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ABSTRACT

The theoretical models of Batchelor and Kraichnan, which account for the smallest scales of a scalar field

passively advected by a turbulent fluid (Prandtl . 1), have been validated using shear and temperature

profiles measured with a microstructure profiler in a lake. The value of the rate of dissipation of turbulent

kinetic energy « has been computed by fitting the shear spectra to the Panchev and Kesich theoretical model

and the one-dimensional spectra of the temperature gradient, once « is known, to the Batchelor and Kraichnan

models and from it determining the value of the turbulent parameter q. The goodness of the fit between the

spectra corresponding to these models and the measured data shows a very clear dependence on the degree of

isotropy, which is estimated by the Cox number. The Kraichnan model adjusts better to the measured data than

the Batchelor model, and the values of the turbulent parameter that better fit the experimental data are qB 5

4.4 6 0.8 and qK 5 7.9 6 2.5 for Batchelor and Kraichnan, respectively, when Cox $ 50. Once the turbulent

parameter is fixed, a comparison of the value of « determined from fitting the thermal gradient spectra to the

value obtained after fitting the shear spectra shows that the Kraichnan model gives a very good estimate of the

dissipation, which the Batchelor model underestimates.

1. Introduction

Since Osborn (1980), turbulent fluxes in sheared

stratified flows have been determined from the turbulent

kinetic energy dissipation rate «; the stratification N2; and

the so-called mixing efficiency G, which for developed

turbulence can be considered a constant value (Dillon

1982; Oakey 1982, Smyth et al. 2001). Accordingly, to

accurately determine the turbulence fluxes in natural

aquatic systems (Lozovatsky et al. 1999), « also has to

be obtained precisely. The value of « can be obtained

from small-scale shear measurements (Gargett et al.

1984; Gregg and Horne 2009), indirectly from micro-

temperature data (Jonas et al. 2003; Sanchez and Roget

2007), or from both methods (Kocsis et al. 1999). Field

measurements of microstructure temperature and small-

scale shear in a natural aquatic system are usually recorded

by fast-response thermistors and airfoils mounted on pro-

filers or other types of underwater vehicles. Some of these

profilers, like the Self-Contained Autonomous Micro-

profiler (SCAMP; Stevens et al. 1999), measure only

microtemperature data, but others, like the Microstructure-

Temperature profiler (MST; Prandke and Stips 1998)

used here, measure microtemperature and small-scale

shear.

Once statistically homogeneous turbulent segments

are determined within each measured profile (Piera et al.

2002), the one-dimensional (1D) spectrum of the mea-

sured small-scale shear or the microtemperature gradient

can be calculated and fitted to the one-dimensional

spectrum model for isotropic turbulence, assuming local

isotropy within the homogeneous segments (Roget et al.

2006). Because temperature and shear spectrum models

depend on «, it can be obtained from the best fit between

the experimental and the theoretical spectra. The tem-

perature spectrum model also depends on the rate of

dissipation of temperature variance «u, but this can be

obtained by integrating the temperature gradient spec-

trum (Luketina and Imberger 2001).

The theoretical energy spectrum model of Panchev

and Kesich (1969, hereafter PK69) describes the turbulent

velocity within the isotropic universal equilibrium range,

covering the inertial and viscous subranges (Tennekes

and Lumley 1972). The PK69 model has been widely

accepted within the oceanographic community (Gregg

1999), which also uses the very similar Nasmyth (1970,

hereafter N70) model obtained experimentally. Regarding
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microstructure temperature, the spectral model proposed

by Batchelor (1959, hereafter B59) is widely accepted

and extensively used in oceanic and limnic waters to

obtain « (Wüest et al. 1996; Saggio and Imberger 2001),

but lately proposals have been made (Nash and Moum

2002; Roget et al. 2006; Sanchez and Roget 2007) to

consider the alternative model given by Kraichnan (1968,

hereafter K68).

The main purpose of this study is to check which of the

models, B59 or K68, more closely follows the micro-

structure thermal data recorded in a lake. Both models

stand for the three-dimensional spectra Eu(k) of a con-

served scalar field that is passively advected by an in-

compressible turbulent fluid with a Prandtl number

Pr 5 n/k
u

greater than 1, where k is the circular wave-

number (in rad m21) and v and ku are the viscosity and

the diffusivity of the scalar, respectively. Also, both of

them assume homogeneous, isotropic, and stationary tur-

bulence and describe the spectra for those wavenumbers

above the inertial–convective subrange (Obukhov 1949;

Corrsin 1951), where E
u

} k25/3, as is also the case of the

energy spectra in the inertial subrange, where E } k25/3

(Kolmogorov 1941).

The scalar spectra Eu in both theoretical models (B59

and K68) can be scaled by the so-called Batchelor

wavenumber k
du

5 [«/(nk2
u)]1/4, which is related to the

Kolmogorov wavenumber k
d

5 («/n3)1/4 and the Prandtl

number as in the equation kdu
5 kdPr1/2. More precisely,

the scalar spectrum depends on Eu(k, f, «u, ku), where

f 5 kdu
/
ffiffiffiffiffiffi
2q
p

and q is the so-called turbulent parameter,

usually considered as a constant of the model. Hereafter,

we will use qB and qk when referring to the turbulent

parameter in the B59 and K68 models, respectively.

Although the B59 and K68 models consider different

physical hypotheses, both models contain the power law

Eu } k21 for the smallest wavenumbers (the viscous–

convective subrange). Near kdu, which is larger than kd

for Pr . 1, the scalar spectrum presents a cutoff, cor-

responding to the transition into the viscous–diffusive

subrange. The exact value of this cutoff wavenumber

depends on the model and on the value of q.

Given the 3D spectrum model Eu, the corresponding

one-dimensional spectrum of the scalar gradient, which

is the spectrum that is usually fitted to recorded field

data, presents a dependence similar to Eu, which is

F›u(k3, f, «u, ku) , where now k3 is one of the Cartesian

components of the wavenumber (e.g., the third). One of

the aims of this paper is to check the values of the tur-

bulent parameters that would give a better fit of our

experimental data to the B59 and K68 models. This will

be possible by considering the value of the turbulent

kinetic energy dissipation rate « computed from simul-

taneously measured small-scale shear data.

The validity of the velocity and scalar theoretical

spectral models discussed in this paper depends on the

degree of isotropy. The degree of isotropy of the turbu-

lent flux can be evaluated from the buoyancy Reynolds

number Reb 5 «/(nN2), where N is the Brunt–Väisälä

frequency, or from the Cox number Cx 5 «
u
/(2k

u
T

2

z),

with Tz being the mean vertical stratification of the scalar

field within the considered segment. Dillon and Caldwell

(1980) argued that Reb } Pr21 Cx and observed that the

viscous–convective power-law subrange of the scalar

spectra Eu } k21 appears only with large values of Cx.

Considering these two nondimensional numbers, we

have evaluated the validity of the B59 and K68 models for

the temperature gradient spectrum, depending on isotropic

conditions.

In this paper, the theoretical basis of the B59 and K68

models and the references where they have been vali-

dated are reviewed in section 2. In section 3, we present

the measurements we performed for this study and the

procedure used to process the data: (i) determine tur-

bulent homogeneous segments where the small-scale

shear spectrum follow the universal form of the PK69

model and obtain the rate of dissipation of turbulent

kinetic energy «; (ii) determine the rate of dissipation of

the scalar variance «u by integrating the one-dimensional

spectrum of the temperature gradient; and, once « and «u

have been calculated for every segment, (iii) the resulting

thermal gradient spectra are fitted to the B59 and K68

models varying the value of the turbulent parameter q. In

section 4, the results are presented and the q value statistics

obtained are discussed. Alternatively, the bin-averaged

nondimensional spectrum for the ensemble of segments is

computed and compared to the nondimensional B59 and

K68 models to also obtain the turbulent parameter for

each model. Differences between the values of « computed

either from the shear spectra or from the scalar spectra are

discussed. Finally, we discuss which model follows the

experimental data better, the importance of the degrees of

isotropy for a good fit of the experimental data to the

theoretical models, and the validity of a constant value for

the mixing efficiency of isotropic turbulence.

2. The universal scalar spectrum

a. Theoretical background

The physical hypotheses of the B59 model for the 3D

scalar spectrum Eu(k) are mainly about the space and

time variability of the turbulent strain rate tensor (Kundu

2008). These are as follows: (i) the strain rate is locally

uniform (without space variability) for scales smaller

than the Kolmogorov length; (ii) within these small

scales the principal rates of strain (a, b, and g) and their
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corresponding directions evolve slowly over time in

comparison with a time scale of 1/jgj, where g is the

least principal rate of strain, which is negative because

a 1 b 1 g 5 0 (for incompressible fluids); and (iii) the

value of g can be statistically assumed as an effective

value geff without fluctuations. If the strain rate is uni-

form and evolves slowly, most of the time the gradients of

the scalar field will be locally aligned with the direction of

the least principal rate of strain due to the advective effect

of the flux on the scalar field.

Under statistically stationary turbulence, the time

evolution of the temperature spectrum (Hinze 1975) is

given by

›E
u
(k)/›t 5 T

u
(k) 2 D

u
(k) 5 0, (1)

where Du 5 2kuk2Eu is the dissipation spectrum of the

scalar field and Tu(k, t) is the transfer spectrum, which

stands for the nonlinear variance flux of the wavenumber

k from the rest of the wavenumbers. Following Batchelor’s

hypothesis, the transfer spectrum Tu(k, t) can be re-

lated with the three-dimensional scalar spectrum Eu(k, t)

as

T
u

5 geff›(kE
u
)/›k, (2)

and Eq. (1) can be solved to explicitly determine Eu(k).

At small scales, the variance of the partial derivatives

of the velocity is proportional to («/n), which can be

checked dimensionally, and the effective least principal

rate of strain geff, according to Batchelor, is proportional

to («/n)1/2 so that

geff 5 2q21
B («/n)1/2, (3)

where qB is the nondimensional turbulent parameter in

the B59 model.

K68 and Kraichnan (1974) proposed an alternative to

Batchelor’s model. Kraichnan considered rapid fluctu-

ations in time of the velocity field that have an infinitely

short correlation time compared to the convective and

diffusive time scales. Under this hypothesis, the transfer

spectrum is

T
u

5 2A(t)/5›[kE
u

2 k/3›(kE
u
)/›k]/›k, (4)

where A(t)5
Ð t

2‘
h›u

i
(x, t)/›x

n
›u

i
(x, t9)/›x

n
idt9 and ui(x, t)

is the turbulent velocity field at space position x and

time t; repeated indexes mean summation and hi is an

ensemble average. When statistical stationarity and ho-

mogeneity are assumed, A is a constant that K68, like

Batchelor, scaled as A55q21
K («/n)1/2, where qK is the

turbulent constant for the spectrum model.

Using Eqs. (2) and (4) to integrate Eq. (1) gives the

forms of the Batchelor and Kraichnan spectra of the

scalar. Both spectrum models can be nondimensional-

ized with the following scaling, called Batchelor scaling:

E
u
(k, f, «

u
, k

u
) 5

«
u

2k
u
f3

Ê
u
(y), (5)

where the nondimensional spectrum Ê
u
(y) depends on the

nondimensional wavenumber y 5 k/f with f 5 k
du

/
ffiffiffiffiffiffi
2q
p

.

In the case of the Batchelor and Kraichnan models, the

nondimensional spectrum Ê
u
(y) takes the forms (super-

scripts B and K, respectively)

Ê
B

u (y) 5 y21 exp(2y2/2) and (6)

Ê
K

u (y) 5
1 1

ffiffiffi
3
p

y

y
exp(2

ffiffiffi
3
p

y), (7)

and their shape depends on the respective turbulent

parameters qB and qK.

The cutoff in the viscous–diffusive subrange for both

models is better analyzed from the dissipative spectrum

Du 5 2kuk2Eu, because it presents a very clear maximum

at the cutoff. Figure 1 shows the dissipative spectra for

the B59 and K68 models in the nondimensional form

Dukdu/«u as a function of two nondimensional wave-

numbers, k̂ 5 k/k
du

(lower horizontal axis) and ~k 5 k/k
d

(upper horizontal axis), where kd and kdu are the Batchelor

and the Kolmogorov wavenumbers introduced in sec-

tion 1. As observed, for the same q both spectra coincide

for the lower wavenumbers. However, the dissipation

maximum, which is one order of magnitude less than

kd, varies from one model to the other and for different

q values. The maximum in Fig. 1 for the value q 5 4 is

k̂ 5 0:36 for B59 (solid line) and k̂ 5 0:33 for K68

(dashed line); for q 5 8, it is at k̂ 5 0:25 for B59 (dotted

line) and k̂ 5 0:23 for K68 (dashed–dotted line). In gen-

eral, the k̂ value where the dissipation spectrum has its

maximum is 0:7109/
ffiffiffi
q
p

for B59 and 0:6573/
ffiffiffi
q
p

for K68.

As was discussed in section 1, the measurable spec-

trum is usually the one-dimensional gradient spectrum

F›u(k3), which depends on the component of the wave-

number vector in one direction: for example, the third

coordinate k3. A consequence of isotropy is that the one-

dimensional spectra formed by the other two Cartesian

directions have a shape identical to F›u(k3). The spectrum

F›u(k3) is obtained from Eu(k) (Hinze 1975; Gibson and

Schwarz 1963) and can be nondimensionalized based on

the following scaling:

F
›u

(k3) 5
«

u

2k
u

1

f
f
›u

(y3) 5
«

u

2k
u
kdu

ffiffiffiffiffiffi
2q

p
f
›u

(y3), (8)
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where y3 5 k3/f with f 5 kdu
/
ffiffiffiffiffiffi
2q
p

and f›u(y3) is the

nondimensional function, which, for the Batchelor and

Kraichnan models, are

f B
›u(y3) 5 y3

�
exp(2y2

3/2Þ 2 y3

ffiffiffiffi
p

2

r
[1 2 erf(y3/

ffiffiffi
2
p

)]

�

and (9)

f K
›u(y3) 5 y3 exp(2

ffiffiffi
3
p

y3), (10)

respectively.

b. Experimental background

The first experimental value for the B59 turbulent

parameter was found to be qB ’ 2 and was given in the

same article where the model was introduced (B59) based

on previous laboratory results for the estimate of the av-

erage value of the least principal rate of strain. Gibson

(1968), hypothesizing that the effective value geff is

bounded by the extreme values of the volume averaging

of the local least principal rate of strain g, predicted a

theoretical range of
ffiffiffi
3
p

, qB , 2
ffiffiffi
3
p

(1.73 , qB , 3.46).

The first estimate of qB based on field data was given

by Grant et al. (1968) using 12 turbulent patches recorded

in the open sea and in a tidal channel. As the authors

pointed out, the determination of q is very sensitive to

instrumental errors and to nonlocal isotropy, so before

giving q a value they disregarded 3 out of 12 spectra to

ensure that the corresponding turbulent velocity fol-

lowed a universal isotropic spectrum. After fitting the

resulting nine spectra to the B59 curve [Eq. (9)], he ob-

tained a value of qB 5 3.9 6 1.5. A similar experimental

determination was done by Oakey (1982), who selected

the 16 turbulent patches where the signal-to-noise ratio

(SNR) for the shear velocity was the largest. After the

scalar spectra for individual segments were calculated,

they were assembled together in a nondimensional form

and fitted to the theoretical shape of B59 within the range

of the nondimensional wavenumber k̂du
between 0.06 and

0.9 and found to be qB 5 3.7. The same author found that

when the scalar spectra are fitted one by one to the B59

model, the mean and standard deviation of the 16 q

values is qB 5 3.67 6 1.52. Nash and Moum (2002) took

simultaneous measurements of shear, temperature, and

conductivity in 400 patches to obtain thermal and salinity

spectra. They fitted spectra individually to the B59 and

K68 models, with the arithmetic means being qB 5 6.41

and qK 5 8.54 and the geometric means being qB 5 5.65

and qK 5 7.5, and used the geometric means to calculate

the turbulent fluxes. The individual estimates of q are

within a dispersion range of one order of magnitude

larger than the mean value.

All the experimental determinations of q are with

oceanographic data, and as far as we know no limno-

logical or laboratory measurements are available. In the

case of stationary turbulence with low wavenumber

forcing, Bogucki et al. (1997) gave numerical results for

a passive scalar advected by turbulence of qB 5 3.9 6 0.25

and qK 5 5.26 6 0.25. For numerical results of decaying

turbulence, Antonia and Orlandi (2003) found qB 5 2.89

and qK 5 3.41. In both works, the numerical results show

better agreement with the K68 model than with the B59

model.

Different authors have also checked the lowest wave-

number where the B59 and K68 models can be applied:

FIG. 1. Dissipation spectra of a passive scalar in nondimensional form Dukdu«u
21 as a function

of the Batchelor nondimensional wavenumber k̂ 5 k 3 k21
du (lower horizontal axis) and the

Kolmogorov nondimensional wavenumber ~k 5 k 3 k21
d (upper horizontal axis). The curves

show the B59 and K68 models for two values of the turbulent parameter, q 5 4 and q 5 8.

2158 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



that is, the wavenumber k* where the inertial–convective

subrange in which F
›u

5 C
1u

«
u
«21/3k1/3

3 , where C
1u

’ 0:4 is

the 1D Obukhov–Corrsin constant (Sreenivasan 1996),

shifts to the viscous–convective subrange, where F›u 5

q«u«21/2n1/2k3 [obtained from Eqs. (8)–(10) at large wave-

numbers]. Grant et al. (1968) measured a mean value of

k*/kd 5 2:4 3 1022 or k*/kdu
5 7:9 3 1023 (Pr 5 7), with

kd and kdu being the Kolmogorov and the Batchelor

wavenumbers. Dillon and Caldwell (1980) argued that

there is no reason to expect the inertial subrange param-

eters to depend on the Prandtl number and determined,

based on existing results in air, that k*/k
d

5 5:5 3 1022 or

k*/kdu
5 2:1 3 1022. Gibson et al. (1970), based on labo-

ratory measurements, found k*/kd between 3 3 1022 and

4 3 1022, which corresponds to k*/kdu
between 1 3 1022

and 2 3 1022. Steinbuck et al. (2009) proposed considering

the lower wavenumber, k* 5 4 3 1022kd or k* 5 2 3

1022kdu, for the experimental scalar spectrum to be fitted

to the B59 model.

3. Methods

a. Measurements and instrumentation

Measurements were recorded with a free-falling MST

profiler (Prandke and Stips 1998) sinking at an approx-

imate velocity of 0.9 m s21, which is within the optimal

operational range for the shear probe, and sampling at

1024 s21. This is a standard conductivity–temperature–

depth (CTD) profiler with microstructure temperature

and small-scale shear sensors (fast-response sensors) as

well. The shear measurements are made with an airfoil,

PNS98 (manufactured by ISW Wassermesstechnik),

which measures the lift force at its nose, and has a pie-

zoceramic bending beam for a sensing element, with an

electrical output calibrated to give one of the velocity

components transverse to the profiling direction. The

spatial resolution for the shear probe is defined based on

the wavenumber where the response of the shear sensor

drops 3 dB. From Fig. 2, it is observed that this happens

at around 100 cycles per meter (cpm) so its spatial

resolution is about 1 cm. The instrument used to measure

fast-response temperature is basically a FP07 glass rod

microthermistor with a sensitivity of 0.0018C. Its nominal

time constant is 7 ms, although it has been documented

that it is actually longer (Prandke 2005). A pre-emphasized

analog channel has been added at the microthermistor by

the manufacturer to achieve better signal-to-noise ratio at

higher frequencies. After pre-emphasis and before calcu-

lating the spectra, data have been deemphasized in the

Fourier space. Figure 2 shows the frequency response

for the standard channel Negative Temperature Coeffi-

cient (NTC), the pre-emphasized channel NTC High Pass

(NTCHP), and the spatial response of the shear channel.

For this study, we used 373 profiles measured in the

western part of the northern lobe of Lake Banyoles in

Catalonia, Spain (the general dynamic of the lake has

been reviewed by Casamitjana et al. 2006). The lake has

a surface area of 1.2 km2, a maximum depth of 46.4 m,

and a mean depth of 14.8 m. At the measuring station,

the total depth was 12 m. The campaign was carried out

FIG. 2. Frequency response of the NTC and NTCHP output channels of the fast-response

microthermistor as a function of the frequency f (lower horizontal axis). And spatial response

of the shear output channel as a function of the wavenumber K (upper horizontal axis). The

relationship between the frequency and the wavenumber is K 5 f/Wp where Wp 5 0.9 m s21 is

the profiling velocity.
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from 27 June until 1 July 2009. During the campaign, the

30-min mean wind velocities were always below 3 m s21.

In summer, the lake is stratified, the internal seiches are

permanently active, and the first and second vertical

modes are excited (Roget et al. 1997), as was the case

during the campaign. The same data are used to study the

mesoscale intermittency within the main sheared ther-

mocline of the lake (Planella et al. 2011).

b. Data segmentation

For this study, we used vertical segments of data of

equal length where turbulence can be considered to be

approximately homogeneous. All segments contained

1024 data points, which is equivalent to a length of about

0.9 m. To check homogeneity, every segment was divided

into seven subsegments of 256 points (so they overlapped

at 128 points), and the variances of the temperature

gradient and the small-scale shear were calculated for

each one. If the variances at all subsegments remained

in the same order of magnitude (ratio between variances

at all subsegments smaller than 10), the segment was

preliminarily accepted for this study. The number of pre-

liminarily accepted homogeneous segments was ’1000.

Figure 3a shows an example of the measured shear

velocity signal ›u/›x3 for an accepted segment, and in

Fig. 3b it is represented by the corresponding spectrum

S
exp
sh (K) (with solid circles) as a function of the one-

dimensional wavenumber K in cpm: that is, K 5 k
3
/2p.

The spectrum was computed with Welch’s periodogram

method, considering three windowed subsegments of 512

data points (0.45 m). The solid line in Fig. 3b is the best fit

of the PK69 shear spectrum model to the experimental

data. The noise model, which has been obtained from the

quiet segments recorded during the campaign, is drawn as

a dotted line. In Fig. 4a, small-scale temperature gradient

data ›u/›x
3

for the same segment considered in Fig. 3 is

shown. In Fig. 4b, the experimental spectrum computed

from these data S
exp
›u (K) is represented together with the

curves of the theoretical B59 (solid line) and K68 (dashed

line) models that we want to compare with measure-

ments in this study. The noise model is drawn as a dotted

line.

c. Obtaining « from the best fit between experimental
shear spectra and the PK69 model

The PK69 model predicts the 3D energy spectra for

the universal equilibrium range. From this model, the

corresponding shear spectrum, which also depends on

«, can be calculated by integration (Hinze 1975). Unlike

the case of the one-dimensional scalar spectrum, the

shear spectrum does not have an analytical solution,

but Roget et al. (2006) fitted an analytical function

to the nondimensional numerically integrated result.

Accordingly, the shear spectrum FPK69
sh (k3) in the PK69

model can be written as FPK69
sh (k3) 5 n2k3

d
~FPK69

sh ( ~k3),

where ~k3 5 k3/kd is the nondimensional wavenumber and
~FPK69

sh ( ~k3) is the nondimensional spectrum with the form

~FPK69
sh ( ~k3) 5 0:9372 ~k0:3748

3 exp(26:011 ~k1:548
3 ). (11)

FIG. 3. (a) Measured shear profile in one of the homogeneous segments. (b) Resultant shear spectra as a function of

the cpm wavenumber (points), with the best fit of the PK69 model (solid line) and the noise model (dotted line).

Vertical bars correspond to the fitting interval.
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The relationships between the angular magnitudes of the

wavenumbers, k3 and FPK69
sh (k

3
), and the corresponding

cpm wavenumber magnitudes that we used in this paper,

K and SPK69
sh (K), are K 5 k3/2p and SPK69

sh (K) 5 2pFPK69
sh .

This spectra has its peak in K 5 0:125kd/2p. Integration

of the shear spectrum to the Kolmogorov wavenumber

Kd 5 kd/2p (in cpm) gives 99.8% of the variance, whereas

integration to K 5 0.513Kd gives 90%. Accordingly, to

resolve all the variance of the shear, the Kolmogorov

wavenumber has to be less than or equal to the maximum

spatial resolution of the sensor, which in our case corre-

sponds to K 5 100 cpm (see section 3a).

To obtain direct estimate of « from the small-scale

shear, we fitted the measured shear spectrum S
exp
sh (K) to

the model SPK69
sh (K). The lower wavenumber KL of the

range considered for the fit was the smallest we could

solve due to the windowed subsegment size, which is

about 2 cpm. The higher wavenumber considered for the

fit KU varies for each segment, because it is the K value

where the experimental spectra S
exp
sh (K) intersects the

noise model (dotted line in Fig. 3b where the borders of

the fitted domain are indicated by two vertical bars). The

best fit between experimental data and the PK69 model

was obtained for each segment following the method of

likelihood function optimization given by Ruddick et al.

(2000) for the case of the temperature gradient, which

has been adapted here for the case of shear. The likeli-

hood function has a Gaussian shape, and the value of «

that maximizes the likelihood function gives the best fit

to the model. The error of the fitting parameter « with

a confidence interval of 95% is given by the standard

deviation multiplied by 1.96. Accordingly, in the case

of Fig. 3b the resulting value of « that gives the best fit

is « 5 (6.5 6 1.0) 3 1028 W Kg21 and the corresponding

Kolmogorov and Batchelor wavenumbers are Kd 5

k
d
/2p 5 70 cpm and K

du
5 k

du
/2p 5 200 cpm.

Following Ruddick et al. (2000), we used three pa-

rameters to quantify the goodness of this fit: the mean

absolute deviation (MAD) of the ratio between the ex-

perimental and theoretical spectra within the fitting

dominium; the SNR; and the likelihood ratio (LHR), which

describes if the measured spectrum fits the PK69 model or a

power-law spectrum better. So, a good fit has a small MAD

and large SNR and LHR. To accept a fit, Ruddick et al.

(2000) suggested MAD # 1.1, SNR $ 1.3, and LHR $ 2.

In this study, we require MAD # 0.3, a smaller value than

that suggested by Ruddick, for a more precise fit. In the

example given in Fig. 3b, the value of the three parame-

ters are MAD 5 0.25, SNR 5 1.9, and LHR 5 17.

After fitting the experimental data to the theoretical

PK69 model for individual segments and obtaining « for

each one, nondimensional spectra can be obtained ac-

cording to ~F
exp
sh ( ~k

3
) 5 S

exp
sh (2pn2k3

d)21, where ~k
3

5 k
3
/k

d
,

and they can be assembled together to check the val-

idity of the model. The nondimensional shear spectrum

will be shown in section 4 (results and discussion).

FIG. 4. (a) Measured temperature gradient profile of the same segment as in Fig. 3. (b) Corresponding temperature

gradient spectra as a function of the cpm wavenumber (points), with the best fit of the B59 (solid line), K68 (dashed

line), and noise (dotted line) models. The fit statistics for B59 are MAD 5 0.47 and LHR 5 67, and the fit statistics for

K68 are MAD 5 0.44, LHR 5 68, and SNR 5 3 (common for both models). Vertical bars correspond to the fitting

interval.
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d. Obtaining «u from the measured temperature
gradient spectra and determining the turbulent
parameter from individually fitted spectra

After computation of the spectra of the gradient of the

microstructure temperature S
exp
›u (K) for the 69 homoge-

neous turbulent segments where small-scale shear spectra

could be accurately fitted to the PK69 model, the rate of

dissipation of temperature variance «u is obtained by in-

tegrating,

«
u

5 6k
u

ðK
U

K
L

S
exp
›u (K) dK, (12)

where, following Steinbuck et al. (2009), 2pKL (in

rad m21) is equal to k* 5 2 3 1022kdu. The wavenumber

k* has been defined in section 2b as the transition

wavenumber from the inertial–convective to the viscous–

convective subranges, and kdu is calculated from the «

value obtained following the procedure described in

section 3c. In the example shown in Fig. 4b, Eq. (12)

gives «u 5 3.82 3 1026 8C2 s21. Once «u is calculated,

S
exp
›u (K) can be fitted to both theoretical models, the

B59 or the K68, for the one-dimensional temperature

spectra following the same procedure described in section

3c for shear spectra. Note that, in cpm units, the theoret-

ical spectra are SB59
›u (K) 5 2pFB59

›u and SK68
›u (K) 5 2pFK68

›u ,

where FB59
›u (k

3
) and FK68

›u (k
3
) are given by Eqs. (8)–(10),

and K 5 k
3
/2p. In this case the only fitting parameter is

f 5 k
du

/
ffiffiffiffiffiffi
2q
p

and because « (or kdu) is already known for

every segment (section 3c), the value of f providing the

better fit also provides the turbulent parameter q.

Figure 4b shows an example of the best fit of the mea-

sured temperature gradient spectra to models B59 (solid

line) and K68 (dashed line), where the resulting turbulent

parameters are qB 5 8.5 6 1.3 and qK 5 14.3 6 2.9. Sta-

tistics of the turbulent parameters obtained for each model

are presented in section 4.

Once the thermal spectrum S
exp
›u (K) and « and «u are

known for each segment, individual spectrum can be

nondimensionalized, according to F̂
exp
›u (k̂) 5 S

exp
›u 2k

u
k

du

(2p«
u
)21, where k̂ 5 k/k

du
is the Batchelor nondimen-

sional wavenumber, and plotted together as was done in

Fig. 5 for the case of small-scale shear. Fitting the bin-

averaged nondimensional spectrum to each of the theo-

retical models (B59 and K68) will also provide an estimate

of the turbulent parameter. Results are presented in the

following section.

4. Results and discussion

Following procedures described in section 3c and us-

ing our data, we found 69 segments where the spectrum

fits the PK69 model extremely well out of the 1000 ho-

mogeneous segments that were first determined (section

3b). The turbulent kinetic energy dissipation rates of these

segments range between 1028 and 1026.5 W kg21. Note

that for all the cases the Kolmogorov wavenumbers

K
d

5 k
d
/2p range from 44 to 104 cpm, being less than or

approximately equal to the maximum resolved wave-

number with the PNS98 airfoil of 100 cpm, as discussed

in section 3c. This fact may indicate that the goodness of

fit criteria in the shear data have automatically limited the

range of dissipations, with Kd 5 kd/2p # 100 cpm.

FIG. 5. Nondimensional shear spectra for the ensemble of 69 segments discussed in section 3c

(points) as a function of the Kolmogorov wavenumber ~k 5 k 3 k21
d and the equivalent bin-

averaged data (solid circles) with their standard deviation bars. The PK69 theoretical and N70

experimental models are represented by solid and dashed lines.
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Figure 5 shows the nondimensional spectra assembled

for the 69 segments used in this study. As observed, bin-

averaged spectra (solid circles) follow the PK69 model
~FPK69

sh ( ~k
3
) given in Eq. (11) (solid line) and the N70 model

(dashed line) well.

For the chosen segments, the q values for the Batch-

elor and Kraichnan models have been obtained by fitting

the temperature gradient spectra data to the theoretical

curves as described in section 3d. The turbulent param-

eter qB obtained for the B59 model ranges between 3.5

and 57, and for the K68 model qK ranges between 5 and

130. However, to assure certain degree of isotropy (see

section 1), these intervals are considerably reduced when

only those segments with a Cox number larger than 50 are

considered. This is the case of the 22 segments out of 69

for which qB ranges between 3 and 10 and qK ranges

between 5 and 17. The occurrences of different values of

the turbulent parameters obtained in the fitting process

are represented in Fig. 6a (qB) and Fig. 6b (qK) for the

range of q between 0 and 20, a range that includes all the

values from Cx $ 50 segments (gray bars in Fig. 6). There

were four occurrences of q values outside the represented

range for segments with Cx , 50 for qB (6% of the total)

and 18 for qK (27% of the total). For those segments

where Cx $ 50, the arithmetic mean of the turbulent

parameters are qB 5 6.0 6 3.5 and qK 5 9.8 6 6.4. These

values are consistent with those given by Nash and Moum

(2002), who, following a similar procedure of individually

fitting spectra, obtained mean values for the turbulent

parameter of qB 5 6.41 and qK 5 8.54, but in their case

the individual values were more scattered around the

mean (about 5 times the mean value). The dispersion in

q decreases when the Cox numbers increase (not shown),

which can be expected considering that the turbulent

parameter q is defined only for isotropic turbulence. In

fact, the B59 and K68 models have been developed for

isotropic turbulence too.

Alternatively, according to section 3d, the nondimen-

sional spectra can be computed knowing « and «u. In

Fig. 7a, the whole ensemble of the 69 nondimensional

spectra has been represented (points) together with the

corresponding bin-averaged spectra (solid circles). From

Eq. (8), the nondimensional spectra should followffiffiffiffiffiffi
2q
p

f
›u

(y
3
), where the function f›u(y3) is given by Eqs.

(9) and (10) for the B59 and K68 models. Accordingly,

a value of q can be obtained from the best fit between

the band-averaged nondimensional measured spectra

and the theoretical curves
ffiffiffiffiffiffi
2q
p

f
›u

(y3). In Fig. 7a, the best

fits, which were computed within the range k̂ 5 0:025 and

k̂ ’ 1, following the procedure of Ruddick et al. (2000),

are represented by a solid line in the case of the Batchelor

model and by a dashed line for the Kraichnan model. The

values of the fit parameters, qB and qK, that give the best

likelihood were qB 5 5.0 6 0.7 and qK 5 9.9 6 2.4, where

the error has been estimated from the Gaussian-shaped

likelihood function.

The same procedure has been followed to produce the

results given in Fig. 7b with the 22 spectra that meet the

requirement Cx $ 50 and, in this case, the turbulent

parameters that gave the best fit were found to be qB 5

4.4 6 0.8 and qK 5 7.9 6 2.5. Errors of q obtained from

individually fitting spectrum results are larger than those

FIG. 6. (a) Occurrence of qB for individual fitting of thermal gradient spectra for the whole ensemble of 69 segments

(solid line bars) and for Cx $ 50 (gray bars) between 0 and 20. (b) As in Fig. 6a, but for qK.
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obtained from the nondimensional spectra, but results

obtained with both procedures, when their error interval

is taken into consideration, are compatible. Furthermore,

these values are in agreement with those obtained by

Grant et al. (1968) and Oakey (1982), with qB ’ 4, which

were discussed in section 2b. The nondimensional spectra

measured by Oakey (1982) has also been represented

in Fig. 7 (open squares), showing good agreement with

the present data (solid circles), especially in the case of

Fig. 7b, where the value of Cox numbers was also Cx $ 50.

Also from Fig. 7, it is observed that experimental

data follow the K68 model better than the B59 model,

although in Fig. 7a (all Cox) the K68 model follows the

experimental data only for k̂ . 0:1. In Fig. 7b (Cx $ 50),

the K68 model fits our experimental data for k̂ . 0:04.

That is, Figs. 7a,b show that the validity of the B59 and

K68 models is related to the degree of isotropy of the

turbulence, which can be evaluated either by the Cox

or the buoyancy Reynolds numbers, as discussed in

section 1.

FIG. 7. (a) Nondimensional spectra of the temperature gradient as a function of the

Batchelor nondimensional wavenumber k̂ 5 k 3 k21
du for the whole ensemble of 69 segments

(points); the bin-averaged spectra (solid circles) with the corresponding standard deviation

(error bars); and the best fit to the theoretical models of B59 (solid) and K68 (dashed), giving

the corresponding turbulent parameters qB and qK, shown in the legend. Also, the Oakey

(1982) oceanic data (open squares) have been incorporated. (b) As in Fig. 6a, but for the 22

segments with Cx $ 50.
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To check the statistical relevance of the models and

the value of the turbulent parameter to determine «, we

have fitted the thermal gradient spectra computed from

measurements to the B59 and K68 models given in

Eqs. (8)–(10), and we have found the rate of dissipation

of turbulent kinetic energy « from the microstructure

thermal signal, which we will denote as «th, and «th is

compared with the value of « obtained from the shear

spectra «sh (section 3c). This has been done for the most

isotropic datasets with Cx $ 50 using the values qB 5 4.4

(present data value) and qB 5 3.7 (Oakey 1982) for B59

and qK 5 7.9 (present data value) and qK 5 7.5 (Nash and

Moum 2002) for K68. Different statistical magnitudes

relating the estimates of « in the two different approaches

are shown in Table 1. The six columns of the table stand

for the model (B59 or K68); the value of the turbulent

parameter q used in the fitting procedure; and the mean

(2), minimum (min), maximum (max), and standard

deviation (std) of the ratio «th/«sh. As observed, the ratio

«th/«sh is closer to 1 in the case of the Kraichnan model

with qK 5 7.9 (value from section 4 of Fig. 7b) than for

K68 with qK 5 7.5 (from Nash and Moum 2002) and B59

with qB 5 4.4 (from this work) or qB 5 3.7 (from Oakey

1982), which underestimates «th by 18%, 51%, and 30%

of the true value («sh). In the best estimate case, K68

with qK 5 7.9, the individual values of «th have their

maximum underestimation and overestimation in a fac-

tor of 5 (min 5 0.21 in Table 1) and 2.43, respectively

(max in Table 1). Kocsis et al. (1999) did a similar

analysis, with B59 and qB 5 3.4, finding «th/«sh 5 1:2, and

maximum deviation factors of 10, but they covered a

wider range of «sh (from 1029 to 1026) than the present

work (from 1028 to 1026.5).

Regarding isotropy, in Fig. 8 the Cox number Cx of the

69 studied segments is represented (open circles) as a

function of the corresponding buoyancy Reynolds num-

ber Reb in logarithmic scales. Segments with Cx $ 10 are

highlighted with solid circles. For this last case, a linear

fit was obtained—with a correlation of r2 5 0.71—and

represented with a solid line. The resulting line gives

Cx 5 1:36 3 Re0:96
b , which is basically equivalent to Cx }

Reb, as argued by Dillon and Caldwell (1980) (com-

mented in section 1). In fact, this linear relationship

between the Cox and the Reynolds numbers is equivalent

to a constant mixing efficiency G, because according to

Osborn and Cox (1972) G 5 k
u
CxN2/«, which is the same

as G 5 Pr21Cx/Reb. In the case of our data, Cx/Reb ’ 1:36

and G ’ 1:36/7 5 0:19. Alternatively, if it is calculated for

each segment it is found that the mean and error gives

G 5 0.21 6 0.17. These results are in agreement with the

value of 0.2 normally used for active turbulence (Oakey

1982; Roget et al. 2006) and even the lower value of 0.16

given by Ravens et al. (2000) for limnetic waters.

5. Overview and conclusions

The spectral models of B59 and K68 were developed

for a scalar field, like temperature or any concentration,

which is advected by an isotropic velocity field, but

whose buoyancy forces by themselves do not affect the

FIG. 8. Cox number as a function of the buoyancy Reynolds number (logarithmic scales) for

the whole ensemble of 69 accepted segments. Solid circles stand for Cx $ 10, which follows

a linear dependence (solid line).

TABLE 1. Different statistical magnitudes relating «th and «sh.

q
«th

«sh
min

«th

«sh

� �
max

«th

«sh

� �
std

«th

«sh

� �

B59 4.4 0.70 0.20 1.30 0.36

B59 3.7 0.49 0.14 0.92 0.26

K68 7.9 0.90 0.21 2.43 0.63

K68 7.5 0.82 0.19 2.19 0.57
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velocity field. Therefore, it has passive behavior and should

show isotropy. Below the two spectrum models, there are

robust and different physical basins. The Batchelor model

assumes that a locally uniform strain rate with slow time

variability advects the scalar, and the Kraichnan model

assumes a small-scale velocity field with an infinitely short

correlation time so very fast time variability. Both of

them depend on a turbulent parameter, which has to be

determined experimentally. Above a certain degree of

isotropy, quantified by the Cox and the buoyancy

Reynolds numbers, and within the error, the experi-

mental data agree with both models, but they follow the

Kraichnan model better than the Batchelor model. In

particular, for the larger values of our measured Cox

numbers, Cx $ 50, our data accurately fit the Kraichnan

nondimensional spectra, for almost two orders of mag-

nitude of the nondimensional wavenumber, including

part of the viscous–convective subrange, but it does not

fit the Batchelor model so accurately. From the fit be-

tween our experimental data and the spectrum models

and for Cx $ 50, the turbulent parameters are qK 5 7.9 6

2.5 for the Kraichnan model and qB 5 4.4 6 0.8 for the

Batchelor model, which are both coherent with results

from previous experimental studies in the ocean. When

considering spectra with Cx , 50, the Kraichnan spectra

only fit the experimental data at the largest wavenumber

values and the estimated turbulent parameter increases.

This deviation from the Kraichnan model for small isot-

ropy can be justified by the fact that the model assumes

the isotropy condition. Present data show a proportion-

ality between the Cox and Reynolds numbers, a fact that

confirms a constant value of ’0:2 for the mixing effi-

ciency expected for active turbulence. Determining «

from the thermal spectrum fit shows better agreement

with the « obtained directly from the shear spectra for

the Kraichnan model, with qK 5 7.9, than for the

Batchelor model, with qB 5 3.7 or qB 5 4.4, which both

underestimate the value of «. Because dissipations in this

study are from 1028 to 1026.5 and Cox numbers are rel-

atively small, future studies of the K68 and B59 models

and the turbulent parameter should consider a wider

range of dissipations and Cox numbers. In any case, Nash

and Moum (2002) and the present study both confirm that

the K68 model is more accurate than the B59 model for

dissipation estimates and consequently turbulent fluxes

from microstructure temperature data.
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Girona) for his electronic engineering support and Joan

Corominas (Banyoles) for his sailing support.

REFERENCES

Antonia, R. A., and P. Orlandi, 2003: On the Batchelor constant in

decaying isotropic turbulence. Phys. Fluids, 15, 2084, doi:10.1063/

1.1577346.

Batchelor, G., 1959: Small-scale variation of convected quantities

like temperature in turbulent fluid. 1. General discussion and

the case of small conductivity. J. Fluid Mech., 5, 113–133.

Bogucki, D., J. A. Domaradzki, and P. K. Yeung, 1997: Direct

numerical simulations of passive scalars with Pr.1 advected

by turbulent flow. J. Fluid Mech., 343, 111–130.

Casamitjana, X., J. Colomer, E. Roget, and T. Serra, 2006: Physical

limnology in Lake Banyoles. Limnetica, 25, 181–188.

Corrsin, S., 1951: On the spectrum of isotropic temperature

fluctuations in an isotropic turbulence. J. Appl. Phys., 22,

469–473.

Dillon, T. M., 1982: Vertical overturns—A comparison of

Thorpe and Ozmidov length scales. J. Geophys. Res., 87,

9601–9613.

——, and D. R. Caldwell, 1980: The Batchelor spectrum and dis-

sipation in the upper ocean. J. Geophys. Res., 85, 1910–1916.

Gargett, A. E., T. R. Osborn, and P. W. Nasmyth, 1984: Local

isotropy and the decay of turbulence in a stratified fluid.

J. Fluid Mech., 144, 231–280.

Gibson, C. H., 1968: Fine structure of scalar fields mixed by tur-

bulence. 2. Spectral theory. Phys. Fluids, 11, 2316–2327.

——, and W. H. Schwarz, 1963: The universal equilibrium spectra

of turbulent velocity and scalar fields. J. Fluid Mech., 16, 365–384.

——, R. R. Lyon, and I. Hirschsohn, 1970: Reaction product fluc-

tuations in a sphere wake. AIAA J., 8, 1859–1863.

Grant, H. L., B. A. Hughes, W. M. Vogel, and A. Moilliet, 1968:

Spectrum of temperature fluctuations in turbulent flow. J. Fluid

Mech., 34, 423–442.

Gregg, M. C., 1999: Uncertainties and limitations in measuring

� and xT. J. Atmos. Oceanic Technol., 16, 1483–1490.

——, and J. K. Horne, 2009: Turbulence, acoustic backscatter, and

pelagic nekton in Monterey Bay. J. Phys. Oceanogr., 39, 1097–

1114.

Hinze, J. O., 1975: Turbulence. 2nd ed. McGraw-Hill, 790 pp.

Jonas, T., A. Stips, W. Eugster, and A. Wüest, 2003: Observations
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Comparison of dissipation of turbulent kinetic energy de-

termined from shear and temperature microstructure. J. Mar.

Syst., 21, 67–84.

Kolmogorov, A. N., 1941: The local structure of turbulence in an

incompressible viscous fluid for very large Reynolds number.

C. R. Acad. Sci. USSR, 30, 301.

Kraichnan, R. H., 1968: Small-scale structure of a scalar field

convected by turbulence. Phys. Fluids, 11, 945–953.

——, 1974: Convection of a passive scalar by a quasi-uniform

random straining field. J. Fluid Mech., 64, 737–762.

Kundu, P. K., 2008: Fluid Mechanics. 4th ed. Academic Press,

872 pp.

Lozovatsky, I. D., T. M. Dillon, A. Y. Erofeev, and V. N. Nabatov,

1999: Variations of thermohaline structure and turbulent

mixing on the Black Sea shelf at the beginning of autumn

cooling. J. Mar. Syst., 21, 255–282.

Luketina, D. A., and R. Imberger, 2001: Determining turbulent

kinetic energy dissipation from Batchelor curve fitting. J. Atmos.

Oceanic Technol., 18, 100–113.

2166 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



Nash, J. D., and J. N. Moum, 2002: Microstructure estimates of

turbulent salinity flux and the dissipation spectrum of salinity.

J. Phys. Oceanogr., 32, 2312–2333.

Nasmyth, P. W., 1970: Oceanic turbulence. Ph.D. dissertation,

British Columbia University, 69 pp.

Oakey, N. S., 1982: Determination of the rate of dissipation of

turbulent energy from simultaneous temperature and velocity

shear microstructure measurements. J. Phys. Oceanogr., 12,
256–271.

Obukhov, A. M., 1949: Structure of the temperature field in a tur-

bulent flow. Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 13,

58–69.

Osborn, T. R., 1980: Estimates of the local-rate of vertical diffusion

from dissipation measurements. J. Phys. Oceanogr., 10, 83–89.

——, and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid.

Dyn., 3, 321–345.

Panchev, S., and D. Kesich, 1969: Energy spectrum of isotropic

turbulence at large wave-numbers. C. R. Acad. Bulg. Sci., 22,

627.

Piera, J., E. Roget, and J. Catalan, 2002: Turbulent patch identifi-

cation in microstructure profiles: A method based on wavelet

denoising and Thorpe displacement analysis. J. Atmos. Oce-

anic Technol., 19, 1390–1402.

Planella, J., E. Roget, and I. Lozovatsky, 2011: Statistics of Mi-

crostructure Patchiness in a Stratified Lake. J. Geophys. Res.,

doi:10.1029/2010JC006911, in press.

Prandke, H., 2005: Microstructure sensors. Marine Turbulence:

Theories, Observations and Models, H. Baumert, J. Simpson,

and J. Sündermann, Eds., Cambridge University Press, 101–

109.

——, and A. Stips, 1998: Test measurements with an operational

microstructure-turbulence profiler: Detection limit of dissi-

pation rates. Aquat. Sci., 60, 191–209.
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