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We show how certailN-dimensional dynamical systems are able to exploit the full instability capabilities of
their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on
the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different
oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which self-
similarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequen-
cies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form
structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a
single variable that is a linear combination of thNedynamical variables. In this case, the linear stability
analysis can be used to desilyrdimensional systems in which the fixed points of a saddle-node pair experi-
ence up tdN— 1 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring
in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize,
but they produce the nonlinear mixing of oscillation modes with relatively generic features.

PACS numbes): 05.45—-a, 42.65.Pc

[. INTRODUCTION simpler because it deals with systems of finite dimension

based on vector fields with a uniformly directed nonlinear

Complexity in nonlinear dynamics appears typically asso{art, i.e., N-dimensional vector fields containing a single
ciated with the irregularity of chaos. A dissipative systemscalar-valued nonlinear function. Nevertheless, while the
evolving in a chaotic state describes a recurrent motion basdefndau scenario develops from a single node point and a
on a few basic trajectories that, appearing somewhat differsingle sequence of torus bifurcations, we consider more than
ent at each turn, follow a definite sequence without apparern€ fixed point because the nonlinear mechanisms can mix
regular order and very sensitive to small changes of botfh€ oscillatory dynamics emerged from neighboring points.

variables and parametefs,2]. Usually, however, the basic And, on the other hand, we investigate situations where the

trajectories are of simple structure and involve a very |0Wf|xed points experience successive Hopf bifurcations and a

number of characteristic frequencies. variety of limit cycles emerge in phase space. Finally, in
A different picture was contained in the physical mecha-rela.t'(.)n to _the Landau prop_osal, a dynamical s_ystem canr_lot
p pny
nism tentatively proposed by Landau to explain the initiationex.h'b't arbitrary phase relat|0nsh|_ps between dlfferent_ oscil-
) i X lation modes, but the superposition takes place nonlinearly
of turbulence n fIU|d§[3]. The Process 1S _based On a S€-4nd the mode mixing processes may be responsible for rather
guence of oscillatory instabilities that, starting from the Sta’complex wave forms in the time dynamics.
tionary laminar flow, would produce quasiperiodic evolu- — £qr yector fields with a one-directional nonlinear part, the
tions of complex structure due to the large number Offyeq points appear aligned in an alternate sequence of
different characteristic frequencies. The role of the nonlin-ggqdle-node type and, typically, the observed dynamics is
earities in this analysis is just to stabilize the oscillatory mo-associated with an attractor arising from one of the nodes and
tion that emerges, from each instability, while the successivgrowing under the influence of the nearest saddle point. We
oscillation modes combine in a direct manner and with arbiwill show how certainN-dimensional systems of this type
trary relative phases. In light of the bifurcation theory of are able to exploit all the instability capabilities of a saddle-
dynamical systems, the Landau sequence may be interpretedde pair of fixed points by experiencing a total f- 1
as the Hopf bifurcation of a fixed point followed by second- Hopf bifurcations on then{5]. The points initially have
ary bifurcations generating invariant tori of successivelystable manifolds of dimensidd—1 andN, respectively, and
higher dimension. This sequence of bifurcations is not conafter theN—1 Hopf bifurcations one of them has become
sidered a route to chaos because small perturbations of tripfylly unstable while the other possesses only one stable di-
periodic flows on three-dimensional tori can already yieldmension. A variety of limit cycles have emerged from the
strange attractorf4], but it remains a way to incorporate points and some invariant tori could also have been created
additional degrees of freedom in the oscillation dynamics othrough secondary Hopf bifurcations of the cycles. The ma-
high-dimensional systems. jority of such limit sets are saddles, and a few number of
In this work we show the emergence of complex dynami-attractors[6] live in the middle of the intertwinement of
cal behavior through the nonlinear oscillatory superpositiorsaddle outstructures. The time evolution associated with one
of different characteristic frequencies generated by Hopf biof the attractors can manifest the influence of neighboring
furcations. In relation to the Landau scenario, our problem isaddles and, under such circumstances, the most prominent
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30+ RIS P under variation of a proper parameter. This happens for sys-

¥ *\ | tems based on a scalar-valued nonlinear function of a single
variable when that variable is a linear combination of the

2 dynamic variables and when the control parameter is a scale

Rl W Tl R factor on the nonlinear function. In this case it is possible to

0 || t design the dynamical systems in order to obtain the occur-
[ x12 200 rence ofN—1 Hopf bifurcations on a saddle-node pair of
M fixed points, with a prefixed set of values for the oscillation
frequencies and within a prefixed range of the control param-
4 eter. The numerical examples reported in the paper corre-
spond to this situation.
t In addition to the Hopf bifurcations of the fixed points,

Lf x 40 20 the full instability behavior requires mode mixing mecha-
nisms yielding the complex wave forms. In the case of non-
linear functions of a single variable that is a linear combina-
tion of the N dynamical variables, the mode mixing seems
strongly related to the Hopf bifurcations and, if the fixed
YRR points have done or are near to doing te 1 Hopf bifur-

' cations, the system then exhibits a signal of the type shown

FIG. 1. Time evolution illustrating the full instability behavior N Fig. 1. The secondary processes may be rather complex
of a six-dimensional system in which a saddle-node pair of fixed@Nd dependent on the circumstances, but they do not intro-
points have experienced two and three Hopf bifurcations, respedjuce additional characteristic frequencies, and the nonlinear
tively. Notice the presence of oscillations at five characteristic freAmode mixing produces time evolutions with qualitatively ge-
quenciesw, which, ordered from low to high, are identified in the neric features.
signal by the number. The nonlinear function is the Gaussian It is worth emphasizing that this work has been motivated
given by Eq.(Al), and the other parameters age =16, wyq by a family of physical systems, the so-called BOITAL de-
=0.1, 0.7, 4, 35, 250pyq=—0.7, 3, -1, 3.2, -2.2, andc;  vices[7], whose effective dynamical dimension can be easily
=600=2.4ws. varied and who are able to exhibit the full instability behav-

ior in a natural way. Experimental results obtained with

N-dimensional feature to be observed is the appearance SOITAL devices of up toN=6 will be reported elsewhere
N—1 oscillation modes nonlinearly combined in the time [8): @d some of the numerical examples reported here are

dynamics. This is what we call the full instability behavior of P2sed on the mathematical model developed for describing
the N-dimensional dynamical system, and Fig. 1 presents &Uch device$9,10].

numerical example of such a behavior fo=6. In this case,
the various Hopf bifurcations have generated really different
oscillation frequencies and the time signal shows a wave
form structure with clear distinction of tié—1 modes. This

figure is commented on in Sec. V, together with other nu- We consider systems based ®hkdimensional vector

merical simulations, and we now want only to remark onfields whose nonlinear part has a uniform direction across the

both the complexity and robustness of the wave form strucfyll phase space and that may be written as

ture. In this case, the signal is periodic, and it is therefore

evident that the wave form complexity is independent of

chaos. z=Az+bf(z;u), (1)
The first step for investigating the full instability behavior

is to dispose of systems able to exhaust the stable dimensions

of their fixed points through successive Hopf bifurcations.where z(t) represents the vector statgz,u) is a scalar-

The participation of all the dynamical variables within the valued function nonlinear op n describes the set of param-

nonlinearities clearly seems necessary, but the influence @ters involved in the nonlinear functioA is a constaniN

the nonlinear functional structure is difficult to predict. With X N matrix, andb is a constant vector defining the direction

this purpose in mind, we have developed a method of lineaof the nonlinear component of the field. A variety of well

stability analysis for studying the bifurcation possibilities of known low-dimensional dynamical systems are based on a

a set ofN-dimensional fixed points in as general a way assingle scalar-valued nonlinear function: the Duffidd] and

possible. The analysis is not performed in the parametevan der Pol[12] oscillators, the Lotka-Volterra modgl3],

space, where it may in fact be impossible, but we considethe Rmsler model[14], and the Chua circuit and oscillator

the space defined by the coefficients of the characteristigl5].

equation. Every point of that space can be associated with The equilibria of the systenil) appear in phase space

the corresponding set &f eigenvalues, and the linear stabil- located on a straight line determined Byandb. It suggests

ity analysis of a given system can be performed by locating coordinate transformation so that the line of fixed points is

its fixed points in the same space. The simplest and mosine of the new axes. Particularly useful is the transformation

manageable situation corresponds to systems whose fixed system(1) into the canonical form based on the compan-

points appear located on a straight line and move on that lineon matrix[16] as follows:

II. N-DIMENSIONAL SYSTEMS WITH A
ONE-DIRECTIONAL NONLINEAR VECTOR FIELD
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) N Ill. STEADY-STATE SOLUTION
X1= _le SRS SRR OR The steady-state solution of Ed8) and(4) is determined
@ b
X=X J=2e N X=0, j=1,...N-1, ©)
which, with the definitionxy=Yy, can be written in the clas- — _
sical form CNXN= G (XN 1), (7)
yN o yMN=Dp eyl y®+cny Wherg the overline d.enotes steady state values and
G(Xn;u)=0(Xjxn=0Xy;1). Thus the number of fixed
=f(y™ D, Ly, (3)  points and their positions on the, axis depend only on the

nonlinearities exclusively involvingy . For a linear combi-
where the superscripts denote the order of differentiatiomation of variables like that in Eq5b), the functionsg and
with respect to time. Notice that in this representation theG are equivalent and Eq47) may be written as follows:
nonlinear part of the vector field is directed along #eor
y(N~1 coordinate while the equilibrium points appear lo- — — ey
cated on thexy or y axis. ‘ﬂ:dNXN:?g(lﬂ)- ®)
We now introduce an explicit control parameter by as-

suming that the nonlinear function includes a scale factor aghis condition may be graphically analyzed, as shown in Fig.
follows: 2 for the nonlinear functions used in the numerical simula-
tions. These functions are described in Appendix A, and here
f(X1, oo XN ) = eO(X, - XN, (4)  we illustrate generic features of the steady-state solution rel-
evant for the method of linear stability analysis. In the left-
with u. supposed to be independent of thecoefficients. hand column of Fig. 2, each functioy(y) is represented
Although such a kind of parameter cannot be available in dogether with the straight ling()=(cyn/udn)¥. The in-
given application, it is really useful for analytic purposestersections of this line with the nonlinear function determine
because it simply modifies the relative weight of the nonlin-the solutionsy for the considered value of., and by
ear and linear components of the vector field without altering:nanging the line slope one obtains the steady state bifurca-
their structure. This property will allow us to consider the tjon diagram as a function gi. (middle column of Fig. 2
linear stability of the steady state bifurcation diagram as gor a bounded nonlinear function, a single solution exists for
function of u. without particular specifications about the , —  and additional solutions appear with increasjag
nonlinear function, other than the assumption that it is congyery time the straight line becomes tangent to the nonlinear
tinuous and differentiable. function. For a continuous function, the branching diagram

On the other hand, the full instability behavior probably a5 5 function ofu, appears continuously connected without
requires the nonlinear participation of all the dynamic vari-jgg|as.

ables and the simplest situation is that in which the nonlinear \ye will see in Sec. IV that the ratio between the slopes of
function affects a linear combination of thevariables. Thus  the nonlinear function and the straight line at their intersec-

we consider nonlinear functions of a single variable as folyjop js useful for characterizing the linear stability of the

lows: steady-state solution. The ratio of slopes is defined as the
value
— dyv [ag] ¥ [og
where p()=—u [—} =—=|—, 9)
on LAl gy LoVl
N
= X and the right-hand column of Fig. 2 presents the distribution
p=2 dX;. (5b) T Fig.
T of p values upon the branching diagrams. The branches rep-

resented by the solidashed line correspond tqp<1 (p

Notice that the coefficients; can be transported to the linear =1) and the zero eigenvalue bifurcations occur at the
part of the vector field by defining théx; as a new set of = 1 connections. _

variables. The roles of the linear and nonlinear parts of the If the control parameter is rescaledgqdy/cy [17], then
vector field appear well differentiated with this kind of func- it results that all of the systems based on a given nonlinear
tion. In addition, it permits one to adjust the relative partici- function g(¢), but having arbitrary dimensioN and arbi-
pation of the several variables to the feedback loop indeperifary values for the; andd; coefficients, are associated with
dently of the nonlinear function itself. The Lotka-Volterra the same steady state branching diagram descripingrsus
model[13], the Duffing[11] and van der PdI12] oscillators,  u.dy/cy. In addition, the distribution op values upon this
the Chua circuif15], and the BOITAL device$7] are sys- branching diagram is the same for all of these systems. This
tems with a nonlinear function of a single variable in theis a particularly useful situation for analyzing systems of
form (5b). gradually increasing dimension.
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FIG. 2. Nonlinear functions used in the numerical simulations, accompanied by the corresponding steady-state branching diagrams and
p-value distributions. The straight line represented over each nonlinear function is given ) Bqd their intersections determine the
steady-state solutions for a given, value.

IV. LINEAR STABILITY ANALYSIS (2), Egs.(10) identify the position of the fixed points in the
k; space and in this way we can know their stability. The

The Jacobian matrix of Eq2) is in the companion form, e . . ;
o ) - variation of a parameter moves the fixed points on certain
and the characteristic equation has then the coefficients di- . . . ! .
i . . curves and their intersections with the loci of nonhyperbolic
rectly given by the Jacobian elements. The coefficients asso-_. . . 4
; . . : : points denote the steady-state bifurcations. In particular, for
ciated with a given fixed point are

nonlinear functions with a control parameter ligg in Eq.

- of (4), the continuity of the steady-state solution connects the
ki)=cj—|=—| ., j=1,... N (10) motions of the several fixed points in a single curve, and this
X% permits one to associate the-parameter family of systems

o _ with that curve in thek; space.
The simplicity of these relations allows us to develop an The method is really useful for systems with a nonlinear

unconventional representation of the linear stability analysisfunction of a single variable in the forigsb) because in this
Instead of the parameter space, we consider the intermedia¢gse Eqs(10) may be written as

space defined by the coefficienks. Every point of this
space may be associated with the corresponding s&t of = a9 CN .

eigenvalues determined by the characteristic equation. This Ki($)=Cj— mc iy _dJ:CJ_padJ' J=1,... N,

is a universal representation describing the full variety of v (12)
linearizedN-dimensional fixed points, in which the nonhy-

perbolic points and eigenvalue degeneracies are easily lavith p given by Eg. (9). Thus the fixed points of a
cated. On the other hand, for systems in the canonical formu.-parameter family of systems move on the straight line
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passing for the point of coordinates;) with a director vec-  structures. This self-similar property works in accordance

tor determined by the set of coefficierds. Fordy andcy  with the invariance of the characteristic equation to time res-

#0, thep value of a fixed point determines its position on caling. The surface of a given type of nonhyperbolic points
the line and therefore determines its linear stability behaviorwill be denoted like the points, and it may be seen that
On the other hand, Eq10) for j=N, (i) {0™} is the linear subspace of dimensiNr- m defined

by

kn(#)=cn(1-p), (12 Kk 1= - —ky_rs1=0. 13

gives a useful relation between thg coordinates ang |

) . n particular,{ON} is the origin and{0} is the subspace of
v_alues of the flxgd points. Recall that the steady s'tate S.OludimensionN—l defined byky=0. The rest of the eigenval-
tion as a function ofu. always appears organized in

) o . o
branches with eithep<<1 or p>1 and with the branch con- Egsef%ratt?oenpgf'r;trsdgﬁ)_}ma?h%??;rg'Qegtigﬁgﬁcizfga\‘;;tehriﬁ
nections afp=1 (see Fig. 2 Equation(12) locates the two q | P

. G {0™M} is identical to that of the problem of dimensidh—m
kinds of branches on opposite sides of the subsjkgee0. but with the addition ofn zero eigenvalues.

T_he linear st_ability of t_he_steady—state solutio_n may be (i) {=iw} has dimensioN— 1 and is parametrically de-
easily characterized by usinminstead ofu for relating the termined as a function ab by either

branching bifurcation diagram with the straight line of jg

family of systems in thek; space. The most significamt Ke(i )N "2+ Kg(iw)N "4+ - - +ky_z(iw)?+ky_1=0,
values are those of the intersections between the line and the 143
surfaces of nonhyperbolic points. The intersection with the (i )N+Ko(i )N 724 -+ -+ ky_o(i0)2+ky=0

ky=0 subspace correspondsge-1 and describes the zero
eigenvalue bifurcations. The intersections with the locus off N is even, or
the\ - = *iw nonhyperbolic points denote the occurrence of

Hopf bifurcations and the corresponding sepofalues may Ke(i )N+ Kkg(i )N 3+ - - -+ ky_o(i @)%+ ky=0,
be used to locate these bifurcations on the branching dia- (14b)
gram. (| (,())Nil‘f' k2(| (l))N73+ S kN,3(i w)2+ kN,]_:O

In summary, the systems with a one-directional nonlinear
field of a single variable in the forrtbb) and a control pa- if Nis odd. _ _
rameter like that in Eq(4) have two peculiar features: The partition of thek; space is done bj0} and{*iw},
(i) The nonlinear functiong(y) determines both the the two surfaces of dimensioN(-1), and by their intercon-
steady-state branching diagram describings a function of ~ N€ction in {0% and {0,*iw}. {0} introduces two half

e and the distribution op values upon that diagram, inde- spacesky>0 and_kN<O, cont_aining regions where th.e num-
pendently ofN, ¢;, andd, . ber of unstable eigenvalues is even or odd, respectively. The

. . _ 2 . . .
(i) The coefficientsc; andd; determine the straight line surface{*iw} emerges witho=0 from {0°} and is divided

of Egs.(11) in the N-dimensionak; space. The position of by {0,%iw} in N—1 qualitatively different zones where it
this line with respect to the surfaces of nonhyperbolic pointss_eparat_es pairs of regions with a different .n_umber of unstable
delimits the linear stability behavior of the, family of sys- ~ dmensions, i.e., [@, 13, 24, etc. In addition, forN=4,
tems, independently aj(#). The fixed points appear to be {Ziw} intersects with itself and yieldstio;, *iw,, .. .}

located on the straight line according to their aciuahlues degeneracies.

: . Figure 3 shows the nonhyperbolic surfaces inkhepace
and can therefore be moved on that line by var or
9(v). v I y vaning for N=2 andN=3. The caséN=2 corresponds to the well

known two-dimensional linear system and the same struc-
ture, with an additional zero eigenvalue, is found in the plane
k;=0 of the caseN=3. In its turn, the cas&N=3 also
The points of thek; space can be classified according todescribes the eigenvalue structure of the subsgagefor
the number of eigenvalues with positive real parts, and thilN=4 if a zero eigenvalue is added everywhere.
meansN+ 1 classes of points having from 0 % unstable A more accessible view of the structure of nonhyperbolic
dimensions. Since the eigenvalues vary continuously, thsurfaces is obtained by considering planes of section of the
space appears organizedNin- 1 different regions delimited k; space like those shown in Figs. 4 and 5 fo+=3 andN
by the loci of nonhyperbolic points. The nonhyperbolic =4, respectively. The sections are drawn projected on the
points are of the type$0™}, {fiwq, ..., Ziwy}, or {0, planeky_1ky and the numbers denote the unstable dimen-
*iwq, ...,*ion_ .}, where 0" denotesn real eigenvalues sions in the different regions. The value ofon the surface
equal to 0 andt i w; denotes a complex conjugated pair with { =iw} in the plane of section is also shown. In Fig. 4, both
zero real part and arbitrary imaginary part. The locus of nonsections cut th¢0,0; degeneracy, but only the second plane
hyperbolic points of a given type is a surface of dimensioncontains the{0,*iw} degeneracy. The appearance of both
N—m, where the codimensiom is the number of indepen- degeneracies implies the presence of the full variety of re-
dent eigenvalues with zero real part in the nonhyperboligions forN=3. In fact, it may be shown that for an arbitrary
point. dimensionN, a plane can intersect up té—1 times with
The surfaces emerge from the codimendibpoint at the  both the{0} and{*iw} surfaces simultaneously, one time in
origin of thek; space, and their intersection with any hyper-the{0,0} subspace and the rest in f@*iw} surface. The
sphere enclosing that point produces qualitatively equivalerfull variety of fixed points and theN—1 different

A. Loci of nonhyperbolic points in the k; space
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FIG. 4. Surfaces of nonhyperbolic points in two different planes
of section of thek; space forN=3. Both planes are parallel tq
and cut the other axes with eithley andk,<0 or >0 in case(a) or
(b), respectively. The representations are done projected on the
planeky_,ky and the numerical labels denote the number of un-
stable dimensions in the different regions. The valuesobn the
surface{*iw} in the plane of section is also shown.

The eigenvector of the zero eigenvalue is directed along
the xy axis everywhere in the subspa¢é}. The two-
dimensional eigenspace of.==*iw depends on thew
value and is determined by the real vectors

FIG. 3. Loci of nonhyperbolic points in thig; space forN=2
and 3, respectively. Notice the partition M+ 1 regions with a

different number of unstable dimensions.

U, +u_ 6 4 2
. . . - - —:('--1_w ,O,w 101_w 5011)1
zones off =i w} appear in the plane of section if and only if 2

N—1 punctual intersections gD} with {+iw} also appear.
This is what happens in the two cases 4 of Fig. 5, U,—u_ s .

where the second case contains, in addition, {théw, — = (...,0%0,-0%0,0,0). (16)
*iw,} degeneracy.

For simplicity, the planes of section represented in Figs. 4
and 5 have been chosen to intersect the sufadev} in a
continuous way but, for an arbitrary orientation of the plane,
the intersection with that surface will probably present diver- k, 2 k,
gences. In any case, it is worth remarking that the surface of {*iw}
a given class of nonhyperbolic points is unique and continu- 4 100 4
ous in thek; space.

(a) (b)

*iw,*iw
{

(=
ey
<
—

! L0
B. Eigenvectors for a Jacobian matrix in the companion form {0.xiw} 3 {0,xiw} 3 ;\0,0} w

Unlike what happens with the eigenvalues, the organiza- ‘ Kk 0 k
tion of eigenvectors in thg; space is not universal because ’ ’
they depend on the actual Jacobian matrix. Nevertheless, the
companion form matrices have the peculiar property that the w w
eigenvectors depend only on the associated eigenvalue as
follows:

uy=(AN"TAN"Z N1, (15)

so that the full family of systems in forrf2) have the same 0 i 0 |

structure of eigenvectors in thie space. Notice that the 0 k, 0 k,
eigenspace associated with an eigenvalue is always one-

dimensional independently of its multiplicity. FIG. 5. The same as in Fig. 4 but for=4.
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The value ofw is equal to zero at the degenerd@f} and

increases indefinitely when moving away along the surface.

Therefore the orientation of the two-dimensional eigenspace

changes accordingly.

< P

< Pu
l < Doy

In the presence of nonlinearities, the transverse crossings \‘ 1 (0} < Pw

of the surfaceq0} and{=*iw} are usually associated with

the saddle-node and Hopf bifurcations, respectively, because

the corresponding conditions are generically fulfilled. In a

saddle-node bifurcation, a pair of fixed points approach the

subspacéy=0 from opposite sides, become the same non- ;

hyperbolic point and then disappeéor the opposite pro- ‘

cess$. The saddle-node name is used for convenience but it ; p

must be realized that the surfaf@} appears divided iN 0 c,

parts where the bifurcation involves different kinds of fixed k,

points that are usually a pair of saddles. On the other hand,

the crossing of{0} can also be associated with either the FIG. 6. Schematic example of the method for characterizing the

transcritical or the pitchfork bifurcation, provided the properlinear stability of five-dimensional systems in the space. The

conditions are fulfilled, and a different set of fixed points areStraight line describes where the fixed points of thefamilies of
involved in each case. systems in the form?2), (4), and (5) may be for a given set of

In the crossing of =iw!, a limit cycle would probably coefficientsc; andd; but for an arbitrary functiom(). The right-

emerge around the fixed point. Outside of the center suiﬁand vertical scale describes thevalue of the fixed points and

space, the limit cycle will maintain the same stability prop- offers a convenient connection with the steady-state branching dia-

erties as the fixed point. This means that a supercritical H0pﬁ]r;r:ét;rrzﬁeln;sgs;«ie;telogtza\fg;rjsttg?es;;;a:gz:o%fsnonhyperbollc points

bifurcation occurring between the regions with zero and two
unstable dimensions will produce a stable limit cycle, and

C. Fixed points of nonlinear systems in thek; space

3 <« Pus

%however, the full instability of the fixed points will be

suberitical bifurf:ation_ betwejen.the regions withand (N ._achieved if they reach the regions of highest instability by
—2) unstable dimensions will yield an unstable cycle, but 'ncrossing the surfack*iw} properly

any other case a kind of saddle cycle will be created. The
limit cycles will appear properly oriented in phase space ac-
cording to the corresponding center subspaces that, in the
case of systems in the canonical foii@), depend on the The situations of full instability can, in principle, be iden-
oscillation frequency as expressed by E{®). tified by means of the linear stability analysis of the steady-

Let us illustrate the method by considering the situationstate solution. Nevertheless, in general, it is not easy to es-
schematically depicted in Fig. 6 for five-dimensional systemdablish the corresponding conditions for a given system, and
in the form(2), (4), and(5). The straight line corresponds to this probably explains why such a behavior has not already
a given set ofc; andd; parameters and, in this example, it been observed. The analysis seems really attainable for sys-
crosses all the regions containing points with a differentems in the form2), (4), and(5) because, in this case, it can
number of unstable dimensions. The crossing withbe divided into two independent problems: one concerning
{O}indicates that any\ =0 bifurcation will involve fixed the position and orientation of the straight line with respect
points with zero and one unstable dimensions. The crossings the surfacd =iw}, and another dealing with the capabili-
with {+iw} indicate that the fixed points with zef@ne  ties of the nonlinear function in producing a steady-state
unstable dimensions can suffer successive Hopf bifurcationsranching diagram with a distribution @f values covering
up to four (five) unstable dimensions and, therefore, it de-the py values of the Hopf bifurcations. The latter is easily
notes the possibility of achieving the full instability behavior. solved by adjustingy(y) properly, but the former is more
The nonlinear functiomgy(¢) determines the number of fixed involved.
points and their positions on the line as a functionugf. From Eqgs.(14), it may be seen that the maximum number
The full instability will be achieved if fixed points of the two of intersections between the straight line dnd w} is equal
types, i.e., withp<1 andp>1, move enough along the line. to N—1. The full instability behavior can be achieved if
This may be easily known by comparing the distributiompof these intersections occur with tiNe—1 qualitatively differ-
values on the steady-state branching diagram with the valuemnt zones of +iw}, otherwise two of the intersections will
Pu1, - - - ,Pua Of the possible Hopf bifurcations, as indicated correspond to the same Hopf bifurcation but in a contrary
by arrows in Fig. 6. direction, and the line will not cross the+ 1 regions of the

For systems in the forn2) and(4) but with a more gen-  k; space. This condition cannot be established in a formal
eral nonlinear function than E¢5), the fixed points of a«, ~ way, and the problem must be indirectly considered, as dis-
family will move on a single curve, but now this curve is not cussed in Appendix B. Particularly useful is a method for
straight and can cross the nonhyperbolic surfaces in an arbélesigning the dynamical system, i.e., for determining the co-
trary manner. A more complex motion of fixed points canefficientsc; andd;, in order to achieve thél—1 Hopf bi-
occur by varying parameters other than. In any case, furcations with preselected frequencies amdvalues.

D. Conditions for the full instability
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V. TIME EVOLUTIONS SHOWING Nc=61-79 /
THE FULL INSTABILITY BEHAVIOR 42.4 Lo
We will now illustrate some features of the full instability ll{tzsw
behavior when observed in the time evolution of systems in 500
the form(2), (4), and(5) for a variety of nonlinear functions
g(4), dynamical dimensions\, and sets of coefficients; Hc=62.009 x15 42'7} 4+

andd;. In each case, the system parametgrandd; have 1IJ43W3 42.66 Lt
been defined by preselecting tag, and py values of the . g 10

N—1 Hopf bifurcations and the value of;, as described in t
Appendix B. The employed nonlinear functions and corre- 500 W[\I\IWUWWWV\AMMJ\W
sponding steady-state branching diagrams as a function of t
ne, as well as the distribution g values, are presented in 0.5
Appendix A. 46 =62

The illustration is done by means of Fig. 1 and the figures
of this section. The captions indicate the corresponding non- llj
linear function and the values af;, wyq, andpyq. The
evolution signals always describe the varialfleas a func- 40 % —t
tion of time for fixed values oju. and in general contain a 3 x60 00

variety of oscillation modes at angular frequencieg,

which, ordered from lower to higher, are identified on the W

signals by means of the labgl ¢
We first consider the example of Fig. 1 corresponding to a e

six-dimensional system with a Gaussian nonlinear function, 44 =70

Eq.(Al). The diagrams of Fig.(2) show that foru.= 16 the 2

system has three fixed points with=1.6, 6.6, 12.1 ang
=0.02, 3.4,—4.3, respectively. The first point remains far
from the observed dynamics. The two later points have ap-
peared aj.= 9.5 through a saddle-node bifurcation produc- T
ing a stable node and a saddle with one unstable dimension.

At u.=16, the node has already become fully unstable after 46 190

doing successive Hopf bifurcations with frequencies, , 2
wy3, andwyys at the values oft, making itsp value equal to IIJ

Pu1s Pu3, @ndpys, respectively. The first bifurcation, in this

case atwyq, has produced the stable limit cycle from which

the attractor sustaining the time evolution of Fig. 1 is de- 40 t
rived. On its turn, the saddle point has also made the two g

Hopf bifurcations, atwy, andwy,, and foru.= 16 has only 4 X
one stable dimension. There is a clear relation between the

five characteristic times appearing in the evolution signal and

the Hopf frequenciesq of the two fixed points. The char- s 3
acteristic times associated with the node point, especially L t

that of w4, appear larger than the corresponding Hopf fre- 5

guencies due to the presence of intermediate oscillations at FIG. 7. Sequence of time evolutions for successivevalues

the saddle frequencies. After a transient of a few tens.of showing how the wave form structures of the full instability behav-

oscillations, during which the wave form structure presents emerge. The nonlinear function is given by EA2) and the

very small changes, the signal looks periodic by repeatm%arameters aren,=0.02, 0.2, 2, 20, 125,,= — 12, 33,— 18, 40
the complex sequence of oscillations within the period oo e T e e NN

27l w,. The Lyapunov exponentin bits per unit timé have — 17, andc, =2wys. From the top to the bottom, th¢ and P
been calculated18] and found equal to-0.002, —0.015,  values of the involved fixed points afe) y=42.34,p=—12.002;
—0.225,-4.16, —17.31, — 18.13. (b) and (c) l’/j:42'35; p=-12.19; (d) _$:45.4, p=16.3; ¢
Figure 7 presents a series of time evolutions for different=42.7, p=—19.0;(¢) y=44.9,p=32.2; y=43.1,p=—33.1.
# values to show how the different oscillation modes ap-gq, it thepyq indicates the occurrence of the Hopf bifur-
pear on the wave form signal. The evolutions correspond to @,tions.
six-dimensional system with the positive-defined sinusoidal  The oscillations begin with a supercritical bifurcation of
function given by Eq.(A2) and characterized in Fig.(®.  frequencyw,, occurring on the node point just below,
The steady-state diagram contains successd&haped =61.79, but foru.=62.0085 a minute component of fast
branches and the reported evolutions are associated withgxcillations appears from nothing in a certain place of the
pair of fixed points of a high-order branch. Thevalues of  slow undulationgsee the signal fo..=62.009). The fast
the fixed points are given in the caption, and their comparifrequency is precisely equal s, and the continuous fol-
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lowing of the stable orbit indicates that the appearance of
such oscillations is not related to any local bifurcation. When

the control parameter is increased, the localized structure of
fast oscillations loses repetitivity and the orbit continuation o >
breaks down atu.=62.0097. After this point the system

43.85

evolves toward a bigger attractor that in fact coexists with 4 )
the previous orbit for a range of the control parameter begin- ll’

ning at u.=61.95(see the signal fox.=62). The big at- 375 ¢

tractor also contains a localized structure but with two char- 44 04
acteristic frequenciesws equal to wys and w; somewhat t ’

slower thanwys. The Hopf bifurcations aw,s and wys T

occur on the node point fou,=67.56 and 68.76, respec-
tively. The two bifurcations occur close enough so that the
occurrence of ad;,ws) torus is likely. This suggest that the
three-frequency wave form observed jof= 62 may be ten-
tatively interpreted as the, stable orbit influenced by the
flow associated with the invariant manifolds of as(, ws)
saddle torus. The possibility of an orbit on a stable three
torus cannot be excluded, but there is no evidence for it.
The signal foru,=70 shows the ¢3,ws) structure di-
vided in two parts and denotes the approach of the attractor
to the external saddle point by means of the oscillations of FIG. 8. Time evolution of the saddle orbits created at dhe
frequencyw,~ wyy,. For this signal we calculate the follow- bifurcations occurring on the saddle point far.=91.35 and
ing Lyapunov exponents:—0.0002, —0.055, —0.422, 186.78, respectively.
—8.37, —33.9, —201. The influence of the saddle point is
even more evident in the signal far,=90 where, in addi-
tion to the large number ab, oscillations, a new frequency
w=~ wy, appears mixed with theu(3,ws) structure. The ei-
genvalues of the saddle point ar€).0018ti0.199, 0.0046,

44.35

not been detected. The orhit;, has been continuously fol-
lowed up to its disappearance in the reverse Hopf bifurcation
at u.=177.98, always showing a nearly sinusoidal evolution
of frequency almost equal tey,. The continuation of the
orbit wy, is more delicate because the evolution incorporates

—1.44+i20.01, and—719, so that it is near 10 they, bi-  high-frequency oscillations abys and wy,,, as illustrated in

furcation (at u.=91.35) but relatively far from the»,, bi-  Fig. 8. The orbit multipliers do not denote the occurrence of

furcation (at u.=103.84). local bifurcations. These results show how the mode mixing
The saddle eigenvalues reported above fulfill the condiglso affects the saddle orbits.

tions of the Shil'nikov theorem for homoclinic cha¢$9] The full instability behavior based on rather different

and the large number ab, oscillations indicates the prox- oscillation frequencies usually exhibits robust wave form
imity to homoclinicity. However, the evolution is periodic structures that repeat identically if a long enough transient
and we have verified that it remains periodic for differentis discarded. Nevertheless, chaotic evolutions may also
values ofu up to 96.07, for which the signal contains 89  be found by increasing the control parameter enough. For
oscillations of almost uniform amplitude denoting the pres-instance, Fig. 9 presents an example of chaotic evolution
ence of the saddle cycle created at thg, bifurcation. At  obtained from the same system as Fig. 7 for a higher value
ne=296.08, the homoclinic connection has destroyed the atef u.. For this case we calculate the following spectrum
tractor and the system has jumped to the oscillating statef Lyapunov exponents: 0.0268;-0.001 84, —0.0498,
associated with a higher branch. With respect to the-2.269, —6.031, —1072. The aperiodic evolution arises
Shil'nikov theorem, it may be that either the complex dy- from the irregular repetition of the complex wave form struc-
namics will concentrate in an extremely narrow neighbor-ture, and it is worth remarking that the wave form complex-
hood of the homoclinic loop or that certain conditions con-ity cannot be attributed to chaos. In other words, the fine
cerning the saddle connection geometry are not fulfllEd).  tuning of «, leads to periodic states in which the wave form
We have tried the continuous following of the saddle or-complexity remains.
bits created at the successive Hopf bifurcations of the fixed Figure 10 illustrates self-similarity features of the full in-
points. Notice from Fig. @) that a givenp,, value is found  stability evolutions at two different levels, one with respect
two times on the same steady state branch and the continto the time scale and another with respect to the system di-
ation of each orbit has been initiated from the Hopf bifurca-mension. Self-similarity is also apparent in the wave forms
tions at the two branch sides. The bifurcations have alwaysf Figs. 1 and 7. Notice that the oscillations associated with
been found to be supercritical. The orbit that emerged frongither the node or the saddle points maintain their roles along
the wys bifurcation shows a nearly sinusoidal evolution butthe similarity scale. The reported results contain a reduced
the frequency decreases, stabilizing near hatbgf. Thisis  number of similarity levels but there is no reason for a limit
a remarkable feature because the faster oscillations appearingthe system dimension, and it will therefore be interesting
on other obits have a frequency precisely equabi@. One  to investigate the self-similarity of the full instability behav-
of the orbit multipliers grows very strongly and the continu- ior with respect to both the time and frequency domains for
ation becomes rather slow so that it has been followed irmhigh N values.
limited ranges near the Hopf points only. The ordj}; has The various signals of Fig. 10 correspond to the same



342 J. RIUSet al. PRE 62

p=150

84

t
x 10 1000

Wi

Tos
mmww MWMWWWMWWMW f

t

v 10

Wmm WUVWWW:\WWWWWMWMW

FIG. 9. Chaotic evolution obtained for the same case as in Fig. 7 but for a higher value of the control parameter.

nonlinear function and same, value so that the systems of origin. The time evolution foru.=2.25 describes one of
different dimension have the same set of fixed points withthese attractors and it already contains oscillations,atws,

identical ¥ and p values. The evolutions are always associ-andw,. The signal foru.=2.5 describes a two-lobed attrac-
ated with the same pair of saddle-node fixed points. Noticéor resulting from the gluing together of the two previous
the uniquey scale and the three zoom levels of the timeattractors through two simultaneous homoclinic connections
scale employed in the representations. The first zoom levelf the saddle point. The node points have already made the
of case(c) corresponds to the second level of the otherssecond Hopf bifurcation aby3, and now the signal includes
cases. The parameters of the various systems have been dscillations at the five frequencies. Far,=3.5 the node
termined by imposing a common set of thg andpy val-  points have experienced the third bifurcationvat while the
ues and a similar degree of vector field divergence. For inintermediate saddle has made the bifurcations aand w,.
stance, by taking out either the two faster or the two sloweiThe time evolution now shows a rich wave form structure
frequencies of systerfa) with N=8, we have either system pointing out the full instability behavior of the system around
(b) or system(c), both withN=6. Similarly, the systentd) a node-saddle-node trio of fixed points. Notice that the evo-
with N=5 has the same Hopf bifurcations as systésn lution is also based on five oscillation frequencies, i.,
except for that at the higher frequency. In this way we obtain— 1 frequencies, because the two node points suffer the Hopf
systems of different dimension in which the linear stability bifurcations with the samey andpy values.
behavior of a saddle-node pair of fixed points is partially Figure 12 illustrates the influence of the vector field di-
identical. Another significant property is the vector field di- vergence on the full instability behavior and, in essence, it
vergence, and we have chosen relatively similar values of shows how the dissipation discriminates the oscillation fre-
with respect to the higher frequency for the different systemsjuencies associated with either the node or the saddle points
of Fig. 10. and how it regulates their participation in the observed time
Figure 11 corresponds to a six-dimensional system with alynamics. Notice the absence @ and w, for c;=0 and
nonlinear function sustaining a symmetric pitchfork bifurca-c,=60, and the small vestige abs for c;=3.6wys. The
tion and has the same values torq, pyq, andc; asin Fig.  represented evolutions correspond to different  six-
1. The nonlinear function is given by E¢A3) and charac- dimensional systems that have in common the same nonlin-
terized in Fig. Zc). The pitchfork produces two stable nodes ear function(the same as in Fig. 11the sameu value, and
and a saddle with one unstable dimension and, for the rangbe same set gb,,q and wy for the five Hopf bifurcations,
of u. values considered in Fig. 11, the system presents thbut different values of the coefficiemt;. Since one of the
trio of fixed points only. These points experience Hopf bi-oscillation frequencies is clearly higher than the others, the
furcations atu.=2 (wy1), 2.35 (wn3), 3 (wy2), and 3.2  vector field divergence may be characterized by(B8) and
(w4 andwys), approximately. The first bifurcation, aty, directly associated witla;.
occurs on both nodes and creates a pair of coexisting attrac- Thus the evolution signals of Fig. 12 corresponds to sys-
tors located symmetrically with respect to the phase spactems of successively increasing dissipation, from the conser-



N=8§
72 2
v (a)
64 I [ S
3 ISO 5 . 400
4
t
N am——
4
% x25
7 6
t
72- N=6 2
a0 fiit 1 i W i
64 t
T T-S—
Ex 100< 3 N 200
4
t
5 4
72+ N=6 5
64J % t
x25 4
2 TN7hn A
e
< 3 > 3 0.1
70 N=5 2
64 t
P
3 Ex 100 400

<

>
WNWWMMM\
N

FULL INSTABILITY BEHAVIOR OF N-DIMENSIONAL . ..

343
=225
8 — TR S >
A»—JLJ'
0 —
( t
; p=2.5 250
0 I
t
-8 J 250
- p=3.5
v :
0 |
-8 ! Tx 15 t
3 250
> 4
2
%
M
5
t
0.5

FIG. 11. Time evolutions for successiye. values illustrating
the full instability behavior around a node-saddle-node trio of fixed
points generated in a symmetric pitchfork bifurcation. The nonlin-

FIG. 10. Time evolutions from different systems illustrating ear function igg() = sin, and other parameters are the same as in
self-similarity with respect to both the time scale and the systenFig. 1

dimension. The nonlinear function is the same as in Figud,
=120, and other parameters a@ N=8, w;q=0.0209, 0.251,
2.86, 18.9, 126, 700, 500(Qq=—12, 33, —18, 45, — 18, 45,
—18, ¢;=2.1%0y7; (b) N=6, wyq=0.0209, 0.251, 2.86, 18.9,
126, pyq=—12, 33,—18, 45,— 18, ¢;=1.98wys; (¢) N=6, wyq
=2.86, 18.9, 126, 700, 500@,,=—18, 45,—18, 45,-18, c;
=2.150y5; (d) N=5, wyq=0.0209, 0.251, 2.86, 18.9,14=—12,
33, —18, 45,c,=0.6%w,.

vative casec;=0 to the strongly dissipative af;=3.6wys.

furcations atwy; and w3 and the saddle has done the bi-
furcation atwys.

The conservative case behaves differently. In the limit
¢,=0, the straight line does not cross the surfatéw} but
penetrates within it and within regions of high-order degen-
eracies. This means that the fixed points remain highly non-
hyperbolic for long ranges of the, parameter and the Hopf
bifurcations do not occur. Concretely, the “node points” are
three-dimensional toroidal centers and the “saddle point” is

All of the systems have the same steady-state branching dia- two-dimensional toroidal center with additional one-

gram as a function ofu. and the same distribution qf
values over that diagram, and the fixed points with pyq
are nonhyperbolic with eigenvaluesi oy . In thek; space,
the straight line describing the fixed points moves wdth

dimensional stable and unstable manifolds of equal eigenval-
ues. There are no attractors and every set of initial conditions
leads to a particular trajectory. In the example of Fig. 12, the
trajectory evolves around one of the lateral points, but tra-

but, forc,#0, maintains its qualitative relation with the sur- jectories around the three fixed points are also possible. In
faces{0} and{*iw}; i.e., the line crosses the same instabil-any case, the evolution contains only three oscillation fre-

ity regions and produces qualitatively equivalent branchingquencies and they are always of the ordewgf, wy3, and
diagrams. This means that tall the dissipative systems expevs.

rience the Hopf bifurcations as in the case of Fig. 11. In The numerical results presented up until now correspond
particular, the represented evolutions correspongete3  to systems exhibiting the full instability behavior on the basis
for which the pair of node points have already done the bi-of really different frequencies, i.e., about an order of magni-
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4 c= o Lo 0.000414, —-0.0159, —0.0989, —0.143, —8.20, and for
case(b) is 0.0271,—0.0005, —0.0330, —0.326, —0.729,
U 3 —21.88. Thus signalb) is clearly chaotic whilga) may be
associated with a quasiperiodic orbit.
0 t Finally, it is worth mentioning that the thresholdg, can
fx30 40 be employed to regulate the relative position of the Hopf

’ bifurcations and the proximity of the system to particular
WWWWMWWWMWWWWWWWMWWWWW eigenvalue degeneracies. The analysis of their influence on
t the observed_dynam_lcs Would provide a large perspective
about the full instability behavior.

s ©,=60=0.240

VI. DISCUSSION

The linear stability analysis can indicate the occurrence of
successive Hopf bifurcations on the fixed points when the
parameter is varied and the nonlinearity of the system will
usually guarantee the generation of successive limit cycles.
One of the cycles will probably be initially stable while the
rest will be saddle cycles of different types. Of course, a
variety of secondary processes of both local and global na-
ture can occur to any of these periodic orbits and a large
variety of observable behaviors may then be expected. Nev-
ertheless, the numerical simulations for systems in the form
(2), (4), and (5), with different nonlinear functions and for
different dimensions, confirm the essential role of the steady-
state bifurcations in determining the time dynamics observed
in the full instability regimes. Although the sequence of pro-

t cesses yielding the underlying attractor may be rather com-
5 plex and dependent on the circumstances, it seems that some
generic mechanisms are responsible for the mode mixing
e ¢,=900=3.6w,, observed in the time dynamics, at least in the case of a non-
linear function of a single variable in the for(Bb).
ll] 0 2 A. Secondary bifurcations and mixing mechanisms
t The ba_tsic mc_achanism of nonlinear mixing is simply the
300 attractor intertwinement around the unstable manifold of a
x 225 . . . . . .
-8 neighboring saddle limit set. In this way, the time dynamics
of the attractor incorporates oscillations at the saddle fre-
4 5 guencies without requiring any bifurcatid@20]. This hap-
t H 1 HL H
— pens, for instance, in the Shil'nikov-type attractors formed

when a stable limit cycle approaches an external saddle focus

FIG. 12. Influence of the level of dissipation on the full insta- ©7 limit cycle. More generally, we conjecture that this
bility evolutions. The signals correspond to the same system as if*€chanism can work with the variety of saddle sets emerged
Fig. 11, except for the coefficient that is varied from 0 to 36,5,  ["0M the saddle-node pair of fixed points, because all of them
and u.= 3. The trajectory foc,=0 corresponds to the initial con- have a branch of the unstable manifold ending toward the
ditions xy=10"* andx; . =0. Notice the different time scales for attractor. The approach to well defined places of the attractor
the various signals. would explain the characteristic wave forms formed by a

succession of packets of different frequencies. The inter-
tude between consecutive frequencies, and Fig. 13 illustratesinement can affect the saddle orbits also and, in fact, the
how the dynamics become more irregular when the oscillanonlinear mode mixing of the full instability behavior may
tion frequencies become closer. The evolution of Figall3 be considered like a global process affecting the flow of an
must be compared with that of Fig. 7 far,=90, because extended region of the phase space where the invariant sets
the unique differences between both situations are the Hopfill form accordingly. It must be stressed, however, that we
frequenciesvyq, Nnow sequenced with a factor of three, andhave not determined the unstable manifolds in the numerical
the coefficient,, which maintains the same relatiop/wys  simulations forN>3, and this will be necessary for verify-
in order to achieve a similar level of dissipation. Similarly, ing the proposed mixing mechanism.
the signal of Fig. 1®) has to be compared with that of Fig. = A deeper combination of oscillation modes can occur
12 with c;/wy5=1.2. The signals of Fig. 13 describe the through the Naimark-Sacker bifurcation, usually called the
evolution after a time length 50 times longer than the repretorus or secondary Hopf bifurcation. In this case, the invari-
sented interval in order to avoid transitory effects. Theant torus sustains true multifrequency oscillations and com-
Lyapunov spectrum calculated for cas® is 0.000848, plex dynamics associated with resonances and torus break-
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'W‘ tions in six-dimensional systems
exhibiting full instability on the
basis of a set of relatively similar
oscillation frequencies. In both
CaSeSw(q+1)=3WHg, J from 1
he=3 to 4, in (@ wy;=0.02, c;

} =2wys, and the nonlinear func-
1|J tion and thepy4 are the same as in
0 (b) Fig. 7, in () wy;=0.1, ¢,
=1.2wys, and the nonlinear func-
tion and thepy,4 are the same as in

T 3 t Figs. 10 and 11.
x 100

¢ FIG. 13. Irregular time evolu-
x 20

down problems are intrinsically possible. Each fixed point ofsaddle-node bifurcations are not able to introduce indepen-
the saddle-node pair may yield tori with multimode oscilla- dent characteristic frequencies and are therefore not essential
tions related to the Hopf frequencies of that point and, infor explaining the full instability behavior, at least in a first
principle, the number of such bifurcations determines theapproximation. What is more relevant is the possibility of

dimension of the highest-order torus. In the parameter spacggtractor destruction after a homoclinic connection.
the g-torus bifurcation emerges from the degeneracy

{1, ..., Tiwgy} of the fixed point eigenvalues. In particu-
lar, the two-torus bifurcation emerges frofitiwy,*iw,}
and the corresponding universal unfoldings have been inves- We want to remark here why we consider a saddle-node
tigated in detail[1,21]. It has been shown that, in certain pair of fixed points. Of course, there are nonlinear systems
cases, this four-dimensional degeneracy can produce an agossessing only one fixed point and the full instability in this
ditional three-torus bifurcation with the third frequency not case corresponds /2 Hopf bifurcations on this point, il
directly related to the fixed point bifurcations. Similarly, the is even, or to N—1)/2 if N is odd. However, the coexistence
three-dimensional degenerafd,*iw} can produce a two- of steady states is one of the most significant features of
torus bifurcation where the second frequency seems agaitonlinear dynamics and it is then convenient to consider this
independent of the fixed poin{d]. These tori cannot be possibility for a more general overview. What basic set of
associated with a specific fixed point and a generalization t§ixed points has to be considered depends essentially on the
higher-order eigenvalue degeneracies suggests the possibiliitectional structure of the nonlinear part of the vector field,
of tori with dimensions up téN—1, i.e., the highest orderin j e  on the number of linearly independent components of

N dimensions. Nevertheless, when numerically observegniform direction in which the nonlinear vector field can be
[22,23, these tori appear very fragile and in extremely nar-yecomposed.

row regions of the parameter space.

. . . For one-directional nonlinear vector fields, the fixed
In conclusion, we find reason to suspect that the full in-

. . . . ) oints appear in phase space aligned on a straight line and in
stability behavior will happen in parameter space reglongn alternate sequence of saddle-node type. The saddle sepa-
with a relative abundance of torus bifurcations yielding mul-

tifrequency oscillations based on the Hopf bifurcations ofratnces determine the attraction basins of the nodes and the

one of the fixed points. The node-point family of cycles andbalSIC dyqammal phenomena will be associated \.N|th.an at-
tori contains at least one attrac{@4], while the rest of this tractor arising form one of the nodes and growing in the
family and the saddle-point family are saddles. With thePreésence of the nearest saddle. Of course there are also
variation of a control parameter, the attractor grows andnechanisms for producing attractors associated with a larger
transforms while the neighboring saddle sets move theifumber of fixed points. On the one hand, it is possible that
stable and unstable manifolds in a process that underlies the attractor will grow under the influence of two neighbor-
variety of possible homoclinic and heteroclinic connectionsing saddle points located at the opposite sides. On the other
The time dynamics of the attractor incorporates the oscillahand, attractors developed separately at the two sides of a
tory motions of the various saddles in a degree that is vergaddle separatrix can become glued together through succes-
sensitive to how near the corresponding homoclinicities aresive homoclinic bifurcations destroying the previous attrac-
Of course, complex and dense sequences of bifurcatiorters and creating the hybrid ones. This kind of gluing is well
yielding to homoclinic chaos can also occur during the mix-known from the systems with a symmetric pitchfork bifurca-
ing procesg19]. However, the period-doubling and cyclic tion, in which the homoclinic connections happen simulta-

B. Basic set of fixed points
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neously at the two saddle sidg&5], but it can also occur in  longest time defining the period would be about one thou-
more general situatiorf26]. For systems whose fixed points sand years, after which time the system would repeat the
appear on a straight line in thg space, the various node same irregular sequence of daily undulations again. It will be
(ky>0) and saddle Ky<0) points will generate the same interesting to investigate the properties of the irregular evo-
oscillation frequencies and the time evolutions will alwayslutions of the fully unstable systems for higher dimensions
be based on thdl—1 oscillation modes, independent of the and to compare them with the well-known properties of the
number of underlying fixed points. In a more general caseghaotic dynamics.
the oscillation frequencies generated from different nodes or In this paper, the full instability behavior has ben investi-
saddles can be different and the time evolutions will incor-gated in particular classes of dynamical systems and it is
porate additional modes by an increase in the number afmportant to ask how general the phenomenon is. According
fixed points. to our interpretation, we find reason to suspect that the oc-
The situation becomes more complex for vector fieldscurrence of the various Hopf bifurcations in a restricted pa-
with a multidirectional nonlinear part like that defined by the rameter domain will always be associated with the develop-
superposition of nonlinear vector fields based on linearly ment of nonlinear mechanisms of mode mixing.
independent scalar functions and directions. In this case, thidevertheless, the complexity of the process and the charac-
fixed points may extend in phase space distributed within aeristic features of the time dynamics will probably change
subspace of dimensiam related ones with others through  with the structure of the nonlinearities. For instance, the fact
differently oriented\ =0 bifurcations. The basic set of fixed that the oscillation modes appear with the same frequencies
points may include up to"points, one of which is a stable as the Hopf bifurcations of the fixed points may perhaps be
node and the rest are saddles defining one of the corners pgcu”ar for nonlinear functions in the for(s).
its attraction basin. This set of points can sustain a large another significant question is to what extent the full in-
number of Hopf instabilities but it is not evident to what giapjlity behavior may be relevant for the study of real sys-
extent th_e corre_spondlng (_)SClIIatory motions can manifesems to which the concept of dynamical system is trying to
together in the time dynamics. be applied. The presence of oscillatory behaviors of dynami-
cal nature is indeed evident in biology, economics, and soci-
ology. In certain cases, for instance, in living systd®ig, a
variety of oscillatory processes with different time scales oc-

We have verified that the combination of oscillatory mo- cur at different levels or in different parts of a given system.
tions in a nonlinear dynamical system can yield complexSome of these processes develop autonomously, but interre-
time evolutions in a way that evokes the Landau proposal folations and oscillatory mixing can also ocd@8g]. The de-
tentatively explaining the origin of turbulen¢8]. This be-  scription of such a mixing at the level of a dynamical system
havior has been found iN-dimensional systems able to ex- would probably involve the nonlinear combination of oscil-
ploit the instability capabilities of their fixed points to a large lations associated with a set of neighboring fixed points, i.e.,
extent. The oscillations emerge in association with Hopf-a system exploiting the instability capabilities of its fixed
type bifurcations and the complexity arises fr@imthe num-  points to a certain extent.
ber of different oscillation modes, angi) the variety of By following the Landau proposal we must also consider
forms through which the nonlinear mechanisms combine théhe turbulence phenomena. With respect to this, the self-
oscillation modes. The second point marks the essential diksimilarity properties observed in the full instability signals
ference with the Landau scenario; i.e., the mode mixingnay be particularly suggerent. Such properties are intrinsi-
mechanisms of nonlinear dynamics are richer than the SUPeEally related to the organization of the mode mixing pro-

position of oscillatory instabilities by successive torus bifur- .asses around the structure of fixed points and constitute a

cations and they can introduce irregularity in the time eVOyohust feature. On the other hand, the dynamical systems

lution by affecting hath the rgl_ative phases and amP"tUd?S IIi‘ypically obtained by reduction of the partial differential
e oon 0 IXECequatons associted wih urulent probifes] s
P 9 q gresen(i) a multidirectional nonlinear part of the vector field

cies of a sequence of torus bifurcations. In other words, th ith the number of independent nonlinear functions as large
nonlinear dynamical systems can have enough mechanisms P 9

for developing the Landau intuition about the emergence o s the order of the_syste_m, afig the_part|0|pat|on (.)f alarge
irregularity through oscillatory superpositions. Another ques"UMPer of dynamic variables within every nonlinear func-
tion is whether this irregular evolution may be related to thelion- This means the occurrence of complex structures of
origin of turbulence in fluids. fixed points and possibilities for exploiting the instability
On the other hand, the irregular succession of undulationg@Pabilities of these points, two different and complementary
of different characteristic times forming the full instability Ways through which complex behavior may emerge in dy-
wave forms can repeat regularly and even periodically. Thigilamical systems and whose interrelation we find interesting
fact indicates that the high degree of instability behavior rep1o investigate.
resents a way toward creating irregular and complex evolu- Finally, as a matter of fact, we want to recall that the full
tions independent of chaos. The complexity degree of thénstability behavior has been observed in the BOITAL de-
full instability signals can be emphasized by considering, forvices[8] and that these devices are really simple objects; in
instance, the case of Fig. @) and realizing that if the char- essence, they amg-layer sandwiches of glasses and liquids
acteristic time of the fast oscillations would be one day, theplaced between two mirrors and irradiated by a light beam.

VII. CONCLUDING REMARKS
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This work has been supported by the PB98-899 of théuons,_ involving coefficients with even and odq labels, re-
Spanish CICYT. Spectively. The t(_)'FaI numbe.r. of unknowns isN 2and,
therefore, two additional conditions are required. We usually
. takedy = cy and choose a value fay. The former condition
APPENDIX A: NONLINEAR FUNCTIONS is not a restriction because it can always be done with the

USED IN THE NUMERICAL SIMULATIONS proper rescaling17] and has the advantage of making the
We have used the following nonlinear functions of aSteady-state branching diagram depending org(hg only.

single variable: The later condition responds to the fact that, having consid-
ereddy=cy the system of equations with odd label coeffi-

(= up)? cients has\N unknowns and one of them must be predeter-
9(¢)=M1+9XF{ - T} (A1) mined. We takes, but any other odd label coefficients will

be equivalent because the system of equations is scale invari-
with ©;=0.1 andu,= u3=10, to obtain the results of Fig. ant with respect to the unknowns. Thus the selected values

1, for wy and py determine the odd label coefficients with a
free common scale factor that is defined by the preselected
()= Pt pa COSY (n2)  Vvalue of one of them. This scale factor is relevant because it
g M3+ COSi affects the vector field divergence. In effect, the divergence

. . of the canonical systert?) with a nonlinear function in the
with M= _125, ,u,22106, and,lL3: _186, to obtain the forms (4) and (5) is given by
results of Figs. 7—10 and (&; and

a()=siny, (A3) divF=—c,+p(y) 3—:d1= “k(¥),  (BY

to obtain the results of Figs. 11, 12, and()3 These non-
linear functions are represented in Fig&)22(b), and Zc),
respectively, together with the corresponding steady-sta
branching diagrams and distribution pfvalues. The dia-

grams describing botk andp as a function of @y /cy) s
are independent ail and the coefficientg; andd;. If cy Cn

=dy the diagrams will then be determined exclusively by ClmpHFd_Ndl’ (B2)

the nonlinear function.

The Gaussian function, EqA1), produces aSshaped were pye corresponds to the fast frequeney,, and the
branching diagram with a single hysteresis cycle and with a&ffective dissipation along a given trajectory may be then
limited range ofp values. The periodic function of EGA2)  characterized by
is a positive-defined sinusoidal function describing the light )
interferences in the low-finesse, high-contrast cavities of the (divF) _ _i( 1— ﬂ) (B3)
BOITAL devices[9]. The periodicity of the nonlinear func- WHE WHE Pue/’
tion produces successiBshaped steady-state branches with )
successively broader distribution @f values. This means Where the brackets denote the average over the trajectory.
that the required values gfare always available by going to 11U for a given nonlinear functiog(i), the election ot,
higher branches. The sinusoidal function of E&3) has the ~ allows us to adjust the dissipation degree of thefamily of
peculiarity that fulfills the conditions for a pitchfork bifurca- Systems that in thé; space intersects the surfageiw}
tion and its periodicity leads to additional saddle-nodeWith the preselected set of values, andpy.
branches in the steady-state diagram. With this function the The selection of thew; and py values must be done
system is invariant under the sign inversion of the full set ofProperly. A useful guideline for obtaining systems with the

wherep andk; are defined as in Eq$9) and(11), respec-
ttively, but for any point of the phase space. In particular, for
gystems having one of the frequencigs clearly higher than
the rest, it may be seen that

variables. full instability behavior is to choose the ordered sequence of
frequenciesv,, alternatively associated with eithpy<<O or
APPENDIX B: SYSTEMS IN THE FORM (2), (4), pu>1, ie., With either the node or the saddle point. The
AND (5) FOR THE FULL INSTABILITY BEHAVIOR conditionpy <0 instead o<1 facilitates that the point of

coordinates ¢;) havingp=0 will appear in the region with

By introducing Eq(11) in Egs.(14) we can obtain they zero unstable dimensions and that the zero eigenvalue bifur-
and wy values of the straight line intersections witttiw}  cations will involve fixed points with zero and one unstable
for a given set of coefficients; andd; , but the achievement dimensions. On the other hand, the selection ofghealues
of full instability situations is rather difficult in this way. Itis allows us to achieve particular situations. For instance, a
also possible to work in the opposite way by previouslgd  straight line crossing the degenerafyiw;, ..., *iwg}
properly selecting thepy and wy values of theN—1 Hopf  may be obtained by imposing Hopf bifurcations at the
bifurcations and determining the corresponding set of paramsamep value.
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