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Hyperbolic reaction-diffusion equations for a forest fire model

Vicenç Méndez and Josep E. Llebot
Grup de Fı´sica, Departament de Cie`ncies Ambientals, Facultat de Cie`ncies, Universitat de Girona,

Plaça Hospital 6, 17071 Girona, Catalonia, Spain
~Received 5 June 1997!

Forest fire models have been widely studied from the context of self-organized criticality and from the
ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have
interesting applications in biology and physics. We propose here a model for fire propagation in a forest by
using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are
analyzed in detail.@S1063-651X~97!02912-7#

PACS number~s!: 05.70.2a, 05.40.1j
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I. INTRODUCTION

An important problem of our society is the forest fir
Some important organizations, especially the USDA For
Service, have been researching this theme for some time@1#.
Their studies are based in very specific phenomena w
take place in the forest fire@2#.

On the other hand, recently several papers related w
percolation theory and self-organized criticality~SOC! @3#
are trying to provide a different dynamical model for the fi
spread. The basic problem of the SOC models is their h
adaptation to the real problem. A common assumption
them is the incorporation of the reforestation concept in th
restoration rules. This concept is a necessary condition
order for the system to reach self-organization. From
practical point of view this is not realistic because it is n
admissible that burned trees may become green trees a
same time that green trees are burning.

The model we present in this work is not so specific
those employed by the ecologists but is more realistic t
the SOC models, because our model may be applied in
time and the reforestation concept is not needed. Our aim
to propose a theoretical continuum-deterministic reacti
diffusion model in order to describe the dynamical evoluti
of the fire. Further generalizations of our model could
employed in realistic descriptions of the spread of fire bu
connection between the characteristic parameters of
model and the experimental data is not yet established
the moment we focus our attention on a simple model wh
will provide interesting information about dynamics an
nonequilibrium thermodynamics of the forest fire propag
tion.

II. THE MODEL

In this section we build up the reaction-diffusion mod
from three reasonable hypotheses which are introdu
gradually in order to analyze the effects of each one of th
We definen as the normalized number of burning trees,D as
the diffusion coefficient,t as the relaxation time or the dela
time in the appearance of the fire flux, andF as the reaction
term between green and burning trees. If we want to inv
tigate hown changes with time and position, the evolution
given by the hyperbolic reaction-diffusion equation
561063-651X/97/56~6!/6557~7!/$10.00
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]x2
1F~n!1t

]F~n!

]t
, ~1!

whereF(n)5r f (n) is the reaction term. This equation di
fers from the classical one in the term which includes
relaxation timet. This time describes the delay effect in th
appearance of the fire when the first trees begin to burn.
the other hand, this equation has the interesting property
it describes traveling fronts which are constrained to pro
gate with a finite velocity. This and other properties are
cently studied by Me´ndez and Camacho@4#. In fact, the
study of propagation of fronts for parabolic reactio
diffusion equations has a long history going back to t
works of Fisher @5# and Kolmogorov, Petrovsky, an
Piskunov~KPP! in the 1930’s@6#.

In practice, Eq.~1! is used to describe the evolution of th
system between two homogeneous steady states. In the f
fire model, both states are, as we shall see, the state c
sponding to the whole forest green (n50) and the state cor
responding to the whole forest burned (n51). Both states
may be connected by a traveling front with a speedv which
must fulfill some restrictions. These came initially from th
linearized theory~KPP method! but recently Benguria and
Depassier@7# proposed new restrictions by means of var
tional formulation~BD method, for short! useful when lin-
earization method does not hold. In order that Eq.~1! pre-
sents traveling fronts joiningn50 andn51 it is necessary
that @4#

cL
~ l ![

2Af 8~0!

11a f8~0!
<c< c̃[

1

Aa
~2!

with a[r t,1 andc is the dimensionless velocity define
by c5v/ArD . These bounds follow from the linearizatio
method~often called linear speed selection!. However, when
the linearization does not hold@for instance, whenf 8(0)
50#, it is necessary to resort to another method, such as
instance, the BD one~also called variational speed sele
tion!. From this method it follows that

c~BD![
I

AaI211
<c< c̃[

1

Aa
, ~3!
6557 © 1997 The American Physical Society
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where

I ~g!52

E
0

1
Af ghdN

E
0

1

g~12a f8!dN

, ~4!

h52g8.0 with g(N) an unknown auxiliary~trial! func-
tion. It is interesting to note that both speed selection me
ods predict the same maximum speed for the frontc̃
51/Aa. This is, in fact, the speed of the characteristics c
responding to the hyperbolic nonlinear PDE given by
adimensional form of Eq.~1!.

Our second assumption in this work is to construct
explicit form for the reaction term in Eq.~1!. This term may
be derived taking into account the interaction between
burning~denoted byB) and the green trees~denoted byG).
This interaction is described by the irreversible reaction

G1bB→r ~b11!B,

whereb (>1) quantifies the number of burning trees need
in order to set fire to a near green tree. This parameter
be related, in practice, with the distance between trees
the capacity of a green tree to be burnt. So, for greater va
of b it is expected that the speed of the fire front will b
smaller. The parameterr is the reaction constant, which i
inverse to the characteristic reaction time. So,a is the quo-
tient between the relaxation and reaction times. The reac
term is given as

F~nG!5rnGnB
b5rnB

b~12nB!, ~5!

wherenG1nB51 ~the total number of trees of the forest
constant and equal to the normalized value 1!, nG andnB the
number density of green and burning trees, respectively.

III. CONSTRAINTS FOR THE SPEED
OF THE FIRE FRONT

With these two assumptions we find our two-dimensio
~2D! reaction-diffusion equation. Introducing the new spat
and temporal variablesx * 5(x* ,y* )5Ar /Dx, t* 5rt and
a5r t, nB[n. Equation~1! together with Eq.~5! is written
as

a
]2n

]t2
1

]n

]t
5,2n1 f ~n!1a f8~n!

]n

]t
, ~6!

where f (n)5nb(12n) and f 8(n)5d f /dn. As we are inter-
ested in finding traveling fire fronts connecting two homog
neous steady statesn50 (nB50, nG51) andn51 (nB51,
nG50), we introduce the wave variablez5 k–x2vt, where
k5(k1 ,k2) is the wave number vector andv the frequency.
The phase speed of the fire front is assumed to be the s
that the speed of propagation of the interphase between
region wheren51 ~all trees are burned! and n50 ~all the
trees are green!. This speed is found to be

v5
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and we may write the speed in terms of the dimensionl
speedc[ucu as uvu5ucuArD . Defining z* 5zAr /D, we find
z* 5k* –x* 2at* , where

a5
v

r
A r

D
5cx

k1
21k2

2

k1
5cy

k1
21k2

2

k2
5ucuuku.

In terms of thez* variable we rewrite Eq.~6! as

bNzz1aNz@12a f8~N!#1 f ~N!50, ~7!

whereN(z* )5n(k–x2at) and b5uku22aa2 and we have
omitted all the asterisks for notational simplicity. Forb51
~logistic reaction! the linearization theory holds@4#. We find
that in this case it is possible to obtain fire fronts connect
n50 ~unstable state! to n51 ~stable state! evolving in time
if its velocity of propagation is restricted to

cL
~ l !5

2Af 8~0!

11a f8~0!
<ucu< c̃5

1

Aa
~8!

with a,1 andf 8(0)51. Forb51 linearization theory is no
longer valid and we must apply another method. We use
BD method as an alternative one. Applying this method
obtain

cL
~BD!5

I

AaI211
<ucu< c̃5

1

Aa
, ~9!

whereI (g) is given by Eq.~4!. Let us now to apply the las
method to a source termf (N)5Nb(12N). As the auxiliary
function g(N) must satisfyg8(N),0 we have, in principle,
a wide range ofg functions to choose. We apply the metho
for two specific forms ofg, also used by Benguria and De
passier. Taking

g1~N!5S 12N

N D n

~10!

one can perform the integrals

E
0

1
Af ghdN5Aa

G@1/21~b22n!/2#G~n11!

G~3/21b/2!

with n,(b11)/2,

E
0

1

g~N!dN5G~n11!G~12n!

with n,1, and finally

E
0

1

g~N! f 8~N!dN5n
G~n11!G~b2n!

G~b11!
.

So, from Eq.~4! one obtains

I 52An
G@~b22n11!/2#G~b11!

G@~b13!/2#

3
1

G~b11!G~12n!2anG~b2n!
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with n,1 andb.1. Taking now

g2~N!5E
N

1

f ~x!dx ~11!

one finds

E
0

1
Af ghdN5

2

3F E
0

1

f ~x!dxG3/2

,

E
0

1

g~N!dN5E
0

1

N f~N!dN,

E
0

1

g~N! f 8~N!dN5E
0

1

f ~N!2dN.

So, from Eq.~4! we find

I 5
4

3

F E
0

1

f ~N!dNG3/2

E
0

1

@N f~N!2a f~N!2#dN

.

Using the explicit form for the source term, we find aft
some algebra,

I 5
4

3

1

A~b11!~b12!

3
~2b13!~b13!~2b11!

~2b11!~b11!~2b13!2a~b12!~b13!
.

~12!

As I , and as a consequencecL
(BD) , depend onb we may

conclude that the minimum velocity necessary to make
existence of traveling wave fronts possible is constrained
the needed number of burning trees. In order to apprec
this effect we evaluatecL for b51 andb52 by using Eqs.
~9! and ~12! obtaining

cL
~BD!~b51!5

20

9

A6

522a

and

cL
~BD!~b52!5

70

9

A3

2124a
.

For anya one concludescL(b51).cL(b52) and the pos-
sible speed of the front may be lower forb.1 than forb
51, as is expected because a great number of needed
ing trees might decrease the speed of the fire propaga
Another interesting feature of the BD method is the ma
mum value forcL

(BD) . As I (g) takes different values for eac
trial function chosen thenI P@0,̀ ) and it is easy to show

c̃5 maxI P@0,̀ !S I

AaI211
D .
e
to
te

rn-
n.
-

IV. ADDITIONAL RESTRICTIONS
FOR THE FIRE FRONT

In this section we derive restrictions coming from th
shape of the fire front. These are considered as restriction
N0 in terms ofa and b. If the fire spreads as a monoton
plane wave front there must exist an inflection point. L
N0[N(x5y5t50)5N(z50) be the initial number of
burning trees which generates the spread of the fire. If
force z50 to be the inflection point, by rescaling the orig
of z, we obtain from Eq.~7!

aNz~z50!@12a f8~N0!#1 f ~N0!50. ~13!

Defining p52Nz , it is easy to see thatp.0 for 2`,z,
1` if the front is assumed, as in the literature, monoto
cally increasing withz, and p reaches its maximum valu
just for z50. So, from Eq.~13!

p<pmax5
f ~N0!

a@12a f8~N0!#
~14!

with

f 8~N0!,1/a. ~15!

On the other hand, introducingp in Eq. ~7! and integrating
we find

aE
0

1

p@12a f8~N!#dN5E
0

1

f ~N!dN. ~16!

From Eqs.~14! and~16! we write the first additional restric
tion as

E
0

1

f ~N!dN<
f ~N0!

12a f8~N0!
. ~17!

In terms of the source term, Eq.~17! becomes the first re
striction

N0
b~12N0!

12a@bN0
b212~b11!N0

b#
>

1

~b11!~b12!
~18!

with b.1 and 0,N0,1 and from Eq.~15! the second re-
striction is

bN0
b212~b11!N0

b,
1

a
. ~19!

These restrictions must be viewed as conditions onN0 in
order to have a monotonically increasing fire front in term
of the characteristics parametersa andb of the forest. Let us
now specialize Eqs.~18! and ~19! for b51. The second
restriction~19! is fulfilled if a,1. The first restriction~18!
leads us to

32a2Aa213

6
<N0<

32a1Aa213

6
.
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A sufficient condition in order for the first restriction to b
fulfilled for any a is 1/22A3/6<N0<2/3.

On the other hand, the steepness of the front ispmax, and,
therefore, the width of the frontL is the inverse of the steep
ness. So, we may define

L5
1

ukupmax
5c

12a f8~N0!

f ~N0!
. ~20!

For the classical case (a50), L5c/ f (N0) and takingN0
51/2 and the logistic source (b51) one recoversL54c for
the 1D model. In our case

L5
c

N0
b~12N0!

$12a@bN0
b212~b11!N0

b#%.

It is expected that for an increasing value ofb ~fixing a, c,
andN0 previously! the width be a monotonically increasin
function, so the spatial region of mixed states between 0
1 must increase with the needed burning trees. To guara
this behavior we impose thatdL/db.0. However, it is easy
to prove, after some algebra, that a sufficient condition foL
to be a monotonically increasing function withb is that a
,1 and 0,N0,1.

V. EXACT SOLUTIONS

We derive in this section exact solutions for the no
linear differential equation~7!. First of all we try to find
solutions for the logistic reaction. Following@8#, we assume
an initial valueN(z50)51/2 and a logistic reaction term o
the form

f ~N!5H N, 0<N<
1

2
,

12N,
1

2
<N<1,

with the conditionsN(z→2`)51 andN(z→1`)50. For
0<N< 1

2, f (N)5N and Eq.~7! is written as

b
d2N

dz2
1a

dN

dz
~12a!1N50,

which is linear and has a solution of the form

N~z!5A1em1z1A2em2z.
d
tee

-

In order to have a monotonically decreasing front withz it is
necessary that the characteristic valuesm6 are real, and this
is fulfilled for

ucu5
a

uku
.

2

11a

which is exactly the same restriction coming from the line
ization theory for the logistic case. On the other hand, b
values ofm6 are negative, that isN(z→1`)50 is fulfilled
if and only if a,1 and c,1/Aa. For 1

2 <N<1, f (N)51
2N and Eq.~7! is

b
d2N

dz2
1a

dN

dz
~11a!112N50

which has the solution

N~z!511B1en1z1B2en2z.

As N(z→2`)51 is fulfilled only for n6.0, it is necessary
that B250. On the other hand, it is necessary thatN(z50)
51/2 and this implies that

A11A25
1

2
,

B152
1

2
.

Only one constant remains to be determined. This is d
imposing that both curves must have the same slope, tha
(dN/dz)z50 must be equal for both solutions. This restri
tion becomes

A1m11A2m25
1

2
n1 .

Solving the set of equations for the integration constants
get

A15
Ac2~11a!22412c2Ac2~12a!214

4Ac2~11a!224
,

A25
Ac2~11a!22422c1Ac2~12a!214

4Ac2~11a!224

and the solution is written as
N~z!5H A1e
2c~12a!1Ac2~11a!224

2~12ac2!

z
k1A2e

2c~12a!2Ac2~11a!224

2~12ac2!

z
k, z.0,

12
1

2
e

2c~11a!1Ac2~12a!214

2~12ac2!

z
k, z,0.

~21!
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In Fig. 1 we plot fork51, c51.8, anda51/4 the solution
~21!.

Now, we may also find exact solutions when the fire fron
travels with the maximum speeducu51/Aa. In this situation,
Eq. ~7!

aNz@12a f8~N!#1 f ~N!50

submitted to the restrictionf 8(N),1/a, may be integrated to
yield

e~z2z0!/a5 f ~N!aexpS 2E dN

f ~N! D , ~22!

wherez0 is an integration constant to be determined from th
initial conditions. For our source term, Eq.~22! reduces to

z2z0

a
5 ln@Nab21~12N!a11#1 (

j 51

b21
1

~b2 j !Nb2 j
.

For the logistic source (b51) this solution leads us to

z5z01a ln@Na21~12N!a11#,

wherez052aa ln2 for N(z50)51/2. For b52 the corre-
sponding solution is

z5z01a ln@N2a21~12N!a11#1
a

N
.

Both cases may be depicted in Fig. 2. We can appreciate th
the width of the front forb52 is greater than forb51.
Only for b51 anda51/3 one can find an exact and invert-
ible solution such as

N~z!511
1

4
e3z/2a2

1

4
Ae3z/a18e3z/2a ~23!

with N051/2.

FIG. 1. Exact solution corresponding to Eq.~21! for k51, c
51.8, anda51/4.
t

e

at

VI. NONEQUILIBRIUM THERMODYNAMICS
OF THE FIRE FRONT

The steady statesn50,1 are thermodynamical equilib
rium states. So, the fire front joins both equilibrium stat
and this connection may be considered as a thermodynam
transport or a nonequilibrium process. In this sense we st
in this section the thermodynamical description of the fi
propagation. The extended irreversible thermodynamics@9#
provides a thermodynamical interpretation when the entr
density for the burning trees depends on the classical v
ables as well as the dissipative fluxes. The consequent G
equation is integrated to yield

s~b!5seq
~b!2

1

2T

f

n~b!
J–J,

where seq
(b) is the local-equilibrium entropy density,T the

temperature,J the burning tree flux,m a kind of chemical
potential, andf a parameter that will be identified late
Moreover we have from the Gibbs equation

S ]s~b!

]n~b!D
J

52
m

T

and

S ]s~b!

]J D
n~b!

52
fJ

n~b!T
.

From the particle balance equation forn(b)

]n~b!

]t
1¹•J5F~n~b!! ~24!

and the balance equation fors(b)

FIG. 2. Comparative plot between exact solutions forb51 and
b52 for a51/3, c5A3, k51/A3, andN051/2.
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6562 56VICENÇ MÉNDEZ AND JOSEP E. LLEBOT
]s~b!

]t
1¹•J~s!5s~b!,

whereJ(s)52mJ/T is the entropy flux ands (b) the entropy
production as usual. It follows that

s~b!52
J

T
•S ¹m1

f

n~b!

]J

]t D 2
mF

T
.

The physical volume element contains two subsystems.
one hand the burning trees—which are the foci of o
attention—and, on the other hand, the media where th
trees spread—which are the green trees. What must be
tive definite is the total entropy production, that is, the e
tropy production of the whole forests ( f )5s (b)1s (g). Thus
we have

s~ f !52
J

T
•S ¹m1

f

n~b!

]J

]t D 2
mF

T
1s~g!>0. ~25!

The entropy production of the forest may be split into tw
contributions: that concerning the diffusion process (s (diff) )
and that corresponding to the reaction process (s (re))

s~diff !52
J

T
•S ¹m1

f

n~b!

]J

]t D >0,

s~re!52
mF

T
1s~g!>0.

The first equation is fulfilled by requiring the linear relatio

2S ¹m1
f

n~b!

]J

]t D [AJ ~26!

with A a positive scalar quantity. We definet[f/An(b) and
D[(]m/]n(b))/A. So from Eq.~26! one finds the transpor
equation

t
]J

]t
1J52D¹n~b!. ~27!

From Eq.~27! and the balance equation for the burning tre
number density~24! one obtains Eq.~1!. Thus, we have
shown that extended irreversible thermodynamics~EIT! pro-
vides hyperbolic reaction-diffusion equations for the for
fire as well as the thermodynamics quantities of the conn
ing process.

Let us now analyze in detail the nonequilibrium therm
dynamics of the fire propagation. As is shown in@4#, sto-
chastic and EIT descriptions coincide for small fluxes.
order to calculate the chemical potentialm we use the sto-
chastic description and we expand up to second order iJ.
From the stochastic description for the entropy density@4#
we find

m

kBT
52

1

kB
S ]s~b!

]n~b!D
J

5n~b!S 11 ln
n~b!

2 D 2
J–J

2n~b!
.

n
r
se
si-
-

s

t
t-

-

Introducing the dimensionless entropy production and fl
s* 5s/kkB andJ* 5JAt/D, respectively, we may write the
entropy production of the burning trees as~omitting all the
asterisks!

s~b!5
J2

an~b!
2 f ~n~b!!Fn~b!S 11 ln

n~b!

2 D 2
J2

2n~b!G .

If we assume that the entropy production of the reaction
zero because the burning and green trees have the sam
tropy production but with different sign, the entropy of th
forest is positive definite and equal to

s~ f !5
J2

an~b!
. ~28!

Let us now compute the explicit solution for this entrop
production for a specific situation. First of all we must ca
culate the fluxJ. Starting from Eq.~27! and definingY(z)
[k–J we may rewrite Eq.~27! in dimensionless form as

dY

dz
2

1

aa
Y5Aa

dN

dz

and this may be integrated to yield

Y5AaN1
2

3Aa
e2pE Ne22pdp1Ce2p,

wherep53z/2a after integration by parts andC is an inte-
gration constant such thatY→0 whenp→6`. The entropy
production is given then by

S[uku2s~ f !5
Y2

aN
.

Using the explicit solution~23! we find

FIG. 3. Comparative plot between the exact solution~23! and
the corresponding solution for the entropy production of the fore



th
es
ui

re
ic
n
n
v
o
in
d
c

r of
,
t

o-
We
nd
t is
, in
d
as

io
nd

ant
u-
for
fes-

56 6563HYPERBOLIC REACTION-DIFFUSION EQUATIONS FOR . . .
Y~z!52
A3

12S e3z/2a1
1

6
e3z/aD

1
A3

36S 11
1

2
e3z/2aDAe3z/a18e3z/2a.

In Fig. 3 we plotS in front of p together withN. We observe
that the entropy production reaches significant values in
step of the front, so, the thermodynamical region of inter
is that of aroundz50 because it is there where the noneq
librium processes take place.

VII. CONCLUSIONS

A hyperbolic reaction-diffusion equation for the forest fi
propagation is studied as a model. To analyze the dynam
behavior of the fire front propagations, we use conventio
tools, such as linearization and BD methods in order to fi
information about the speed of the front. Moreover, we ha
derived two additional restrictions coming from the shape
the fire front. These are established as conditions on the
tial number of burning treesN0 which generates the sprea
of the fire front, in terms of characteristics of the forest su
asa andb. We also study the width of the frontL which is
a

e
t

-

al
al
d
e
f
i-

h

always an increasing function of the necessary numbe
burning treesb for the ignition of a neighboring green tree
if the front is stable (a,1). Exact solutions are found bu
these are expressed asN5N(z) only for the logistic reaction
term.

Nonequilibrium thermodynamics for the connecting pr
cess between two equilibrium states were also studied.
calculated explicitly the entropy production of the forest a
the burning trees flux. The entropy production of the fores
always positive and has two interesting properties: it has
addition to the burning tree flux, a solitionlike form an
reaches a maximum value just in the step of the front
expected.
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