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Speed of reaction-transport processes
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We present an approach to determining the speed of wave-front solutions to reaction-transport processes.
This method is more accurate than previous ones. This is explicitly shown for several cases of practical
interest:(i) the anomalous diffusion reactiofii,) reaction diffusion in an advective field, afid) time-delayed
reaction diffusion. There is good agreement with the results of numerical simulations.

DOI: 10.1103/PhysReVE.64.0111XX PACS numriber05.40—-a, 47.70-n, 87.10+e, 05.60.Cd

Many natural phenomena, such as the propagation dahat sometimes one is not able to find out suitable trial func-

combustion waves, solidification, superconducting frontstions such that the lower and upper bounds coindide

and the dispersal of biological populations, are driven by arThen, the speed cannot be determined precisely.

interplay of transport and reactive processes. For the sake of We will here present a method that relies on some ap-

clarity, let us begin with a specific example. Consider theproximations but agrees rather well to numerical simulations

equation and improves the results obtained by means of previous ap-
proaches in several relevant applications. It has the attractive

dp=dy(p™)+T(p), (1)  features that it is not necessary to know the exact solution for

an unperturbed equatidim contrast to the RG approachor

wherep is a time-dependent fieltharticle number density, IS it necessary to use priori unknown trial functions(in

temperature, etg. f(p) is a nonlinear function, anch=1.  contrast to the BD approaghOur method is based on a

The casem=1 corresponds to Fickian diffusion, whereas modification to the BD approach. Again for the sake of clar-

m>1 ariseS, e.g., from a density_dependent diffusion Coefﬁjty, we shall introduce it for some relevant examples SO as to

cient or a temperature-dependent thermal conductivity. Th@void using an abstract notation.

first and second terms on the right-hand sig¢1S) in Eq.

(1) are related, respectively, to the transport and source pro- I. ANOMALOUS DIFFUSION REACTION

cesses of mass, energy, or electric charge. Such equations . , .

admit the so-called front solutions, which describe the shape Consider first Eq(1). We et 'form

and evolution of the field from its unstabi@itial) state to p=p(x—ct), wherec>0 is the speed of a front moving to

the stable(final) state. This shape may correspond to thethe ”ght.' Def|n|n-gz=x—ct, Eq. (1) becomes an ordinary

population profile of a biological population, the temperatured'fferem"'jII equation, namely,

profile in a flame, etc. Usually(x,t) is defined such that (p™),,+Cp,+(p)=0, @)

p=0 andp=1 correspond to the unstable and stable states,

respectively. In general it is not possible to find such soluwheref(0)=f(1)=0andlim___p=1, lim___p=0.Ben-

tions e>§pI|C|tIy n analytlcal forr_n. Hovv_ever, a prqblem O.f uria and Depassi¢b] have shown that the speedollows

utmost importance is to determine their asymptotic velocr[y;J

. : ; S rom a variational principle and is given b
at large times in order to compare this prediction to values P P 9 y

from experiments where one measures the speed of propaga- 1
tion of biological population$l], combustion front$2], etc. f Vmp™tfghdp
Several methods exist for the analytical calculation of the c=max 2 0 3)
speedc of front solutions to reaction-diffusion equations, g fl d ’
such as Eq(1). Dee and Lang€r3] proposed a linearization 0 9dp

approach, which works for simple equations witl=1 and

f’(0)#0. Paquette and co-workef4] used a renormaliza- whereg>0 is a function such thah=—dg/dp>0 [5,8],
tion group(RG) method which allows us to find approximate and it satisfies the equation

results for the speed when a perturbation in introduced. This

requires us to know the exact solution for the unperturbed < m‘lfg—h 4
equation, and works for small perturbations only. Benguria mP p P, (4)
and Depassie(BD) discovered an alternative approad

which is based on a variational method. Their procedure rewith p=—p™"%p,. Since the front moves to the right and
quires using trial functions which awee priori unknown. By  p=1 is the stable state, we hape-0.

judicious use of such trial functions, one may find accurate The asymptotic speed of the front for sufficiently local-
lower and upper bounds for the speed. Only if the lower andzed initial conditions[9] may be determined in the limit
upper bounds coincide can the value ofbe determined —woo. In this limit one hasp—1 for z——o, andp is a
without any uncertainty6]. In practice, the problem arises slowly varying function ofz. Therefore one hasp("),,
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<p,, and from Eq.(2) we have cp,+f(p)=0 and p

=—p,~=f(p)/c. This is an approximate relationship, so that

we may usg=f(p)/a>0, wherea is a positive constant to
be determined and the trial functioris, by virtue of Eq.(4),

aZ pm*l
Q(P)ZGXF{ - Hf mdp
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m-14d T o
JOp gdp 04—
c=max 2a1— , (6) 1 2 3 4 5 6 7 8 9
aeD gdp m
0

FIG. 1. Predictions for the speed of wave-front solutions to Eq.
(2) for f(p)=p(1—p), according to the RG approact=1—7(m
—2)/24, dashed curve, amt=[1+7(m—2)/24]"1, dotted curve
[4,20] and to our method presented héfell curve). The dashed-
dotted curves are lower bounds predicted from the BD approach
[5,8], and the black circles are the results of numerical simulations.

where D is the set of positive values af such that the
integrals in Eq.(6) exist.

As a simple illustration, consider the well-known Fisher
equation dp=dyp+p(l—p). In this case c
=max,.p(2a) wherea is such thaﬁégdp exists. From Eq.
(5), taking m=1 and f=p(1—p) one findsg=p‘”‘2(1 :
—p)*°, thus the integraJ tgdp exists ifa<1[10], sointhis ~have been considered:
case D=(0,1) and we recover the well-known resudt _

! . . . op+ dyp=3dyp+T(p), 7
=maX.,-1(2a)=2, where the maximum is attained far 10+ 9(p)dxp=dxp+1(p) 0

=1. where the second term, which contains the field gradigmt
Now consider the cass>1. Then, Eq.(1) without the s used to model the effect of convectipl]. Such terms
last term corresponds to anomalous diffusion, which arisefave been applied to the evolution of bacterial colonies un-
from Tsallis statistic§11]. When the last term in Eq1),  der convectiorf22] and to the transport of micro-organisms
which corresponds to a source or reactive process, is ifn ground watef23]. They have also been proposed in the
cluded, Eq(1) is useful in genetics and population dynamics study of turbulent flamef24], in combustion under convec-
[12-14, as well as in many combustion frorits5—-17. The  tive forcing[25], etc. However, up to now very scarce ana-
exact speed of such fronts is known only for the case |ytical results have been derived. With the purpose of illus-
=2 and a logistic growth function, namefy=p(1—p), for  trating the application of our method, let us consider a
which p=(1+e”?) 6(—2z) with c=1 [18]. In our approach, reaction-diffusion-advection equation of the form of Ed)
we may recover this result but the explicit solution fdz) which has been often dealt with in the literatigd,26,27,

2
is not needed: from Eq5) one findsg=(1-p)*”?, thus
P dp+ updyp=dxp+1(p), (8)

fogdp=(1+a?2)"* and [igpdp=(2+a?2)"}(1
for which Murray was able to derive a lower bound for the

+a?/2)~t. ThereforeD=(022) and c=maX, ox)[2a/(2
+a?/2)]=1, where the maximum is attained fer=2. For  propagation speed of wavefrof&1]. For logistic growth it
reads

other values ofmn, the integrals involved in Eq6) must be
computed numerically. For instance, for the case 3/2 we

ratory frame. In this context, equations of the following form

obtain from Eq. (5) g=(1—p)223(1+ Jp) 2B, the 2 if u<2,
maximum in Eq.(6) is attained fore=1.6 andc=1.198. In c={2 u . (9)
Fig. 1 we present our results for the speefull line) and ;Jr > if u=2.

compare them to those obtained previously by other methods
and the results of numerical simulatiofi®]. From Fig. 1 it On the other hand, recently an upper bound for the same
is seen that our method is extremely precise, and improveonts has been found by means of the BD apprd@af,
the results of the RG4,20] and BD[5,8] approaches. We _
now turn to Fickian diffusion fi=1) and show how our 2 if u<2,
approach may be used to obtain better results than those C= if =2 (10
s n=2.
derived previously.

Comparison of Eqgs(9) and (10) shows that the wave-
front speed can be predicted precisely only in the case of
small advective effectsy(<2). This may also be seen in

In many physical and biological applications, one dealsFig. 2, where the prediction of the RG approach is also
with a reacting species which has a mean speed in the labghown[28].

II. REACTION DIFFUSION UNDER ADVECTION
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FIG. 2. Reaction diffusion under an advection field. Previously,

only lower [21] and upper[27] bounds had been derived. Our  F|G. 3. Nonlinear reaction under time-delayed diffusion. The
m_etho_d mal_<es a precise prediction, which is in good agreemenipper and lower boundd] from the BD approacf5] are improved
with simulations. by our method. In this way, the speed of wave fronts can be pre-

dicted precisely.
Let us show that our method allows us to determine the

speed without any ambiguity under arbitrarily strong advec- 2 if u<2
tion.
ing7—x — c=4 2 12
Introducingz=x—ct, Eq.(8) becomes el if u=2. (12
pzz+(C—pp)p,+f(p)=0. (11

In Fig. 2, this result is seen to agree very well with those
Definingp=—p,, we havep=0 atp=0,1. Then, multiply- obtained by means of numerical simulations of Ef.with
ing Eq. (11) by g/p (whereg>0 is any function such that f=p(1—p). We note that this eliminates the ambiguity of
dg/dp<0), and integrating with respect g we may apply the lower and upper bound&gs. (9) and (10)] previously
that integration by parts yield§sgdp=fgphdp, whereh  derived by other method®1,27, and it also improves the
=—dg/dp. Using Schwarz's inequalithp+fg/p=2.fgh  accuracy of the RG approach.
[29] it is easy to find thaf27]

ll. TIME-DELAYED REACTION DIFFUSION

1 1
J vfghdp J’ gpdp Finally let us illustrate our method for a nonlogistic
_ 0 0 source function and higher-order time derivatives. In many
c=max| 2 I S ey , S .
g q q applications such as population dynamjds31] and nerve
0 gdp 0 gdp conduction[7], the transport of mass, heat, or electric charge

is time delayed and an equation of the following form arises:
where the maximum is attained fgr such that it satisfies
hp=fg/p [30] or yfgh=fg/p. Considering Eq(11) in the
limit p—1 and proceeding as in the previous example, Wern, interesting source function i&=p#(1—p), which has

see that we may again take=f(p)/a. Thus been applied in forest fire researk32,7] and microbiology
[33]. However, in this case only lower and upper bounds for

adyp+ dp=dxp+f(p)+af'(p)dp. (13

flgpdp the speed of front solutions to E.3) have been determined

0 previously[7]. Let us show how our method makes it again

c=max Za+pu— ’ possible to find an accurate value for the speed. In R@f.
asp J'o gdp we have shown from the BD meth8] that the speed of the

fronts described by Eq13) satisfies the variational principle

where g may be calculated from the differential equation

1
dg/g=—a?dp/f which vyields, after integration, g f Vfghdp
=exp(— a?[dp/f). For the logistic growttf = p(1—p) one % a2
finds g=p *(1—p)®° and therefore c=max- ,.i[2a 1-ac> flg(l—af’)d '
+ u(1—a?)I2]=2/u+ nl2, which is attained forr= u/2<1, 0 P

that is, foru>2. For u<2, however, the maximum occurs
asa—1 and yieldc=2. Therefore we get an analytic result whereh=—dg/dp, f'=df/dp, andp=—p,, and the func-
for the speed, tion g for which the parentheses in the RHS is maximum
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satisfies (Fac®)hp=fg/p. In the limit p—1 one has, exact solution for Eq(13) is known fora=0 and arbitrary8
since p,,<p, as in previous cases;c(l—af’)p+f(p) or vice versa, the BD predictions are clearly improved also in
=0 and we takgp=fa (1—af’) L. For the source func- this case.
tion f=pP(1—p), in the limit p—1 one may approximate Our approach relies on the BD variational principle, for
f=p(1—p) and, proceeding as in Secs. | and II, we find thatwhich we provide a specific trial functiog which leads to
we may now us@=p(l—p)a (1—af’) L very accurate results. We would like to stress that the use-
Finally, the speed may be determined from fulness of the method here reported is not restricted to any
1 condition on the source functiof{p) nor to specific differ-
f gp? 1—af']dp ential operators in the reaction-transport equation. Figures
c=max{ 2a 0 - , 1-3 show that the method substantially improves the results
vl | or-atp

14
a4 obtained previously from alternative approach&s5|. De-

tails and further applications will be presented elsewhere
[34].
where g=exp{—d?[p? 4 (1—p) {1—af' Pdp/(1—acd)}, f’
=df/dp=BpP 1— (14 B)pP, andD is the set of values for

a such that the integrals exist.

For illustration purposes, consider, e.g., the casel/2. We are grateful to D. Jou for pointing out the relevance of
We perform the integrals ig and Eq.(14) numerically, as in anomalous diffusion. Computing equipment was funded in
Sec. | above, and in Fig. 3 we see that the new results agrgmart by the CICYT of the Ministry of Science and Technol-
with the direct simulationg7] of Eq. (13) with f=p#(1 ogy under Grant Nos. BFM2000-035%V¥.M. and J.F) and
—p). Whereas the RG approach cannot be applied since nldo. REN2000-1621 CL[J.F).
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