
Wayne State University
DigitalCommons@WayneState

Human Biology Open Access Pre-Prints WSU Press

1-1-2012

Front Speed of Language Replacement
Joaquim Fort
Complex Systems Laboratory and Departament de Física, Universitat de Girona, 17071 Girona, Catalonia, Spain

Joaquim Pérez-Losada
Complex Systems Laboratory and Departament de Física, Universitat de Girona, 17071 Girona, Catalonia, Spain

This Open Access Preprint is brought to you for free and open access by the WSU Press at DigitalCommons@WayneState. It has been accepted for
inclusion in Human Biology Open Access Pre-Prints by an authorized administrator of DigitalCommons@WayneState. For more information, please
contact digitalcommons@wayne.edu.

Recommended Citation
Open access pre-print, subsequently published as Fort, J. and Pérez-Losada, J. (2012). "Front Speed of Language Replacement,"
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Front speed of language replacement

Joaquim Fort and Joaquim Pérez-Losada

Complex Systems Laboratory and Departament de Física,

Universitat de Girona, 17071 Girona, Catalonia, Spain.

Abstract

We use two coupled equations to analyze the space-time dynamics of two interacting languages.

Firstly, we introduce a cohabitation model, which is more appropriate for human populations than

classical (non-cohabitation) models. Secondly, using numerical simulations we �nd the front speed

of a new language spreading into a region where another language was previously used. Thirdly,

for a special case we derive an analytical formula that makes it possible to check the validity of

our numerical simulations. Finally, as an example, we �nd that the observed front speed for the

spread of the English language into Wales in the period 1961-1981 is consistent with the model

predictions. We also �nd that the e¤ects of linguistic parameters are much more important than

those of parameters related to population dispersal and reproduction. If the initial population

densities of both languages are similar, they have no e¤ect on the front speed. We outline the

potential of the new model to analyze relationships between language replacement and genetic

replacement.
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I. INTRODUCTION

The relationship between culture and genes is an important topic in several �elds [1�3].

Language evolution can transform a single language into several new ones in a time scale of

about 1000 years [2]. However, sometimes the language spoken in a given area changes in a

much shorter time scale because it is replaced by another language. Renfrew suggested two

main mechanisms of language replacement [1, 2]. The �rst one is due to demic expansions

(range expansions of populations under demographic pressure). The second one is called elite

dominance (the conquest by a small minority that takes control of institutions and imposes

its language). Some examples of mainly demic expansions are the Neolithic transition in

Europe [4], and the modern European invasions of North America and Australia. Some

examples of language replacement via elite dominance are Hungary and Turkey during the

Middle Ages [2]. Usually demic expansions replace both the language and the genes [2].

In contrast, elite dominance processes may replace the language or not but they always

have a negligible e¤ect on the genes [2]. For this reason, genetic data can be used to infer

language replacement via elite dominance, as in Armenia and Azerbaijan [3]. Sometimes elite

dominance is preceded by system collapse (the loss of control by the central authority) [1, 2].

Some examples of system collapse are the fall of the Roman Empire in Britain (after which an

Anglo-Saxon minority acquired power) and possibly the fall of the Mayan civilization around

the 10th century AD [1, 2]. A third mechanism, language acquisition from neighboring

populations, has been noted by Cavalli-Sforza, who has observed it in African pygmies

(sometimes with gene replacement and sometimes without it) [2]. This third mechanism is

likely to be of importance also when language use maps display a gradual shrinkage of the

area where a language is spoken, due to its replacement by another language [5, 6]. Of course,

in such cases the �rst and second mechanisms can be also partially responsible for language

replacement. In spite of the importance of such processes, we are not aware of quantitative

models of the geographical spread rate of spreading languages. The present paper aims to

present such a model. In fact, very interesting quantitative models on language interaction

do exist [7�11], but they do not seem to deal with the problem of explaining the geographical

spread rate of the expanding language. In contrast, the model in the present paper makes it

possible to quantify the e¤ect of di¤erent processes and parameters on the speed of language

replacement.
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Because of social factors, a given language can become more e¢ cient than another one in

recruiting new users and as a consequence it can even exclude the other one, which becomes

extinct. This replacement can be seen as a consequence of competition, a widespread concept

in ecological dynamics, which can be also applied to language dynamics. A simple, non-

spatial model to explain language competition was proposed by Abrams and Strogatz (AS),

and it was shown to be consistent with several observations of language decay [7]. But

languages also display changes in space, which were not considered by the original AS model

[7]. Patriarca and co-workers took into account the e¤ect of space (by adding di¤usion terms

to the Abrams-Strogatz model) and analyzed the e¤ect of initial conditions, population

growth and geographical barriers on the dynamics of two initially segregated languages

[8, 9]. More general models have been also considered (see Refs. [10] and [11] for some

recent reviews).

The plan of this paper is as follows. As in previous work on non-linguistic fronts [4, 12],

we consider a two-dimensional (2D) space so that we can apply our results to populations on

the Earth surface. We �rst review the AS model. Then we introduce cohabitation models,

and explain why they are more realistic than classical (non-cohabitation) models to describe

the dynamics of human populations in space and time. Accordingly, we build a cohabitation

model for two linguistic populations coupled by the AS model of language competition. We

derive the corresponding speed of the language front using numerical simulations. We �nd

that for a simple case (marginal volatility) the model can be solved analytically and agrees

with the numerical simulations. The language status enters as a parameter in our model,

and it is shown to play an important role in the dynamics of the geographical distribution

of languages. The roles of other linguistic and demographic parameters are also analyzed.

We �nd that if the initial population densities of both languages are similar, they have no

e¤ect on the front speed. Finally, for the historical decay of Welsh in the period 1960-1980,

the predicted front speed (by our cohabitation AS model) is seen to be consistent with the

observed speed (as measured from language use maps).

II. THEORETICAL MODEL

In this section we �rst review previous models. Then we introduce our model, its linguistic

and demographic parameters, and the ranges of their values.
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A. Abrams-Strogatz (AS) model

The model due to Abrams and Strogatz (AS) studies the competition between two lan-

guages. In the AS model, the rate of change of the number density of speakers of the

newcomer language (N) is given by [7]

dpN
dt

= �

�
s pI

�
pN

pN + pI

��
� (1� s)pN

�
pI

pN + pI

���
; (1)

and an analogous equation is written for the indigenous language (I),

dpI
dt

= �

�
�s pI

�
pN

pN + pI

��
+ (1� s)pN

�
pI

pN + pI

���
; (2)

where pN and pI stand for the population number density (number of speakers/km2) of

the newcomer and indigenous languages, respectively, t is the time (measured in yr) and

� is a constant (with units yr�1) [13]. The �rst terms in Eqs. (1)-(2) correspond to the

conversion of I-speakers to language N , and the last terms to the conversion of N -speakers

to the language I. In this model, parameter s is called the status of language N , with

0 � s � 1, whereas the status of language I is 1 � s. We see from Eqs. (1)-(2) that the

higher the status of a language, the more new speakers it will recruit per unit time. Thus,

the status of a language re�ects its attractiveness (by aggregating multiple factors a¤ecting

its perceived utility, social prestige, etc.). Note from Eqs. (1)-(2) that: (i) if s > 0:5; the

status of language N is higher than that of I; (ii) if s = 0:5, both languages are socially

equivalent (i.e., they have the same status); (iii) if s < 0:5; the status of I is higher than

that of N: The parameter � is a measure of the degree of resistance of speakers to change

their language. This can be seen most easily as follows. Obviously pN
pN+pI

< 1; thus if � > 1

then the power
�

pN
pN+pI

��
in Eqs. (1)-(2) will be smaller than if � < 1 (for any given values

of pN and pI). Therefore � > 1 corresponds to a high resistance of speakers to language

change (i.e., to a low language volatility), � < 1 to a low resistance (high volatility) and

� = 1 is the so-called marginal volatility case [14]. Models arising from equations such as

(1)-(2) have been favorably compared to the observed dynamics for several languages [7].

For the sake of clarity, it is worth to mention that: (i) Abrams and Strogatz [7] used

population fractions (not population densities) in their original formulation. (ii) For the

special case of a constant total population density pN + pI (as in Ref. [7] but not in our

case), it is equivalent to use population densities (as in Eqs. (1)-(2) above) or population
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fractions (as in Ref. [7]), because dividing both sides of Eqs. (1)-(2) by pN + pI then yields

the AS formulation [7]. (iii) In the latter case (constant total population density pN + pI),

the AS model for � = 1 and s = 1 corresponds to the Lotka-Volterra interaction, widely

used in Ecology [15]. (iv) In order to take into account population dispersal in space (as

done in Refs. [8�10] and below), it is much simpler to use population densities rather than

population fractions (this will become obvious from the equations we introduce below), and

this is why we use population densities (rather than fractions) throughout this paper.

B. Single-population dispersal model

Most well-known models are based on the following equation for the change in population

density [12]

p(x; y; t+T )�p(x; y; t) =
Z +1

�1

Z +1

�1
p(x+4x; y+4y; t)�(4x;4y)d4xd4y�p(x; y; t)+R[p(x; y; t)];

(3)

where p(x; y; t) is the population density at the location (x; y) and time t, and T is the time

interval between two successive dispersal events. The �rst term on the right-hand side is

the population reaching the location (x; y) at time t+ T from location (x+4x; y +4y) at

time t; added up over all possible values of the displacement (4x;4y): The second term in

the right corresponds to people leaving an area centered at (x; y): The last term R[p(x; y; t)]

corresponds to net reproduction (births minus deaths).

More precisely, the dispersal kernel �(4x;4y) is the probability per unit area that an

individual who was at (x+4x; y +4y; t) moves to (x; y; t+ T ). In Appendix A we explain

how the classical model due to Fisher (sometimes called the reaction-di¤usion approach)

can be obtained from Eq. (3) as a special case.

A major drawback of Eq. (3) is the following. According to Eq. (3), newborn individuals

can appear at (x; y) (last term) while their parents migrate away from (x; y) (second term

on the right-hand side). In other words, in such models some parents leave their newborn

children alone. However, newborn humans cannot survive away from their parents. This

inconsistency can be avoided using so-called cohabitation models, which are based on the

following equation instead of (3) [16],
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p(x; y; t+ T ) = R0

Z +1

�1

Z +1

�1
p(x+4x; y +4y; t) �(4x;4y)d4x d4y; (4)

where R0 is the net fecundity or reproductive rate (this is a net rate, i.e. it includes the

e¤ect of mortality). In this model, the time interval T is equal to one generation (de�ned

as the mean age di¤erence between a parent and her/his children). Then, according to Eq.

(4) children cannot appear away from their parents�location. For this reason, for human

populations Eq. (4) is more reasonable than Eq. (3). This point has been discussed in detail

elsewhere (see especially Fig. 1 in Ref. [17] and Sec. 8 in Ref. [18]).

Strictly, Eq. (4) is valid only at su¢ ciently low values of the population density p(x; y; t),

because biological populations cannot reproduce without bound. Thus, if for some value of

(x; y; t + T ) the result for p(x; y; t + T ) computed from Eq. (4) is larger than pmax; then it

is simply replaced by pmax [18] (more complex models are sometimes used [17], but they are

not necessary here).

C. Coupled-populations dispersal model

In this subsection we combine the cohabitation approach in the previous subsection with

the AS linguistic model. Let pN(
�!r ; t) stand for the population number density of the

newcomers, and let pI(
�!r ; t) stand for the population number density of the indigenous

population per unit area centered at position �!r � (x; y) and time t. We introduce into

the cohabitation Eq. (4) the interaction (1)-(2) with dpi
dt
' � [pi(t+ T )� p(t)] (� is just a

constant that sets the time scale [13], so we can choose � = 1=T ). This yields

pN(
�!r ; t+ T ) = R0NZ +1

�1

Z +1

�1

"
pN(

�!r +�!� ; t) + s pI(�!r +
�!
� ; t)

 
pN(

�!r +�!� ; t)
pN(

�!r +�!� ; t) + pI(�!r +
�!
� ; t)

!�

�(1� s)pN(�!r +
�!
� ; t)

 
pI(
�!r +�!� ; t)

pN(
�!r +�!� ; t) + pI(�!r +

�!
� ; t)

!�#
�N(4)d4x d4y; (5)
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pI(
�!r ; t+ T ) = R0IZ +1

�1

Z +1

�1

"
pI(
�!r +�!� ; t)� s pI(�!r +

�!
� ; t)

 
pN(

�!r +�!� ; t)
pN(

�!r +�!� ; t) + pI(�!r +
�!
� ; t)

!�

+(1� s)pN(�!r +
�!
� ; t)

 
pI(
�!r +�!� ; t)

pN(
�!r +�!� ; t) + pI(�!r +

�!
� ; t)

!�#
�I(4)d4x d4y; (6)

where �N(4) and �I(4) are the dispersal kernels of the newcomer and indigenous pop-
ulations, respectively. For mathematical simplicity, in the present paper we will assume

that during the time interval T = 1 generation each individual either moves a distance d

or remains at rest (with d the same for all individuals). Let the probability to remain at

rest be peN and peI for the N and I populations, respectively (pe is called the persistence

in demography). This simple mobility rule will make it possible to focus our attention on

the e¤ect of linguistic competition (for a thorough discussion of more complicated dispersal

models, see Ref. [17]). The model parameters are T; d, peN , peI , the net reproductive rates

R0i (i = N; I), the social status s of language N (0 � s � 1), the resistance to language

change �; and the carrying capacities pmax i:

D. Parameter values

For the sake of de�niteness, let us consider a speci�c example, namely the competition

between English and Welsh. In agreement with the de�nition used in language use statistics

and maps [5], we de�ne N as the population able to speak only English and I as that able to

speak both English and Welsh. Note that the model above has a time step T = 1 generation,

so for example the linguistic conversion I ! N quanti�ed by Eqs. (1)-(2) corresponds to

some individuals being I and their children being N (not to a given I�individual becoming
N). The observed values of the parameters, as well as the ranges used in the simulations,

are reported in Table 1. They have been obtained as follows. The status of English in

Wales was estimated from empirical data by Abrams and Strogatz as s = 0:6 [7]. By �tting

their model to data for several other endangered languages, they also estimated the ranges

0:26 < s < 0:74 and 1:0 < � < 1:6 [7]. In order to calculate the observed speed of English

into Wales (see below), the only source of information we are aware of is Ref. [5], which

displays maps but only for the period from year 1961 (Fig. 4.1 in [5]) to 1981 (Fig. 4.3 in [5]).
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The cohabitation time T (sometimes called generation time) is at least about 20 yr [19, 21],

so we note that the 20-yr time span during which the front speed can be measured from the

maps (1961-1981) is similar in magnitude to one step in the model. Of course, ideally we

would like to have additional maps, making it possible to estimate the front speed during

a longer time interval. Nevertheless, we think that our model can be applied for several

reasons: (i) It is reasonable to expect that the language front of the English language began

before 1961 and continued after 1981 (we have checked the latter case using a 2001 map

[22], but it cannot be used to compute speeds because it plots limits of di¤erent percentages

of Welsh speakers than the 1981 and 1961 maps in Ref. [5]); (ii) In the simulations we

have observed that a constant front speed is attained after the �rst simulation step (details

on this issue are given in the next section); (iii) Data for longer time intervals can become

available in the future (and allow to determine whether the speed of this front is constant or

not) but even in such an instance, we think that our model can be useful as a �rst attempt

to quantify and model the front speed.

Accordingly to the fact that the front speed can be measured in the period from year

1961 to 1981, we have used the population numbers of Wales [20] at a time interval including

this period to estimate the ratio between the numbers of �nal and initial populations during

a interval of T = 1 generation. This yields the range R0i = 1:057 � 1:081 in Table 1 (in
the calculation of this range, we have also taken into account the range of T in Table 1).

Note that, e.g., the reproductive parameter R0N should not be estimated from the �nal and

initial numbers of speakers of language N; because such a calculation would also include

the e¤ect of language shift but R0N in the model corresponds to the e¤ect of population

growth only (deaths and births). We have also used census data [20] and the area of Wales

to estimate the carrying capacities of the population densities, pmax i (Table 1). Values for

the persistence pei and mobility d are rather di¢ cult to estimate for a one-generation time

interval, but there are some useful data for modern populations [17, 23]. The value of d has

been calculated from the kernel (i.e., the distance distribution of displacements) in Ref. [17]

excluding those of zero distance (because the latter are taken into account in the value of

the persistency pei). The minimum and maximum values for pei in Table 1 were obtained

from the two subsamples (females and males, respectively) in Ref. [23], and the minimum

and maximum values for d were estimated by computing the standard error of the mean for
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d from the kernel in Ref. [17].

Parameter (units) Characteristic value Minimum Maximum Refs.

s (dimensionless) 0.6 0.26 0.74 [7]

� (dimensionless) 1.31 1.0 1.6 [7]

T (yr) 25 20 37 [19, 21]

R0i (dimensionless) (i = N; I) 1.064 1.057 1.081 [5, 20]

pmax i (people/km2) (i = N; I) 50 20 100 [20]

pei (dimensionless) (i = N; I) 0.77 0.72 0.82 [17, 23]

d (km) 35 32 38 [17, 23]
Table 1. Model parameters and their ranges.

III. FRONT SPEED CALCULATION

It is very di¢ cult to �nd the speed of front solutions to Eqs. (5) - (6) analytically in

general. Therefore we have integrated them numerically by considering a 2D grid with

1000�1000 nodes. Initially the indigenous population (I) is restricted to a central area of
the grid (representing the surface of Wales), where pI(x; y; 0) = pmax I , and pI(x; y; 0) = 0

elsewhere (the front speed does not depend on the size of the central area considered). For the

newcomer population (N), initially pN(x; y; 0) = pmaxN everywhere except at the central area

(which is occupied by the I�population, thus pN(x; y; 0) = 0 at the central area). At each
time step (corresponding to T = 1 year), we compute the new population number densities

pN(x; y; t+T ) and pI(x; y; t+T ) at all nodes of the 2D lattice in a 3-step process: linguistic

interaction, population dispersal and population growth (the latter includes reproduction

and deaths). First, the interaction term is calculated using the AS model (1)-(2) at every

node (x; y). In the dispersal step, as already mentioned above, for simplicity we used the

following procedure. A fraction pei of each the population (i = N ,I) stays at the original

node, and the remaining fraction is distributed equally among the nearest neighbors, i.e., a

fraction (1�pei)=4 jumps a distance �d along each horizontal or vertical direction. Finally,
we compute the new i�population density(i = N; I) due to reproduction at every node by
multiplying pi(x; y; t) (obtained from the previous step) by the factor R0i, unless a value

pi > pmax i is obtained; in such a case we set pi = pmax i (to avoid biologically unrealistic
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population densities over the saturation value implied by the environment). This 3-step

cycle can then be repeated, each cycle corresponding to 1 generation. At the end of each

cycle (or time step), the pro�le of the number density of speakers of language I (or N) can

be plotted, and by comparing such plots we �nd the speed moved by the front. In this way,

we have obtained the simulation front speeds in Fig. 1. In the simulations we observed that

the speed between generation 1 and generation 2 was already constant (i.e., the same as

between generations 2 and 3, 3 and 4, etc.). We also observed that for realistic parameter

values (Table 1), if the newcomer language N has a higher status (i.e., if s > 0:5), behind

the N�front the indigenous language I eventually disappears and is replaced by language
N (so in the �nal state ptotal = pN + pI = pN everywhere); except if � = 1 and s = 0:5:

This exception is not surprising because in this very special case (� = 1 and s = 0:5) the

two terms on the right-hand sides of Eqs. (1)-(2) cancel out, so there is no conversion of

speakers from one language into another (i.e., the very special model � = 1 and s = 0:5 is

not useful to describe interacting languages).

In order to check our simulations, we will take advantage of the fact that, for the so-called

marginal volatility case (� = 1) the front speed for the set of cohabitation Eqs. (5)-(6) can

be calculated analytically: The �nal result is (see Appendix B)

c =
1

T
min
�>0

ln
�
R0N2s

�
peN +

1�peN
2

[cosh(�d) + 1]
��

�
: (7)

We note that the language front speed decreases with increasing values of the cohabitation

phase T (as expected intuitively). This also happens in the simulations for all values of �,

simply because any simulation run yields a speed in km/gen (with 1 generation corresponding

to 1 simulation step), and we transform these units into km/yr by dividing by the value of

T measured in years (for completeness, Appendix C shows that in the reaction-di¤usion

approximation the speed also diminishes with increasing values of T ).

Equation (7) has no analytical solution, but for given values of R0N ; peN ; �; d; T and

s it is easy to �nd its minimum numerically. In this way we have obtained the theoretical

results for � = 1 (line in Fig. 1).
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IV. RESULTS

In Fig. 1, there is good agreement between the analytical results from Eq. (7) (line

� = 1) and the corresponding simulations (circles). This makes us feel con�dent on the

validity of our numerical simulations. Note that negative values of the speed in Fig. 1

simply indicate that the front propagates in the opposite direction, as expected because

under the transformation s! 1� s the dominant and dominated languages exchange their
roles (see Eqs. (1)-(2)). This is also the reason why the curves in Fig. 1 are symmetric: all

symbols in Fig. 1 have been obtained from simulations, which make it possible to determine

the sign of the speed (in contrast, Eq. (7) is valid only for c > 0 (see Appendix C), so the

line in Fig. 1 for c < 0 or s < 0:5 has been obtained simply changing the sign of the results

for s > 0:5). In order to describe the speci�c case of English and Welsh it is enough to

consider only values s > 0:5. Then, Fig. 1 shows that, for a given value of s, the speed

becomes smaller if larger values of � (the resistance to language change) are considered,

which is reasonable intuitively. On the other hand, for a given value of �, if the value of

the relative status of the newcomer language s is higher, its invasion speed is faster, which

is also as expected. In Fig. 1, the other model parameters are set to their characteristic

values (Table 1). Figure 1 shows clearly that the value of the status s is important to

predict the range expansion speed. In Fig. 1, we also see that for the status value obtained

from the decay of the Welsh language in Ref. [7] (s = 0:6) and values of � in the range

estimated by Abrams and Strogatz from endangered language data (1:0 < � < 1:6), the

predicted speed is in the range 0.1-0.4 km/yr. This result is consistent with the observed

speed range (0.3-0.6 km/yr, shaded area in Fig. 1), which we estimated from maps of the

Welsh language distribution in years 1961 and 1981 (maps in Figs. 4.1 and 4.3 in Ref. [5]

display two clear fronts in Northern Wales, travelling about 7 km and 12 km during 20 yr

in opposite directions, and shrinking the area occupied by the Welsh language). We think

that this agreement between the predicted and the observed ranges (Fig. 1) is satisfactory,

given the simplicity of our model and the fact the observed speed is not homogeneous due to

cities, mountains, transport networks, etc. (for this reason, the observed speed range above

(0.3-0.6 km/yr) is only a rough approximation to the average speed). Our model is rather

simple in the sense that the roles of large cities, education policies, mass media, etc. [11, 24]

are not explicitly included. For these reasons, we would like to stress our results should be
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regarded only as initial step towards modelling a rather complex phenomenon, and we think

that a detailed comparison to observations should await the development of more realistic

(and complicated) models.

Figure 2 is a sensitivity analysis of the speed for the ranges of the model parameters. For

each bar, a single parameter is varied, whereas the remaining parameters are kept at their

characteristic values (Table 1). Besides the status s (Fig. 1), the resistance to language

shift � is clearly the most important parameter (Fig. 2). This suggests the need to perform

careful estimations of s and � when dealing with speci�c cases of language spread. According

to Fig. 2, the length of the cohabitation phase T is of secondary importance, and the rest of

parameters have a very small e¤ect. Therefore, language choices (parameters s and �) seem

to play the main role on the speed of language spread, and the length of the cohabitation

phase (T ) has a small relevance. Finally, population dispersal (parameters d, peN and peI)

and net reproduction (R0N and R0I) seem to have little importance (Fig. 2).

Up to this point, all results (Figs. 1 and 2) have been obtained for the characteristic

values of the maximum population densities (also called carrying capacities or saturation

densities) in Table 1, namely pmaxN = pmax I = 50 people/km2 (which we estimated from

census data). We have also performed simulations by varying the value of pmaxN = pmax I

from 1 to 100 people/km2. The results are shown in Fig. 3. For the marginal volatility

case (� = 1) the speed does not depend on the carrying capacity, both according to the

simulations (rhombuses in Fig. 3) and to Eq. (7) (line in Fig. 3). Interestingly, the same

happens for other values of � (recall that for � 6= 1 we have no analytical formula but use the
simulations, leading to the stars and circles in Fig. 3). Therefore, as long as the population

densities of the areas initially occupied by both languages are similar, they have no e¤ect

on the language front speed (Fig. 3). We have performed additional simulations with a

�xed value of pmax I and varying values of pmaxN and vice versa, but we do not plot them

here because we think that on average there were no substantial di¤erences between both

population densities (we reached this conclusion by computing population densities from

census data [25] for some counties in Northern Wales where we measured the front speed

(e.g., Denbighshire) and nearby English counties (e.g., Shropshire) in the period for which

language maps are available (1961-1981)). This point could be interesting, however, in future

work analyzing the local features of several examples of language substitution. Therefore,

we summarize brie�y those results in turn. For a �xed value of pmax I , the speed increases
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with pmaxN (except if � = 1;because in this case the speed is independent of pmaxN , see Eq.

(7)). We think that this dependency is reasonable because larger values of pmaxN correspond

to more speakers that can spread the high-status language (either via cultural transmission,

dispersal or reproduction). However, this e¤ect is small (compared to those of s and � in

Figs. 1 and 2): for example, the speed is 0.084 km/yr for pmaxN = 25 people/km2 and

0.17 km/yr for pmaxN = 100 people/km2 (with pmax I = 50 people/km2 in both cases, and all

other parameters set at their characteristic values in Table 1). On the other hand, for a �xed

value of pmaxN , the speed decreases with increasing values of pmax I (again except if � = 1).

This is also reasonable because for larger values of pmax I ; there are initially more low-status

(I�language) speakers so their language I will be more di¢ cult to replace. We stress that

such dependencies are not observed in the special case � = 1. This may indicate that the

general AS model (� 6= 1) is more realistic that the linear or marginal-volatility model � = 1
(which includes the classical Lotka-Volterra model as a special case, see the text above Eq.

(3)). However, let us stress that if the carrying capacities of the high-status and low-status

languages are similar, the speed is the same regardless of the value of pmaxN ' pmax I (Fig.
3).

V. CONCLUDING REMARKS

Abrams-Strogatz (AS) veri�ed their model by �tting its predictions to several endangered

languages [7]. Here we have generalized the AS model by taking into account: (i) population

dispersal in space; (ii) population reproduction (births and deaths); and (iii) the cohabitation

e¤ect (i.e., the fact that newborn humans cannot survive without their parents).

We have applied our model to predict language substitution front speeds for two initially

segregated languages, using realistic parameter values from observed data (no free or ad-

justable parameters have been used). According to our results, linguistic parameters seem to

have more important e¤ects on the spread rate than reproductive and dispersal parameters.

We have shown that a simple space-time model can reasonably account for the observed

spatial speed of substitution of the Welsh language. For this case we have also noted that

the average initial population densities of the two linguistic populations involved were rather

similar. We have found that, in such an instance, the population density does not a¤ect

the speed of language replacement (for completeness, we have also discussed how cases with
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substantially di¤erent initial population densities would a¤ect the front speed).

Our model could be applied in the future to other examples of language replacement

[6, 26], as well as to non-homogeneous geographies. It could be also generalized to take into

account the e¤ects of large cities, mobility networks, policies directed to avoid the extinction

of endangered languages, etc. [11, 24]. For a given example of language replacement, our

model can be also applied to speci�c regions. It will lead to faster language substitution

speeds in those regions with higher values of the relative status of the dominating language

(s in the model), lower values of the initial population density of speakers of the low-status

language (pmax I), etc.

It is interesting to note that the speed of substitution of the Welsh language (about

0.3-0.6 km/yr) is somewhat slower, but similar in magnitude, to the speed of the Neolithic

transition in Europe (about 0.9-1.3 km/yr [4]). The three mechanisms at work (population

dispersal, net reproduction and cultural transmission) are the same in both cases, but the

cultural transmission terms are rather di¤erent: for language competition we have used the

AS interaction (Eqs. (1)-(2)), as motivated by decay data for several endangered languages

[7]. In contrast, for the transmission of agricultural techniques from farmers to hunter-

gatherers we used an interaction derived from cultural transmission theory [27] (see Eq. (1)

in Ref. [4]). The fact that the speed obtained in two such di¤erent systems is similar in

magnitude seems interesting. Future work could analyze the front speed problem in several

additional anthropological phenomena (if the necessary data are available), and compare

the results to the two speeds quoted above. Presumably, the speed will be faster in cases for

which the cultural trait that spreads is easy to imitate (simple techniques, fashion trends,

etc.) but similar to the two cases mentioned for cultural traits that cannot be copied without

a substantial learning e¤ort (farming, language, etc.).

The relationship between culture and genes is a relevant issue in several disciplines [1�3].

Therefore, in future work it would be of interest to combine our spatial model of language

replacement with spatial models of genetic replacement [28�30] in order to relate the degree

of genetic replacement with that of language replacement as a function of di¤erent processes

and parameter values.
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VII. APPENDIX A. REACTION-DIFFUSION MODEL FOR A SINGLE POPU-

LATION

If � depends only on � �
p
42
x +42

y (isotropic kernel), Eq. (3) can be Taylor-expanded

up to second order in space and �rst order in time to yield [12]

@p

@t
= D

�
@2p

@x2
+
@2p

@y2

�
+ F (p); (8)

where

D � 1

4T

Z +1

�1

Z +1

�1
�(4x;4y)�

2d4x d4y; (9)

is the di¤usion coe¢ cient and F (p) � @R=@t is called the population growth function.
Equation (8) is called Fisher�s equation [31, 32] if a logistic growth function is assumed,

F (p) = ap

�
1� p

pmax

�
; (10)

where a is called the initial growth rate and pmax the carrying capacity. Then front solutions

to Eq. (8) travel with Fisher�s speed, c = 2
p
aD [31, 32]. Note that net reproduction vanishes

[F (p) = 0] if and only if p = 0 or p = pmax.

VIII. APPENDIX B. LINEAR ANALYSIS (� = 1)

Here we show that the front speed for the set of cohabitation Eqs. (5)-(6) can be calculated

analytically for the so-called marginal volatility case (� = 1). This case is very useful to check

the validity of the numerical simulations (Figs. 1 and 3). As in Ref. [33], we assume that

the invasion front of population N spreads in a region where the density of the indigenous

species I is initially equal to its maximum possible value, pmax I . Thus, in the leading edge

of the invasion front we may write

pN(
�!r ; t) ' "(�!r ; t) +O(2); (11)

pI(
�!r ; t) ' pmax I � �(�!r ; t) +O(2); (12)
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where O(2) stands for second and higher-order terms,

"(�!r ; t)� pmaxN ; (13)

and

�(�!r ; t)� pmax I : (14)

Therefore, for � = 1 up to �rst order we have for the linguistic interaction term in Eqs.

(5)-(6)

s pI(
�!r ; t)

�
pN(

�!r ; t)
pN(

�!r ; t) + pI(�!r ; t)

�
� (1� s)pN(�!r +

�!
� ; t)

�
pI(
�!r ; t)

pN(
�!r ; t) + pI(�!r ; t)

�
= (2s� 1) pI(�!r ; t)

�
pN(

�!r ; t)
pN(

�!r ; t) + pI(�!r ; t)

�
= (2s� 1) (pmax I � �(�!r ; t) +O(2)) ("(�!r ; t) +O(2))

�
1

pmax I
+O(1)

�
' (2s� 1) pN(�!r ; t) +O(2)

This result is very useful here because it reduces Eq. (5) to an evolution equation in which

the variable pI(
�!r ; t) no longer appears,

pN(x; y; t+ T ) ' R0N
Z +1

�1

Z +1

�1
2s pN(x+4x; y +4y; t)�N(4)d4x d4y: (15)

In agreement with the numerical simulations explained above, we simply assume that an

individual will either remain at rest (with probability peN) or will move a distance d (with

probability 1� peN) by jumping into point (x; y) from points (x� d; y) or (x; y � d): Then,
in discrete space Eq. (15) is replaced by

pN(x; y; t+ T ) = R0N2s fpeN pN(x; y; t)
+(1� peN)

�
1
4
pN(x� d; y; t) + 1

4
pN(x+ d; y; t)

+1
4
pN(x; y � d; t) + 1

4
pN(x; y + d; t)

�	
:

(16)

In order to �nd the front speed, the simplest approach is the following. For each value

of time t; in general the front pro�le pN(x; y; t) depends on both x and y (this is easily seen

by considering, e.g., the case of a circular front). However, let us choose the x�axis parallel
to the local velocity of the front [34]. Then, it is reasonable to assume that for t ! 1 the

curvature will become negligible and the front pro�le pN will depend only on x (within this
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local region). Let c � jcxj stand for the front speed. In the local frame just introduced,
cy = 0 and the front pro�le pN(z) depends only on z = x� ct. We look for constant-shape
solutions with the form pN = p0 exp[��z] as z !1 (with � > 0 for c > 0). Using this into

Eq. (16) and assuming that the minimum speed is the one of the front [34] we obtain the

speed given by Eq. (7).

IX. APPENDIX C. REACTION-DIFFUSION MODEL FOR COUPLED POPULA-

TIONS

In the case of two coupled populations, the model in Appendix A is easily generalized

into (see the text above Eq. (5))8<:
@pN
@t
= D

�
@2pN
@x2

+ @2pN
@y2

�
+ F (pN) +

1
T

h
s pI

�
pN

pN+pI

��
� (1� s)pN

�
pI

pN+pI

��i
@pI
@t
= D

�
@2pI
@x2

+ @2pI
@y2

�
+ F (pI) +

1
T

h
�s pI

�
pN

pN+pI

��
+ (1� s)pN

�
pI

pN+pI

��i
;

(17)

and applying linear analysis for � = 1 [18, 34] (as in Appendix B above), the front speed

is found to be c = 2
q�
a+ 2s�1

T

�
D. We note that this front speed decreases with increas-

ing values of the time T between two successive dispersal events (as expected intuitively),

although in a di¤erent way that in the model in the main paper (see the text below Eq.

(7)). This is not surprising, because the model in this appendix neglects the e¤ects of the

cohabitation phase and the dispersal kernel. In fact, even the interpretation of T is di¤erent:

here T is not the length of a cohabitation phase (as in the model in the main paper) but

just the time interval between two subsequent dispersal events (compare the text below Eq.

(3) to that below Eq. (8)).

If there is no language interaction (s = 0:5, see the text above Eq. (7)) we recover Fisher�s

speed, namely c = 2
p
aD [31, 32] (see Appendix A).
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FIGURE CAPTIONS

Fig. 1 Speed of linguistic front propagation as a function of the status parameter s, for

three values of the resistance to language change �; according to our numerical simulations

(symbols). For � = 1 (linear or marginal volatility model) the front speed can be calculated

using Eq. (7) and is also shown (line). It agrees with the corresponding simulations. The

hatched area corresponds to the observed front speed of the English language into Wales

(0.3-0.6 km/yr). The rest of parameters have been set to their characteristic values in Table

1.

Fig. 2 One-at-a-time sensitivity analysis for the model parameters. For each parameter

indicated on the horizontal axis, we have used its range in the upper right corner and the

characteristic values of the other parameters in Table 1. Besides the status (Fig. 1), the

resistance to language change � has the most important e¤ect on the speed of linguistic

fronts.

Fig. 3 Speed of linguistic front propagation as a function of the population carrying

capacity, for three values of the resistance to language change �; according to our numerical

simulations (symbols). For � = 1 (linear or marginal volatility model), the analytical front

speed from Eq. (7) is also shown (line) and it agrees with the corresponding simulations

(rhombuses). For all three values of � it is seen that the speed is independent of the carrying

capacities of both populations provided that they are similar (as appropriate on average for

the English and Welsh languages). The results for cases with pmaxN 6= pmax I are discussed
in the main text. We have used the characteristic values of the other parameters in Table 1.
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