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Abstract. – We present new analytical tools able to predict the averaged behavior of fronts
spreading through self-similar spatial systems starting from reaction-diffusion equations. The
averaged speed for these fronts is predicted and compared with the predictions from a more gen-
eral equation (proposed in a previous work of ours) and simulations. We focus here on two frac-
tals, the Sierpinski gasket (SG) and the Koch curve (KC), for two reasons, i.e. i) they are widely
known structures and ii) they are deterministic fractals, so the analytical study of them turns
out to be more intuitive. These structures, despite their simplicity, let us observe several char-
acteristics of fractal fronts. Finally, we discuss the usefulness and limitations of our approach.

Introduction. – The analysis of transport processes on fractals received great attention
during the early eighties [1], but in the last years it has decreased notably, although there are
still many open problems in this field [2]. For instance, several attempts to describe diffusion
in fractals by means of partial differential equations (PDEs) have been done [3–5]. Recently,
we proposed [6] the Campos-Méndez-Fort (CMF) diffusion equation that accounts for the
main scaling (power law) relations known. Moreover, that equation allows one to include into
the formalism a growth function in order to consider reaction-diffusion (RD) systems, which
are known to exhibit travelling front solutions [7]. By doing so, the characteristics of fronts
spreading through fractal structures can also be studied, achieving again good agreement
between this equation and previous theoretical results derived from scaling analysis [8].

The aim of this work is to show the interest and validity of some PDEs describing propaga-
tion within self-similar media, so they could be used in many potential applications as trans-
port through porous soils [9], electronic properties of fractal structures [10], forest fires [11],
biological invasions [12], . . . . The main parameter which characterizes propagation is the front
speed. Here we compare for first time theoretical predictions for the speed of RD fronts with
c© EDP Sciences
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Fig. 1 – The iteration process for the SG (top) and the KC (bottom) as a function of the level M .

simulations on fractal structures and discuss the properties of these simulated fronts. For this
purpose, we have used two deterministic finitely ramified [13] fractals: the SG and the KC.
The reason for this choice is that deterministic fractals, as we will show, allow us to perform
an extremely simple analysis based on their widely known properties. Finally, we include in
our comparative study the CMF equation derived in [6], which is expected to hold for a large
class of fractals, including random structures as percolation clusters.

The Sierpinski gasket. – The iteration process for the Sierpinski-gasket construction can
be seen in fig. 1 (top). We will consider walks starting from the origin O so that at any time
step τ the walkers have the same probability of jumping to every one of their first neighbours
(in the SG, all points have 4 first-neighbours, except for the origin O). Then, going up to the
regime t � τ , we can consider the process as continuous.

To analyze walks within this complex structure, we will make the assumption that diffusion
through the chemical-distance space behaves as classical diffusion [8]. The chemical distance l
is defined as the minimum distance between two points within the fractal (it is the minimum
number of points that a particle must visit to go from one of the points to the other one). This
equivalence (l-distance is equal to the number of jumps required) is what led us to consider
that diffusion through l-space behaves in some sense as classical diffusion (we shall see below
the limitations of this assumption). According to this, we can write the evolution of the
probability density n(l, t) to find a particle at time t at a distance l from the origin, as

∂n

∂t
= D

∂2n

∂l2
+ an(1− n), (1)

which is the classical diffusion equation plus a growth (logistic) function. D is the diffusion
coefficient and a is the growth parameter, which here is taken as a constant, as usual. Trav-
elling solutions of eq. (1) have been widely studied before [14, 15] and it is known that they
yield propagative fronts with velocity

vl =
dl

dt
= 2

√
aD. (2)

Looking at eq. (2), we conclude that we just need to estimate the parameter of diffusion
D, which in the homogeneous case has the form [16, 17] D = 〈∆l2〉

2dτ (where d is the spatial
dimension), in order to find the speed through the SG in the chemical-distance space. However,
this expression for D is only valid if one considers the classical diffusion equation nt = Dnll

in the whole real space. There, a Gaussian solution arises and by means of the normalization
1 =

∫ ∞
0

n(l, t)dl the relation between 〈∆l2〉 and D is obtained [17]. Here the situation is
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Fig. 2 – Different kinds of points in the SG with their first neighbours. The numbers in the branches
correspond to the value of ∆l relative to that jump, i.e. change in l from the origin.

different and we must integrate only over the fractal structure. As shown before [3, 6], the
normalization rule for fractals reads 1 =

∫ ∞
0

dln(l, t)ldl−1 dl. It arises from the fact that the
number of points in the structure grows as ldl (this relation defines the exponent dl, which
is equivalent in the l-space to the usual fractal dimension df in the Euclidean space), so the
integration is over d(ldl) = dll

dl−1 dl [3]. This normalization rule leads us to

D =

〈
∆l2

〉
2dlτ

. (3)

So, eq. (3) is the form of the diffusion coefficient D for fractals assuming that eq. (1) is valid.
Now, the way to find 〈∆l2〉 for the SG case is by analyzing the different kind of points

within that structure (fig. 2). From arguments of symmetry, it is easy to see that the SG is
made up by one third of points of each class, a), b) and c). In fig. 2 we also represent the
distances ∆l due to the jumps to the 4 first neighbours. According to the arguments above
about l, in the direction AB (in fig. 1) all the points have the same value of l, so a jump in
this direction means ∆l = 0. All this leads us to estimate D from (3) as

D =
1

2dlτ

(
1
3
3l20
4

+
1
3
3l20
4

+
1
3
2l20
4

)
� 0.21

l20
τ

, (4)

where l0 = L/2M is the distance between first neighbours (for simulations, we will always take
l0 = 1 and τ = 1 for simplicity). Moreover, we have used the relation dl = df = 1.58 for the
SG [2]. In consequence, the predicted speed will be

vl � 0.92

√
l20a

τ
. (5)

For now, we have found an expression for the speed in the l-space, but we are usually more
interested in the Euclidean space, defined by the distance r. Passing from one space to the
other is really very simple by means of another well-known power law relation [2]

l = krdmin , (6)

where k is a constant and dmin is called the minimum-distance dimension. When we introduce
the new variable r into eqs. (1) and (2), they turn into

∂n

∂t
= D

r1−dmin

kdmin

∂

∂r

(
r1−dmin

kdmin

∂n

∂r

)
+ an(1− n), (7)

vr =
dr

dt
=

1
dmin

(
4aD

k2

) 1
2dmin

t
1

dmin
−1

. (8)
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Fig. 3 – Typical fronts found on the SG (M = 11) for different times (t1 < t2 < t3 < t4) as a function
of (a) the chemical distance and (b) the Euclidean distance from the origin.

The values of k and dmin for the SG can be found from simulations of eq. (6), which yield
k = 1.01± 0.01 and dmin = 1.01± 0.01. This leads us to the conclusion that l ≈ r for the SG,
so vr ≈ vl should be expected.

The plot in fig. 3 shows the evolution of the travelling front arising from random-walk
simulations as those described above on the SG and then adding the reaction term by applying
the growth function an(1 − n) to every point of the lattice at any time step. In the l-space,
we obtain step-like fronts, as happens in RD processes in homogeneous media, but for the
Euclidean space the fronts present a certain width which grows with time. This is due to
the relation (6): the more walkers advance through the fractal and find greater obstacles, the
more fluctuations on the averaged behavior (6) grow; this is an aspect that must be taken
into account to study fronts on fractals, as noted before by some authors [18].

The Koch curve. – The KC is shown in fig. 1 (bottom). It is a topologically 1D or “linear”
fractal (which means dl = 1 [2]), so it should be expected that transport processes on it were
easier to describe. In fact, in the l-space, diffusion through the KC is analogous to diffusion
through a one-dimensional chain, so in this case our assumption for the l-space follows exactly.
The form of the diffusion coefficient, similar to that done in eq. (4) (but now l0 = L/3M ), is

D =
1

2dlτ

(
l20
2
+

l20
2

)
=

l20
2τ

. (9)

As diffusion in l-space is trivial in this case, we can directly go to study the r-space. There,
eqs. (7) and (8) should hold, as the arguments for the SG are still valid. The parameters k
and dmin are taken again from simulations of r vs. l. We obtain in this case k = 1.08 ± 0.02
and dmin = 1.27± 0.01. This is in agreement with the fact that for 1D topological structures
dmin must equal the fractal dimension df (for the KC, df = ln 4/ ln 3 = 1.26) [2]. These results
will serve us to predict the speed vr and to compare it with the speed of the simulated fronts.
This has been done in fig. 4 (choosing the point O in fig. 1 as the origin), where one can see
that the agreement is excellent.

It is important to note that, although the KC is expected to yield a simpler dynamics than
the SG (due to the fact that it is topologically linear), we find in this case that fronts are
decelerated (see fig. 4). The reason is that the only one parameter determining the acceleration
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Fig. 4 – Averaged speed found from RD simulations (points) on the KC when M = 9 and from
the theory (lines) as a function of time and for different values of a. All parameters plotted are
adimensonal.

of fractal fronts is dmin, as we have emphasized in previous works [8]. From eq. (8) it can be
concluded that fronts in fractals are decelerated except when dmin = 1. This is what happens
for the SG case shown before, where fronts advance with constant speed.

We want to stress that most numerical studies on fractal diffusion have just focused on
the SG case. Then, the effect of dmin has not been shown before. Our work shows that it is
important to consider this parameter, as its effect is essential for the dynamics of fronts.

Comparison with the CMF equation. – The CMF equation has the form

∂n

∂t
=

4D0

d2
wrdf−1

∂

∂r

[( r

t1/dw

)dw−u

rdf−dw+1 ∂n

∂r

]
+ an(1− n), (10)

where u = dwdmin/(dw − dmin), dw is the fractal dimension of the random walk [2] and D0 is
the fractal-diffusion coefficient, whose value can be estimated from

〈
r2

〉
=

Γ [(df + 2) /u]
Γ [df/u]

(
4uD0

dw

) 2
u

t
2

dw , (11)

which arises directly from the normalization of the solution in (10) [6].
We recently proved that (10) is the only PDE proposed to date which can reproduce the

best-known asymptotic results on fractal diffusion [6, 8]. According to this, the front speed
predicted by it,

vr =
1

dmin

(
4aD0dmin

dw − dmin

) dw−dmin
dwdmin

t
1

dmin
−1

, (12)

should agree with that from simulations on the SG and the KC. Figure 5, which summarizes the
main results obtained from our work, shows the comparison between the simulations (points),
the CMF equation (solid lines) and eq. (7) presented here for first time (dotted lines), as a
function of the growth rate a, which is the only one parameter absolutely independent of the
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Fig. 5 – Comparison between the theoretical speed for the model presented here (dotted lines), the
CMF (solid lines) and simulations (points) as a function of a (the log-log scale allows us to show
different orders of magnitude of a). For the KC (where fronts are accelerated) we chose arbitrarily
t = 200. All parameters plotted are adimensional.

fractal structure considered [19]. In the case of KC, as the front is decelerated, we have used
for the plot a fixed arbitrary time t = 200.

The agreement found is good in general, so this confirms that our two approximations are
suitable for the description of RD fronts through these fractals. However, we observe some
deviations in the SG case for the l-space model, so we should discuss about the validity of
the model presented, based on the assumption that diffusion in the l-space shows classical
behavior. We have already explained above that this assumption is correct for 1D topological
structures. There, dl = 1 and so fractal effects do not appear for l (the diffusion in the l-space
is exactly analogous to non-fractal diffusion in 1D). Hence, the small deviations found for the
KC case (fig. 5) can only be due to the statistical fluctuations involved in the relation (6).

For the SG, the agreement found is not so good, so at the sight of this we can conclude
that the assumption for l is less accurate for non-linear topological structures; for those cases,
a more general approach is advisable. However, fig. 5 shows that this method can fit approxi-
mately the propagation rate of fronts also for the SG, so eq. (8) can be still useful in this case.

In contrast with that, the CMF equation should hold in principle for most fractals [6, 8],
including random structures. Nevertheless, it is a more complex approach than (7), since
it involves more parameters. Here we have tried to present a very simple model based on
analogies with classical transport processes, and compare it to the more complicate CMF
equation in order to show its validity.

Anyway, we do not mean that the equations studied here are able to explain all the
intrincate features of such a complex process as transport in fractals. They are just an averaged
(asymptotic) approximation, since scaling relations in fractals, which are in the background of
our work, are just statistical laws. Actually, multifractality and some complex characteristics
of fractals dynamics observed before [2,20] are not considered here. So, we want to stress that
our approach, in spite of its interest for fractal theory, is rather a predictive tool useful for
those experimentalists working on transport through self-similar media.
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[9] Giménez D. et al., Eng. Geol., 48 (1997) 161.
[10] Liu Y., Hou Z., Hui P. M. and Sritrakool W., Phys. Rev. B, 60 (1999) 13444; Bhat-

tacharyya B. and Chakrabarti A., Phys. Rev. B, 58 (1998) 2376.
[11] Caldarelli G. et al., Europhys. Lett., 56 (2001) 510.
[12] Johnson A. R., Milne B. T. and Wiens J. A., Ecology, 73 (1992) 1968.
[13] Diffusion on infinitely ramified fractals is a field where very little research has been done. Fractals

in nature are usually finitely ramified, so they are more suitable for the aims of our work.
[14] Kolmogorov A. N., Petrovski I. G. and Piskunov N. S., Bull. Univ. Moscow A, 1 (1937) 1.
[15] Murray J. D., Mathematical Biology (Springer, Berlin) 1993.
[16] Fort J. and Méndez V., Phys. Rev. Lett., 82 (1999) 867.
[17] Cranck J., The Mathematics of Diffusion (Oxford University Press, London) 1956.
[18] Barabási A.-L. and Stanley H. E., Fractal Concepts in Surface Growth (Cambridge Univer-

sity Press, Cambridge) 1995.
[19] Sierpinski gasket: df = 1.58, dw = 2.32; Koch curve: df = 1.27, dw = 2.53. Values from [2].
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