0 θ (χ - xs) , (28)

where θ is the step function of Heaviside and xs the sine of the latitude of the ice-sheet
edge. Above this point the coalbedo is constant and equal to the ice value, b0. Then we
have

(29)

with <5(xs — x) being the Dirac delta function, centered in xs that is directly related with
the temperature and postulated to be the same as the latitude where

T(xs)=-10°C. (30)

The latitudinal dependence of the EBM assumed in the present paper follows the
development done by North [3-4]. Thus, assuming symmetric hemispheres, the
temperature can be expressed as an expansion on Legendre polynomials cutting off
until second order

T(i,x)=T0(i) + P2(x)T2(x), (31)

where P2(x) *s the second order Legendre polynomial, 7^ the global mean temperature
and T2 is 1.5 times the difference of pole-equator temperatures. For the latitudinal
dependence of the coalbedo and for the insulation function, an expression in terms of
Legendre polynomials is also taken into account

(32)

S(x) = Sc(l+S2P2(x)). (33)

Here Sc is the solar constant. In order to evaluate the weight of the long-wave and the
short-wave radiation field in λκ, we take a meridional integration of the short-wave
radiation contribution in (27). In a climatic state equivalent to the present (T0 = 14.9 °C,
T2 = - 28.2 °C, xs = 0.96 with b0 = 0.38, a0 = 0.697, a2 = - 0.0779, S2 ̂  - 0.477,
5c = 340Wm~2, ^ = 214.2Wm~2, B= 1.575Wm"2K~1, ^Q = 0.591 W m ~ 2 K ~ 1

and C = 3.138 10+8 Jm~ 2 K~ l\ from (29), taking into account the condition (30) for
the beginning of the ice-sheet, we have

é
da , „ __ ,

(34)

This value is approximately five times lower than 2B. Then, instead of (27), we assume
an expression for λκ as

2Bf(r)R,
R σ c e~H/Hp' ' '

Using (35) with (15a-c) the vertical integration of the rate of the generalized entropy
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Entropy production in thermodynamic climate models 71

production, equation (12), is

ó= ̂  ~ -j - + V-/aF~ V-( — J, (36)

where the dimensionless gradient operator takes the form

V — η i\ v2W2 Ð7ßË— tty \ ··· — -^ / "71— > y··̂  ' **)

5(1 -x2)1/2
ô — *· í _ox

and

(37b)

with D(H) as

A/
efl/HP f ,D(H) = — — \ d r r 2 f ( r ) . (39)C\H J

R,

Thus, all the variables in (36) are only functions of f and x, so the entropy production
can be expressed as

_ - A^R V^
é ô«2 ~ é ðð2 ' ô» 5 V^^/

where the second term of the rhs is the radiative additional term in reference to the
classical expression of the entropy production. The radiative flux of entropy is related
with the radiative energy flux through effective temperatures, Te , [13, 27, 39-41]. Thus,
we have

V-* = (4!)

where Te for the long-wave radiation corresponds to the atmospheric temperature,
equation (3 1), and for the short-wave corresponds to the Sun photosphere temperature
(~5777K).

The value of σΑ is calculated considering a global radiative transfer equation:

-— ßú·
As in a global system the first law of thermodynamics does not include the contribu-
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72 T. Pujol, J.E. Llebot

tion of the heat flux. Hence the absorption coefficient related to σΑ is

ff â__*_ß?í_!_^ (43)A cRardt cRa, dt '

However, with the aim of simplifying the additional term in (40), as we have done in (35),
we do not take into account the short-wave radiation in (43). The expression of λκ used
is

(44,,
D(H)-

where in the cases treated in Section 4, λκ has been taken as the absolute value of
equation (44). This assumption is made in order to simplify the importance of the
additional term for the entropy production. We should have in mind that the
1 -dimensional model only gives us qualitative results.
On the other hand, the coefficient D(H ) is evaluated by comparison of the divergence of
the radiation field along the vertical with observations. Thus, assuming the function/(r)
as

f(r) = r - C l e - ^ R ^ P , (45)

the value of V-R(t, x) to the level r from equation (15c) conveniently weighted is

c,e-^-R^H
P. (46)

Equation (46) can be related to the total adiabatic heating in the atmosphere. The
maximum values of this parameter depend on the latitude with a range approximately
of 1 1 Wm ~ 2 at the equator to 6 km height and — 18 Wm " 2 at the pole to. 3 km height
above the surface [42].

From (46) we obtain Hp as the height where the radiative divergence has its maximum
value. Then, defining c2 = H/Hp, c± is approximately

cl A QAc2Rt e, (47)

where the factor 0.4 is accepted in view of the values of R (f , x) attained.

On the other hand, we show in Figure 1 the variation of V-R( tt x) obtained in (46) as a
function of height. The two axis are normalized with respect to their corresponding
maximum values. We can see that an increase in c2 implies the maximum in the
radiative divergence to get closer to the surface. Assuming the atmospheric height
about 60km, including the troposphere and the stratosphere, and taking only into
account the long-wave radiation, because we have neglected the short-wave contribu-
tion in the calculation of λκ, the value of the constant c2 would be about 20 and,
consequently from (39), D(H) would take a value of 10 + 10 m. Following the data record
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Entropy production in thermodynamic climate models 73

Fig. 1: Radiative divergence versus atmospheric height normalized by their maximum values
(H = 60km). Due to the assumptions done in the calculus, λκ is mainly related with the
long-wave contribution. According with the profiles of adiabatic heating observed in the
atmoshpere [42], a value of c2 « 20 can be accepted ( c2 = 10; c2 = 20; -·- ·- ·- ·- ·-
c2 = 30; c2 = 40).

by Peixoto and Oort [42], it corresponds to a maximum of about 3 km above from the
surface. Higher values of c2 could be admitted assuming a higher width for the
atmosphere (e.g., c2 = 30 for Η = 90 km) and vice-versa.

Although the radiative additional term in equation (40) vanishes when the system
arrives at the steady state, its contribution can play a determinant role in the behaviour
of the time evolution of entropy production. Thus, in the next sections we will see that
high values of c2 can modify completely the classical results. Nevertheless, according to
the observations, we accept as a realistic value for c2 that one indicated above.

4. Results

In this section we present the results of the time evolution of the classical and the
generalized entropy production. In both cases, equation (40) has been applied. In
reference to the extended contribution, the term λκ can be calculated through a
meridional integration taking into account the latitudinal dependence (44). However, it
can be approximated by a 'global' value of λ^ obtained from (44), considering the mean
value of temperature, so then we have

2c(A + BT0)

D(H) dT0

dt

(48)

Equation (48) and the global integration of (44) are clearly different expressions since
(48) has no latitudinal dependence. The results of the entropy production with both
values of λκ will be compared and analyzed in two distinct cases.
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74 T. Pujol, J.E. Llebot

A. Ice-free earth

In this case, the equations for the evolution of T0 and T2 are uncoupled. Therefore, the
most simple model of an earth without ice-caps is to fix suitably the value of the global
temperature. This fact allows two types of evolution for the rate of entropy production
depending on the initial value assumed for T2. Thus, for an initial value of T2 greater
than that corresponding to stationary conditions there will be a monotonical increase
of entropy production. The introduction of the radiative fluxes as independent
variables can change this behaviour because the additional term in (40) has always a
positive contribution. Nevertheless, in the particular case where the global temperature
is assumed to be constant, it is not possible to choose the value of XR as (48). Thus, we
have chosen for λκ the expression obtained in (44). Numerical results are depicted in
Figure 2. The first case shows the evolution of a generilized expression of entropy
production with a value of λκο = 10 "8 s"1, with λκο defined as

• 2C (49)*u D(H)

Then, we have considered a value of D(H)~ 10+16 m corresponding to a value of
c2 A 35. If we accept the value of λκο obtained by comparison with the observations,
calculated at the end of the preceding section, λκο would be about 10 ~2 s~1. With this
high value of λκο the radiative additional term can be neglected and the difference in the
behaviour of the generalized and the classical expressions would be governed by the
response time used in the heat flux term. However, aiming to observe the modifications
produced by the additional radiative term, we will assume lower values of λκο even if
these values are not expected for the climate system in the present state.
The second case depicted in Figure 2, corresponds to a lower value on λκο (10 ~9 s~ *).
We can observe the change in the behaviour of the rate of entropy production outside
the steady state in reference to the classical expression emphasizing the weight of the
additional term related to the introduction of the EIT theory in the study of the system.

B. Earth with ice-caps

In this section, T0 is permanent linked to T2 through the value of the ice-sheet edge
equation (30). Applying, for simplicity, equation (48), the behaviour of the classical
entropy production grows monotonically, arriving its maximum value at the steady
state if the initial conditions are not far from the steady conditions. However, taking
into account the generalized expression, the monotonical behaviour is clearly unsatis-
fied due to equation (48), where λκ depends on T0. Thus, in all the extremal points of T0
along the evolution, the generalized and the classical entropy production have the same
value. Nevertheless, in the other points, when T0 evolves, the additional term of the
generalized expression will provoke a higher value of the rate of entropy production
with respect to its classical value. Assuming λκ as in (48), consecutive events of
increasing and decreasing of entropy production with a minimum value equal to the
classical one will be obtained depending on the non-monotonical evolution of T0.
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Fig. 2: Time evolution of the classical entropy productions (
generalized entropy productions with
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) compared with two different
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•). The simple assumption of an ice-free earth is considered. Increasing the value of
λκυ there is a modification of the monotonical growing observed in the classical entropy
production, with the possibility to change the steep of the time evolution curve. Initial conditions:
T0 s 14.46 °C invariable along the time evolution, T2 = — 16 °C. The initial heat flux is obtained
applying Fourier's law at initial conditions. Other values: ô0 = 30 days and the radiative
parameters as indicate in Section 3.

Using (44), we show in Figure 3 the time-evolution of the classical and generalized
«,= l(T9s-1 andexpressions for three different values of λκ\ A =10 8s"1

3
ΛΜ= ÉÏ""10s""1. The initial conditions are shown in the figure corresponding to an
initial global temperature equal to the present but with a higher difference of tempera-
tures between the pole and the equator, considering, also, an expected response time of
30 days for the heat flux. We can observe the change of the monotonical behaviour
obtained with the classical expression using low values οίληο, lower than 10~ 7 s ~ *. For
the present state the additional radiative term does not imply quantitative modifica-
tions of the evolutions of the entropy production. For the three cases considered, there
is a broken point originated by the same reasons given in reference to the application of
(48) for the expression of λκ. This fact is related to the importance of the additional term
of the entropy production and to the assumption of the dissipative fluxes as indepen-
dent variables outside equilibrium. Moreover, we have to point out that the assump-
tion of a Maxwell-Cattaneo type equation for the heat flux can also modify the
structure of the classical solutions. Thus, Pujol and Llebot [38] have shown that an
increase of the response time used would provoke self-sustained oscillations, even
without consideration of the additional radiative term, without the possibility to arrive
at any steady state. It is due to the form of (19) and the coupling of the two compounds
of the temperature implied by the value of the ice-sheet edge, equation (30). In the
model used, then, the heat and radiative fluxes have a different influence on the time
evolution. While the radiation part can modify the classical expression by changing the
steepness of the time evolution, the heat flux can imply self-sustained oscillations for
high values of the response time.
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Fig. 3: Time evolution of the classical entropy production ( ) compared with three different
cases for the generalized entropy production with λκο = 10" 8 s ~ 1 ( · ), λκο = 10 " 9 s "
( - · - - - · - · - · - · - · ) and λκο = 10"10 s"l ( ? ). It is considered an earth with ice-caps
and it is assumed a latitudinal integration to obtain λκ. Initial conditions: T0 = 14.9 °C, T2
= — 30 °C. The initial heat flux is obtained applying Fourier's law, at initial conditions. Other
values: ôâ = 30 days and the radiative parameters as indicate in Section 3.

5. Second differential of the entropy

Usually, the stability study of a thermodynamic system at stationary conditions is done
by using the second differential of the entropy, δ2 s, taken as a Lyapunov functional
[32]. Since δ2 s has a well defined sign (negative), ά(δ2 s)/dt must be positive if the
conditions of stability at the steady state are required. In the climate system, Nicolis
and Nicolis [23] pointed out the possible use of δ2 s in a simple one-dimensional model.

However, we notice how the consideration of the dissipative fluxes, heat and radiative,
in <52s* can modify completely the behaviour of this parameter in reference to the
classical expression, and, then, vary the applicability of the stability criteria. This fact
has been largely commented by Jou et al. [24] where several explicit applications of the
convexity requirement for the extended entropy have been considered. The results
show how the condition of δ2 s* to be negative definite implies a critical value for the
dissipative fluxes within the framework of BIT. Thus, the range where δ2 s* is not
definite negative is related with length scales shorter than the mean-free path and
characteristic times smaller than the collision time. This fact shows the self-consistency
of HIT as a thermodynamic theory with a wider scope than classical CIT.

From the generalized Gibbs equation (1) and with the values obtained in (7a-b), the
generalized expression of the second differential of the extended entropy takes the form

(50)
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Here we have neglected the third order differentials. In absence of radiation (R = 0)
equation (50) is the second differential of the extended entropy, including the conduc-
tive heat flux, widely analyzed, by Jou et al. [24], Criado-Sancho and Llebot [35].
Then, from (50), the knowledge of the radiative additional term implies an assumption
over the parameter τ^/λΛ9 that can be evaluated from (23) and (38) as

(51)P jλκ 2cB'

We adopt for the present atmospheric state, the value ofD(H) used in Section 3. Thus,
τκ/λκ A 100 m2 K s2 JT * is considered and, therefore, the additional term in (50) due to
the radiative contribution can be neglected (ô /Ë, »4-106m2Ks2J -1
C = 3.138· 108 m2 K s2 J *). In this case, δ2 s* in an ice-free earth evolves in a convex
form whereas the classical expression is not well-behaved for high values of the
response time. For an earth with ice-caps, the assumption of the generalized entropy
also enlarges the applicability of S2s* as a stability criteria in reference to the classical
expression. However, for high values of the response time both expressions lose their
convex behaviour [24]. The time evolution of (52s* with higher values of τκ/λκ has been
studied with the intention of setting a better understanding of the behaviour of the
additional radiative terms.
As in the preceding section we will treat two different models:

A. Ice-free earth

We have assumed a value of the parameter τ^λκ = 10+6 m2 Ê s2 J~ * corresponding to
c2 « 30(/1KO ~ 10~6s~1) in order to understand the role of the radiation field in the
treatment of the second differential of the generalized entropy as a criteria of stability at
the steady state. With usual values of the response time, the classical expression and the
generalized one without the radiative part are well-behaved. When including the
additional radiative contribution to the generalized case, δ2 s* is behaved non-
monotonically (i.e., non-convex evolution). However, for values of τκ/λκ lower than
those considered (e.g., the present state), the behaviour of δ2 s* is closely related to the
case where only the heat flux contribution is considered and, using the generalized
entropy in this case, the range of applicability of the macroscopic theory is enlarged.

B. Earth with ice-caps

The value assumed for ôÁ/ëê in this case implies an important change of the behaviour
of δ2 s*. For a response time of 30 days and with τκ/λκ = 10+6 m2 K s2 J~1 the classical
and the generalized entropy without the additional radiative term evolve in a similar
manner, namely growing monotonically, and hence implying the stability of the steady
state. On the other hand, the evolution of the generalized entropy with the contribution
of the radiative part, is not a convex function in the initial stages due to the high
variation experimented for the ice-sheet edge. In Figure 4, the influence of an increase of
the factor ôÁ/ëê = 10+8 m2 K s2J"x can be seen. In this figure we plot the evolution of
the classical expression for δ2 s(T), the generalized entropy assuming the heat flux with
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Fig. 4: Time evolution of the second differential of entropy assuming an earth with ice-caps.
The classical ( ) and the generalized expressions without the additional radiative part
( ) are very similar (ôâ = 30 days). The generalized expression assuming the radiative
contribution ( ) changes its sign for τκ/λκ = 10 + 8 m2Ks2J~l. It is not adequate
to use 62s* as a Lyapunov's functional. However, for low values of τκ/λκ (e.g., the present state)
the results are similar to (1) enlarging the applicability of (52s* in reference to the classical
expression for high values of ôâ.

a delay time of 30 days (<52s*(7^ 0), and the generalized entropy with radiative and heat
flux contributions (<52s*(T; Q, R)). While for the two former expressions the behaviour is
very similar, the generalized case taking into account the additional radiative term,
does not have a single sign. Therefore, S2s*(T, Q,R) can not be taken as a Lyapunov's
functional and its expression is not suitable for determining the stability of the steady
state due to its alternating sign. In comparison, the classical expression always is
negative definite. However, as in the case of an ice-free earth, a lower value of ôÁ/Ëê
would imply a behaviour for <52 s* similar to that obtained with the introduction of the
heat flux as independent variable. Hence, the generalized expression would increase the
range of applicability in which δ2 s* may be considered as a Lyapunov functional in
reference to the classical expression.

Ô

An increase of the response time ôâ, does not modify the structure of the solutions
commented. Thus, an indefinite sign of δ2 s* is also obtained when the value of τκ/λκ
corresponds to 10+8m2Ks2 J"1, using a response time of 2.5 years. Such behaviour
can be understood as high values of τκ/λκ require higher order terms in the develop-
ment of the radiative part in the generalized Gibbs equation. This reasoning follows the
same lines as in cases when the Maxwell-Cattaneo equation is not convenient due to
using high values of the response time, and second and higher order terms must be
taken into account

6. Extremal entropy production

In Section 4 we have studied the behaviour of the time evolution of entropy production
for the classical and the generalized cases. It is interesting to know whether or not the
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system satisfies an extremum principle of the entropy production, i.e., if along every
state of the time evolution of the system, the values of the entropy production are
extremal. In order to obtain a criteria for describing the possible extremal values of the
rate of entropy production in general cases, we will develop, following the ideas of
Nicolis and Nicolis [23], a variational principle at the steady state.

Using (40) at the steady state with equation (41) for the value of the radiation entropy
flux, we obtain the global entropy production as

IA + BT-273B 4 Sa Sa Ë 1
" = - -- + + â·í- (52>

From this equation we observe that ó is only a function of Q, dQ/dx and ÷ in stationary
conditions since the temperature is only a function of x. Hence, we can calculate the
heat flux Q extremizing the global rate of entropy production using variational
techniques [43]. The values for the heat flux resulting from extremizing the thermal
part only and the difference between the radiative entropy flux and the radiative energy
contribution of the entropy are also obtained. Thus, the expression of the extremal heat
flux in terms of the radiative parameters are as follows

é
$dxg(x)

(53a)

ï
l

V- = 0(x)- [dxg(x)> ' (53b)
ï

(530)
Ã . é , , -ç-- B273)V/2

$dx(g(x) '-}
ο \ * J

1

These three expressions correspond respectively to extremize the thermal part, the total
expression for the entropy production and the difference between the radiative flux and
the radiative energy contribution of the entropy production. In (53.a—c) the parameter
g(x) takes the form

g(x) = Sa-A + 273B. (54)

The results of the heat flux deduced by means of extremal considerations, equations
(53a-c), are shown in Figure 5. The change in the behaviour at 72 ° latitude is due to the
beginning of the ice-cap and, in consecjuence, a constant value of the albedo.

Equation (53c) is equivalent to extremize

(55)
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Fig. 5: Latitudinal dependence of heat flux at the steady state obtained through extremizing the
global entropy production ( )the thermal part (-·-·-·-·-·-·-·) and the
difference between the radiative flux and the radiative energy contribution of the entropy
( ). The solid line indicates the heat flux used in the model The change on the
behaviour through 72 ° is due to beginning of the ice-caps with a constant value of the albedo.

because in the system, the radiation and the gradient of temperature are assumed to be
perpendiculars. If the radiation field would behave as the matter field, (55) would be
twice the contribution of the global entropy production in the steady state and,
therefore, the results of extremizing would not vary it in reference to equation (53b).

Nevertheless, we can approach the radiative flux of entropy in terms of the radiative
flux of energy, equation (41), and then (55) can be written as

(56)

where the subscripts Land S indicate the long-wave and the short-wave contribution
respectively and Ts is the Sun's photosphere temperature. Extremizing (56) implies an
assumption of giving more weight to the long-wave than to the short-wave radiation. In
fact, a priori, there is no apparent reason for this assumption but we will show that the
results obtained are in excellent agreement with the values for the heat flux assumed in
the model [3,13, 23].

With the aim to obtain extremal values of the entropy production along the time
evolution, one is tempted to apply expressions (53a-c) outside the steady state. For the
second case we show in Figure 6 the time evolution of the entropy production assuming
the classical^ expression (very similar to the generalized entropy production with
Ë*ï~10 2s *)> the time evolution of the radiative entropy fluxes V-H, and its
corresponding extremal value. The rate of entropy production increases monotonically
till the steady state where its value is equal to that reached for the divergence of the
radiative entropy fluxes.The extremal value along the evolution is close to the rate of
entropy production and, then, it can be understood that the system is, even far from the
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Fig. 6: Time evolution of the classical entropy production ( ), very similar to the generalized
entropy with a value of λκο~ 10~2 s~ * and τα = 30 days, compared with the extremal expression
(52b) obtained at the steady state ( ). It is also shown the time evolution of the radiative
fluxes of the system V-H ( ) that in the stationary conditions would coincide with the
entropy production. Initial conditions and other values as in Figure 3.

steady state, close to the conditions of an extremal on the global entropy production
but not on the radiative entropy fluxes across the boundaries of the system.

On the other hand, due to the good approach of (55) to the present observation of the
heat flux, we have calculated its time evolution directly from equation (53c). We have
also applied the variational technique outside equilibrium assuming an expansion in
Legendre polynomials for the temperature and considering the time variation of the
temperature as independent of the heat flux. Equation (53c) then, takes the form

4(A-B273)V/2

~ ~ 3 ) ' (57)

Let us emphasize that with this assumption, the results concerning extremals of Figure
6 are not changed. In Figure 7 we also show the time evolution of the expression
obtained by means of (53c). At the steady state, the three curves are very close, with a
value higher than that corresponding to the entropy production due to a major global
value of the long-wave radiation entropy than the short-wave contribution. Far from
the steady state, the expression obtained from (53c) presents important variations to
the curve calculated. However, using (57) the agreement along the evolution is quite
good and better than that obtained in Figure 6 for the radiative contribution in
reference to the global entropy production, showing that the system in any state seems
to satisfy an extremal behaviour of (55), independently of the structure of its time
evolution.
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Fig. 7: Time evolution of V-(H + R/T) (——) compared with the extremal curves obtained from
equation (52c) (--- -) and (56) (· · ). It can be seen the good agreement for the
last case with the values observed. The values for the constants are the same as in Figure 6.

7. Summary
The global aim of this paper has been to develop an expression for the entropy
production in a non-equilibrium system with matter and radiative fluxes. We have used
this fluxes as independent variables, developing a generalized Gibbs equation following
the Extended Irreversible Thermodynamics (EIT) theory [24] that has been success-
fully applied in many systems. We have taken into account a Maxwell-Cattaneo type
equation for the phenomenological laws of the heat and the radiative fluxes, that in the
later case can be related to the radiative transfer equation [33, 36-37]. A generalized
expression for the rate of entropy production outside equilibrium has been obtained
with the addition of a new term related with the radiative part. At the steady state the
generalized expression takes the form of the classical entropy production.

The equations obtained have been applied in a simple EBM climate model. Neverthe-
less, in order to obtain the additional radiative contribution we have developed a
2-dimensional model that integrated along the vertical reduces to the classical one. This
procedure allows to know the radiation field necessary to develop the generalized
theory. It is shown that the role of the radiative field in the entropy production can be
decisive for its behaviour. We have seen that for certain values of λΚ9 the generalized
expression clearly differs from the classical results. Following the development done in
the present paper, high variations of the values of λκ could be obtained choosing
properly the atmospheric parameters, although by comparison with the vertical
distribution obtained in the model and the values observed for the vertical adiabatic
heating in the atmosphere, we have assumed a value of λκ for which the additional
radiative term due to the EIT theory does not substantially modify the classical results.
Nevertheless, our choice of the value of the additional radiative term not necessarily is
the most precise due to the simplifications inherent in the model developed. The study
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carried out in the present paper can give us an idea about the possible contributions of
the dissipative fluxes to the entropy production and the relationship of these variables
with the states of the climate. Moreover, variations of the response time of the heat flux
would also produce substantial changes of the behaviour of the rate of entropy
production [38].

Following the parallelism of studying the climate as a simple thermodynamic system,
we have applied the second differential of the entropy as a criteria for determining the
stability of the steady state. In this case, the introduction of the radiation field can
modify completely the results with regard to the classical and to those related to the
generalized expression of the entropy production without radiative part. Thus, for low
values of the radiative parameters (τκ/λκ= 100 m2 K s2 JT1 as the present state) the
results for the generalized expression of the entropy production are the same as those
corresponding to considering only the heat flux as an independent variable. Neverthe-
less, using high values of τ&/λη, <52s* shows a non-well definite sign for an earth with
ice-caps and then, it cannot be used as a Lypaunov functional. (Jou et al [24] had
pointed out the fact that the sign of the second differential of the generalized entropy is
not always well definite.)

In the study of the climate many authors have considered some constraints in order to
decrease the number of free variables in the system. Thus, Paltridge [15-16] in his box
model assumed that the climate system is close to the maximum dissipation rate related
with the matter entropy production. In the EBM variational methods and principles
easily can be applied as Nicolis and Nicolis [23] did. Here, we have shown an exten-
sion of these ideas calculating the heat flux corresponding to extremizing the
thermal part, the global entropy production and the difference between the radiative
flux and the radiative energy contribution of the entropy production. The last
expression shows a good agreement with the values observed for the present heat flux.
Moreover, we have developed the last two expressions to obtain an extremal value far
from the steady conditions, showing a good agreement with the time evolution values.
The results indicate that the climate system follows an extremal principle of
V-(H + R /T) independent of the behaviour of its time evolution. If we assume this
hypothesis we have a restriction about the system, the knowledge of the heat flux along
the evolution not being necessary. This constraint permits to decide wether or not the
diffusive approach is a reasonable application for the climate system. Thus from (57)
and (20) we obtain the latitudinal dependence of the temperature through the varia-
tional principle as

(58)

where T0 is the global temperature. Assuming an expansion in Legendre polynomials
for the temperature obtained through the extremal conditions
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T2e takes the form

4(Α-Β2Ί3)Υ>2

T (*} - Τ J —± 3 / é >__1_ (59)^ 2 e W — - ¼ Ë é / Α<Α _ τηΊΐ\\ι/2 Á / Ñ /vV v '
Ã A t\J Ý/×À 0(×)
0 /

In the EBM models T2 has not a latitudinal dependence, but here, we have taken into
account the value that would correspond to it applying extremal considerations. Then,
one can admit a value of T2 as the averaged temperature obtained through a lati-
tudinal integration of T2e and obtain its time evolution once the variations of T0 and
xs are known. The results show that this evolution is very similar compared to that
one observed from the classical diffusive EBM. Then, the application of Fourier's
law, and in consequence, of a Maxwell-Cattaneo type equation, can be accepted
as a good approximation in the dynamics of the system. This fact reaffirms the
validity of the expression of the rate of entropy production outside equilibrium found
here.
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