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Speed of reaction-transport processes
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We present an approach to determining the speed of wave-front solutions to reaction-transport proces
This method is more accurate than previous ones. This is explicitly shown for several cases of practic
interest:~i! the anomalous diffusion reaction,~ii ! reaction diffusion in an advective field, and~iii ! time-delayed
reaction diffusion. There is good agreement with the results of numerical simulations.
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Many natural phenomena, such as the propagation
combustion waves, solidification, superconducting fron
and the dispersal of biological populations, are driven by
interplay of transport and reactive processes. For the sak
clarity, let us begin with a specific example. Consider
equation

] tr5]xx~rm!1 f ~r!, ~1!

wherer is a time-dependent field~particle number density
temperature, etc.!, f (r) is a nonlinear function, andm>1.
The casem51 corresponds to Fickian diffusion, where
m.1 arises, e.g., from a density-dependent diffusion coe
cient or a temperature-dependent thermal conductivity.
first and second terms on the right-hand side~RHS! in Eq.
~1! are related, respectively, to the transport and source
cesses of mass, energy, or electric charge. Such equa
admit the so-called front solutions, which describe the sh
and evolution of the field from its unstable~initial! state to
the stable~final! state. This shape may correspond to t
population profile of a biological population, the temperatu
profile in a flame, etc. Usuallyr(x,t) is defined such tha
r50 andr51 correspond to the unstable and stable sta
respectively. In general it is not possible to find such so
tions explicitly in analytical form. However, a problem o
utmost importance is to determine their asymptotic veloc
at large times in order to compare this prediction to valu
from experiments where one measures the speed of prop
tion of biological populations@1#, combustion fronts@2#, etc.

Several methods exist for the analytical calculation of
speedc of front solutions to reaction-diffusion equation
such as Eq.~1!. Dee and Langer@3# proposed a linearization
approach, which works for simple equations withm51 and
f 8(0)Þ0. Paquette and co-workers@4# used a renormaliza
tion group~RG! method which allows us to find approxima
results for the speed when a perturbation in introduced. T
requires us to know the exact solution for the unperturb
equation, and works for small perturbations only. Bengu
and Depassier~BD! discovered an alternative approach@5#
which is based on a variational method. Their procedure
quires using trial functions which area priori unknown. By
judicious use of such trial functions, one may find accur
lower and upper bounds for the speed. Only if the lower a
upper bounds coincide can the value ofc be determined
without any uncertainty@6#. In practice, the problem arise
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that sometimes one is not able to find out suitable trial fu
tions such that the lower and upper bounds coincide@7#.
Then, the speed cannot be determined precisely.

We will here present a method that relies on some
proximations but agrees rather well to numerical simulatio
and improves the results obtained by means of previous
proaches in several relevant applications. It has the attrac
features that it is not necessary to know the exact solution
an unperturbed equation~in contrast to the RG approach! nor
is it necessary to usea priori unknown trial functions~in
contrast to the BD approach!. Our method is based on
modification to the BD approach. Again for the sake of cla
ity, we shall introduce it for some relevant examples so as
avoid using an abstract notation.

I. ANOMALOUS DIFFUSION REACTION

Consider first Eq.~1!. We look for solutions of the form
r5r(x2ct), wherec.0 is the speed of a front moving t
the right. Definingz5x2ct, Eq. ~1! becomes an ordinary
differential equation, namely,

~rm!zz1crz1 f ~r!50, ~2!

wheref (0)5 f (1)50 and lim
z→2`

r51, lim
z→`

r50. Ben-

guria and Depassier@5# have shown that the speedc follows
from a variational principle and is given by

c5max
g F 2

E
0

1
Amrm21f ghdr

E
0

1

gdr
G , ~3!

where g.0 is a function such thath[2dg/dr.0 @5,8#,
and it satisfies the equation

1

m
rm21f

g

p
5hp, ~4!

with p[2rm21rz . Since the front moves to the right an
r51 is the stable state, we havep.0.

The asymptotic speed of the front for sufficiently loca
ized initial conditions@9# may be determined in the limitt
→`. In this limit one hasr→1 for z→2`, and r is a
slowly varying function of z. Therefore one has (rm)zz
©2001 The American Physical Society05-1
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!rz, and from Eq. ~2! we have crz1 f (r).0 and p
.2rz. f (r)/c. This is an approximate relationship, so th
we may usep5 f (r)/a.0, wherea is a positive constant to
be determined and the trial functiong is, by virtue of Eq.~4!,

g~r!5expF2
a2

mE rm21

f ~r!
drG . ~5!

The maximum in Eq.~3! must be taken overa and the speed
may be calculated from

c.max
aPDS 2a

E
0

1

rm21gdr

E
0

1

gdr
D , ~6!

where D is the set of positive values ofa such that the
integrals in Eq.~6! exist.

As a simple illustration, consider the well-known Fish
equation ] tr5]xxr1r(12r). In this case c
.maxaPD(2a) wherea is such that*0

1gdr exists. From Eq.

~5!, taking m51 and f 5r(12r) one finds g5r2a2
(1

2r)a2
, thus the integral*0

1gdr exists ifa,1 @10#, so in this
case D5(0,1) and we recover the well-known resultc
.max0,a,1(2a)52, where the maximum is attained fora
51.

Now consider the casem.1. Then, Eq.~1! without the
last term corresponds to anomalous diffusion, which ari
from Tsallis statistics@11#. When the last term in Eq.~1!,
which corresponds to a source or reactive process, is
cluded, Eq.~1! is useful in genetics and population dynami
@12–14#, as well as in many combustion fronts@15–17#. The
exact speed of such fronts is known only for the casem
52 and a logistic growth function, namelyf 5r(12r), for
which r5(11ez/2)u(2z) with c51 @18#. In our approach,
we may recover this result but the explicit solution forr(z)
is not needed: from Eq.~5! one findsg5(12r)a2/2, thus
*0

1gdr5(11a2/2)21 and *0
1gr dr5(21a2/2)21(1

1a2/2)21. ThereforeD5(0,̀ ) and c.maxaP(0,̀ )@2a/(2
1a2/2)#51, where the maximum is attained fora52. For
other values ofm, the integrals involved in Eq.~6! must be
computed numerically. For instance, for the casem53/2 we
obtain from Eq. ~5! g5(12Ar)2a2/3(11Ar)22a2/3, the
maximum in Eq.~6! is attained fora51.6 andc.1.198. In
Fig. 1 we present our results for the speedc ~full line! and
compare them to those obtained previously by other meth
and the results of numerical simulations@19#. From Fig. 1 it
is seen that our method is extremely precise, and impro
the results of the RG@4,20# and BD @5,8# approaches. We
now turn to Fickian diffusion (m51) and show how our
approach may be used to obtain better results than th
derived previously.

II. REACTION DIFFUSION UNDER ADVECTION

In many physical and biological applications, one de
with a reacting species which has a mean speed in the l
01110
t

s

n-

ds

es

se

s
o-

ratory frame. In this context, equations of the following for
have been considered:

] tr1g~r!]xr5]xxr1 f ~r!, ~7!

where the second term, which contains the field gradient]xr,
is used to model the effect of convection@21#. Such terms
have been applied to the evolution of bacterial colonies
der convection@22# and to the transport of micro-organism
in ground water@23#. They have also been proposed in t
study of turbulent flames@24#, in combustion under convec
tive forcing @25#, etc. However, up to now very scarce an
lytical results have been derived. With the purpose of illu
trating the application of our method, let us consider
reaction-diffusion-advection equation of the form of Eq.~7!
which has been often dealt with in the literature@21,26,27#,

] tr1mr]xr5]xxr1 f ~r!, ~8!

for which Murray was able to derive a lower bound for th
propagation speed of wavefronts@21#. For logistic growth it
reads

c>H 2 if m,2,

2

m
1

m

2
if m>2.

~9!

On the other hand, recently an upper bound for the sa
fronts has been found by means of the BD approach@27#,

c<H 2 if m,2,

m if m>2.
~10!

Comparison of Eqs.~9! and ~10! shows that the wave
front speed can be predicted precisely only in the case
small advective effects (m,2). This may also be seen i
Fig. 2, where the prediction of the RG approach is a
shown@28#.

FIG. 1. Predictions for the speed of wave-front solutions to E
~1! for f (r)5r(12r), according to the RG approachc.127(m
22)/24, dashed curve, andc.@117(m22)/24#21, dotted curve
@4,20# and to our method presented here~full curve!. The dashed-
dotted curves are lower bounds predicted from the BD appro
@5,8#, and the black circles are the results of numerical simulatio
5-2
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Let us show that our method allows us to determine
speed without any ambiguity under arbitrarily strong adv
tion.

Introducingz5x2ct, Eq. ~8! becomes

rzz1~c2mr!rz1 f ~r!50. ~11!

Defining p52rz , we havep50 atr50,1. Then, multiply-
ing Eq. ~11! by g/r ~whereg.0 is any function such tha
dg/dr,0), and integrating with respect tor, we may apply
that integration by parts yields*0

1gdp5*0
1phdr, where h

[2dg/dr. Using Schwarz’s inequalityhp1 f g/p>2Af gh
@29# it is easy to find that@27#

c5max
g S 2

E
0

1
Af ghdr

E
0

1

gdr

1m

E
0

1

grdr

E
0

1

gdr
D ,

where the maximum is attained forg such that it satisfies
hp5 f g/p @30# or Af gh5 f g/p. Considering Eq.~11! in the
limit r→1 and proceeding as in the previous example,
see that we may again takep. f (r)/a. Thus

c.max
aPDS 2a1m

E
0

1

grdr

E
0

1

gdr
D ,

where g may be calculated from the differential equatio
dg/g52a2dr/ f which yields, after integration, g
5exp(2a2*dr/ f ). For the logistic growthf 5r(12r) one
finds g5r2a2

(12r)a2
and therefore c5max0,a,1@2a

1m(12a2)/2#52/m1m/2, which is attained fora5m/2,1,
that is, form.2. For m,2, however, the maximum occur
asa→1 and yieldsc52. Therefore we get an analytic resu
for the speed,

FIG. 2. Reaction diffusion under an advection field. Previous
only lower @21# and upper@27# bounds had been derived. Ou
method makes a precise prediction, which is in good agreem
with simulations.
01110
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e

c.H 2 if m,2

2

m
1

m

2
if m>2.

~12!

In Fig. 2, this result is seen to agree very well with tho
obtained by means of numerical simulations of Eq.~7! with
f 5r(12r). We note that this eliminates the ambiguity
the lower and upper bounds@Eqs. ~9! and ~10!# previously
derived by other methods@21,27#, and it also improves the
accuracy of the RG approach.

III. TIME-DELAYED REACTION DIFFUSION

Finally let us illustrate our method for a nonlogist
source function and higher-order time derivatives. In ma
applications such as population dynamics@1,31# and nerve
conduction@7#, the transport of mass, heat, or electric char
is time delayed and an equation of the following form aris

a] ttr1] tr5]xxr1 f ~r!1a f8~r!] tr. ~13!

An interesting source function isf 5rb(12r), which has
been applied in forest fire research@32,7# and microbiology
@33#. However, in this case only lower and upper bounds
the speed of front solutions to Eq.~13! have been determine
previously@7#. Let us show how our method makes it aga
possible to find an accurate value for the speed. In Ref.@7#
we have shown from the BD method@5# that the speed of the
fronts described by Eq.~13! satisfies the variational principle

c

A12ac2
5max

g F 2

E
0

1
Af ghdr

E
0

1

g~12a f8!dr
G ,

whereh[2dg/dr, f 8[d f /dr, andp[2rz , and the func-
tion g for which the parentheses in the RHS is maximu

,

nt
FIG. 3. Nonlinear reaction under time-delayed diffusion. T

upper and lower bounds@7# from the BD approach@5# are improved
by our method. In this way, the speed of wave fronts can be p
dicted precisely.
5-3
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satisfies (12ac2)hp5 f g/p. In the limit r→1 one has,
since rzz!rz as in previous cases,2c(12a f8)p1 f (r)
.0 and we takep5 f a21(12a f8)21. For the source func-
tion f 5rb(12r), in the limit r→1 one may approximate
f .r(12r) and, proceeding as in Secs. I and II, we find th
we may now usep.r(12r)a21(12a f8)21.

Finally, the speed may be determined from

c.max
aPDH 2a

E
0

1

grb21@12a f8#dr

E
0

1

g@12a f8#dr
J , ~14!

where g5exp$2a2*rb22(12r)21@12af8#2dr/(12ac2)%, f 8
5d f /dr5brb212(11b)rb, andD is the set of values for
a such that the integrals exist.

For illustration purposes, consider, e.g., the casea51/2.
We perform the integrals ing and Eq.~14! numerically, as in
Sec. I above, and in Fig. 3 we see that the new results a
with the direct simulations@7# of Eq. ~13! with f 5rb(1
2r). Whereas the RG approach cannot be applied since
ys

v.

.
d

-
-

01110
t

ee

no

exact solution for Eq.~13! is known fora50 and arbitraryb
or vice versa, the BD predictions are clearly improved also
this case.

Our approach relies on the BD variational principle, f
which we provide a specific trial functiong which leads to
very accurate results. We would like to stress that the u
fulness of the method here reported is not restricted to
condition on the source functionf (r) nor to specific differ-
ential operators in the reaction-transport equation. Figu
1–3 show that the method substantially improves the res
obtained previously from alternative approaches@3–5#. De-
tails and further applications will be presented elsewh
@34#.
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