
Microscopic and macroscopic polarization within a combined quantum
mechanics and molecular mechanics model

L. Jensena)

Theoretical Chemistry, Materials Science Centre, Rijksuniversiteit Groningen, Nijenborgh 4,
9747 AG Groningen, The Netherlands

Marcel Swart
Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam,
The Netherlands

Piet Th. van Duijnen
Theoretical chemistry, Materials Science Centre, Rijksuniversiteit Groningen, Nijenborgh 4,
9747 AG Groningen, The Netherlands

~Received 29 July 2004; accepted 20 October 2004; published online 28 December 2004!

A polarizable quantum mechanics and molecular mechanics model has been extended to account for
the difference between the macroscopic electric field and the actual electric field felt by the solute
molecule. This enables the calculation of effective microscopic properties which can be related to
macroscopic susceptibilities directly comparable with experimental results. By seperating the
discrete local field into two distinct contribution we define two different microscopic properties, the
so-called solute and effective properties. The solute properties account for the pure solvent effects,
i.e., effects even when the macroscopic electric field is zero, and the effective properties account for
both the pure solvent effects and the effect from the induced dipoles in the solvent due to the
macroscopic electric field. We present results for the linear and nonlinear polarizabilities of water
and acetonitrile both in the gas phase and in the liquid phase. For all the properties we find that the
pure solvent effect increases the properties whereas the induced electric field decreases the
properties. Furthermore, we present results for the refractive index, third-harmonic generation
~THG!, and electric field induced second-harmonic generation~EFISH! for liquid water and
acetonitrile. We find in general good agreement between the calculated and experimental results for
the refractive index and the THG susceptibility. For the EFISH susceptibility, however, the
difference between experiment and theory is larger since the orientational effect arising from the
static electric field is not accurately described. ©2005 American Institute of Physics.
@DOI: 10.1063/1.1831271#

I. INTRODUCTION

The use of quantum chemical methods1 enables accurate
calculations of molecular response properties such as the
electronic excitations and frequency-dependent~hyper!
polarizabilities.2 A method which has attracted considerable
interest, especially in recent years, is time-dependent density
functional theory~TD-DFT!.3–7 The main reason for this is
that TD-DFT provides a level of accuracy which in most
cases is sufficient at a lower computational requirement than
other methods. The use of TD-DFT for calculating molecular
response properties in the gas phase has been shown to be
accurate for small and medium size molecules, especially if
one uses recently developed density functionals.8–17

In recent years applications of TD-DFT to calculate
properties of molecules in solution has also been
presented.18–27 Among the methods for treating solvent ef-
fect on molecules are the combined quantum mechanical and

molecular mechanics~QM/MM ! models.28–39 The QM/MM
model has recently been extended to study molecular re-
sponse properties in solution within TD-DFT.18–20,22–24An
example of such a QM/MM method is the discrete solvent
reaction field ~DRF! model which we have recently
developed.18–20 The model combines TD-DFT~QM! de-
scription of the solute molecule with a classical~MM ! de-
scription of the discrete solvent molecules. The latter are
represented using distributed atomic charges and polarizabil-
ities.

An important feature of the model is the inclusion of
polarizabilities in the MM part which allows for the solvent
molecules to be polarized by the solute and by interactions
with other solvent molecules. Van Duijnenet al.50 applied
basically the same polarizable QM/MM formalism, imple-
mented in a conventional wave function package, to calcu-
late the static~hyper!polarizability of acetone in ten different
solvent. Also Kongstedet al.41 stressed the importance of
inclusion of polarizabilities in the calculations of response
properties. Another important feature of the model is the in-
clusion of a short range damping of the interactions. This has
been included in two ways. The first is the use of the modi-
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fied dipole interaction model of Thole42 which avoids
the‘‘polarization catastrophe’’ by introducing smeared out di-
poles which mimic the overlapping of the charge distribu-
tions at short distances. The second way is that at short dis-
tances between the QM and the MM part the QM/MM
interactions are damped to account for the short range repul-
sion in an approximate way. This is done by replacing the
point charge by a Gaussian charge distribution with a unit
width and point dipoles smeared out in a similar
manner.18,19,43

In this work we will extend the QM/MM formalism to
also include the so-called local field factors, i.e., the differ-
ence between the macroscopic electric field and the actual
electric field felt by the solute. This will enable the calcula-
tion of effective microscopic properties which can be related
to the macroscopic susceptibilities. The macroscopic suscep-
tibilities can then be compared directly with experimental
results. There exist in the literature some other approaches to
calculate effective properties and relate these to the macro-
scopic properties,40,44–50which differ from this work in the
way the solvent was represented. First we will describe the
theoretical framework and then we will present numerical
results for liquid water and liquid acetonitrile. These liquids
are chosen since there exist several theoretical and experi-
mental studies of the microscopic and macroscopic proper-
ties.

II. THEORY

The basic concept of nonlinear optics is the expansion of
the total macroscopic polarization in a material in powers of
the macroscopic electric field where the expansion coeffi-
cients define the macroscopic~nonlinear! susceptibilities.
Similarly, the total microscopic polarization~dipole moment!
is expanded in terms of the total microscopic electric field
with expansion coefficients defining the microscopic~nonlin-
ear! polarizabilities. However, in the literature several differ-
ent conventions exist for describing nonlinear optical
properties51 which differ in the numerical coefficients used.
Therefore, in order to compare values obtained in different
conventions it is important to correct for the differences in
the numerical factors used. This has been clarified by Wil-
letts et al.51 but remains a problem, because often it is not
stated explicitly which convention is used. In this work we
will use a perturbation series expansion for the macroscopic
polarization, which is often used for experimental properties,
and a Taylor series expansion for the microscopic polariza-
tion, which frequently is used for theoretical properties.

A. The macroscopic polarization

The macroscopic polarization of a material in the pres-
ence of a macroscopic electric fieldFmac is expressed as a
power series in the field strength as52,53

PI~ t !5P I
01x IJ

(1)FJ
mac~ t !1x IJK

(2) FJ
mac~ t !FK

mac~ t !

1x IJKL
(3) FJ

mac~ t !FK
mac~ t !FL

mac~ t !1¯ , ~1!

whereP 0 is the permanent polarization,x (1) the linear opti-
cal susceptibility,x (2) the second-order nonlinear optical
susceptibility, andx (3) the third-order nonlinear optical sus-

ceptibility. The subscriptsI ,J,K,L, . . . denotes space-fixed
axes and the Einstein summation convention is used for re-
peated subscripts. If we consider the macroscopic field to be
a superposition of a static and an optical component,

FJ
mac~ t !5F0,J

mac1Fv,J
maccos~vt !, ~2!

the macroscopic polarization can be expressed as52,53

PI~ t !5P I
01P I

v cos~vt !1P I
2v cos~2vt !

1P I
3v cos~3vt !1¯ . ~3!

The Fourier amplitudes of the polarization are then given in
terms of the frequency-dependent susceptibilities as52,53

P I
vs5dvs,0

P I
01x IJ

(1)~2vs ;vs!Fvs ,J
mac

1K~2vs ;va ,vb!x IJK
(2) ~2vs ;va ,vb!

3Fva ,J
mac Fvb ,K

mac 1K~2vs ;va ,vb ,vc!

3x IJKL
(3) ~2vs ;va ,vb ,vc!Fva ,J

mac Fvb ,K
mac Fvc ,L

mac 1¯ ,

~4!

where the output frequency is given as the sum of input
frequencies vs5(ava . The numerical coefficientsK
(2vs ;va ,...) arise from the Fourier expansion of the elec-
tric field and polarization and ensures that all susceptibilities
of the same order have the same static limit. A tabulation of
the coefficients can be found in Ref. 54 and 55. The
frequency-dependent susceptibilities can then be found from
Eq. ~4! by differentiation which gives the linear susceptibil-
ity

x IJ
(1)~2vs ;vs!5

]P I
vs

]Fvs ,J
mac U

Fmac50

, ~5!

the second-order nonlinear susceptibility

x IJK
(2) ~2vs ;va ,vb!

5K21~2vs ;va ,vb!
]2P I

vs

]Fva ,J
mac ]Fvb ,K

mac U
Fmac50

, ~6!

and the third-order nonlinear susceptibility

x IJKL
(3) ~2vs ;va ,vb ,vc!

5K21~2vs ;va ,vb ,vc!
]3P I

vs

]Fva ,J
mac ]Fvb ,K

mac ]Fvc ,L
mac U

Fmac50

.

~7!

Each of the frequency-dependent susceptibilities corresponds
to different physical processes,52,53 e.g., x (1)(2v;v) gov-
erns the refractive index,x (2)(22v;v,v) the second-
harmonic generation~SHG!, x (3)(23v;v,v,v) the third
harmonic generation~THG!, and, x (3)(2v;v,v,2v) the
degenerate four-wave mixing~DFWN! or the intensity-
dependence of the refractive index.
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B. The microscopic polarization

Similarly the microscopic polarization~dipole moment!
can be expanded in terms oscillating at different frequencies
as44,51

ma~ t !5ma
01ma

v cos~vt !1ma
2v cos~2vt !

1ma
3v cos~3vt !1¯ . ~8!

The microscopic dipole moment is then usually given by a
Taylor expansion as44,51

ma
vs5dvs,0

ma
01aab~2vs ;vs!Fvs ,b

tot

1 1
2 K~2vs ;va ,vb!babg~2vs ;va ,vb!

3Fva ,b
tot Fvb ,g

tot 1 1
6 K~2vs ;va ,vb ,vc!

3gabgd~2vs ;va ,vb ,vc!Fva ,b
tot Fvb ,g

tot Fvc ,d
tot 1¯ ,

~9!

where ma
0 is the permanent electric dipole moment,

aab(2vs ;vs) is the polarizabillity,babg(2vs ;va ,vb) is
the first hyperpolarizability, and,gabgd(2vs ;va ,vb ,vc) is
the second hyperpolarizability. The numerical coefficients
K(2vs ;va ,...) are thesame as for the macroscopic polar-
ization and again this ensures that all~hyper!polarizabilities
of the same order have the same static limit. The subscripts
a,b,g,... denote molecule-fixed axes and again the Einstein
summation convention is used for repeated subscripts. The
microscopic polarization is expanded in terms of the actual
total electric fieldFvb ,g

tot felt by the molecule. In the con-

densed phase the actual electric field felt by the molecule is
different from the macroscopic electric field. Therefore, in
order to express the macroscopic properties in terms of the
microscopic properties we need to relate the actual electric
field at a molecule to the macroscopic electric field.

C. The local electric field

The concept of relating the actual electric field, often
called the internal or local field, to the macroscopic field
dates back to the work of Lorentz.56,57 Lorentz56 derived a
simple relation between the internal electric field, the mac-
roscopic electric field, and the macroscopic polarization of
the system, and due to its simplicity Lorentz local field
theory is still used.52,53,57,58The central idea is that only close
to the molecule we need to consider explicitly the field from
nearby molecules, so the total system is separated into a
macroscopic region far from the molecule and a microscopic
region close to the molecule. The molecules in the macro-
scopic region can then be described by the average macro-
scopic properties. Therefore, inside a macroscopically small,
but microscopically large, virtual cavityV we subtract the
contribution from the macroscopic electric field and replace
it by the correct discrete local field,

Fvs ,a
tot 5Fvs ,a

mac 2Fvs ,a
pol 1Fvs ,a

disc ~V!, ~10!

whereFvs ,a
pol is the macroscopic electric field in the cavityV

and Fvs ,a
disc (V) is the discrete electric field in the cavityV

which depends on the local configurationV of the molecules
inside the cavity. Since we are not allowing the macroscopic
region to adjust to the presence of the cavity the polarization
remains homogeneous.57 This approach neglects that a static
electric field tends to orient molecules with a permanent
dipole57,59 and therefore a correction due to Onsager59 is of-
ten used for a static electric fields. Lorentz showed56 that for
a cubic arrangement of identical particles the discrete field
was zero. This is also true on average for a completely ran-
dom distribution where there is no correlation between the
induced dipoles and the position of the molecules.57 For a
spherical cavity the macroscopic field is simply given in
terms of the macroscopic polarization56,57 and the total elec-
tric field can be written as

Fvs ,a
tot 5Fvs ,a

mac 1
4p

3
P a

vs1Fvs ,a
ind ~V!1Fa

perm~V!, ~11!

where we have split the discrete electric fieldFdisc into two
different contributions,F ind and Fperm. The first term arises
from the interactions of the macroscopic electric field with
the other molecules in the cavity, i.e., accounts for the in-
duced polarization of the surrounding molecules due to the
electric field. The second term accounts for the interactions
between the molecules when there is no electric field present,
i.e., arises from the permanent charge distribution of the sur-
rounding molecules. However, depending on the theoretical
model used for describing the microscopic region, this split-
ting of the discrete electric field is not always possible nor
necessary. The last two terms depend strongly on the local
configuration of the molecules in the cavity and are inher-
ently microscopic in nature and it is therefore better to treat
these fields explicitly within the microscopic model used.

D. The effective molecular properties

Instead of expanding the induced dipole moment in
terms of the total field, Eq.~9!, we expand it in terms of an
effective macroscopic electric field

Fvs ,a
eff 5Fvs ,a

mac 1
4p

3
P a

vs . ~12!

This expansion in terms of the effective field defines the
so-called effective properties44 as

ma
vs5dvs,0

ma
0,eff1aab

eff ~2vs ;vs!Fvs ,b
eff

1 1
2 K~2vs ;va ,vb!babg

eff ~2vs ;va ,vb!

3Fva ,b
eff Fvb ,g

eff 1 1
6 K~2vs ;va ,vb ,vc!

3gabgd
eff ~2vs ;va ,vb ,vc!Fva ,b

eff Fvb ,g
eff Fvc ,d

eff 1¯ .

~13!

These effective properties give an induced dipole moment
due to the effective macroscopic electric field which is iden-
tical to the induced dipole moment in Eq.~9! and are the
properties which we will relate to the experimental suscepti-
bilities. This means that the microscopic contributions to the
total field are incorporated into the effective properties.
These effective properties could be compared with experi-
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mental results corrected for differences between the total
field and the macroscopic electric field by the Lorentz/
Onsager local field method.44

E. The solute molecular properties

Since we have separated the discrete field into the two
contributions mentioned above we can also choose to expand
the induced dipole moment in terms of the field arising di-
rectly from the macroscopic electric field,

Fvs ,a
sol 5Fvs ,a

mac 1
4p

3
P a

vs1Fvs ,a
ind ~V!, ~14!

where the field arising from the interactions between the
molecules when there is no macroscopic field is incorporated
into the properties. This gives an expansion which defines
the so-called solute properties44 as

ma
vs5dvs,0

ma
0,sol1aab

sol~2vs ;vs!Fvs ,b
sol

1 1
2 K~2vs ;va ,vb!babg

sol ~2vs ;va ,vb!

3Fva ,b
sol Fvb ,g

sol 1 1
2 K~2vs ;va ,vb ,vc!

3gabgd
sol ~2vs ;va ,vb ,vc!Fva ,b

sol Fvb ,g
sol Fvc ,d

sol 1¯ .

~15!

These solute properties relate to the macroscopic properties
corrected for the field from the dipoles of all other molecules
induced by the macroscopic field in addition to the Lorentz
local field. This corresponds to a thought experiment where
the macroscopic field is allowed to propagate inside the cav-
ity without being modified by interactions with the mol-
ecules.

F. Relating the macroscopic and the microscopic
polarization

The macroscopic polarization is related to the average
microscopic dipole moment per molecule by52,58

P I
vs5Nd^ma

vs& I , ~16!

whereNd is the number density and the brackets,^&, denote
orientational averaging, and relate the molecule-fixed axes to
the space-fixed axes.58,60 Inserting the expansion of the di-
pole moment in terms of the effective macroscopic field, Eq.
~13!, we can express the macroscopic polarization in terms of
the effective~hyper!polarizabilities as,

P I
vs5Nddvs,0̂

ma
0,eff& I1Nd^aab

eff ~2vs ;vs!Fvs ,b
eff & I

1 1
2 K~2vs ;va ,vb!Nd^babg

eff ~2vs ;va ,vb!

3Fva ,b
eff Fvb ,g

eff & I1
1
6 K~2vs ;va ,vb ,vg!

3Nd^gabgd
eff ~2vs ;va ,vb ,vc!

3Fva ,b
eff Fvb ,g

eff Fvc ,d
eff & I1¯ . ~17!

We see that the averaging is done on the product of the
~hyper!polarizabilities and the effective fields. This is exactly
the reason why the total electric field was split into an effec-

tive macroscopic part and a microscopic part which was in-
corporated into the~hyper!polarizabilities in Eq.~13! by ex-
panding the dipole moment in terms of the effective field.
Since the effective field is macroscopic we can take it outside
the averaging and express the macroscopic polarization in
terms of orientational averages of the effective~hyper!polar-
izabilities as

P I
vs5Nddvs,0̂

ma
0,eff& I1Nd^aab

eff ~2vs ;vs!& IJFvs ,J
eff

1 1
2 K~2vs ;va ,vb!Nd^babg

eff ~2vs ;va ,vb!& IJK

3Fva ,J
eff Fvb ,K

eff 1 1
6 K~2vs ;va ,vb ,vc!

3Nd^gabgd
eff ~2vs ;va ,vb ,vc!& IJKL

3Fva ,J
eff Fvb ,K

eff Fvc ,L
eff 1¯ . ~18!

G. Local field factors

Comparing Eq.~18! with Eq. ~4! we see that we have to
consider derivatives of the effective electric field with re-
spect to the macroscopic electric field. This is usually done
by introducing the so-called local field factors which relate
the macroscopic field to the effective field.

Fva ,J
eff 5

]Fva ,J
eff

]Fva ,J
mac U

Fmac50

3Fva ,J
mac 5Lva

Fva ,J
mac . ~19!

Using the definition of the effective electric field, Eq.~12!,
we obtain a local field factor

Lva
511

4p

3
x (1)~2va ;va!

511
e (1)~va!21

3
5

e (1)~va!12

3
, ~20!

wheree (1)(va) is the optical dielectric constant at frequency
va . This is the Lorentz form of the local field factors. How-
ever, as mentioned above this does not account for the fact
that for a static macroscopic field the molecules tend to ori-
ent. Onsager59 analyzed this problem and suggested the fol-
lowing form for the local field factor,

L0511
n(1)~0!2~e (1)~0!21!

2e (1)~0!1n(1)~0!2 5
e (1)~0!~21n(1)~0!2!

2e (1)~0!1n(1)~0!2

~21!

to be used for static electric fields, wheree (1)(0) is the di-
electric constant andn(1)(0) is the refractive index at zero
frequency. We see that the Onsager field factor reduces to the
Lorentz factor for optical fields by using the relation
n(1)(va)25e (1)(va).

H. Orientational averaging

In order to relate the molecule-fixed axes to the space-
fixed axes we need also to consider molecular rotations~or
orientations!. The orientational averaging and thermal aver-
aging of the dipole moment will be done using classical
theory and is given by60
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^ma
vs& I5

*0
2p*0

p@ma
effFaI1aab

eff Fb
effFaIFbJ1¯#exp~2DE/kbT!sinu du df

*0
2p*0

pexp~2DE/kbT!sinu du df
, ~22!

whereFaI is the cosine of the angle between the molecular
axisa and the laboratory axisI . The angular dependent part
of the energy in the presence of the electric field is given by

DE52ma
solFaIF0,I

eff1¯ . ~23!

We note that it is only the solute properties which are respon-
sible for the change in the energy due to the electric field. If
we expand the exponential and only terms of the order
(kT)21 are retained we get

exp~2DE/kbT!511ma
solFaIF0,I

eff/kbT1¯ . ~24!

By combining the definitions of the susceptibilities in Eqs.
~5!, ~6!, and ~7! with the expression for the macroscopic
polarization in terms of the effective~hyper!polarizabilities
we can obtain a link between the macroscopic and the mi-
croscopic properties.

I. Refractive index

The macroscopic quantity determining the refractive in-
dex is the linear optical polarization due to an optical electric
field. By inserting the definition of the effective field, Eq.
~12!, into Eq. 18 and using the definition of the linear sus-
ceptibilitiy, Eq. ~5!, we obtain

xZZ
(1)~2v;v!5

]P Z
v

]Fv,Z
macU

Fmac50

5Nd^aab
eff ~2v;v!&ZZS 11

4p

3
xZZ

(1)~2v;v! D .

~25!

It is noted that there is no contribution from the rotation of
the dipole moment since the optical field is considered to be
oscillating faster than the permanent dipole moments can be
oriented. The linear susceptibility can then be written in
terms of the mean effective polarizability by rewriting Eq.
~25! as

xZZ
(1)~2vs ;vs!5

Ndāeff~2vs ;vs!

12
4p

3
Ndāeff~2vs ;vs!

, ~26!

which is the standard expression for the susceptibility cor-
rected for the Lorentz local field,52,61 although using the ef-
fective rather than the gas phase polarizability. The suscep-
tibility is related to the refractive index or the optical
dielectric constant of the system as

n(1)~vs!5Ae (1)~vs!

5A114pxZZ
(1)~2vs ;vs!

5A11
8p

3
Ndāeff~2vs ;vs!

12
4p

3
Ndāeff~2vs ;vs!

, ~27!

which is the familiar Lorentz-Lorenz or Clausius-Mossotti
equation,56,57,61again with the effective polarizability instead
of the gas phase polarizability.

J. Dielectric constant

In a dielectric constant measurement the polarization due
to a static electric field is measured and the corresponding
susceptibility is given by

xZZ
(1)~20;0!5

]P Z
0

]F0,Z
macU

Fmac50

5
]^ma

0,eff& I

]F0,Z
mac 1Nd^aab

eff ~0;0!&ZZL0 . ~28!

The first term is the rotational contribution arising from the
permanent dipole moment and is given by

]^ma
0,eff& I

]F0,Z
mac 5NdL 0E

0

2pE
0

p

@ma
effFaZmb

solFbZ /kbT#

3sinu du df5NdL 0

meffmsol

3kbT
. ~29!

The second term is the isotropic orientation average of the
polarizability, often referred to as the mean polarizability,
given by60

^aab
eff &ZZ5āeff5 1

3 ~axx
eff1ayy

eff1ayy
eff! ~30!

and denotedā. By combining these two terms the equation
for the linear susceptibility can be rewritten as

xZZ
(1)~20;0!5NdS meffmsol

3kbT
1āeffDL0 . ~31!

The dielectric constant is then related to the linear suscepti-
bility through the usual equation

e (1)~0!5114pxZZ
(1)~0;0!. ~32!

It should be noted that the susceptibility in Eq.~31! depends
on the dielectric constant through the Onsager local field
factor,L0, and is therefore not a defining equation. However,
this will allow us to make an estimate of the dielectric
constant.
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K. Third-harmonics generation

The first nonlinear susceptibility we will consider is the
third-order nonlinear susceptibility which arises from three
optical electric fields corresponding to the THG experiments.
The THG susceptibility is then obtained by inserting Eq.~12!
into Eq. ~18! and using the definition of the susceptibilitiy,
Eq. ~7!. This gives the susceptibility as

xZZZZ
(3) ~23v;v,v,v!

5Nd^aab
eff ~23v;3v!&ZZS 4p

3
xZZZZ

(3) ~23v;v,v,v! D
1

1

6
Nd^gabgd

eff ~23v;v,v,v!&ZZZZL v
3 , ~33!

where we see that we have a contribution both from the
linear susceptibility and from the third-order nonlinear sus-
ceptibility. The isotropic orientation average of the second
hyperpolarizability, often referred to as the mean or parallel
second hyperpolarizability, is given by60

^gabgd
eff &ZZZZ5ḡ i

eff5
1

15(
ab

~gaabb
eff 1gabba

eff 1gabab
eff !.

~34!

We can then rewrite the THG susceptibility as

xZZZZ
(3) ~23v;v,v,v!

5
1

6
Ndḡ i

eff~23v;v,v,v!

3S 12
4p

3
Ndāeff~23v;3v! D 21

L v
3 , ~35!

where we have used the relation between the linear suscep-
tibility and the dielectric constant in Eq.~27!. Using Eq.~26!
we can express the term with the effective polarizability in
terms of the dielectric constant at 3v. This allows us to ex-
press the third-order nonlinear susceptibility as

xZZZZ
(3) ~23v;v,v,v!5 1

6 Ndḡ i
eff~23v;v,v,v!L3vL v

3 ,
~36!

which is the form for the nonlinear susceptibility well known
from standard Lorentz local field theory withn11 local field
corrections, wheren is the number of applied fields.

L. Electric field induced second-harmonic generation

The second nonlinear susceptibility we will consider is
the third-order nonlinear susceptibility arising from two op-
tical and one static electric field and corresponds to the elec-
tric field induced second-harmonic generation~EFISH! ex-
periments. The EFISH susceptibility is then obtained by
inserting Eq.~12! into Eq.~18! and using the definition of the
susceptibilitiy, Eq.~7!. This gives the susceptibility as

xZZZZ
(3) ~22v;v,v,0!

5Nd^aab
eff ~22v;2v!&ZZS 4p

3
xZZZZ

(3) ~22v;v,v,0! D
1

1

2
K~22v;v,v!K21~22v;v,v,0!

3Nd

]^babg
eff ~22v;v,v!&ZZZ

]F0,Z
mac L v

2

1
1

6
Nd^gabgd

eff ~22v;v,v,0!&ZZZZL v
2 L0 . ~37!

We see that the EFISH susceptibility consists of three terms
and compared with the THG expression there is a term de-
pending on the effective first hyperpolarizability. The second
term is a rotational contribution analogous with the dielectric
constant and is

]^babg
eff ~22v;v,v!&ZZZ

]F0,Z
mac 5L 0

b̄ i
eff~22v;v,v!mz

sol

3kbT
,

~38!

where the mean hyperpolarizabilityb̄ i in the direction of the
dipole moment, here thez axis, is introduced

b̄ i
eff5

1

5 (
a

~bzaa
eff 1baza

eff 1baaz
eff !. ~39!

This allows us to rewrite the EFISH susceptibility as

xZZZZ
(3) ~22v;v,v,0!

5
1

6
NdS ḡ i

eff~22v;v,v,0!1
b̄ i

eff~22v;v,v!mz
sol

3kbT
D

3L2vL v
2 L05

1

6
NdG i

eff~22v;v,v,0!L2vL v
2 L0 ,

~40!

where it has been used thatK(22v;v,v)5 1
2 and

K21(22v;v,v,0)5 2
3.

M. The discrete solvent reaction field model

In the QM/MM method the solvent molecules~MM ! are
treated with a classical force field and the interactions be-
tween the solute and solvent are described with an effective
operator. In the QM/MM method the total~effective! Hamil-
tonian for the system is written as28–39

Ĥ5ĤQM1ĤQM/MM1ĤMM , ~41!

whereĤQM is the quantum mechanical Hamiltonian for the
solute,ĤQM/MM describes the interactions between solute and
solvent, andĤMM describes the solvent-solvent interactions.
We have recently developed such a method for studying sol-
vent effect on molecular properties which we denoted the
DRF ~Refs. 18–20! where the QM part is treated using DFT.
Within the discrete solvent reaction field model the QM/MM
operator at a pointr i is given by
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ĤQM/MM5(
i

yDRF~r i ,v!

5(
i

yel~r i !1(
i

ypol~r i ,v!

5(
i ,s

qs

Rsi
1(

i ,s
ms,a

ind~v!
Rsi,a

Rsi
3 , ~42!

where the first termyel is the electrostatic operator and de-
scribes the Coulombic interaction between the QM system
and the permanent charge distribution of the solvent mol-
ecules. The second termypol, is the polarization operator and
describes the many-body polarization of the solvent mol-
ecules, i.e., the change in the charge distribution of the sol-
vent molecules due to interaction with the QM part and other
solvent molecules. The charge distribution of the solvent is
represented by atomic point charges and the many-body po-
larization term is represented by induced atomic dipoles at
the solvent molecules.

For a collection of atomic polarizabilities in an electric
field, assuming linear response, the induced atomic dipole at
site s is given by

ms,a
ind~v!5as,abFFs,b

init ~v!1(
tÞs

Tst,bg
(2) m t,g

ind~v!G , ~43!

whereaa,ab is a component of the atomic polarizability ten-
sor at site s, which for an isotropic atom givesas,ab

5dabas , and Tst,ab
(2) is the screened dipole interaction

tensor.42,62,18Here we neglect the frequency dependence of
the classical part, i.e., the atomic polarizability is frequency
independent, but the model can easily be extended to include
also this effect.43,63

Fs,b
init (v) is the initial electric field at sites and is in this

work extended to also include the macroscopic electric field.
The initial field then consist of four terms

Ft,b
init~v!5Ft,b

QM,el~v!1d0,vFt,b
QM,nuc1d0,vFt,b

MM ,q

1Ft,b
mac~v!, ~44!

where Ft,b
QM,el(v) is the field arising from the frequency-

dependent electronic charge distribution of the QM part,
Ft,b

QM,nuc the field from the QM nuclei,Ft,b
MM ,q the field from

the point charges at the solvent molecules, andFt,b
mac(v) the

macroscopic electric field. The inclusion of the macroscopic
electric field in Eq.~44! describes the induced dipole mo-
ments in the solvent due to macroscopic electric field. This
was the reason for splitting the discrete electric field in Eq.
~11! into a part induced by the macroscopic electric field and
a part existing even without a macroscopic field. Therefore,
if the macroscopic electric field is included in Eq.~44! we
will be calculating the effective properties and if it is ex-
cluded we calculate the solute properties.

We can now calculate and distinguish between different
effects in going from microscopic properties to macroscopic
properties. Since the permanent discrete electric field in Eq.
~11! is always present we will associate this with a pure
solvent effect, i.e., the solute properties include this solvent
effect. The effective properties then includes the effects of a

microscopic induced field in the solvent due to the macro-
scopic electric field. Finally, by combining the effective
properties with the macroscopic local field factors~Lorentz/
Osager! we can obtain the macroscopic susceptibilities.

III. COMPUTATION DETAILS

The DRF model has been implemented into a local ver-
sion of the Amsterdam density functional~ADF! program
package64,65 as an extension to the TD-DFT part in the RE-
SPONSE module of ADF.66–68The details of the implemen-
tation are described in Refs. 18–20 and is in this work only
extended to include the macroscopic electric field in Eq.
~44!.

In the calculations water and acetonitrile were treated as
rigid molecules assuming the gas phase structure. For water
this is RO–H50.9572 Å and/HOH5104.49° and for aceto-
nitrile RC–C51.458 Å, RC–H51.112 Å, RC–N51.157 Å,
and/HCH5108.8°.

The basis set used for water consists of a large even-
tempered basis set of Slater-type orbitals with orbital expo-
nentz5ab i , i 51,...,n ~details given in Ref. 19!. For aceto-
nitrile the standard TZP basis set was augmented with first-
order and second-order field induced polarization functions
taken from Ref. 69. All the calculations were done using the
BP-GRAC ~gradient-regulated asymptotic connection BP!
potentials.13,14 The BP-GRAC potential sets the highest or-
dered molecular orbital~HOMO! level at the first ionization
potential~IP! and therefore requires the IP as input. For wa-
ter IP50.45 a.u. and for acetonitrile IP50.46143 a.u. was
used. The values for IP were obtained from calculations us-
ing the SAOP potential for which it has been shown that the
HOMO level corresponds well with the experimental IP.70

The molecular dynamics~MD! simulations were per-
formed with the discrete reaction field polarizable force
field35,62,71–74using the DRF90 program.71 For both water
and acetonitrile a MD-simulation of 50 ps with a timestep of
1 fs was performed at 298K, using a Nose-Hoover
thermostat75 ~with t51 ps) to keep the temperature constant
and a soft wall force potential71 to keep the particles inside
the simulation box. After every 0.5 ps, the configuration of
solvent molecules was kept and the QM/MM calculations
were performed. In the simulation of water, 256 molecules
were placed in a spherical box of 23.12 bohrs; for acetoni-
trile, 128 molecules were placed in a spherical box of 26.15
bohrs. The sizes of the simulation boxes were chosen so that
the simulated macroscopic densities correspond to the ex-
perimental values of 0.998 and 0.786 kg/l, respectively. In
the simulations, the molecules were treated as rigid bodies
using quaternions.76 Standard atomic polarizabilities62 for all
atoms were used in the simulations. For acetonitrile MDC-d
charges were used77 that were obtained from DFT calcula-
tions in a TZ2P basis set with the ADF program, while for
water charges were fitted to reproduce the experimental di-
pole moment. For the van der Waals interaction a 6-12
Lennard-Jones potential were used for water and the standard
DRF90 potential for acetonitrile. For water the Lennard-
Jones parameters were taken from Ref. 78 and adjusted to
match the point charges and atomic polarizabilities used in
this work. The new parameters obtained areR51.7385 Å

034103-7 Microscopic and macroscopic polarization J. Chem. Phys. 122, 034103 (2005)

Downloaded 07 Oct 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



ande50.2900 kcal/mol located on the oxygen atom. By in-
specting radial distribution functions, it was checked that the
solvent shells around the central molecule were correctly
represented.

The atomic parameters, i.e., point charges and atomic
polarizabilities, needed for the solvent molecules in the
QM/MM calculations are: For water the point charges are
qH50.3295 andqO520.6590 a.u. and the atomic polariz-
abilities areaH50.0690 andaO59.3005 a.u. For acetoni-
trile the point charges areqC150.288 340 a.u, qC2

520.009 643 a.u, qH50.017 028 and qN520.329 781,
where C2 is the carbon atom attached to the nitrogen. The
atomic polarizabilities areaC58.6959, aH52.8382, and
aN53.5042 a.u.

IV. RESULTS

In the following we will present microscopic and mac-
roscopic properties for the two liquids water and acetonitrile.
The solute and the effective properties will be presented as
averaged over the 101 different solvent configurations. The
standard deviation will also be displayed to indicate the av-
erage fluctuation in the properties due to the different solvent
configuration. All microscopic properties will be given in
atomic units~a.u.! whereas the macroscopic susceptibilities
will be presented in cgs units~esu!.

A. Gas phase results

In Table I we present DFT results form, ā(2v;v),
b̄ i(22v;v,v), andḡ i(22v;v,v,0) for water and acetoni-
trile in the gas phase. The results have been calculated atv
50.0428 a.u. (l51064 nm) for water andv50.0885 (l
5514.5 nm) for acetronitrile and are compared both with
experimental andab initio coupled cluster single doubles
~CCSD! results. In general we find good agreement between
the DFT results and the CCSD results for all properties. The
largest difference of;25% between the calculated values is
in ḡ i andb̄ for acetonitrile. The DFT results forb̄ i is lower
than the CCSD results whereas forḡ i the opposite is found.
If we compare with results obtained from EFISH experi-
ments we see that for water there is an excellent agreement
between the calculated and the experimental results for all

properties. In the case of acetonitrile we see that forb̄ i the
DFT is in better agreement with the experiment whereas for
ḡ it is the CCSD results. However, as mentioned in the
theory section the measured quantity in the EFISH experi-
ment is Ḡ i5mzb̄ i/3kbT 1ḡ i . Therefore, this value is also
reported for the different methods in Table I. Again, we see
that there is good agreement between theory and experiment
for water. For acetonitrile the DFT and CCSD results are
within 10% and 20%, respectively, of the experimental re-
sults.

B. Microscopic response properties

In Table II we present the dipole moment of acetonitrile
and water in the gas phase and in the liquid phase. For both
water and acetonitrile we see that there is a large enhance-
ment of the dipole moment in going from the gas phase to
the liquid phase. The enhancement for water is;40% and
for acetonitrile;25%. From Table II we see that the dipole
moment is completely determined by thez component both
in the gas phase and in the liquid phase. Since the liquid
phase dipole moment is obtained from an averaging over 101
configurations the fact that the other component of the dipole
moment in the liquid phase is zero indicates that the averag-
ing is close to isotropic. The standard deviations of the di-
pole moment is also presented in Table II and amounts to
;5% for both water and acetonitrile. In Fig. 1 we display
the dipole moment of the individual configurations for water.
As can be seen from the figure there is strong dependence on
the configurations and the dipole moment oscillate between
2.2 and 2.8 debye. In this work there is no difference be-
tween the solute and the effective dipole moment because the
MD simulations are done without the static electric field

TABLE I. A comparison of the molecular properties of water and acetonitrile in the gas phase. All results

presented are in atomic units.Ḡ i(22v;v,v,0) in 103 a.u.

m ā(2v;v) b̄ i(22v;v,v) ḡ i(22v;v,v,0) Ḡ i(22v;v,v,0)

Water v50.0428
CCSDa 0.73 9.52 219.26 1942 230.2
DFT 0.71 9.97 220.42 2021.3 231.0
Expt.b 0.73 9.83 219.265% 180068% 231.5

Acetonitrile v50.0885
CCSDc 1.525 30.23 32.54 5855 233.8
DFT 1.59 31.94 23.99 7317.97 207.9
Expt.d 1.542 30.43 26.3 4619 189.4

aResults are taken fromm! Ref. 90,a! Ref. 91,b! Ref. 92, andg! Ref. 93.
bResults are taken fromm! Ref. 94,a! Ref. 95,b! Ref. 96, andg! Ref. 96.
cResults are taken from Ref. 46. In the case ofm the CCSD~T! results are reported.
dResults are taken from Ref. 82.ā from Ref. 97.

TABLE II. The dipole moments of water and acetonitrile in gas and liquid
phase in atomic units.

Water Acetonitrile

Gas Liquid Gas Liquid

mz 0.71 1.0065% 1.59 1.9964%
m̄ 0.71 1.0165% 1.59 1.9965%
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present. Therefore, the orientational effect due to the electric
field is not accounted for in the MD simulations. In classical
MD simulations the orientational effects on the dielectric
constant can be obtained from the fluctuation in the dipole
moments of the molecules.79 However, this approach will not
work in the present QM/MM simulations since there is only
one space-fixed molecule in the QM part.

The frequency-dependent polarizability components,
mean value and anisotropy of water and acetonitrile both in
the gas and liquid phase are presented in Table III. For the
liquid phase we present both the solute and the effective
properties. We also present both the average of the anisot-
ropy ^Da& and the anisotropy of the average polarizability
D^a&. First we note that the solvent effects are not very large
both for water and acetonitrile. In both cases the solute prop-
erties are larger than the gas phase values. The mean value of
the effective properties are very close to the gas phase val-
ues. However, for water the components of the polarizability
tensor is different for the effective and the gas phase proper-
ties. The fact that the effective mean polarizability is close to
the gas phase values shows that the discrete electric field in
Eq. ~11! is, to first order, close to zero. If we compare^Da&
with D^a& we see that for water they are very different. The
reason for this is that for water the anistropy is very small
and therefore the off-diagonal tensor components becomes
important. The off-diagonal elements are on average equal to
zero due to the isotropic sampling and, therefore, the anisot-
ropy of the averaged polarizability is small and close to the

gas phase value. We also note that the fluctuations are
slightly larger for the effective properties than for the solute
properties. In the Figs. 2~a! and 2~b! we display, respectively,
the solute and effective mean polarizability of water for the
individual configurations. The solute polarizability oscillates
between 10 and 10.6 a.u. whereas the effective polarizability
oscillations between 9.6 and 10.4 a.u. In the case of the sol-
ute polarizability all results are larger than the gas phase
value whereas for the effective polarizability some of the

FIG. 1. The dipole moment of water in Debye. Top line is the averaged
results and the bottom line is the gas phase value.

TABLE III. The frequency-dependent polarizability of water and acetonitrile in the gas and liquid phase in
atomic units. For water the frequency isv50.0428 and for acetonitrilev50.0885 a.u.

Water Acetonitrile

Vacuum Solute Effective Vacuum Solute Effective

axx 10.17 10.2061% 9.9764% 25.91 27.5262% 26.7365%
ayy 9.77 10.4163% 9.7265% 25.91 27.5262% 26.8565%
azz 9.98 10.3562% 10.1864% 44.00 47.8462% 42.9064%
ā 9.97 10.3261% 9.9561% 31.94 34.3061% 32.1662%
^Da& 0.34 0.83631% 1.78634% 18.09 20.4064% 17.25614%
D^a& 0.34 0.21 0.40 18.09 20.32 16.11

FIG. 2. The mean first polarizability,ā(2v;v), at v50.0428 a.u. for
water.~a! Solute,~b! effective.
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configurations give a polarizability smaller than in the gas
phase.

In Table IV we present the frequency-dependent~SHG!
first hyperpolarizability at the frequency,v50.0428 a.u., for
water and acetonitrile in the gas and liquid phase. For the
liquid phase we present both the solute and the effective
properties. First we note that for the first hyperpolarizability
the solvent effects are very large. For water this leads to a
change in sign for the mean first hyperpolarizability. For ac-
etonitrile the solute and effective mean hyperpolarizability
are, respectively, a factor of 5 and 6 larger than the gas phase
value. In both cases we see that the fluctuations due to the
different solvent configurations are very large. The first hy-
perpolarizability is therefore extremely sensitive to the local
structure of the solvent. In Figs. 3~a! and 3~b! we display,
respectively, the solute and effective mean first hyperpolar-
izability of water for the individual configurations. For both
the solute and the effective mean first hyperpolarizability the
fluctuations are large: they oscillates between25 and 23 a.u.
again illustrating the strong sensitivity to the solvent con-
figurations.

In Table V we present the frequency-dependent~EFISH!
second hyperpolarizability for water and acetonitrile in the
gas and liquid phase. For the liquid phase we present both
the solute and the effective properties. For water we see that
the solute second hyperpolarizability is slightly larger than
the vacuum results, whereas the effective second hyperpolar-
izability is smaller. For acetonitrile both the solute and the
effective second hyperpolarizability is larger than the
vacuum results. For both water and acetonitrile the effective
second hyperpolarizability is smaller than the solute in
agreement with the trend found for the linear polarizability.
In Figs. 4~a! and 4~b! we display, respectively, the solute and
effective mean second hyperpolarizability of water for the
individual configurations. The solute mean second hyperpo-
larizability oscillates between 1800 and 2600 a.u. whereas
the effective mean second hyperpolarizability oscillates be-
tween 1300 and 1900 a.u. The solute properties are in gen-
eral above the gas phase value whereas the effective second
hyperpolarizability is always lower than the gas phase value.

For all the properties we find that the pure solvent effect,
i.e., the difference between the gas phase and the solute
properties, increases the properties. On the other hand the
induced electric field, i.e., the difference between the solute
and effective properties, decreases the properties. Therefore,
the electric field induced in the solvent due to the macro-
scopic electric field produces a screening of the electric field
whereas the field from the charge distribution of the solvent

molecules produces an enhancement of the electric field. The
fact that the first hyperpolarizability is nearly unaffected by
the induced electric field is likely to arise from the sensitivity
to the short range screening.20

C. Macroscopic response properties

1. Refractive index

We have calculated the refractive index of liquid water
and acetonitrile using Eq.~27! and the effective polarizabil-
ity presented above. For water we used a number density of
Nd50.333831023 cm21 and Nd50.115331023 cm21 was

TABLE IV. The first hyperpolarizabilityb(22v;vv) for water and acetonitrile in the gas and liquid phase.
For water the frequency isv50.0428 and for acetonitrilev50.0885 a.u. All results are in atomic units.

Water Acetonitrile

Vacuum Solute Effective Vacuum Solute Effective

bzxx 211.169 22.25685% 26.12673% 0.42 32.13632% 33.75656%
bzyy 26.49 4.92680% 7.31693% 0.42 34.49634% 38.48669%
bzzz 216.38 8.79656% 10.86663% 41.20 183.23622% 118.93635%
b̄ i 220.63 6.82677% 7.20669% 23.99 146.82621% 111.80625%

FIG. 3. The mean first hyperpolarizability,b̄(22v;v,v), at v
50.0428 a.u. for water.~a! Solute,~b! effective.
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used for acetonitrile. The results for the refractive index of
water are n(v)51.334 and n(2v)51.342, where v
50.0428 a.u., obtained from an effective polarizability of
9.95 and 10.17 a.u., respectively. The results are in good
agreement with the experimentally determined refractive in-
dex atv50.0428 ofn51.326~Ref. 80! and atv50.077 of
n51.333.81

For acetonitrile the calculated refractive indices aren
51.362, 1.377, and 1.434 at a frequency ofv50.000,
0.0885, and 0.1770 a.u., calculated from effective polariz-

abilities of 31.02, 32.16 and 36.4 a.u., respectively. The ex-
perimental results for the refractive index atv50.0856 is
n(v)51.347 andn(2v)51.384.82 Again, the calculated re-
sults are in agreement with the experiments although in this
case the calculated results are somewhat larger than the ex-
perimental results.

It is well known that the Lorentz-Lorenz equation often
~but not always! gives a good relation between the gas phase
polarizability and the refractive index. As described in the
theory section it is not the gas phase polarizability but rather
the effective polarizabilities that should be used in the
Lorentz-Lorenz equations. We have shown that by including
both the solvent effects and the effect of the local field in-
duced in the solvent due to the electric field in the calculation
of the liquid phase polarizability we obtain a value of the
effective polarizability close to the gas phase value. It is
therefore not surprising that the refractive index are in agree-
ment with the experimental results.

2. Local field factors

In order to calculate the nonlinear susceptibilities we
need to consider the local field factors described in the
theory section. From the refractive index calculated above
we can obtain the optical local field factors given by Eq.
~20!. For water atv50.0428 we obtain a local field factors
of Lv51.26 andL2v51.27. For acetonitrile the local field
factor atv50.000 a.u. isLv51.28, and atv50.0856 the
local field factors areLv51.30 andL2v51.35.

Furthermore, to calculate the EFISH susceptibility in Eq.
~40! we also need to consider the static local field factor
given in Eq.~21!. The static local field factor depends on the
dielectric constant of the liquid. However, since we have not
included the orientation effect due to the static electric field
in the calculation it is not likely that we can calculate this
quantity correctly. In fact the calculation of the dielectric
constant, in particular for water is a highly complicated
problem.57 Although the Onsager local field factor is intro-
duced to account for some of the orientational effect it is not
included in a consistent manner.

We can, however, calculate the Onsager local field fac-
tors from the experimental data. For water using the experi-
mental dielectric constant ofe1(0)578 and the refractive
indexn51.326 for water we obtain a static local field factor
of L051.86. We can use this local field factor to estimate the
dielectric constant using the susceptibility obtained from Eq.

TABLE V. The second hyperpolarizability,g(22v;vv,0), for water and acetonitrile in the gas and liquid
phase. For water the frequency isv50.0428 and for acetonitrilev50.0885 a.u. All results are in atomic units.

Water Acetonitrile

Vacuum Solute Effective Vacuum Solute Effective

gxxxx 944.55 934.0166% 668.85614% 4654.49 6850.36613% 6322.24625%
gxxyy 753.5 799.5469% 516.45617% 1557.40 2315.22611% 2047.07626%
gxxzz 518.41 495.7266% 391.03617% 2598.30 3792.93614% 2717.58627%
gyyyy 3170.5 3642.83611% 2401.39615% 4652.90 6881.77615% 6297.62625%
gyyzz 872.7 955.9769% 668.42621% 2598.30 3951.25616% 3174.23631%
gzzzz 1702 1813.2268% 1294.79614% 13521.00 18933.38612% 12544.76620%
ḡ i 2021.3 2180.5267% 1503.4467% 7317.97 10662.9969% 8136.71612%

FIG. 4. The mean second hyperpolarizability,ḡ(22v;v,v,0), at v
50.0428 a.u. for water.~a! Solute,~b! effective.
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~31!. This give a dielectric constant ofe (1)(0);43. This is
significantly lower than the experimental value. For acetoni-
trile the experimental dielectric constant is 37.5 and the re-
fractive index is 1.339. Using this we obtain a local field
factor of L051.85. Again using this local field factor we
estimate the dielectric constant of acetonitrile to bee (1)(0)
;57. For acetonitrile the estimate is significantly larger than
the experimental value. Since the refractive index is pre-
dicted correctly and the largest contribution to the dielectric
constant is from the dipole moment it is the orientational
term which is not described accurately.

3. THG susceptibility

Since we calculate the effective second hyperpolarizabil-
ity by finite differentiations of the frequency-dependent po-
larizability we cannot obtain the THG second hyperpolariz-
ability directly. The THG second hyperpolarizability can
however be obtained by calculating the EFISH second hy-
perpolarizability at different frequency and then use disper-
sion formulas2 to estimate the THG second hyperpolarizabil-
ity. Here we will estimate the THG susceptibility directly
from the EFISH second hyperpolarizability as

xZZZZ
(3) ~23v;v,v,v!' 1

6 Ndḡ i
eff~22v;v,v,0!L2vL v

3 .
~45!

The estimated THG susceptibility for water is thenx (3)

51.07310214 esu atv50.0428 a.u. The experimental re-
sult for water relative to the reference value of fused silica is
0.903xSiO2

(3) measured at the same frequency.80 In the origi-

nal experimental work80 a reference value for fused silica of
xSiO2

(3) 53.11310214 esu ~Ref. 83! was used, however, re-

cently a value of 1.43310214 esu~Ref. 84 and 85! has been
measured and is believed to be more accurate. Adopting the
latter reference value the THG susceptibility for water is
x (3)51.29310214 esu. The estimated THG susceptibility is
somewhat lower but in good agreement with the experimen-
tal result. Part of the difference can be attributed to the lower
dispersion arising from the EFISH second hyperpolarizabil-
ity compared with the THG second hyperpolarizability.
However, it is likely that the effective second hyperpolariz-
ability is too small. The THG susceptibility of liquid water
has also been calculated using different continuum and dis-
crete local field models giving results in the rangex (3)

;1 – 2310214 esu depending on the local field model used
and in good agreement with the results presented here.45

The experimental result for acetonitrile measured atv
50.0239 a.u. isx (3)52.54310214 esu using the old refer-
ence value ofxSiO2

(3) 52.79310214 esu.83 The new reference

value atv50.0239 a.u. isxSiO2

(3) 51.15310214 esu.84,85 Cor-

recting for the differences between the two reference values
gives a THG susceptibilty ofx (3)51.05310214 esu. Since
we have not calculated the effective second hyperpolarizabil-
ity for acetonitrile at this frequency we will use the static
result to estimate the THG susceptibility instead. The static
effective second hyperpolarizability for acetonitrile isḡ
54891.1 a.u. Using this value the static THG susceptibility
is x (3)51.27310214 esu. The result is larger than but in
agreement with the experimental result.

4. EFISH susceptibility

Finally, we will use the effective mean first and second
hyperpolarizability to calculate the EFISH susceptibility
given in Eq.~40!. This gives for water an EFISH suscepti-
bility of x (3)54.1310214 esu atv50.0428 a.u. For liquid
water there has been one EFISH experiment atv
50.0428 a.u.86 In that work a value of x (3)517.6
310214 esu was reported. The measurement was done in the
X convention,51 i.e., no numerical factors in the expansion of
the polarization, and relative to a quartz crystal reference
where a value ofd1150.831029 esu50.335 pm/V was
adopted. However, the currently accepted value for quartz is
d1150.30 pm/V.87,88Correcting for the difference in the ref-
erence value and conventions givesx (3)510.5310214 esu
(17.632/330.3/0.335), i.e., significantly larger than the cal-
culated value. Since the larger contribution comes from the
term depending on the dipole moment and first hyperpolar-
izability it is likely that the—not well described—
orientational contribution is responsible for the difference.
The agreement between theory and experiment for the THG
susceptibility also support this conclusion.

For acetonitrile we calculate the EFISH susceptibility at
v50.0885 a.u. to bex (3)535.7310214 esu. The experi-
mental result89 at the same frequency isx (3)513.6
310214 esu~corrected with 2/3 to convert it to the conven-
tion used here!. The calculated value is much larger than the
experimental results in agreement with the trend found for
the dielectric constant. There has recently been a study of
both the microscopic and macroscopic properties of acetoni-
trile using ab initio method combined with an Onsager
model for the solvation where in general a good agreement
was found between experiments and the calculated results.46

V. CONCLUSIONS

We have in this work presented an extension of the
QM/MM formalism to include the so-called local field fac-
tors, i.e., the difference between the macroscopic electric
field and the actual electric field felt by the solute molecule.
This enables the calculation of effective microscopic proper-
ties which can be related to the macroscopic susceptibilities
directly comparable with experimental results. By separating
the discrete local field into two distinct contribution we can
define two different microscopic properties, the so-called sol-
ute and effective properties. In the solute properties the pure
solvent effect, i.e., effects even when the macroscopic elec-
tric field is zero, are accounted for and in the effective both
the pure solvent effect and the effect from the induced di-
poles in the solvent is accounted for. We have presented re-
sults for linear and nonlinear polarizabilities of water and
acetonitrile both in the gas phase and in the liquid phase. For
all the properties we see that the pure solvent effect, i.e., the
difference between the gas phase and the solute properties,
gives an increase in the properties. For the induced electric
field, i.e., the difference between the solute and effective
properties, a decrease in the properties was found. Therefore,
the electric field induced in the solvent due to the macro-
scopic electric field produced a screening of the electric field
whereas the field from the charge distribution of the solvent
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molecules produces an enhancement of the electric field.
Furthermore, we have presented results for the refractive in-
dex, third-harmonic generation~THG!, and electric field in-
duced second harmonic generation~EFISH! for pure water
and acetonitrile. We find in general good agreement between
the calculated and experimental values for the refractive in-
dex and the THG susceptibility. For the EFISH susceptibility
the differences between experiment and theory is larger due
to neglect of the orientational effect arising from the static
electric field.
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24U. F. Röhrig, I. Frank, J. Hutter, A. Laio, J. Vande Vondele, and U. Roth-

lisberger, Chem. Phys. Chem.4, 1177~2003!.
25R. Cammi, B. Mennucci, and J. Tomasi, J. Phys. Chem. A104, 5631

~2000!.
26C. Adamo and V. Barone, Chem. Phys. Lett.330, 152 ~2000!.
27M. Cossi and V. Barone, J. Chem. Phys.115, 4708~2001!.
28A. Warshel and M. Levitt, J. Mol. Biol.103, 227 ~1976!.
29B. T. Thole and P. T. van Duijnen, Theor. Chim. Acta55, 307 ~1980!.
30U. C. Singh and P. A. Kollman, J. Comput. Chem.7, 718 ~1986!.
31P. A. Bash, M. J. Field, and M. Karplus, J. Am. Chem. Soc.109, 8092

~1987!.
32M. J. Field, P. A. Bash, and M. Karplus, J. Comput. Chem.11, 700~1990!.
33V. Luzhkov and A. Warshel, J. Comput. Chem.13, 199 ~1992!.
34R. V. Stanton, D. S. Hartsough, and K. M. Merz, J. Phys. Chem.97, 11868

~1993!.
35A. H. de Vries, P. T. van Duijnen, A. H. Juffer, J. A. C. Rullmann, J. P.

Dijkman, H. Merenga, and B. T. Thole, J. Comput. Chem.16, 37 ~1995!.
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J. Chem. Phys.112, 6161~2000!.

41J. Kongsted, A. Osted, K. V. Mikkelsen, and O. Christiansen, J. Mol.
Struct.: THEOCHEM632, 207 ~2003!.

42B. T. Thole, Chem. Phys.59, 341 ~1981!.
43L. Jensen, P.-O. A˚ strand, A. Osted, J. Kongsted, and K. V. Mikkelsen, J.

Chem. Phys.116, 4001~2002!.
44R. Wortmann and D. M. Bishop, J. Chem. Phys.108, 1001~1998!.
45H. Reis, M. G. Papadopoulos, and D. N. Theodorou, J. Chem. Phys.114,

876 ~2001!.
46H. Reis, M. G. Papadopoulos, and A. Avramopoulos, J. Phys. Chem. A

107, 3907~2003!.
47R. Cammi, B. Mennucci, and J. Tomasi, J. Phys. Chem. A104, 4690

~2000!.
48R. W. Munn, Y. Luo, P. Maca´k, and H. Ågren, J. Chem. Phys.114, 3105
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