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Abstract Plants constitute an excellent ecosystem for
microorganisms. The environmental conditions offered
differ considerably between the highly variable aerial
plant part and the more stable root system. Microbes
interact with plant tissues and cells with different degrees
of dependence. The most interesting from the microbial
ecology point of view, however, are specific interactions
developed by plant-beneficial (either non-symbiotic or
symbiotic) and pathogenic microorganisms. Plants, like
humans and other animals, also become sick, but they
have evolved a sophisticated defense response against
microbes, based on a combination of constitutive and
inducible responses which can be localized or spread
throughout plant organs and tissues. The response is
mediated by several messenger molecules that activate
pathogen-responsive genes coding for enzymes or an-
timicrobial compounds, and produces less sophisticated
and specific compounds than immunoglobulins in ani-
mals. However, the response specifically detects intra-
cellularly a type of protein of the pathogen based on a
gene-for-gene interaction recognition system, triggering
a biochemical attack and programmed cell death. Sev-
eral implications for the management of plant diseases
are derived from knowledge of the basis of the specificity
of plant-bacteria interactions. New biotechnological
products are currently being developed based on stim-
ulation of the plant defense response, and on the use of
plant-beneficial bacteria for biological control of plant
diseases (biopesticides) and for plant growth promotion
(biofertilizers).
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Introduction

Microorganisms have developed several strategies to
adapt themselves to the plant environment, including
beneficial or detrimental interactions. Beneficial inter-
actions are caused by symbiotic or non-symbiotic bac-
teria and by a highly specialized type of fungi, the
mycorrhizae. The pathogenic or detrimental interac-
tions of microbes with plants involve viroids, viruses,
bacteria and fungi, and lead to infectious diseases af-
fecting only the plant kingdom. Losses in crop pro-
duction due to plant disease average 13% in the world
and severely limit production of food [2]. The 11,000
diseases that have been described in plants are caused
by 120 genera of fungi, 30 types of viruses, and eight
genera of bacteria (including two genera of mollicutes)
[2]. Thus, many plant diseases are caused by fungi, in
contrast to the situation in animals, in which fungal
diseases are less frequent. Since the normal state of
plants is to be healthy, development of disease requires
the coincidence of a susceptible host, a virulent patho-
gen, and a favorable environment. Also, suitable con-
ditions for disease development are less frequent than
one would expect because the pathogen population and
the host plant change during their life cycle according
to the stage of development (Fig. 1). These stages affect
the virulence in the pathogen and the susceptibility in
the host plant.

Disease is also strongly dependent on environmental
conditions, especially in pathogens that have an epiphytic
phase which is strongly dependent on water availability
on the plant surface [2]. Temperature and surface wet-
ness are environmental parameters that strongly affect
microbial epiphytic life, as they determine growth rate,
germination, taxis and other essential processes for
colonization of the plant surface. However, temperature
and wetness levels often exhibit strong changes, even
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within short day-night cycles (Fig. 2), thus limiting the
frequency of conditions suitable for the infection of
plant tissues. Disease spread among plants is also limited
by the fact that most plant-pathogen interactions are
highly specific and because plants defend themselves
from microbial attack. Due to the interest in basic
knowledge of plant disease and the economic impor-
tance of plant disease control with respect to crop pro-
duction, a vast amount of research has been dedicated to
understanding the basis of the specificity of plant-
pathogen interactions, how plants defend themselves

from infection by pathogens, and the role of plant-
beneficial bacteria in the control of plant pathogens.

Basis of the specificity of plant-bacteria interaction

The specificity of interaction between pathogens and
plant hosts is a general phenomenon. For many plant
pathogens, races and pathovars, which are groups of
host-range pathogens at the subspecies level, can be
recognized. Also, many races and pathovars of patho-
gens show specific host-range within cultivars of host
plants, an agronomic differentiation of plants of the
same species but differing in certain agricultural prop-
erties.

The genetic basis of this strong specificity is explained
by the gene-for-gene elicitor-receptor model [4,7]. This
model takes into account avirulence (avr) genes in the
pathogen which are homologous to the resistance (R)
genes in the host plant. A complementary combination
of avr and R genes results in an incompatible plant-
pathogen interaction (rejection) and triggers defense
mechanisms in the host cells. By contrast, a non-com-
plementary combination of avr and R genes (compati-
ble) results in infection (Fig. 3).

Many studies on the basis of specificity of plant-mi-
crobe interaction have made use of plant pathogenic
bacteria of the genera Pseudomonas, Erwinia and
Xanthomonas. A group of genes has been implicated
consisting of the hypersensitivity reaction (HR) and
pathogenicity (hrp) genes which control the capacity of
bacteria to develop HR in non-host plants. The tran-
scription of hrp genes is controlled by a contact-depen-
dent signal transduction cascade, comprising a type III

Fig. 1 Biological cycle of a typical plant pathogen that has an
epiphytic phase and a pathogenic phase

Fig. 2 Dynamics of plant tem-
perature, relative humidity, and
surface wetness in a pear tree
within a commercial orchard in
Girona, Spain, measured every
10 min over a period of 3 days.
A relative index of epiphytic
activity based on the coinci-
dence of warm temperatures
(>15 �C) and wetness
(>50 mV) is represented as
white horizontal bars in the
lower part of the figure
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secretion system which is homologous to and has com-
mon features with animal pathogenic bacteria such as
Yersinia, Shigella, Salmonella and Escherichia [16]. The
first confirmation of the role of hrp genes was provided
by the discovery of harpins, which are proteinaceous
elicitors of the HR, in Pseudomonas syringae and Erwi-
nia amylovora [23].

A second group of genes, the avirulence (avr) genes,
code for most of the virulence-associated proteins in-
troduced into the host cell by the type III secretion
system controlled by the HRP system, and trigger pro-
grammed plant defense responses such as HR [6].

Studies have also been carried out with Agrobacterium
tumefaciens, a member of the family Rhizobiaceae, that
causes tumors in several plants. A. tumefaciens has been
taken as a model for inter-kingdom genetic exchange in
plants because the ultimate cause of disease is
the transfer of a T-DNA region of the Ti plasmid to the
plant cell, its integration into the chromosomes, and the
expression of its encoded plant regulator genes [20].
T-DNA is cleaved from the Ti plasmid, and the resultant
single strands are coated with Vir proteins and secreted
to the host-plant cell by means of a type IV secretory
pathway. In fact, the plant parasite is a DNA-based
genetic element which multiplies synchronously with the
plant cell genome.

The genetic basis of the interaction has recently been
confirmed by the fact that the complete sequences of the
plant pathogenic bacteria Ralstonia solanacearum
GMI1000, Agrobacterium tumefaciens C58, and Xylella
fastidiosa are available, and sequencing is ongoing on
Burkholderia cepacia J2315, Clavibacter michiganensis

subsp. sepedonicum, Pseudomonas syringae pv. tomato
DC3000, Spiroplasma citri, and several pathovars of
Xanthomonas axonopodis (Table 1).

Defense response in plants

One of the most striking discoveries in plant pathology
was the observation that plants can recognize pathogens
[5, 6]. Each plant, either at the species or subspecies
level, has a range of pathogens to which it is susceptible,
and another to which it is resistant. Non-host plants of a
given pathogen group develop a type of blocking ne-
crosis against these pathogens when their tissues are
invaded, which is called the hypersensitivity reaction
(HR). An incompatible plant-pathogen reaction is
typically detected on leaves of tobacco plant when it is
inoculated with a bacteria that is pathogenic to non-
tobacco plants. The resultant HR contrasts with the
compatible reaction of a pathogen on its host plant,
which consists of infection and invasion of plant tissues
or organs, and often plant death (Fig. 4).

Plant defense mechanisms are characterized by a
combination of constitutive and inducible responses.
Constitutive responses consist of general barriers or
preexisting biochemical defenses. Inducible responses
can be localized or systemic and are more sophisticated
because they involve the recognition of the pathogen by
the host plant, signal transduction, and the expression of
several genes. In a localized response, plant tissues react
against pathogens by a type of programmed cell death
consisting essentially of electrolyte leakage from the

Fig. 3 Simplified schematic
representation of the elicitor-
receptor model in plant-bacte-
ria interactions. The virulence
genes and factors in the patho-
gen are confronted with the
defense genes and factors in the
plant host cell (left). Incompat-
ibility genes in the bacterial
pathogen encode avirulence
factors (avrX ) (center) which
are secreted by a type III se-
cretion system controlled by the
hrp genes (hrpX ) (right). The
avirulence factors are detected
by the resistance genes (resX )
or factors in the plant cell which
trigger the hypersensitive reac-
tion and defense
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cytoplasm and an oxidative burst. In systemic defense, a
signal spreads from the site of interaction as a response
to chemicals, microorganisms, insects, mechanical
damage or stress. The signal is mediated by several
molecules which function as messengers in plants, for
example, salicylic and jasmonic acid, or even volatiles
such as nitric oxide and ethylene [4]. These messengers
interact with specific binding proteins that are impli-
cated in the transcriptional activation of pathogenesis-
related (PR) genes in response to pathogen aggression.
The products of several of these genes are enzymes, e.g.
peroxidases, lipo-oxygenases, superoxide dismutases,
and phenylalanine-ammonia-lyase (PAL), involved in
the secondary metabolism of plants and specifically in

the synthesis of phenolic compounds, or are phytoalex-
ins, glucanases and chitinases, with antimicrobial activ-
ity.

The inducible defense response in plants produces a
limited variety of biochemical compounds with low
specificity for the target pathogen. However, the speci-
ficity of the response in plants lies in the fact that they
detect intracellularly specific types of proteins secreted
by the pathogen (elicitors), using an interaction recog-
nition system which triggers the defense response. There
is now experimental evidence that avr genes are present
in plant viruses, plant pathogenic bacteria, and plant
pathogenic fungi [6]. Also, the plant genome of a model
plant, Arabidopsis thaliana, has been sequenced and

Bacteria Genome size (kb) Institution or company Reference

Sequence complete
Ralstonia solanacearum GMI1000 5,810 GEN, INRA, CNRS [21]
Agrobacterium tumefaciens C58 4,915 CER, URI,MON,UWA, DUP, UCN [9,24]
Xylella fastidiosa CUC 2,679 ECO, JCO [22]
Sinorhizobium meliloti 1021 6,690 EUN, STU [8]
Mesorhizobium loti MAFF303099 7,596 KDI [12]
Sequence ongoing
Burkholderia cepacia J2315 7,600 SAC, CAU, EDU, GHU –
Clavibacter michiganensis subsp. sepedonicum 2,500 SAC, CSU, OSU –
Pseudomonas syringae pv. tomato DC3000 6,100 TIGR –
Spiroplasma citri – CWU –
Xanthomonas axonopodis pvs 5,000–5,500 FAD, USP, UCM –
Pseudomonas fluorescens Pf10–1 3,500 JGI –
Pseudomonas fluorescens SBW25 6,600 SAC, UOX, UB –
Bacillus subtilis 168 7,600 EUC, JAC –

Table 1 Genomes of plant-associated bacteria currently sequenced
and ongoing. Source: http://wit.integratedgenomics.com/GOLD/.
CAU Cardiff University, CER Cereon Genomics, CNRS Centre
National de la Recherche Scientifique, CSU Colorado State Uni-
versity, CWU Central Washington University, DUP Dupont, EDU
Edinburgh University, EUC European Consortium, EUN Euro-
pean Union, FAD Fadesp, GHU Ghent University, INRA Institut
National de la Recherche Agronomique, JAC Japanese Consor-

tium, JGI Joint Genome Institute, KDI Kasuza DNA Research
Institute, MON Monsanto, OSU Ohio State University, SAC The
Sanger Centre, STU Stanford University, TIGR The Institute for
Genomic Research, UBI University of Birmingham, UCM Uni-
versity of Campinas, UOXUniversity of Oxford, URIUniversity of
Richmond, USP University of Sao Paulo, UWA University of
Washington

Fig. 4 Reaction of plants to
bacterial pathogens. Upper
panel (left to right): infection
and compatible reaction of
Pseudomonas syringae on pear;
neutral reaction caused by in-
oculation of Pseudomonas fluo-
rescens, a non plant-pathogenic
bacterium, on pear. Lower panel
(left to right): incompatible or
hypersensitive reaction of
Pseudomonas syringae inoculat-
ed in geranium and tobacco
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sequencing of the genomes of an additional 30 plant
species of agricultural interest is currently ongoing.
About 30 plant genes are actually known to be involved
in resistance to plant pathogens, most encoding proteins
with leucine-rich repeats and which are highly conserved
among angiosperms [1].

New methods of plant protection based
on knowledge of plant-microbe interactions

Knowledge of the molecular basis of plant-microbe in-
teractions is now being applied to search for less ag-
gressive crop protection methods based on the use of
beneficial microorganisms and on stimulation of the
plant defense response. Bacteria can establish intimate
symbiotic associations with plants or live as epiphytes or
endophytes in a more subtle relationship with the plant.
The non-symbiotic, beneficial plant bacteria include
plant-growth-promoting rhizobacteria (PGPR) and bi-
ological control agents (BCA). Some of the bacteria
interacting with plants confer beneficial traits on the
host but are unable to invade tissues and infect. The
isolation of PGPR and BCA is a time consuming and
inefficient process which is dependent on efficient
screening methods. Very often it requires the analysis of
thousands of isolates, yielding only a few useful ones,
because not all isolates of a given species are active. For
this reason a strong research effort is needed in order to
find biochemical or molecular markers specifically as-
sociated with the best performance in beneficial bacteria.

PGPR are inhabitants of the rhizosphere, the volume
of soil under the immediate influence of the plant root
system. In the rhizosphere, secretion of organic com-
pounds by the plant favors a large, active microbial
population. Inoculation of plants with PGPR, mainly of
the genera Pseudomonas, Serratia Azospirillum and
Bacillus, enhances growth of the root system and the
whole plant, and often limits the growth of certain soil-
borne plant pathogens [13]. The mechanisms of plant
growth stimulation are strongly dependent on the bac-
teria and host plant. In some cases a relationship has
been found with the synthesis of plant-growth regulators
such as IAA, of siderophores which chelate iron, with
biological control of soil-borne plant pathogens or plant
deleterious microorganisms, or even with induction of
the systemic defense response. BCA are found either in
the aerial plant part or in the root system, which is
colonized by an extremely abundant microbiota (Fig. 5).
However, only a few of these microorganisms have been
identified, because many are intimately associated with
the plant and thus not easily cultivated in the laboratory.

BCAs are able to colonize or compete for nutrients
and sites of pathogen interaction with plants, as well as
to exert various types of antagonism against plant
pathogens. In some cases of antagonism, biocontrol has
been ascribed to the synthesis of antimicrobial com-
pounds such as bacteriocins and novel antibiotic com-
pounds [10] (Fig. 6). In other cases, BCA are able to

well-colonize pathogen entry sites, hyperparasitism or to
directly interfere with the pathogen. More rarely, BCA
induce systemic acquired resistance (SAR) in the plant

Fig. 5 Replica plating of a pear leaf onto the surface of a petri
plate containing nutrient agar, and development of colonies of the
culturable microbiota after incubation

Fig. 6 In vitro antagonism of several bacterial colonies of putative
beneficial bacteria against the plant pathogenic bacteria Pseudo-
monas syringae and Erwinia amylovora. Notice the inhibition halos
and the invasive growth in several strains
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by eliciting, to some degree, the HR response without
infection, or by causeing some kind of stress to the plant
[19]. Most of the BCA which provide an efficient pro-
tection of plants against infection by plant pathogenic
bacteria and fungi are non-pathogenic strains of the
species Pseudomonas, Erwinia (synonimous of Pantoea),
Agrobacterium and Bacillus [15, 18, http://www.inra.fr/
Internet/Produits/dpenv/sribad19.html, U.S. Depart-
ment of Agriculture]. Numerous strains of bacteria have
been isolated which yield excellent results in the labo-
ratory in vitro, ex vivo or even in planta under con-
trolled environment conditions. However, few of these
strains exert sufficient biological activity under the
conditions encountered in the field or the food envi-
ronment. The problem is often due to a low survival
level of the BCA or PGPR in the field, or the too high
concentration needed to exert activity. The practical use
of PGPR or BCA as microbial fertilizers or pesticides,
and their efficiency is strongly dose-dependent as with
chemical pesticides [17]. This introduces a technical
problem to be solved at a biotechnological level: the
development of proper methods of industrial scale-up
and fermentation , and the suitable formulation to be
delivered as a commercial biofertilizer or biopesticide
[3, 11].

An additional problem is the potential toxicological
risk and the environmental impact associated with the
introduction of BCA or PGPR into the food chain or
environment. Appropriate studies have to be done even
when BCA or PGPR have been isolated from the
healthy plant environment. Due to all these restrictions,
only a few products have arrived on the market. In-
oculants of the plant-root system using PGPR con-
sisting of formulations of Bacillus subtilis to increase
plant growth and performance are currently under
commercial development in several countries. Several
BCAs that have successfully been used as competitors
or antagonists of bacterial and fungal plant pathogens
are also being commercially delivered [http://www.in-
ra.fr/Internet/Produits/dpenv/sribad19.html], such as
formulations of Agrobacterium radiobacter strain K84
to prevent crown gall tumors, Pseudomonas fluorescens
against fire blight and frost damage, Pseudomonas
syringae for control of post-harvest fruit rot, Burk-
holderia cepacia, against fungal root rot, and Strepto-
myces griseoviridis for control of many soil-borne
fungal diseases.

A new generation of chemical compounds, produced
either by chemical synthesis or by biotechnological
processes, consists of molecules which do not exhibit in
vitro antimicrobial activity against the pathogens but
instead elicit plant defense responses. Several of these
compounds are currently on the market in some coun-
tries and include derivatives of acetylsalicylic acid, e.g.
benzotiadiazol (BTH) [1]. However, the most intriguing
example is the registration and commercialization of the
proteins encoded by the hrp genes from phytopathogenic
bacteria for use in crop protection and as a plant enh-
ancer. These proteins trigger several plant responses to

stress and their topical application has shown several
beneficial effects [23]. Finally, transgenic plants have
been produced with engineered genes encoding HR
elicitors, such as harpins, or which overexpress R genes
or PR proteins, such as chitinases. The transgenic plants
have an increased resistance to many plant pathogenic
bacteria and fungi.

In summary, the future of plant disease control,
currently provided mainly by chemically synthesized
fungicides and bactericides , will soon be complemented
or substituted by new disease-control technologies
emerging from the basic knowledge of plant-microbe
interactions, and consisting of new biotechnological
products

References

1. Agrawal AA, Tuzun S, Bent E (eds) (1999) Inducible plant
defenses against pathogens and herbivores. Biochemistry,
ecology and agriculture. American Phytopathological Society,
St. Paul, Minnesota

2. Agrios GN (1997) Plant pathology, 4th edn. Academic, New
York

3. Altman A (ed) (1998) Agricultural biotechnology. Dekker,
New York

4. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP
(1997) Signalling in plant-microbe interactions. Science
276:726–733

5. Chester K (1933) The problem of acquired physiological im-
munity in plants. Quart Rev Biol 8: 275–324

6. De Wit PJGM (1997) Pathogen avirulence and plant resistance:
a key role for recognition. Trends Plant Sci 2:452–458

7. Flor AH (1955) Host-parasite interactions in flax rust – its
genetics and other implications. Phytopathology 45:680–685

8. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F,
Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G,
Boutry M, Bowser L, Buhrmester J, Cadieu E, et al (2001) The
composite genome of the legume symbiont Sinorhizobium
meliloti. Science 293:668–672

9. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M,
Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C,
Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, et al
(2001) Genome sequence of the plant pathogen and biotech-
nology agent Agrobacterium tumefaciens C58. Science
294:2323–2328

10. Gutterson N (1990) Microbial fungicides. Crit Rev Biotechnol
10:69–91

11. Jones DG (ed) (1993) Exploitation of microorganisms. Chap-
man Hall, London

12. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T,
Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K,
Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M,
et al (2000) Complete genome structure of the nitrogen-fixing
symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

13. Kloepper JW (1991) Plant growth-promoting rhizobacteria as
biological control agents of soilborne diseases. In: The bio-
logical control of plant diseases. Bay-Petersen J (ed). FFTC
book series no. 42. Food and Fertilizer Technology Center,
Taipei, Taiwan

14. Kunkel BN (1996) A useful weed put to work: genetic analysis
of disease resistance in Arabidopsis thaliana. Trends Genet
12:63–69

15. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G,
Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S,
Borriss R, Boursier L, Brans A, Braun M, Brignell SC, et al
(1997) The complete genome of the gram-positive bacterium
Bacillus subtilis. Nature 390:249–256

174



16. Lindgren PB (1997) The role of hrp genes during plant-bacterial
interactions. Annu Rev Phytopathol 35:129–152

17. Montesinos E, Bonaterra A (1996) Dose-response models in
biological control of plant pathogens. An empirical verifica-
tion. Phytopathol 86:464–472

18. Pierson III LS, Ishimaru CA (2000) Genomics of plant-asso-
ciated bacteria: A glimpse of the future that has become.
APSnet August Feature Story. http://www.apsnet.org/online/
feature/Genomics/Top.html

19. Preston GM, Bertrand N, Rainey PB (2001) Type III secretion
in plant growth-promoting Pseudomonas fluorescens SBW25.
Mol Microbiol 41:999–1014

20. Ream W (1989) Agrobacterium tumefaciens and interkingdom
genetic exchange. Annu Rev Phytopathol 27:583–618

21. Salanoubat M, Genin S, Atiguenave F, Gouzy J, Mangenot S,
Arlat M, Nillault A, Brottier P, Camus JC, Cattolico L,
Chandler M, Choisne N, Claudel-Renard C, Cunnac S,

Demange N, et al (2002) Genome sequence of the plant
pathogen Ralstonia solanacearum. Nature 415:497–502

22. Simpson AJG, , Reinach FC, Arruda P, Abreu FA, Acencio M,
Alvarenga R., Alves LMC, Araya JE, Baia GS, Baptista CS,
Barros MH, Bonaccorsi ED, Bordin S, Bové JM, Birones
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