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a)

A radiative equation of the Cattaneo—Vernotte type is derived from information
theory and the radiative transfer equation. The equation thus derived is a radiative
analog of the equation that is used for the description of hyperbolic heat conduc-
tion. It is shown, without recourse to any phenomenological assumption, that ra-
diative transfer may be included in a natural way in the framework of extended
irreversible thermodynamid&€IT). © 1998 American Institute of Physics.
[S0022-248808)03001-1

I. INTRODUCTION

Radiative transfer has recently become an active area of research within extended irreversible
thermodynamicgEIT). However, most approaches to the subject have considered the description
of purely radiation systemghoton gas'~ whereas a joint thermodynamical description of ra-
diation and matter is certainly necessary. This conclusion can be reached as follows. Because
photons do not interact among themselves, it is the interaction between radiation and matter that
drives an isolated radiative system towards equilibrfusore generally, since in the absence of
matter photons cross a small volume centered about any given point without any interaction, it is
clear that the distribution function cannot be determined by the macroscopic properties at the point
considered: instead, it will be determined by the properties of the emitting source. Similar argu-
ments to the previous ones have led to the idehat it does not seem possible to reach valid
thermodynamical conclusions with regards to radiative transfer on the basis of any picture that
does not take into account the absorption and emission of radiation by matter. Some phenomeno-
logical models that include matter as well as radiation have been progesede.g., Refs. 7 and
8). However, a microscopic approach should be sought in order to see to what extent the hypoth-
eses that lie at the ground of such phenomenological models can be justified. In this paper, we
make use of information theory in order to present such a microscopic approach. It will be very
useful, before doing so, to briefly recall two information-theoretical results in conductive, purely
matter systems. For an ideal monatomic gas, maximization of the entropy density under the
constraints of fixed molecule number density vanishing barycentric velocity, fixed internal
energy densitypu,, (p stands for the matter densjityand fixed conductive heat flug leads,
keeping terms up to second-ordergnto the following results (see also Ref. )6for the general-
ized Gibbs equation and for the temperatéref extended irreversible thermodynamics

2m

3—qdg, 1)

1
dsn=7 dun~ gri273,

3Dedicated to Professor JoSmsas-Vaquez with occasion of his 60th anniversary and of the 25th anniversary of the first
paper on Extended Irreversible Thermodynamics by his UAB group.
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346 J. Fort and J. E. Llebot: Thermodynamics of radiation-matter systems

1 2p
7 T\ BT, 1) @

wheres,, is the specific entropym is the molecular maséso thatp=mn), kg stands for the
Boltzmann constanfl,, is the kinetic local-equilibrium temperature, which satisfies%fat

Upn=3kgT/2m, 3
and the definition of for the matter system under consideration is

_1_ 9Sm
0 = FT (4)

Equations(1) and (2) have also been derived without making use of information theory but
beginning with the postulates of extended irreversible thermodynamics and making use of the
results of Grad’s 13-moment kinetic theory mettidthis has provided a conceptually reasonable,
sound framework for a thermodynamical description of heat conduction in further-away-from-
equilibrium states than those corresponding to local-equilibrium thermodynamics. Our purpose is
here to propose the information-theoretical basis of such a framework for radiative, instead of
conductive, heat transfer. Therefore, in the following sections we do not consider a matter system
under a conductive heat fluxbut a radiation-matter system under a radiative heat flux, which we
shall callF.

II. INFORMATION THEORY

Assuming that the matter content of the system is a classical ideal monatomic gas, the entropy
density of the system s

d*pp, d*p,
pS:pSm+p&:—4%J;3jz§5§fm|nfm+2kBL£(27h) [(1+f)In(1+f,)—f, In f,],
5)

where the subindexam andr stand for matter and radiatigiphotong, ands, f, andp are the
corresponding entropies per unit mass, distribution functions, and momenta, respectivelf. Here
is the Planck constaiit divided by 27. We have used the same notation as in Ref. 4: for example,
f., stands for the number of moleculesdfp,, andd®x, divided byd3p,,d®x/(27#)3, with d3x
a differential of volume(in this way, Inf,, is dimensionlegs

We will make use of the well-known information-theoretical apprd&¢hby maximizing(5)
under the macroscopic constraints of fixed total energy depsitymolecular number density,
and radiative energy fluk of the system,

d*pm P d*p;
PU—PUm+PUr—JR3mﬁfﬁzﬁﬁmprﬁs, (6)
d°pm
= J i 7
d°p;
F_2JR3 W prCCfr, (8)

whereu,, is the matter specific internal energy amdis the radiation energy, also per unit mass
of matter. In Eq(6) we have assumed that the barycentric velocity of the matter gas vafiisizes
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J. Fort and J. E. Llebot: Thermodynamics of radiation-matter systems 347

allows us to concentrate on the topic that is of interest: we are neglecting heat convection in
addition to heat conductionin Eq. (8), c=c(} is the velocity of a photon moving in a direction
with unit vectorQ) andc is the speed of lighin vacua Maximization of(5) under the constraints
(6)—(8) finally yields for the distribution functions

2
fmzex;{—l—)\—ﬁg—;}, ©)

1
~exfd Bp.c—y-prec] -1

(10

fi
where\, B, and y are Lagrange multipliers.

[ll. EXTENDED IRREVERSIBLE THERMODYNAMICS OF RADIATIVE SYSTEMS

We now follow the usual information-theoretical proceddfan order to derive an extended
Gibbs equation, which will be used to show that radiative transfer can be included in the frame-
work of EIT. Since we have assumed the matter gas to be at rest, the equation of continuity
implies that matter density does not change in time, i.e., the density differential vanishes, so that
dn=0. From this fact and Eq5) it is not difficult to find out expressions fats, andds;, in
which we make use dP) and(10), respectively. In this way and after use(6j—(8) we arrive at
ds,=kgB du,, andds,=kgB du,— (kg/p)v-dF. Therefore

k
ds=ds,+ds =kg3 du—?B y-dF, (1D

where we note that the entropy per unit mass of the radiation-matter system under consideration is
a function of thetotal (radiation and mattgrspecific energyu and of the radiative heat fluk.
Because of this information-theoretical result, we propose the following generalization of the

definition (4),
o= 12
T ou’ (
From Egs.(12) and(11) we have
0= ! (13
keB'

On the other hand, it will be useful to follow Mihalas and Mihafdsy introducing a radiative
parameter T through the following equation;

pu;=aT;, (14)

with a= 72kg/15c%° the blackbody constant.

After substitution of the matter distribution functidf) into (7) and intopu,,, given by(6),
and integration over all possible valuesmmf, it is easy to reach the resyti,=3n/28, which
together with(3) implies thatT,,= 1/kgB. Thus we have, taking into account Eq3),

0=Tn, (15

and this result is consistent with E), because we are not dealing with conductive but with
radiative heat transfdi.e., we haveg=0 althoughF+0 in general.

J. Math. Phys., Vol. 39, No. 1, January 1998
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348 J. Fort and J. E. Llebot: Thermodynamics of radiation-matter systems

We now look for a relationship betweehandT, . We make use of the radiation distribution
function (10) into (8) and into pu,, given by (6). Since both integrations ovey, are rather
complicated, we assume that=(0,0,y), integrate with the use of formula 3.411-1 of Ref. 14 and

obtain
o a 1+€43 16
P kT (L 1o
. 4ca € —(0.0 1
—Wm=( 0F), (17)
with
c
e= Ey =(0,0¢). (18
From Egs.(14), (16), and(13) we obtain
. (1_62)3 1/4 1
=Tl 1r 19

This equation relateg to T, , but e should be written in terms of macroscopic observables if we
want the radiative theory to be put at the same level as the conductive one: according to the
conductive relationshig2), for a given value ofm (i.e., for a given matter gasy is a known
function of T, if the values of the macroscopic observaljendq are known. We can cope with

this problem by noting thaf16), (17), and(14) can be combined to yield

€
F=4caT* 3T (20

from which it follows that

2—\4-3F%/ca’T,®

FlcaT,

€= (21

We make use 0f20) in the denominator irf19) and then apply Eq21). Since we will here be
interested in near-equilibrium results, we assume that the val&ei®iow enough so thaf can
be approximated by its MacLaurin expansion up to second ordEr ifihis yields

1 1 15 )

5 = T_r 1+ Waz'l'rs F<l, (22

and this equation, which applies to radiative transfer, is analogous to the conductive e@jation
The second-order resyl?2) is in agreement with the expression #that has been obtain¢Hgs.

(27) and(17) in Ref. 3] by partial derivation of the radiative entropy dengjiyhich was derived

on phenomenological grounds in Refs. 1 and w&h respect to the radiative energy density.
Equation(22) has also been previously derived by Casage¥z and Jou for a purely radiation
system[see Eq.(30) in Ref. 16, by making use of a fluctuation theory result and of the EIT
phenomenology. However, there is a very important difference between these approaches and the
information-theoretical one presented here: since in our definifidnfor # we have made use of

the total radiatiorand matterentropy and energy densities, the conceptual objections presented in

J. Math. Phys., Vol. 39, No. 1, January 1998
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J. Fort and J. E. Llebot: Thermodynamics of radiation-matter systems 349

the first lines in this letter do not apply to our analysis. A generalized Gibbs equation can be finally
derived from(11), (18), (13), and(21). Keeping in mind that we are interested in the second-order
approximation forf ands, we obtain

1

ds=5du— F-dF, (23

4C2apTr5 .
which is analogous to the conductive resdlf. On the other hand, we note fro(8), (15), and
(22) thatu,, is a function ofT, [or u,, see Eq(14)] andF. Therefore, although in Eq23) we
have taken the total specific energy u,,+u, andF as independent variables, it is clear that in
this modelu, andF may also be chosen as independent variables. It is easy to delgte du,
anddF. Making use of the relationship thus obtained and2$), applying(22), and neglecting
higher-order terms, one finally obtains the extended Gibbs equation in the new variables,

as— |2 [q4 o™ 315kgF* 48 3o\
=19 smau, ¥ " 256mp2c2ud) " | 32mZp?? | act ) . (29

From this equation(22), and(14), it is straightforward to check thats is an exact differential,
ie.,
Ps s
dFou,  du,dF’

(29

so that the totali.e., radiation and mattgspecific entropy of the system is a state function, as it
should.

IV. APPLICATION

Kremer and Miler' were able to deduce a radiative equation which is essentially of the
Cattaneo-Vernotte relaxational typteir second Eq.7.1)], but the corresponding relaxation time
and radiative conductivity were not found out. We will now provide a microscopic derivation of
that relaxational equation and find out the relaxation time and radiative conductivity explicitly.

Let us mention, for the sake of completeness, that making use df7Eq.is not difficult to
show that the matter distribution functi@®) is locally Maxwellian, with temperatur€,,,= 6 [see
Eqg. (15)]. On the other hand, making use of E¢%8), (21), (13), and (22), the information-
theoretical radiative distribution functiafi0) reads, up to second order iy

fr:fEO)(l+¢(l)+¢(2)+...), (26)
with
1
ff’O)zeX—l’ (27)
1 3 € a1 28
¢ =g e 29
F =321 5, (29)
~2)_ 15x  €* f.f 30
A T 0
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350 J. Fort and J. E. Llebot: Thermodynamics of radiation-matter systems

9x? eX(e*+1)

$0=25 ez (@D (3D

where we have defined the following dimensionless quantities:

o X a cC p X F
= — X=|x =_=_=_
keT, 77 ’ c p X’ caT* cCup’

(32

f being the reduced flux. We have writté27)—(31) in terms ofT, , rather than in terms df=T,,,

for later convenience. The distribution functi(®6)—(31) is a radiative analog of the Dominguez—

Jou distribution functiofiEgs.(30), (33), and(34) in Ref. 3], which was also derived making use

of information theory but applies to a nonrelativistic classical monatomic ideal gas under a con-

ductive heat flux. Both in radiative and conductive systdpresent paper and Ref. 3, respec-

tively), information theory provides a simple derivation for the second-order non-equilibrium

correctiong(®). This correction is very difficult to find out in the framework of the kinetic theory

of gase&’*8 of conductive, purely matter systems. It is worthwhile to mention that information

theory is very simple mathematically but has the disadvantage that the question of what constraints

should be imposed in maximizing the entropy density is an open one at present. On the other hand,

it has been stressethat a well-established phenomenological thermodynamics of radiative trans-

fer does not seem to be available. This is in contrast with the situation in purely matter systems,

where phenomenological thermodynamics may be a useful guide in the choice of the information-

theoretical constraintésee Refs. 6, 12, 19, and, in connection with this, pages 46—47 in Ref. 9
Our purpose here is to show that a relaxational equation follows from the radiative distribution

function. In order to do so, we shall first show that although kgt and(23) on one hand, and

(26)—(31) on the other, have been obtained working up to second ordé, ionly the first

nonequilibrium correctionp*) contributes to the second-order entropy correspondiri@2pand

(23). Making use of Eq(26) and of the MacLaurin expansion

F2
3
5 +O(F~)

2a2

In(ag+asF+a,F2+---)=In a0+—F+ 3
0

dp

2
_a
a
into the expression fops,, given by Eq.(1), we obtain, up to second order,

¢(l)

d*p
— c(0) r
PS = pS; +2ka 2 (2 h)3f In| —5v

d3p,
_ (0)
k fa(z ﬁ)3f '”

d*p, fﬁo) 2
_ L S A ¢ )]
kB,fR3 (2mwh)® 1+£9 i 33

f

r

¢(2)

with
(0) d?’pr (0) (0) (0) (0)
pst :2kaR3(2Wﬁ)3 [(1+F)In(1+fO)— £ |n £07,

The second term on the right-hand side(88) vanishes becaus®7) and (28) imply that the
corresponding integrand changes sign under the transformatien-p, . The third term, which
contains$(®), is also seen to vanish after substitution(8¥) and (29)—(31), application of the
integral theoremwhich is easy to prove

J. Math. Phys., Vol. 39, No. 1, January 1998
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2
fR3d3x F(x)(x~g)2=% fdesx X?F(X)

[with g any vector and=(x) an arbitrary functiofy and use of the integrals

fd 4774 fwd x> 27" S0c(5
X(e— 15 ) e g T

and

2774

{(2) being the Riemann zeta function. The vanishing of the second and third terms on the
right-hand side of the radiative entropy dengi®g) can be regarded as the radiative analogue of
the (e.g., kinetic-theoreticalresult”° for purely matter systems

J &P £0) 400
RS (27h)> "M T

with f{%) the Maxwell-Boltzmann distribution function ang{®’ the kth-order correction due to
heat conduction and/or convection: this leads to

kB d3p 2
PSm= pS(O ZJ ﬁ")] (O)d’(l)

so that¢{?) does not contribute to the second-order approximation to the matter entropy density in
conductive and/or convective situations, just(@3) becomes

d*p FY e
0
ps;=ps;” — BLS @ah)E 1410 ",

so that¢(?) does not contribute to the second-order radiation entropy density in radiative situa-
tions. We mention that this conclusion can also be reached, after rather tedious calculations, by
checking that integration of the first and fourth terms on the right-hand si(88pyields the same

result for ps, as that obtained by substitution @f0) into ps,, given by (5), integration, and
expansion of the result up to second ordeFimBy following either of the procedures it is obtained

that

3
psi=ps;”— g5 F2+O(F?), (34
r

with ps{®=4aT?/3.

In the special case of thermodynamic equilibriuf=0), Eq.(21) becomes=0, (15) and
(19) yield 6=T,,=T,, and(26)—(31) reduce to the Planck distribution functidn,zfﬁo), as they
should. In the same cas@4) becomes the usual expression for the radiation entropy density in
equilibrium, i.e.? ps,=psE°)=4aTr3/3, and we have, instead (#3), thatds=(1/T,)du. This is a
Gibbs equation. Therefore, analogously to what is done in phenomenological thermodynamics of
matter system$.T, may be called the local-equilibrium temperature aﬁ’dz Sie May be called
the local-equilibrium radiative entropy.

J. Math. Phys., Vol. 39, No. 1, January 1998
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352 J. Fort and J. E. Llebot: Thermodynamics of radiation-matter systems

We now turn our attention to the second-order theory. In order to verify its consistency, it is
rather important to note that E(B4) can also be obtained very easiBithough without finding
pst® explicitly) from (23), (22), and the radiative part of the local Gibbs equation, i
=(1/T,)du,, in the following way. Fromds;,,=(1/6)du,, [see the text above E¢l1) and Eq.
(13)] and (23) we havedsr=(1/9)dur—(3/402apT,5)F- dF. By integration with the use of22)
and(14) we find the second-order ressit=s,,— (3/8ac?pT>)F2, in agreement with E¢(34).

The fact, derived above E34), that ¢(*) contributes to the second-order radiation specific
entropy, whereag(® does not, implies that the second-order thermodynamical re@#tsand
(23) correspond to the first-order distribution function, i.b.,%fﬁo)(1+ ¢1) (we stress that the
same happens in EIT of purely matter systems, see pp. 83—87 in)REfogn this result, we will
finally be able to find an evolution equation.

It is well known that information theory on its own cannot yield evolution equations, simply
because all it yields is an expression for the distribution function an@:&ended Gibbs equa-
tion. However, the information-theoretical distribution function cak®mnd has in fact been
combined with dynamical methods, such as the Boltzmann equtitre, Liouville equatiorf?
the statistical operator methddor the radiative transfer equatiéhAs it is well known?>?
multiplication of the radiative transfer equation Iy and integration yields, under the grey
approximation,

L% +cV-P,= F 35

c ot TCeV-Pr=—adF, (35
with o, the absorption coefficien{,V-Pr]iEE§:l(9Pr ki /9% and P, ; the components of the
pressure tensor of radiation, namely,

2 d3p,

Pri=g fR3 2nh)? PreiCif . (36)
Substitution off, ~ f{?)(1+ ¢(3) in this expression and use of E¢87), (28), and(32) shows that
¢ does not contribute to the pressure tensor. Use of forif8utl 1.1 in Ref. 14 allows us to
perform the remaining integration. This yields

a

P, Ki=3

TS, (37

with ;=1 for k=i and §,;=0 for k#i. Use of(37) in Eq. (35) yields

*F F= VT 38
TE—’_ =—N\ s ( )
with
= ! )\_408._'_3 39
™ coy’ 30, " (39

Equation(38) is in agreement with a result previously derived in Ref. 1, but here it has been
possible to introduc¥ T, instead of the gradient of the radiative energy density, and also to find
out the explicit expression@9) for the radiative relaxation time and the radiative conductivity
\. It is encouraging that in steady states E@8) and(39) becomeF= —(4ca/3aa)Tr3VTr, and
this Fourier-type equation has been used since many yeafiaghe theory of stellar interiors.

We have seen that information theory provides a statistical-mechanical derivation of the more
general result$38) and (39). Similar, less rigorous expressions have been recently advanced on
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J. Fort and J. E. Llebot: Thermodynamics of radiation-matter systems 353

phenomenological groundddere, information theory has also allowed us to distinguish and relate
T, to T, [defined by Eqs(3) and(14), respectively through(22) and(15), i.e.,

L1, 15
Tm T, 322’1, |

We stress that this result is valid under the same conditions as those under(88)ictmd (39)
hold.

From the generalized Gibbs equatit#8), the energy balance law, nam&iydu/gt=V -F,
and Eqgs.(38) and(39) it is not difficult to follow the usual procedutend identify the entropy
production rate, for low enough values of the flexas

™ F-F, (40

which is semi-positive definite, in agreement with the second law. Accordi@9and(40), we

may writeS= (1/AT?)F-F, which is analogous to the conductive re$utt=(1/\'T2)q-q, with

N\’ the thermal conductivity. Equatidd0) shows that in the absence of mattet, & 0) there is no
entropy production. This corresponds to the fact that photons do not interact among themselves.
Because radiative transfer in the vacuum in absolutely nonlocal, it has been previoushfargued
that the entropy production must arise from the interaction of radiation with matter, although the
explicit formula (40) does not seem to have been derived or proposed before.

We may also note that Eq38) is of the Cattaneo—Vemotte type: because of conceptual
motivations (see, e.g., Ref. )9 and also because Fourier's law of heat conduction, ge.,
=—\'VT,,, is known to fail in very fast processé&sa more general law, similar {®8), for heat
conduction(instead of heat radiationnamely

99
T A= N VT, (4D)

with 7’ the conductive relaxation time, has been considered since lontf d46quation(41) was

a fundamental starting poititfor the development of the theory presently called extended irre-
versible thermodynamidsee, e.g., Refs. 9 and R0 he similarity between Eq$41) and(38), in
itself, indicates the reasonability of including radiative transfer in the framework of EIT.

Still from another point of view, we may compare our results with previous prop¢sads
e.g., Ref. 7 by saying that it seems now possible to approach the irreversible thermodynamics of
radiative transfer without need, in principle, to make use of a temperature field that depends on
frequency and direction. This is analogous to the fact that in nonequilibrium thermodynamics of
heat conduction and convectidr! there is no need to introduce a temperature field that depends
on the molecular spee@r energy and direction of motion.

Just to summarize, information theory provides a nonequilibrium extension of Planck’s dis-
tribution function [Egs. (26)—(31)], a microscopic derivation of a radiative equation of the
Cattaneo—Vemotte typdegs. (38) and(39)], and it also leads to the conclusion that the range of
nonequilibrium phenomena for which EIT provides an adequate framework is enlarged with the
inclusion of radiative transfer.
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