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Dynamical features of reaction-diffusion fronts in fractals
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The speed of front propagation in fractals is studied by usihdghe reduction of the reaction-transport
equation into a Hamilton-Jacobi equation diglthe local-equilibrium approach. Different equations proposed
for describing transport in fractal media, together with logistic reaction kinetics, are considered. Finally, we
analyze the main features of wave fronts resulting from this dynamic process, i.e., why they are accelerated and
what is the exact form of this acceleration.
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[. INTRODUCTION from its starting point. At present, it is known that for all
particles starting from the same origin and for sufficiently
Reaction-diffusion models are based in general on the patarge times and distances, the following form of the probabil-

tial differential equation ity density[9,10]
2 u
JP(x,t) B D& P(x,t) P ! X
gt P2 (P), 1 P(x,t)~exg —c ) | ©)
whereP(x,t) is the density of particles at tinteat the posi- dy,domin
tion x, D is the diffusion coefficient, anél(P) is the growth u= d—d 4
w min

(reaction function. The characteristic wave front solutions
that arise from these models make them suitable for man
different applications which cover biologicgl] and human
[2] invasions, forest fire$3], epidemics[4], tumor growth

¥ valid for a large class of fractals. In E¢}), dpipn is the
fractal dimension of the minimum distance between points of
the fractal[11]. The classical, Euclidean case corresponds to
[5], etc. _ _ _ S
. . . e . dw=2dmin=1 and, thereforey=2 so that the solution is a
In spite of this, reaction-diffusion equations are oftenGaussian
criticized, by arguing that such simple models cannot ac- Transport equations proposed to date have tried to repro-

count for the complexity of real systems. Specifically, howduce result€2)—(4) somehow. The first attempt was made by

the intricate features of spatial systems must be modeled I5; . .
still a current problem. Some efforts have been made in the6 Shaugnessy and Procacd@P) [12]. They derived from

last years both to show the need for models able to predic%Callng and renormalization arguments the SP equation

spatial complexity{6] and propose some possible solutions

[7]. Among these proposals, one of the most attractive and f: 1 i D(X)de—1£ (5)
recurrent ones consists of assuming that the spatial structures gt xdi—1ox x|

exhibit self-similarity properties at a certain range of scales,

so fractal scaling formalism may be considered. whered; is the geometric fractal dimension of the fractal,

In this work, we try to show some of the main conceptsD(x)=D*x?"%, and the constard* is a kind of diffusion
involved in adapting reaction-diffusion to self-similar spatial coefficient. The exact solution for this equation is known and
systems. It is well known that the mean-square displacemerits second moment behaves littdw, in agreement with Eq.
of a random walker in a fractal object fulfills the subdiffusive (2). However, this solution lacks the scalif and(4) pre-

behavior(8] dicted by numerical simulations.
N Later on, Giona and RomafGR) constructed the frac-
(X5~ 1, (2 tional GR equatiof13]
where d,,=2 is the random-walk dimension of the fractal Sy op
(for d,,=2 one recovers the classical caséhe main ad- T Al , (6)
vances in the field of transport in fractals have been focused FtHw X X

on finding a transport equation for the probability density
P(x,t) of finding a random walker at timeat a distancex ~ where k=(d;—1)/2. The exact solution of Ed6) is also
known and yields again the behavit?®w for the second
moment ofP, Eq. (2). However, the exact solution fé and
*Email address: daniel.campos@uab.es Eq. (6) do not recover the Gaussian solution and the
"Email address: joaquim.fort@udg.es d¢-dimensional classical diffusion equation, respectively.
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To overcome these difficulties, more recently a generali- IG® — o yq 9G°
zation of the SP equation including a temporal fractional g e D*(ds—dy+ 1)x s
derivative
g\ 2
+8dw_2D*X2_dW JG
Ix
P 1 DO dflap} @ ,
—= — | D(x)x% "+ — e
oty x4 ax X —sdw_lD*xz‘dwa GZ +r. (10)
ox

The first and third terms in the right-hand side of Efj0)
have the same order of magnitude and in the asymptotic limit
(¢e—0) both terms may be neglected in front of the second
term, and in consequence the Hamilton-Jacobi for the front
gropagation in a fractal media is

e G2
— D*
X

has been proposdd4].

Finally, very recently we have proposed a partial differ-
ential equatior{the Campos-Medez-Fort(CMF) equatio
from a stronger physical justification than the previous mod
els, which also improves the results obtained by previou
approachegs_)]. _ _ _ _ I9G

Our goal is to find the analytical relationship for the speed —+
of fronts when the above transport equations couple to a at
reaction process modeled by logistic-KkRRolmogorov-
Petrovskii-Piskunoykinetics. We employ the method of re- ) .
duction of the reaction-transport equation to a Hamilton-for G(x.t) in Eq. (11) we make use of the Hamilton equa-
Jacobi. Also, we are able to derive in some cases the speed ¥9nS
the fronts by using the local-equilibriuthE) approach15]

2
+r=0, (12

JG

X

WhereG(x,t)=Iim€éoGS(x,t). In order to find the solution

dy—2
when the spatial correlations are small. dx(7) _ 9H =9 D*p(7)
dr ap(7) X(7) '
dy—2
Il. SP EQUATION WITH REACTION dp(r) _ oH — ~ _  &w . 2
dr  ax(7) =(dw—2) X(T)dwle p(n% (12

First of all we consider that the reaction-diffusion process
in a fractal is described by the equation for the probability

: ) whereH=—9G/dt and p(7)=dG/dx(7) and 7 stands for
ge&s’gylg;é)ti?kt]:run?hnessy and Procadéig. (5)] coupled to the temporal coordinate. The solution of the Hamilton-Jacobi

equation(29) can be written as

t
P 1 9 Pr=) G(x,t)=min{f L(x,7)d7: x(0)=0, x(t)=x}, (13
N _ * df*dw+l_ _ ) 0
i ax(D X P +rP(1-P). (8 X
whereL(x,7)=p(7)[dx(7)/d7]—H is the Lagrangian asso-
ciated with H. Integrating Eg. (12), one has x(7)
A. Reduction to a Hamilton-Jacobi equation =x(7/t)?® under the boundary conditions(0)=0, x(t)
In order to find the asymptotic speed for the traveling_x’ and
wave fronts in Eq(8) we will first make use of Hamilton- xdw
Jacobi dynamic$16]. The starting point is the hyperbolic L= 55"
scaling proceduré—t/e, x—xl/e, and the representation of t°D* ew™dy,
the rescaled probability density functionP®(x,t)
=P(x/e,tle) in WKB form and from Eq.(13)
P?(x,t) p( Gs(x’t)) G*(x,1)=0 (9) G(x,t) - rt
(x,t)y=exp — , #(x,1)=0, AN)=————-—rt.
tD*de_zdﬁ,

The speed of the front is computed fro8(x,t)=0, and
where the action functionab? has to be found. It follows after inverting the hyperbolic scaling one finally has the ex-
from Eq. (9) that, as long as the functiorG(x,t) act expression for the speed of the front
=Iim8_>OGS(x,t) is positive, the rescaled fiel@®(x,t)—0
ase—0. The boundary of the set whe@&(x,t)>0 can be v(t)=2
regarded as a reaction front. Therefore, we may argue that
the reaction front positiox(t) can be determined from the
equationG(x(t),t)=0. Substituting Eq(9) into the rescaled which describes a decelerated front, and we note that the
equation forP®(x,t) we find the equation foG®(x,t) acceleration depends on the parametgr

dw—2.d,,—2
o 2w

* 1/d,y,
D*r l Nt(Z/dW)*l’ (14)
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B. Local-equilibrium approach 20 ——T7T7— 7T
~ The local-equilibrium hypothesis has been very successfu 184 SP equation with reaction ]
in thermodynamicgwhere one assumes a Gibbs equation 4] i
with the local values of temperature, pressure,) etadiative : :
transfer, astrophysics§where one assumes a radiative "“'_ ]
emission-absorption equilibrium at the local tempergture 124 ° 5% J
etc. Here, we will apply such a heuristic approximation to @ 1
. . . 2 1040 -
the problem of front propagation. Equatit8) can be rewrit-  © ]
ten as 0.8no i
0.6 _- O Numerical results for d=1 i
JP 1 JP 1 072 P O Numerical results for d,=0.01
R *(d,— — r—— D*—— ] Y
Fr D*(di—d,+1) X + 2 D 2 0.4-. LE ford=1 ’
0.2 .
+ rP(l— P). (15) 0 j 1Io ) 2Io ' 3Io ) 4Io ' 5Io . 6I0 ' 7I0 . 8I0 90
This equation has the form time
5 FIG. 1. Comparison between numerical results for the speed of
sz(X) P —V(X)f-i-rP(l—P) (16) fronts of Eq.(8) for d;=1 and ford;=0.01 and the analytical
at Ix2 ox ’ results from the HJ method given in EA.4) (solid line) and the

numerical result for the LE method obtained from E81) with
which is an advection-reaction-diffusion equation in a me-di=1. All magnitudes are dimensionless. We observe a very good

dium moving at spee¥(x). For homogeneous values bf ~ agrement between analytical and numerical solutions in the
andV, the speed of fronts is obviously asymptotic regime. It is clear thdt does not affect the value of the
speed for large times. We have takBti =r =1 andd,=2.32.

v=2ID+V, (17)
L . . , . something surprising at first sight. In order to further explore
which is nothing but Fisher’s speed/2D (which holds for this point, we have solved numerically E€®), under the

an observer attached to the moving mediuas seen by an j,itia| condition P(x,0)=1 for x<0 and P(x,0)=0 for x
observer moving with speed V. This resultv =2rD +V >0, for two very different values ofl; and we have ob-

may be also derived by using the linearization and variageryeqd, as we show in Fig. 1, that the speed depends weakly
tional techniques in Re{.17]. We propose that, if inhomo- o, . only at the very initial transient and loses this depen-

geneities are sufficiently smooth, this equation should holdjgnce as time grows. Moreover, in Fig. 1 we compare the
locally, so that we obtain the local-equilibrium prediction speed given in Eq14) or (20) with the speed obtained from

vLE=2m+V(X), (18) Eq. (19. To do this we must first solve Eq19). Under

X(0)=0 we obtain
which for Eq.(15) yields

di—d,+1 2y\r/D*
_dx__ rD*  D*(di—d,+1) 16 oY (di—dy )In( 2y o
UVLET gt x(dw=2)12 w1 . (19 d,\rD* 2d,,r di—d,+1

Note that if one takes the hyperbolic scaling-x/e, t  \yherex=y?¥w. In Fig. 1 we have solved numerically the
—t/e with ¢ —0 in Eq. (19), one observes that the second transcendent equatid@l) and evaluatedx/dt to obtain the
term on the right-hand sidehs) of (19) is negligible, com- speed. Note that the effect df [which appears in Eq21)

pared to the first one, and E(L9) can be written as but not in Eq.(20)] on the asymptotic speed of the front is
dx JiD* inappreciable. This shows that it is justified to neglect the

for x.t-soo second term in the rhs of EqL9), as done above.

at 2X(dw—2)/2

which may be integrated to yielo(t)=[d,rD*t]¥, lll. GR EQUATION WITH REACTION
where we have assumed the initial conditiof0)=0. Fi-

In this section we study the speed of fronts for the frac-
nally, the speed may be obtained as y P

tional advection equation GF5) with reaction

dx
ULE=522

D*r

1/dy,
WG 2] ~ 12w =1 for t—oo,
w
w

7P A(aP+KP)+ P(1-P 22
(20 oty IX X rP( ), (22

which coincides with Eq(14). The asymptotic speed does
not depend on the fractal dimensiah, which could be where
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glhp 1 J [t Pt |
atl/dw 1"(1 1) ot 0 (t_t/)l/dw

dw

1 J [t
:——f z Ywp(x,t—z)dz (23
atJo

andz=t—t’. As in the preceding section we first take the
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aP 1

at” _de‘l X

D*de*dw+l£

X +rP(1-P), (29

where the fractional time derivative is defined[ad]

P 1 aft P(X,t)
v T(l=y) dt)o (t—t')r

asymptotic limit for large space and time by employing theTaking the hyperbolic scaling and E¢@) in the limit e —0

hyperbolic scaling. The left-hand side of E§) is

g hwpe £ ve .
TS —F l_i fo z WEP (x,t—ez)dz
dw
P tle aP®  5°P®
:—f Z*l/dw ——eZ+ ,
r 1_i 0 a2
dw

whereP?(x,0)=0 for x>0, and making use of E¢9) one
finds

ﬂlldWPS _((9 Gs)e—GE/s tle .
- f 7z Ywe?S dz+ O(e).

a3

The right-hand side of Eq6) is transformed into

otldy 0

€

K
—A(s o +8;P )-H‘P (1-P?)

&

(?G & &
=A—— e Cetrre Gt 1+ 0(e).

Taking e —0 one gets the Hamilton-Jacobi equation

From the Hamilton equations one has the Lagrangian

X
L(x,t)= ——

Atd, —dur

X ) U(dy—1)

(dw—l)(m

and the speed of the front will be

rd, )dw_l

v =Adw( 4,1

which is time independent.

IV. FRACTIONAL SP EQUATION WITH REACTION

one finds the Hamilton-Jacobi equation

aG\” 9G\2
*y2—dy o dy—2
_— = wg “w — .
( r?t) D*x € X r
From the Hamilton equations one obtaing(7)

=Bx(7) "% and

x(7)%?  2D*B
d.2 ¥

de*Z(r +D* 8dW72BZ)(l/'y)71T,
(25

whereB is an integration constant to be determined from the
conditionx(7=t)=x, and therefore

XdW/Z B 2D*B
d,2 vy

de72(r +D* 8dW7282)(1/7)71t.
On the other hand, the Lagrangian function is

L(x,t)=(r +D* g% 2B2)~ 11/

2
(——l)D*de‘sz—r}.
Y
From G(x,t)=0 we have

D*de_zBZZ ry
2—y

and inserting this into Eq25) one has

r\ @2y
xdw2=( D*/ys(dW‘z)’2<—) 2=y

2—y

and takingdx/dt the speed is

22(1—7)/7< r

)(2—7)/7 D*
Yy \27v

(dyt) %2

1/,
l ~(2/dy)~1

(26)
once the hyperbolic scaling is inverted. Note that et 1,

Eq. (14) is recovered. However, the scaling law for the speed
of the front in time is the same as for=1 in Eq.(20) so that

Another equation proposed is the fractional version of thehe fractional derivative, although affecting the mean-square

SP equatior(7) which with reaction takes the form

displacement, does not affect this scaling law.
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V. CMF EQUATION WITH REACTION
We start from the CMF equation

|

which has been derived very recenfj.

dy—u

oP 4D, 9
gt g2xdi-1 ox

X

JP
ydr—dy+1
£ 1y,

X

+rP(1-P),
(27)

A. Reduction to a Hamilton-Jacobi equation

After taking into account the hyperbolic scaling and the
field G®(x,t) = — & In P(X/e,t/e) one has from Eq(27)

dG® 4D, &
_ a+1 (u/dw)—lx—u+1 +1—
gt _dfv & t (df U) ax
4D, 9G*®\?
4 gat(U/dw)*l)(*U*Z )
2
< oX
4D, +1¢(u/dy)—1y—u+2 ’G* -G8/
=—— et W) U2 —— —r 4 re G,
dy, IX
(28
where
1 ! 1
a=u a, .

The first term in the left-hand sidéhs) of Eq. (28) and the
second term in the rhs of Eq28) are O(¢°). The second
term in the lhs and the first term in the rhs of Eg8) are
O(e*"1) while the third term in the lhs i©(e®). For frac-
talsdy,=1, so thatu=d,,/(d,—1) or «>0. Therefore, in
the limit £—0 one has G(x,t)zlimSHOGs(x,t),

lim__, f(e”®/*)=0, providedG*(x,t)>0 and

O(e*"1)<0(e*)<0(£9).

By keeping the terms up t®(&*), one has

|

Equation(29) is the Hamilton-Jacobi equation for the prob-
lem (27) and may be solved by using Hamilton’s equations

2
+r

dG
ot

aG

X

4D0Sf(u/dW)Jruflt(u/dw)fleu+2

0.
da

(29

dX(’T)_ oH _8D08*(u/d

= — w)tu—1_(u/dy,)—1 —u+2
dr ~ (A @ W) =1y (1) =4+ 2p(7),

01661
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dp(r)  dH
dr  ox(7)
:_4DZO(2_u)s—(u/dw)+u—l7_(u/dw)—l
dy
Xx(7) 7" pA(7). (30)
Integrating Eq.(30), one hasx(7)=x(7/t)?% under the
boundary conditiong(0)=0x(t)=x, and
— _—  (udy)—u+lyu, _(u/d,)—1t—(2u/dy,) _
L(x,7) 4D08 x"r t r.
Finally, from Eq.(13) we obtain
Ao g (Udy) —u+ 1y up—(uldy)
G(x,t)= — —rt. (31)

4Dyu

If one inverts the hyperbolic scaling in E¢31), by taking
x—eX andt—et, one has
- I’t) €.

The speed of the front is computed fro8(x,t)=0, and
after inverting the hyperbolic scaling one finally has

dWXut_(U/dW)
4Dgu

G(x,t)=

dx 1 1 1lu
vHJ(t):a:(a—i_d_)(d_) (4rDO)1/ut(1/dW)71+1/u
w w
~t(1/dmin)_1_ (32)

It is important to note that the scaling law in E®2) does
not depend ord; andd,, but only ond,

B. Local-equilibrium approach

Following the same method as in previous sections, we
find for Eq.(27)

4\/m X—(u/2)+1 4D X—u+1

VLE= ° - O(df_U+1)—,

dy t(2-(2d) g2 t1-u/d,
(33

which leads us to the front speed
1 1 2/u
= Z4+ = rD ) Yup(Ldy) —1+ 1
ULE u dW d_W ( 0) w
u

~tMdmin) =1 for t—o0, (34)

It is interesting to note that although the LE predicti@d)
has the same scaling law as the HJ re€3®, the factor is
different unlessd,,= 2d,,;,. However, we have checked nu-
merically that for the typical ranges df, (from 2 to 4) and
dnin (from 1 to 2) in fractals, the differences between the
two models are negligiblésee Fig. 2
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18 Usually, random walksor diffusion) on a fractal is described

164 CMF equation with reaction as follows. A particle at poirs (see Fig. 3can jump to every

val one of its first neighbors with the same probability. At the

’ next time step, it may again jump to the new first neighbors
3 127 with the same probability, and so on. We can see that the
Qo] #7777 possible points reached after two jumps forward have in
@ o common that their chemical distance to the origiis the

081, o Numerical results same(but not their Euclidean distanceHence, we see that

06 R transport on fractals take place through the chemical distance

0.4 space and in this space the fractal fronts are expected to

10 20 30 40 50 60 70 80 90 show constant speed, as in homogeneous media.
time Nevertheless, we are usually interested in the results for

the Euclidean space, so we need the well-known relationship

FIG. 2. Comparison between numerical results for the speed dpetweenr and| [11],
fronts of Eq.(27) and the analytical results from the HJ method
given in Eq.(32) (solid line) and the numerical result for the LE | ~ r 9min, (35
method obtained from Eq34) with d;=1. All magnitudes are
dimensionless. There is good agrement between analytical and nwhere the conditiord,,;;=1 comes directly from the fact
merical solutions in the asymptotic regime. We have taRén=r thatl is always greater than as seen in Fig. 3. From this
=1 andd,=2.32,dpj,=1.1. expression we can conclude that, assuming that fronts ad-
vance at a constant speed in the chemical distance space,
they cannot do so in the Euclidean space. Moreover, we ob-
serve that this behavior is due to the parameigy, (in the

After all the mathematical formalism, the main conclusionnonfractal case we haveé,=1, so the behavior in both
we obtain is that, despite all these equations seeking to déPaces will then be the sainé agrees with the CMF equa-
scribe the features of transport on fractals, the characteristid¥n (27), which predicts an acceleration dependence only on
of the fronts predicted in the four cases shown are clearlfimin [S€€ Eq.(32) or (34)], while the other equations ana-
different. First of all, we should note that a diffusion equa-'yzed (Secs. II, 1ll, and I do not take into account this
tion on fractals must agree with the resul®s—(4). We have  €ssential parameter. . .
shown[9] previously that equation CMF is the only one that _ In fact, the form of the time exponent in EqS2) and
can exactly reproduce them, so we expect that the front§34) can be justified. We may defing andry, as the chemi-
predicted by this equation correspond to the real case. cal and Euclidean distances of _the wave frpnt position, re-

One may wonder why fronts on fractals should be accelSPectively. As the front speed is constant in the chemical
erated. To answer this we need to introduce in our discussioffiStance space, we can assume thagrows linearly witht.
the “chemical distancet [11], which is defined as the short- This relation, in addition to Eq35), leads to
est path between two points belonging to the fra@ta. 3).

VI. DISCUSSION

F g~ Hemin, (36)

and the time dependence expected for the fronts in the Eu-
clidean space is then

r
v~ %Nt(lldmin)—l, (37)

in agreement with the acceleration predicted by the CMF
equation[Eqg. (32) or (34)]. This result, which had been al-
ready predicted for the speed of propagation of fronts in
percolation clustergl8], should be valid for all those trans-
port processes on fractals which, as it happens in most cases,
take place through the chemical distance sgasen Fig. 3.

In conclusion, we have shown that the CMF equation not
only describes the features of diffusion on fractals better than
previous one$§9], but it also predicts some essential features
of the propagative processes on those heterogeneous media,
i.e., the speed and acceleration of the wave fronts derived

FIG. 3. Sierpinski gasket as an example of random walk on avhen a reactiortlogistic) process, widely used in biophysics
fractal. The bold lines show the difference between the Euclideah19], is considered. In consequence, we think that CMF
distancer and the “chemical distance” between two points of the equation is the best analytical approach proposed to date for
fractal s ands’ (note thatl=r for any couple of points description of transport on fractals.
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One of the main results presented here is the wave fronwhich has been traditionally defined just from Eg), is still
speed(32), which shows that the acceleration is determinedneeded. This and many other questions which have not been
by the parameted,,;,, as argued theoretically above. It is explained theoretically ydtL8] show very clearly that there
interesting to note that this parameter is not the same as thit still a lot of work to do on fractal dynamics. Although
responsible for anomalous diffusion, nametl, [see Eq. theoretical research on fractals decreased after a boom in the
(2)], contrary to what one could expect. We think that anearly 1980s, we consider that efforts in this field, as the one
exhaustive analysis of the meaning of the paramdigr  presented here, are still strongly useful.
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