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We report experimental and numerical results showing how ceftadiimensional dynamical
systems are able to exhibit complex time evolutions based on the nonlinear combinahieh of
oscillation modes. The experiments have been done with a family of thermo-optical systems of

effective dynamical dimension varying from 1 to 6.

The corresponding mathematical model is an

N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a
linear combination of all the dynamic variables. We show how the complex evolutions appear

associated with the occurrence of successive Hopf

bifurcations in a saddle-node pair of fixed points

up to exhaust their instability capabilities IN dimensions. For this reason the observed
phenomenon is denoted as the full instability behavior of the dynamical system. The process
through which the attractor responsible for the observed time evolution is formed may be rather

complex and difficult to characterize. Nevertheless,

the well-organized structure of the time signals

suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of
invariant sets emerging from the pair of fixed points and with the influence of the neighboring
saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full
instability development and the global process may be considered as a generalized Landau scenario
for the emergence of irregular and complex behavior through the nonlinear superposition of
oscillatory motions. ©2000 American Institute of Physids§1054-150100)01004-]

Oscillatory phenomena are ubiquitous in natural and so-
cial systems and their investigation is currently done
within the context of nonlinear dynamics. The oscillations
in a given system may appear associated either with in-
trinsically sustained mechanisms or with externally
modulated inputs. Processes with different time scales of-
ten coexist and in certain cases the interrelation of oscil-
lations produces complex evolutions in which, however,
cyclic repetitions are usually apparent. For instance, in
biology, a direct example of this behavior is found in the
bursting response of small neural networks in the stoma-
togastric nervous system of crustacedwhile a more in-
volved example could be the wakesleep cycle of a brain.
Leaving apart the case of external modulations, we find it
interesting to understand how a nonlinear system can
produce different characteristic frequencies and how it

through the nonlinear superposition of oscillatory mo-
tions in a dynamical system. The phenomenon develops
in a generalized Landau scenario where the oscillations
appear in association with the Hopf bifurcations of a set
of fixed points and the complexity arises from(i) the
number of different characteristic frequencies, and (i)
the variety of forms through which the nonlinear mecha-
nisms combine the oscillation modes. The phenomenon is
relevant because it illustrates how the nonlinear mode
mixing works in nonlinear dynamics and it would prob-
ably be involved in any system exhibiting various self-
sustained oscillations simultaneously.

I. INTRODUCTION

Complexity may emerge through a variety of ways in

can mix the corresponding oscillations to yield complex
time evolutions. Although the problem looks basic and
simple its answer is pending. The paradigm of chaos is
not useful here and among the known mechanisms of
nonlinear dynamics only the Landau scenario can be in-
voked. The present work is a contribution to the enlight-

enment of this problem. We report experimental and nu-

merical results showing the emergence of complexity

nonlinear dynamics although it is mostly associated with the
irregularity of chaos. The peculiar properties of the chaotic
state$ are compatible with a low number of degrees of free-
dom, while additional levels of complex dynamics can be
introduced in high-dimensional systems by properly aug-
menting the structure of the nonlinear part of the vector field.
For instance, the effective participation of more dynamical
variables within the nonlinear feedback may enhance the in-
760
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stability capabilities of the fixed points and other limit sets.space. The points initially have stable manifolds of dimen-
This article considers a situation of this type and presentsion N-1 andN, respectively, and after thid-1 bifurcations
experimental and numerical results showing the emergenacane of them has become fully unstable while the other pos-
of complex time dynamics independently of chaos. sesses only one stable dimensibRl limit cycles have suc-
The problem we are dealing with is how a large numbercessively emerged from the points and some invariant tori
of characteristic frequencies can successively appear in theuld have been created through secondary Hopf bifurca-
system response and how the corresponding oscillations cdions of the cycle§. The cluster of limit sets contains an
mix to yield complex time evolutions. The theory of bifur- attractor at leadtand a variety of saddles with the common
cations shows that the exclusive way for introducing characfeature of having a branch of their unstable manifold ending
teristic frequencies into the time dynamics is through thefoward the attractor. The secondary processes occurring un-
variety of Hopf-type two-dimensional instabilitiéd,e., the  der such circumstances may be rather complex, but the ex-
PoincareAndronov—Hopf bifurcation of a fixed point, the perimental and numerical results show that they produce the
Naimark—Sacker or secondary Hopf bifurcation of a limit nonlinear mixing of oscillation modes with relatively generic
cycle, and the successive bifurcations originating higherfeatures. In essence, the attractor incorporates localized heli-
order invariant tori. This relates our problem to the Landaucal motions related to the influence of the neighboring
proposal for tentatively explaining the emergence of turbu- saddles and, in this way, the observed time dynamics de-
lence through an indefinite sequence of oscillatory instabili-scribes an irregular succession of oscillatory trains based on
ties that, in light of the bifurcation theory, is usually associ-theN-1 characteristic frequencies initially generated from the
ated with a sequence of torus bifurcatiénhe Landau pair of fixed points. We call the exhibition of such complex
sequence is not considered a route to chaos because it dd#ge waveforms the full instability behavior of the
not produce sensitivity to initial conditionsand this is in  N-dimensional system and a detailed analysis of such behav-
strong contrast with the already existing strange attractor®r within a more general context has been presented in a
when triply periodic flows on three-dimensional tori are Separate papéf. Our aim here is to demonstrate the full
perturbed® On the other hand, the lack of dissipative systemdnstability behavior with a family of physical devices whose
exhibiting such large sequences of torus bifurcations has lefffective dynamical dimension may easily be varied and we
the Landau scenario as a hypothetical way for incorporatinglescribe experimental results for successively increasing di-
additional degrees of freedom into the oscillatory dynamicgnensions up t&i=6. The interpretation is sustained with the
of high-dimensional systems. linear stability analysis and numerical simulations of a math-
This work shows that the combination of oscillatory mo- €matical model reproducing correctly the experimental re-
tions in a nonlinear dynamical system can effectively yieldSults-
complex time evolutions evoking the Landau idea about the
emergence of |rregulgr|ty. Th|§ behap_nor has pgen found N NONLINEAR SYSTEM
systems able to exploit all the instability capabilities of their
fixed points through Hopf bifurcations. In relation to the The nonlinear systems are based on the so-called opto-
Landau scenario, our problem is simpler because it dealthermal bistability with localized absorptiofBOITAL )
with systems of finite dimension, but it is enriched by con-and they have been described in detail elsewhere from both
sidering(i) more than one fixed point ar(d) the occurrence the experimentaf and mathematicit* points of view. A
of successive Hopf bifurcations on each fixed point. TheBOITAL device consists of a Fabry-Re cavity in which
former is relevant because the nonlinear mechanisms cahe input mirror is partially absorbing and the spacer is a
mix the oscillatory dynamics emerging from neighboring multilayer of transparent materials with alternatively oppo-
points, while the latter implies a variety of coexisting limit site thermo-optic effects. Concretely, in this work we used
cycles and the possibility of different sequences of torus bilayers of glass, sunflower oil, silicong&600, Bayer AG,
furcations. Nevertheless, as it will be shown, the compleoptical adhesivd NOA61, Norland, and optical gel0608,
time evolutions observed under these circumstances cann@argille) with thicknesses ranging fromm to mm. Thermal
be explained by means of the torus bifurcations alone anéxpansion works in the case of glass as a positive phase-
more general and more robust mechanisms of nonlineashifting effect (10°K ™) while the rest of the materials
mode mixing must be invoked. produce negative shifting effects due to refractive index
More concretely, we deal witN-dimensional dynamical changeg—2 to —5x10 *K™1). The cavity mirrors were a
systems possessing a nonlinear function of a single variableigh reflection (>0.98 dielectric multilayer ad a 7 nm
that, in its turn, is a linear combination of tidynamical  nickel-chrome film having reflections of about 0.2 and trans-
variables. The fixed points of these systems appear aligned mission of about 0.4. The device was placed on a thermo-
phase space in an alternate sequence of saddle-node tygéectric plate to define better the environment temperature
The saddle separatrices determine the attraction basins of tk@d was irradiated for the metal mirror side with a laser
nodes and the basic dynamical phenomena will be associatégam of 514.5 nm wavelength focused to a 0.3 mm diameter
with an attractor arising from one of the nodes and growingspot. The reflected light was detected by means of a photo-
under the influence of the nearest saddle pointNldimen-  diode and a signal proportional to the reflected poviRyr,
sions, a saddle-node pair of fixed points can sustain a total afas digitized and stored in a computer. The incident laser
N-1 Hopf bifurcations, occurring on either one or the otherpower, Pz, was used as the control parameter.
point,” and affecting differently oriented planes of the phase  The time dynamics in BOITAL devices is associated
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with the heat propagation from the absorbing mirror throughspacer properties and thermal boundary conditf6ms\d ug
the cavity spacer, while the light provides an instantaneous the incident light intensity normalized in such a way that
nonlinear feedback to the heat source. The light wave testsa;=1. The rated;; describe the thermal coupling between
the spacer temperature by means of its phase shift in a cavitgyers and the associated diffusion times, whileharacter-
round-trip and transfers such information to the absorbingzes the effective contribution of thgh layer to the phase
mirror by means of interference effects. The temperature disshift variations.A(#) describes the light interference within
tribution remains practically unchanged during the lightthe absorbing film and it is a positive-defined almost-
round-trip and determines therefore the interference state ainusoidal function depending only on the mirror
that time. On the other hand, the light interference dependparameters? It may be written in the following closed form:
nonlinearly on the phase shift through the Airy function of

the cavity and it constitutes the exclusive nonlinearity of the M1 COSY— sy

system. In addition, the multilayer of alternatively opposite (¥)= m’ 2
thermo-optic materials can originate oscillatory instabilities

becausel(i) the temperature variations produce competitiveyery convenient for the numerical simulations, and the re-
contributions to the light phase shift ar@) such contribu-  syits reported in the paper correspond gg=1.06, u,
tions are time delayed according to the relative position of=1 25 andu,=1.86. The reflected light intensity is given
the layers with respect to the absorbing mirror. With a propely R(y)uez, with the interferometer reflectioR(y)=1
choice of materials and thicknesses, the various spacing lay= o(y). The y(t) evolution will typically present variations
ers behave as effective degrees of freedom and the number gfger than 2- and supplementary foldings appear then in the
layers determines the dynamical dimension of the system. reflected power signal. Such foldings simply describe the
Some materials, like the adhesives and gels, exhibit sigphase shift overcoming the maximum or minimum reflection
nificant and opposite phase-shifting effects due to both exyajues and lack of dynamical significantsee, e.g., Fig. 2
pansion and refraction, and usually these effects have really |t js yseful to know that the systefi) admits to being

different time constants. Under proper circumstances, @nearly transformed to a canonical form as folloWs:

single layer of one of such materials can introduce two ef-

fective degrees of freedom into the system dynamics and N

higher dimensionalities may be experimentally achieved in  x,=— >, CiXj+A(Y) ug,

this way. This behavior has been known since the first opti- =1

cal bistability experiments on self-sustained oscillations in (3a)

semiconductors and more recently for the case of an optical ~ Xj=Xj-1, [j=2,... N,

adhesive’® On the other hand, the phase-shifting coefficients

of these materials exhibit a significant temperature deperwith

dence that can be used for a fine adjustment of the spacer

structure by means of the environment temperature regula- 0 N

tion. p=y Zl djx;, (3b)
The physical description of a BOITAL system is based :

on the homogeneous heat equation subject to the proper Cofere the coefficients

tinuity and boundary conditions, of which the one describing,, ; ;

the localized heat source by light absorption is nonlocal an % and, in particulard

q andd, are functions of thd;; and
n=Cn - For cavity spacers of alterna-
; 3 , - : X inely opposite thermo-optic materials, the corresponding set
nolnllnear_? The linear stability ana_IyS|s of the_ statlo_nary S0- of d; values present alternatively opposite signs. The new
lution points out clearly an effective dynamical dimension 4 japles lack of direct physical interpretation, but the sim-
equal to the number of spacing layers and it has been showjiciry of the canonical form facilitates the analysis and the
that the partial differential equation may be reduced to thebomparison with other models. In addition, we have shSwn
following dimensionless low-order mod: that the linear stability analysis ¢8) can be used to design

N N-dimensional systems, i.e., to determine tizgiandd; val-

d_l/:]: _2 bii(i—aiA(P)ue), j=12,...N, (1a ues, in which the_flxed _pomts_of a saddle-node pair experi-
=1 enceN— 1 Hopf bifurcations with preselected values for the
with oscillation frequency and control parameter. The numerical

simulations reported in this paper correspond to systems de-
N signed with this method.
Y=y + ; by (1b) The steady-state solution of Eq4) or (3) as a function

of ug is determined byA(y) and consists of successive
where ¢ is the round-trip phase shift angf is its value in  S-shaped branches. BOITAL devices with different spacer
the absence of laser heating.is the number of layers and structures but equal mirrors have the same steady-state
each variabley; denotes the variation due to temperaturebranching diagram describingvs ug . The properties of the
changes of the phase shift associated withjthéayer.; is  cavity spacer determine the power scale factor of the bifur-
proportional to the space-averaged temperature across tleation diagram through the normalization factor included in
layer and to the thermo-optic coefficient of the correspondwg and, most importantly, the possibility of oscillatory insta-
ing material. The parametebs; anda; depend on the cavity bilities on the steady-state branchés?
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FIG. 1. Reflected light power as a function of the incident power for a Ls

BOITAL cavity spaced with 20Qw:m of sunflower oil. ) . . o
FIG. 2. Time evolution of the reflected power for different incident powers

observed in a two-layer device spaced with 140 anduib of glass and
sunflower oil, respectively. The vertical scale in arbitrary units is the same

11l. DYNAMICAL PHENOMENA FOR SUCCESSIVELY for all the recordings. The lower signal is a transient indicating the occur-
INCREASING DIMENSION rence of a homoclinic bifurcation in between 35.5 and 35.6 mW. The inter-

ferometric foldings in the reflected power signals denote phase shift varia-

The BOITAL family enables us to analyze systems oftlons larger than 2 and have no dynamical significance.

successively increasing dimension for the gradual under-

standing of complex time evolutions. With this aim we begin ) e
by briefly describing known results fd=1, 2, and 3, and ated with the saddle limit set, and the nearer the attractor

then present experimental results f94 and 6, and nu- passes to the saddle the larger the number of fast oscillations.

merical simulations foN=6 and 10. In the third kind of dynamicgFig. 3(c)], the stable limit
Figure 1 shows the response of a BOITAL cavity spaceocyde bends by reinjecting toward the inner point from which
with a single material! It represents the reflected light it originated and which now is a saddle focus with outward

power when the incident power is slowly varied with SlJCCeS_spiraling. The reinjection bending is related to a distant and

sive back and forth sweepings. The device exhibits switching®'9€ saddle limit cycle and the fast reinjection peak denotes
jumps and the consequent hysteresis cycles associated wt e;characterlstlc time of that cycle. When the incident power
pairs of saddle-node bifurcations. The saddle solution in be!S inNcreéased, the attractor grows and the approach to the ex-

tween two stable branches plays in this case the simple rof¢"nal saddle cycle produces a higher number of successive
of a separatrix in a one-dimensional phase space.

The presence of a second material with opposite thermo-
optic effect within the cavity results in proper dynamical Pe=372 mW
phenomena of two-dimensional phase spatd#e bifurca- p / n / a
tion diagram is also formed by successive hysteresis cycles I e /\N“M @)
but, in addition, it contains oscillatory states that appear and D
disappear by means of a Hopf bifurcation occurring two 754 w Is
times on each node branch. Near the Hopf bifurcation the |
frequency is the same in all the branches but the oscillations; i HWM WV M 4‘ Wu w
may suffer the influence of a neighboring saddle point when \ | b i }
the limit cycle grows. As shown in the example of Fig. 2, the e
oscillation period strongly increases until the orbit makes 199.8 mw ls
tangency to the saddle and vanishes in a homoclinic bifurca-
tion, after which the system evolves toward the oscillatory
state emerging from the node point located at the other side /V Lﬂ}
of the saddle separatrix.
Figure 3 shows the three basic kinds of three- ls
dimensional dynamics observed in the response of BOITALFIG 3 Ti _ . .
.. 1218 . . . . 3. Time evolutions and reconstructed attractors showing the basic
cavities.“**The stable limit CyC|e born in the HOpf bifurca- kinds of three-dimensional dynamics observed in BOITAL cavitigsand
tion of a node point passes near a saddle limit set that noww) correspond to a two-layer device spaced with 140 and G#00f glass

may be either a saddle focus with inward spiralifey. 3(@)] and optical adhesive, respectively, but at different environment temperatures

. : : [25 °C for(a) and 18 °C for(b)]. The adhesive plays a twofold role respon-
or a saddle limit CyCle generated by a HOpf bifurcation 0fsible for the three-dimensional behavior of the two-layer deviceCorre-

that poin'F[Fig. 3b)]. In this way, the_ tim_e evolution of the sponds to a three-layer device spaced with 240, 35 um, and 1 mm of
attractor incorporates the faster oscillation frequency assoctlass, sunflower oil, and glass, respectively.
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P.=87.0 mW
pe=13.31 A
[ —
92.9 mW ls
R 1 e
a—
146.5 mW 1s
169.0 mW
"“W/ /\/\/V? mwmp/\/\wv WWW\/\FJVV
178.1 mW
W\/W\/W ’ W\MWWW - mmmmw WWW
178 2 mW
-‘v H‘U“”\”‘”‘” e Wi }‘\I‘\ﬁw i
FIG. 4. Phase space representation of numerical results illustrating the non-
linear mixing of the oscillation modes associated with the Hopf bifurcations
of a saddle-node pair of fixed points fbir=3. The calculations correspond T

to the dimensionless physical parametgrs-1,0.8,1, 7,=1,—-6.9,15.37,
kj=D;=1,0.1,1hg=hg=0.5,j=1,2,3, whose definition and relation to the F|G. 5. Time evolutions observed in the reflected power of a four-layer
coefficients of Eqs(1) are given in Ref. 14. The almost conical gray surface BOITAL device for different incident light powers. The signals show how
describes one side of the unstable manifold of the saddle limit cycle. Thehe two-frequency oscillation associated with an invariant torus is influenced
stable cycle has emerged from the node pointpr=13.10 and has grown by the attracting spiral of an external saddle focus.
without suffering any bifurcation up tag=13.36, but it has incorporated a
number of helical turns around the saddle unstable manifold.

this way, a complex attractor can develop together with a

large number of nonstable periodic orbits and all of them
peaks before each outward spiraling. Thus underlying thevill grow by transforming under the corkscrew effect up to
dynamics there are homoclinic connections associated witheing destroyed at the homoclinic bifurcation.
saddle limit sets arising from the original saddle and node Figure 5 illustrates an experimental example of full in-
fixed points and having two- and one-dimensional stablestability behavior folN=4. The sequence of time evolutions
manifolds, respectively. Under clear dominance of the firsfor different incident light powers was obtained with a four-
kind of homaoclinicity, the system evolution describeslayer device of {glass-silicone-glass-sunflower Joilwith
Shil'nikov-type attractord? while the other kind of homocli- thicknesses of 140, 35, 400, and 3@, respectively. The
nicity produces Rssler-type folded band$.In the parameter fast oscillations shown foPg=87 mW appeared through a
space, the variety of dynamics appears organized around tiseipercritical Hopf bifurcation of a stable fixed point. The
homoclinic cycle connecting the two kinds of saddle limit slow frequency modulation of the fast oscillations also ap-
sets. peared supercritically and it denotes the creation of a two-

Figure 4 presents numerical results illustrating how thetorus through a secondary Hopf bifurcation of the fast-

nonlinear mixing works in a Shil’nikov-type attractor fof  frequency limit cycle. The stable torus grows with the input
=3. The initial node point has produced the stable cycle angpower by approaching the external saddle focus and a
now is a saddle focus with outgoing spiraling, while the ini- Shil'nikov-type dynamics is generated. The spiraling focus
tial saddle point has generated a saddle limit cycle by beintroduces oscillations at the intermediate frequency and, just
coming fully unstable. One of the branches of the unstabléefore homoclinicity, the signal becomes aperiodic by show-
manifold of the saddle limit cycle approaches the attractingng a different number of such oscillations at the successive
cycle in a well-defined place. The spiral motion associategpassages near the saddle. The process ends with the attractor
with the stable manifold of the saddle cycle affects the flowdestruction in the homoclinic bifurcation and the system then
around the unstable manifold and works like a corkscrew orshifts to an oscillating state at the other side of the saddle
the stable limit cycle when it grows under the control param-separatrix, as evidenced by the transient signal for 178.2
eter variation. The helical motion of the attractor evolves inmW.
time according to the oscillations of the saddle periodic orbit  Figure 6 corresponds to a very similar device as in the
and mode mixing then occurs. The stable periodic orbit incase of Fig. 5 but with a thinner layer of silicone, 30 instead
corporates additional helical turns through a continuous deef 35 um. This system generates the same oscillation fre-
formation and, during the process, it can be involved inquencies but with the slower and faster oscillations appear-
period-doubling and cyclic saddle-node bifurcatiohdn ing in the reverse order. For higher incident powers not
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FIG. 6. Evolutions obtained with a four-layer device slightly different to
that of Fig. 5. In this case the slow and fast oscillations appear in reverse X3

order and the creation of an invariant torus does not seem likely. Interme-
diate frequency oscillations will appear also for higher incident powers. X time
2

FIG. 7. Numerical results foN=4 illustrating the nonlinear mode mixing
of the two oscillation modes emerging in successive Hopf bifurcations of the
shown in Fig. 6, the evolution incorporates the intermediat&ame fixed point, for a situation in which the torus bifurcation will happen

frequency of the external saddle focus and s|gna|s almogin the saddle orbit created at the second bifurcation. The black and white
equa| to those of Flg 5 are obtained. thlck lines describe the stable and saddle periodic orbits, respectively, and

e white cross denotes the fixed point. The unstable manifold of the saddle
By con5|der|ng the parameter space, it seems clear th% bit is represented by means of a number of trajectdRes. 24 depicted

the devices of Figs. 5 and 6 correspond to different sides ofi a thin black line(a), (b), and(c) are projections in the planes defined by
a codimension-two bifurcation of typer(iw,,*iwy), in different pairs of variables(d) presents the time evolution of the two
which the curves of two Hopf bifurcations of the same ﬁxedperlodlc orbits. The unstable manifold is three-dimensional, while the

. . stable manifold(not drawn is two-dimensional and does not work like a
point cross one another. The theory of universal ul'“c‘)ldﬁngsseparatrlx The numbers indicate certain places on the stable orbit, the
shows that secondary Hopf bifurcations of the limit cyclessame for the various representations. The label a denotes where a second
can also emerge from this e|genva|ue degeneracy and that, fyglical structure will appear by increasing the control parameter. The
first approximation, the two-frequency evolutions over theca'mﬂ""ltg’g;l"vggeo finzeozvgg 3rggd2é§;] ff(;[)ni 153) 458:n8di0 711035T8h22
torus are based on the HOpf frequenmes of the fixed po'mHopf bifurcations of the initially stable fixed point occurred fag=28.2
The presence of an invariant torus is clear in the case of Figvith angular frequency of 1.41, and==9.1 with frequency of 25, respec-
5 but not so in the case of Fig_ 6, where the fast oscillationgively, and the torus bifurcation of the saddle orbit will occur fag
emerge from nothing in two well-defined places of the slow-=10-3 with the secondary frequency equal to 1.38.
frequency limit cycle. Very similar time evolutions were nu-
merically obtained from modeld) or (3) and the continuous
following of the low-frequency limit cycle indicates that the parameter increase. The origin of this kind of mode mixing
localized packets of fast oscillations emerge without any lo-must be related to the influence of the flow dynamics of the
cal bifurcation. Thus a mechanism other than the torus bifursaddle orbit toward a well-defined place of the stable orbit. It
cation must be invoked in order to explain this kind of modeis worth remarking that a second structure of helical turns
mixing, and Fig. 7 presents numerical results illustrating it.always appears on the stable orfit the zone denoted by a
We are dealing with a four-dimensional phase space wherie Fig. 7) when the control parameter is increased, and the
an initially stable fixed point has done two successive Hoptwo structures usually connect together for higher control
bifurcations, and the saddle limit cycle created at the secondarameter values. This double structure can be appreciated in
bifurcation is now near to becoming stable by doing a subthe experimental results of Fig. 6 and it constitutes a general
critical torus bifurcatiorf® In this situation, i.e., when the feature also observed for higher dimensigsse the evolu-
torus bifurcation will occur on the saddle limit cycle rather tion for 66.3 mW in Fig. 8. On the other hand, in the case of
than on the stable one, the stable cycle exhibits a localizeHig. 7, there is no influence of the external saddle fixed point
structure of helical motion in which the time dynamics because it is very far from its Hopf bifurcation. Nevertheless,
evolves according the oscillations of the saddle limit cycle.in situations of full instability behavior, the attractor can ex-
In the case of Fig. 7 neither the stable orbit nor the saddldibit the superposition of differently oriented helical struc-
orbit have experienced any local bifurcatiband the helical tures associated with both the external and internal saddle
motion (with the associated time dynamjdsas appeared as limit sets. The time dynamics of the variabie typically
a gradual deformation of the stable orbit during the controlexhibits the influence of the internal saddle sets in the two
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lateral sides of the lowest-frequency undulations, while the
external saddle sets affect the top and the bottom.

Figure 8 presents really complex time evolutions that we
interpret as corresponding to a six-dimensional dynamics.
The recordings were obtained with a five-layer device of
{glass-silicone-glass-gel-gldswith thicknesses of 140, 35,
400, 180, and 300@m, respectively. The system was able to
exhibit five oscillation modes supposedly because the gel
layer introduced a double degree of freedom through the
thermal expansion and thermo-optical effects. The five char-
acteristic times determined when the oscillations appear
nearly sinusoidal are 310, 23, 2.2, 0.35, and 0.07 s. The
corresponding oscillation frequencies are denotedaby
with j from 1 to 5, and they are indicated in the figure by
means of the numbej. Notice that, in certain cases, the
emergence of fast oscillations in the middle of a slower un-
dulation may enlarge the corresponding characteristic time.

The signals for successive input light powers point out
how the waveform structures appear. In the case of Fig. 8,
the oscillations begin with a supercritical Hopf bifurcation at
w41 on the node point, but soon incorporate two additional
frequenciesws; and ws, in the two lateral structures appear-
ing on eachw; undulation(see detail for 66.3 mW The
relation of the new frequencies with the node point cannot be
verified in the experiment, but the analysis of the mathemati-
cal model shows that they emerge in successive Hopf bifur-
cations of this point by means of the corresponding saddle
limit cycles. The numerical simulations indicate that evolu-
tions like that for 66.3 mW appear without the occurrence of
torus bifurcations on the stable cycle. The three-frequency
waveform may be interpreted as tlag stable limit cycle
influenced by the out structures of either the pair of saddle
periodic orbits or, more probably, ang,ws) saddle torus
derived from one of these cycles. In other words, we conjec-
ture a situation similar to that of Fig. 7, but fbi=6, where
a saddle two-torus has appeared in the center of the stable
limit cycle and where the two-frequency motion of the
saddle torus is transferred to certain places of the attractor as
defined by the approach of the unstable manifold. In any
case, the oscillations aé,, w3, and ws seem clearly asso-
ciated with the node point and limit sets derived from it. The
approach of the three-frequency attractor to the saddle point
manifests first through the, oscillations appearing at the
top of thew; oscillations(105.8 mW. At higher powers the
-, oscillation mixes with the &3, ws) structure while some
w, oscillations also appe&it34.8 mW. The uniform ampli-
tude of thew,, w3, andws oscillations indicates the occur-
rence of the corresponding Hopf bifurcations, while the con-
vergence of thew, and w, oscillations suggests that the
saddle is even an attractive bifocus with a one-dimensional
unstable manifold. The 146.6 mW signal indicates that the
saddle point has already made the Hopf bifurcatiomw at
This is clearly denoted by the sporadic passages near the

FIG. 8. Experimental time evolutions showing the nonlinear combination ObefOCUS p(?lnt with convergence .a.14 and dlvergence ab,
five oscillation modes in the reflection of a BOITAL device with a five-layer (See detail for 146.6 myV In addition, the large number of
spacer. The system exhibits six-dimensional dynamics because one of thg, oscillations with uniform amplitude suggests the presence

layers introduces two degrees of freedom into the nonlinear feedback. Th
vertical and horizontal scales are common for all the signals, except for th
time expanded details. The numbers in italics denote the different oscillatio

modes ordered from low to high frequency.

6f the saddle limit cycle and the relative proximity of its

Elomoclinic connection. Homoclinic chaos may then be ex-

pected to occur in accordance with Shil'nikov’s theoréms
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FIG. 9. Five-frequency oscillations numerically obtained from E@.
for N=6; c,=4.33,7680,76 400,156 000,11 500,250 and,=4.33,
—766,4280 10 400,276; 16.7, withq from 1 to 6,%°=0, andug="76.

and, in fact, the waveform structure for 146.6 mW is not as
repetitive as for lower light powers. Nevertheless, chaos is
not the relevant thing in the signals of Fig. 8. What is re-
markable is the degree of complexity and the robustness of
these waveform structures and the presence of self-similarity
features with respect to the time scale.

7
Figure 9 shows a numerical simulation obtained from ‘ . -
system(3) for N=6 and other parameters given in the cap- WWMMM
tion. Thecy andd, values have been determined by impos-
ing the occurrence of three Hopf bifurcations on the node

point at ug=52.4, 58.2, and 58.3, with angular frequencies

equal to 0.02, 125, and 2.98, respectively, and two Hopf

bifurcations on the saddle point a=64.7 and 104.6, with 0.02

frequencies 0.25 and 24.9, respectively. The time eVOIUtlorI]ZIG 10. Numerical evolution foN=10 obtained from Eqs.3) by impos-

of Fig. 9 represents the reflected power for=76 and its ing five Hopf bifurcations on the node point with angular frequencies 0.002,

structure is really similar to that of the 134.8-mW signal of 0.2, 12, 350, and 6000, and four bifurcations on the saddle point with fre-

Fig. 8. The dimensionless characteristic times contained iguencies 0.02, 1.8, 70, and 1500. The waveform evolution shows the non-

the numerical evolution are 721, 25, 2.6, 0.26, and 0.05, anhpear combination of nine oscillation modes whose frequencies are similar
to the Hopf values.

the corresponding angular frequencies afe=0.009, 0.25,

2.4, 24, and 125j=1, ...,5,which must be compared to

the Hopf frequencies. The numerical simulations confirm

that the attractor evolves around an unstable fixed point that

has effectively performed three successive Hopf bifurcationso the Hopf instabilities of the saddle-node pair of fixed

at the imposedkg values and with the preselected oscillation points.

frequencies. The three Hopf frequencies of the node are simi- A wider perspective may be achieved by analyzing the

lar to thew, , wg, andw4 of the numerical evolution, respec- full instability behavior of higher-dimensional systems and,

tively. ws is precisely equal to the Hopf frequency and thewith this aim, we present a numerical example Ifor 10 in

slower values ofv; andws can be attributed to the presence Fig. 10. The dynamical system has been designed by impos-

of intermediate faster oscillations. On the other hand, théng five Hopf bifurcations on the node point and four bifur-

attractor visits the neighborhood of a saddle point that hasations on the saddle point. Faiz= 120, the node point is

performed one Hopf bifurcation and is even far from thefully unstable, while the saddle point has done only one bi-

second bifurcation. These Hopf frequencies are very similafurcation and is near to doing the other three bifurcations.

to the w, and w, of the time evolution. Thus the five fre- The time evolution shows the nonlinear mixing of nine os-

guencies contained in the numerical signal are clearly relatedillation modes. The odd label modes are associated with the
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P.=200 mW bifurcations of a fixed point is approached toward the turning
point of a saddle-node bifurcation.

A
—~
v

IV. DISCUSSION AND CONCLUSIONS

First of all let us remark that the BOITAL systems ex-
hibit the full instability behavior with two peculiar features:
(i) the various oscillation frequencies are rather different in-
asmuch as they appear roughly scaled for successive orders
of magnitude, andii) when ordered according to their val-
ues, the different frequencies appear alternatively associated
with either the node or the saddle point and the lowest fre-
quency always corresponds to the node. These peculiarities
occur becauséa) the characteristic times of a given system
are associated with the heat diffusion from the localized
source to the various layers of the cavity spacer, @dhe
dynamical variables participate in the nonlinear feedback
“ through a linear combination of them. For instance, numeri-
ﬁ‘ cal simulations with the same model but for nonphysical
parameter values yielding more similar oscillation frequen-
—_— cies indicate significant changes in the observed full instabil-
ity behaviors, and it is then important to stress that our dis-
‘\ ‘ cussion here is based on situations like those of the BOITAL
it H L s | .
W V . )\‘ ‘ W »\ i L | ‘\‘\ } ! /\ } /“ The irregular succession of undulations of different fre-
' \‘ | m‘ ! \/ ‘Vu‘ i ’W’u/ | ’W VV' ‘J\f quencies forming the full instability waveforms usually re-
peat with regularity and even periodically. This fact indicates
2 that the high degree of instability represents a way toward
. . I . _creating irregular and complex evolutions independent of
FIG. 11. Experimental example of a time evolution illustrating a six-
dimensional dynamics with a waveform structure based on five oscillation chaos. In fact, chaos was rarely found during our numerical
modes that looks very different to the signals of Figs. 8—10. simulations and the higher the number of oscillation modes
the more pronounced the absence of chaos. This is really
surprising because, according to our interpretation, the devel-
opment of the fully unstable behavior underlies a variety of
Hopf bifurcations of the node point and the even labels corsaddle connections and chaos would then be reasonably ex-
respond to the saddle point. Self-similarity is clearly seen irpected.
the successive zooms of Fig. 10 and it is worth noticing that  The waveform structures of the full instability behavior
the oscillations associated with either the node or the saddlere very robust in the sense that they change slowly with the
maintain their roles along the similarity scale. control parameter. In other words, the full instability behav-
Experiments and numerical simulations with differentior is a coarse phenomenon occurring continuously in the
multilayer structures indicate that the full instability behavior parameter space regions where several Hopf bifurcations of
of the BOITAL systems manifests most generically with the fixed points appear relatively close. This makes another
time evolutions like those of Figs. 8—10, where the oscilla-distinction with respect to chaos, and it explains why a
tion frequencies associated with either the node or the saddheethod exclusively based on the linear stability analysis of
fixed points clearly play different roles. Nevertheless, quali-the fixed points can be enough for designing fully unstable
tatively different complex waveforms can also be observed\-dimensional system$
for reduced parameter ranges. For instance, Fig. 11 shows an The nonlinear mechanisms responsible for the full insta-
example obtained with a five-layer device similar to that ofbility waveforms introduce irregularity by affecting both the
Fig. 8 but with a thinner layer of gel, 160 instead of 1@®.  relative phases and amplitudes of the oscillation modes in a
The signal contains five characteristic times of 550, 3.8, 0.7complex manner. At the same time, however, the similarity
0.25, and 0.1 s, respectively, and the nonlinear mixing profeatures typically found in the time evolutions indicate an
duces a rather irregular waveform where the roles of théntrinsic organization of the mode mixing mechanism around
different oscillation modes do not appear so clearly definedthe saddle-node pair of fixed points. The nonlinear mode
The numerical studies suggest the association of the obwixing may be considered as a global process affecting the
served nongeneric behaviors with the proximity of particularflow of the phase space region where the complex structure
eigenvalue degeneracies sustaining codimension-two bifulef interrelated invariant sets will be created. The process is
cations. For instance, the evolutions of Fig. 11 may be retriggered by the Hopf bifurcations of the fixed points, but it
lated with a degeneracy of type (0iw) because signals of is organized by the global structure of invariant manifolds of
this type are numerically obtained when one of the Hopfthe different saddle limit sets, which underlie a variety of
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possible homoclinic and heteroclinic connections. The modsponses. Such complex structures of fixed points can occur
mixing happens through a continuous deformation of thefor vector fields based on several linearly independent non-
flow in particular zones of the attractor and, although it maylinear functions, such as, for instance, the case of a set of
be accompanied by complex bifurcational sequences, onlgoupled nonlinear oscillators.
the bifurcations yielding invariant tori participate directly in Another question is which classes of systems are com-
the mode mixing. Other bifurcations involving periodic or- patible with the full unstable behavior and how can their
bits, like the period-doubling, cyclic saddle-node, and homo{parameters be adjusted to achieve that behavior. In principle,
clinic bifurcations, do not contain intrinsic mechanisms forthe situations of full instability could be identified by means
the definition of a new characteristic frequency and they canef the linear stability analysis of the steady-state solution.
not induce mode mixing. Nevertheless, in general, it is not easy to establish the corre-

The occurrence of torus bifurcations seems likely in thesponding conditions for a given multiparameter family of
fully unstable systems because these systems appear in tNedimensional systems and this probably explains why the
parameter space relatively close to the loci of eigenvaludull instability behavior has not already been observed. We
degeneracies of the typex{w;,*iw,,...,*iwg), in have showt that this analysis is feasible for systems based
which g Hopf bifurcations happen simultaneously on theon vector fields whose nonlinear part is a scalar-valued non-
same fixed point, and because it is reasonable to suspect tHiear function of a single variable that, in its turn, is a linear
a variety of torus bifurcations can emerge from each one og¢ombination of theN dynamic variables, i.e., systems in the
such degeneraciéd, The Landau sequence of consecutiveform (3) with an arbitrary nonlinear functioA(#). In this
bifurcations yielding a stable high-dimensional torus is incase, the linear stability analysis allows us to design the sys-
principle possible, but we suspect that the corresponding pde€m in order to obtailN—1 Hopf bifurcations on a saddle-
rameter space domain is rather restricted and probably verjode pair of fixed points with preselected values for the fre-
close to the corresponding high-order degeneracy. It seenfglency and control parameter.
more likely the occurrence of different low-dimensional tori ~ From the phenomenological point of view it is worth
created from the different limit cycles emerged from thenoting that we have found the full instability behavior in the
fixed point. On the other hand, a given limit cycle can per-BOITAL devices because they enable us to have a simple
haps generate successive two-tori with different secondargnd effective criterion for properly choosing the set of pa-
frequencies, like a fixed point can produce successive limifameters. In practice, we select the multilayer properties by
cycles, and the same might happen with the low-order tori. 1frYing to see if the alternatively opposite effects of the vari-
seems not possible, however, that different limit cycles genoUs layers tend to mutually compensate. In other words, we
erate simultaneously sequences of torus bifurcations with thattempt to achieve a relative equilibrium among the competi-
same set of frequencies. For instance Net 4, the universal tive participation of the various degrees of freedom into the
unfoldings of (xiw;,*iw;) show that only one of the two nonlinear mechani;ms. The rule is useful for both the gxperi-
limit cycles emerging from a node point can do the secondMent and the physical model based on the heat equation and
ary bifurcation at the frequency of the other cycle but not thellows us to derive proper sets of coefficients for the reduced
two cycles at oncd. N-order_model of Egs(1). _ - _ _

The important point for the full instability behavior is A high degree of Hopf instability behavior requires a
that the limit cycle that does not do the torus bifurcation carf@'9¢ number of variables participating into the nonlinear
also incorporate an oscillatory component at the other frefeedback by driving competitive effects of different charac-

quency through the mixing mechanism discussed above. An@ristic times. These ir_1trinsic features of the BOITAL dg—
the other important point is that not only one fixed point butVICeS may be present in other real-world systems, specially

a set of them, related by saddle-node bifurcations, can paffose with a profusion of self-oscillatory processes. The 0s-
ticipate together in the generation and mixing of oscillationCillatory behavior is perhaps the most typical response of the

modes. These elements constitute the generalized Land&yo!utionary systems found in biology, economy, ecology,
scenario where the full instability behavior develops. and sociology. Such oscillations have probably appeared in

The full instability behavior has been investigated in par-th€ course of the system development driven by the interac-

ticular classes of dynamical systems and it is then necessaf?n With the environment. Extending such a view, we can
agine adaptive systems developing toward exhibiting

to ask how general the phenomenon is. According to oul™

interpretation, we find reason to suspect that the occurrendd9h-instability states, and this would be in reality the case if
of the several Hopf bifurcations in a small enough paramete?UCh states would be useful for the existence of the system in

domain will be generically associated with the developmenth€ middle of its surroundings.

of nonlinear mechanisms of mode mixing. Nevertheless, the

complexity of the process and the time dynamics features
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