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Description of diffusive and propagative behavior on fractals
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The known properties of diffusion on fractals are reviewed in order to give a general outlook of these
dynamic processes. After that, we propose a description developed in the context of the intrinsic metric of
fractals, which leads us to a differential equation able to describe diffusion in real fractals in the asymptotic
regime. We show that our approach has a stronger physical justification than previous works on this field. The
most important result we present is the introduction of a dependence on time and space for the conductivity in
fractals, which is deduced by scaling arguments and supported by computer simulations. Finally, the diffusion
equation is used to introduce the possibility of reaction-diffusion processes on fractals and analyze their
properties. Specifically, an analytic expression for the speed of the corresponding travelling fronts, which can
be of great interest for application purposes, is derived.
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During the last years the study of the dynamic proper
of fractals has attracted the interest of many scientists@1–7#,
as this field is becoming more and more used in all sorts
applications. The well-known anomalous behavior

^r 2&;t2/dw ~1!

exhibited by this kind of spatially correlated structures,
well as many other characteristics of these processes,
been developed by scaling arguments and proved either
lytically or numerically before~see Ref.@1# and references
therein!. Specifically, lots of efforts have been done in ord
to achieve an expression for the probability distribution fun
tion ~PDF! P(r ,t) for diffusion on fractals@2–5#, i.e., the
function giving the probability that a particle or individua
stays at timet at a distancer from the origin.

As noted by some authors, the geometry of fractals, on
own, makes local and global diffusion behave in a differe
way @5–7#. Nonetheless, for most applications we just ne
to know how the particles move at global scales. For t
aim, the homogenization properties of fractals become es
tial. According to them, the averaged global diffusion b
haves as a Brownian motion, although it does not loca
~this involves important effects, as the ‘‘restoration of iso
ropy’’ analyzed in Ref.@7#!. It allows us to define an aver
aged PDF in the asymptotic regime properly@8#. The usual
form taken for this averaged PDF is, according to scal
arguments and computer simulations@1,9,10#,

P~r ,t !;t2df /dw expF2cS r

t1/dw
D dw /(dw21)G , ~2!

wheredf is the Hausdorff dimension of the fractal,dw is the
dimension of the random walk therein, andc is a constant.
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Recently, a great advance was done by Mosco@3#, who
considered an alternative approach by introducing an int
sic metric for fractals, defined by the relations[r dw/2, where
s andr are the intrinsic and Euclidean distances, respectiv
The importance of this formalism is that the anomalous
namics of fractals is absorbed therein, so it gives an id
framework to consider dynamic ideas that in nonfractal s
tems are developed in the usual Euclidean space. From
arguments, Mosco obtained an expression for the PDF wh
reads

P~r ,t !;t2df /dw expF2cS r

t1/dw
D dwdmin /(dw2dmin)G , ~3!

where dmin is the scaling exponent of the minimum pa
possible within the fractal (l min) between two points of the
structure, namelyl min;rdmin. We think that Eq.~3! is a gen-
eralization of the habitual form~2!, which is recovered in the
casedmin51 or by averaging in the appropriate regime,
shown previously both theoretically Ref.@11# and by simu-
lations@12#. Here, we begin from the general ideas presen
in @3# and try to complete them~namely, we look for a gen-
eralized diffusion equation! in order to reach a physical de
scription of diffusion and propagation processes on fract
as well as for potential application purposes which we
scribe below.

I. DIFFUSION EQUATION

One of the first attempts to seek an equation able to
scribe diffusion on fractals was performed b
O’Shaughnessy and Procaccia@2# before expressions~2! and
~3! had been predicted. Their expression was deduced f
the conservation and transport equations

1

r df21

]P~r ,t !

]t
5

]J~r ,t !

]r
, ~4!
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J~r ,t !5D~r !r df21
]P~r ,t !

]r
~5!

with D(r ) the diffusion coefficient~or conductivity! in frac-
tals andJ(r ,t) the radial flux of particles. Although thei
arguments seem theoretically correct, they were not abl
predict the form~2! for the PDF. In consequence, later ge
eralizations have been proposed by different authors@9,10#.
In these papers, the general idea is to replace the temp
derivative in Eq.~4! by a fractional derivative, so this lead
to a solution which may reproduce the exponentdw /(dw
21) in Eq. ~2!. However, we note that this approach pos
two problems.

~i! The correct parameters are only achieved by mean
a normalization, which is different from that used b
O’Shaugnessy and Procaccia, and its physical meaning
not been argued anywhere.

~ii ! When fractional derivatives are considered into t
diffusion equation, a new term onr appears in the solution
for the PDF. Until now, this extra term has not been justifi
by scaling arguments or somehow.

In general, we believe that the physical justification f
fractional derivatives is unclear for fractal geometries. W
pretend here to show that there is no need for fractio
calculus in order to find an equation giving the solution
Eq. ~3!, so we overcome both drawbacks~i! and ~ii ! by
means of the following method.

First, the procedure from O’Shaugnessy and Proca
can be directly adapted to the intrinsic metric of the frac
just by writing in their equations anddS instead ofr anddf
@see Eq.~3! in Ref. @2##,

]P~s,t !

]t
5

1

sdS21

]

]s S D~s!sdS21
]P~s,t !

]s D , ~6!

wheredS is the mass scaling exponent in the intrinsic met
~see Table I!. The main reason that leads us to propose
approach is that undesirable dynamic consequences
fractal nature are absorbed into the intrinsic metric@3#. We
argue that these consequences would be the reason why
vious methods did not reach the expected results. The
proach in Ref.@2# can account for the fractional geometr
properties of fractals, but not totally for their fractional d
namic properties, as the parameterdw did not appear there

TABLE I. Equivalence between the Euclidean and the new
trinsic metrics and their characteristic parameters~from Ref. @3#!.

Euclidean metric Intrinsic metric
r s5r 2/dw

Fractal dimension df
ds5

2df

dw

Minimum path dimension dmin
dmin

s 5
2dmin

dw
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In consequence, the new metric gives an alternative whic
more suitable in order to develop the idea of a diffusi
process.

We pretend now to find the explicit dependence ofD(s).
This parameter is defined from Eq.~5!, which is equivalent
to Fick’s law, but it does not have exactly the same proper
as the classical diffusion coefficient, so we will rather re
to it as the conductivity. Likewise, we can define the res
tivity of the media asr51/D. This resistivity should be
proportional to the number of steps that the particles m
move to go through the media; then, arguments from rand
walks on fractals should be useful in order to findr.

Walks on fractals are characterized by the existence
two behavior scales, as claimed in some mathematics w
@5,13# and proved by simulations in different cases@12#. Ac-
cording to this idea of two separate scales, the media is
vided into small blocks of sizej; within the small blocks the
motion is classical, soj2;t, but at scales larger thanj the
effect of heterogeneities appears and motion depends on
fractal parameters@14#. It means that the self-invarianc
properties of the fractal are not valid at short distances~as
the ideal concept of self-similarity at all scales does not h
for fractals in practice!.

From these arguments, it has been shown@3# that for large
scaless, the number of blocksn crossed by walkers grows a
n;(s2/t)g, whereg5dmin

S /(22dmin
S ) anddmin

S is the equiva-
lent todmin in the intrinsic metric~Table I!. In the asymptotic
regime, the number of steps done by the walker is prop
tional to the numbern of blocks crossed, so we predict th
r;n. Nonetheless, this result must be renormalized in or
to recover constant resistivity for the appropriate~homoge-
neous! case. According to this, we will dividen by the num-
ber of blocksnhom corresponding to motion on homogeneo
media, as in that caseD is the classical diffusion coefficien
andr is then a constant. Finally we find

r;
n

nhom
;

~s2/t !g

~s2/t !
;~s2/t !g21 ~7!

and henceD5D0(s2/t)12g for the conductivity. Therefore
we obtain an unexpected temporal dependence onD, a sur-
prising result that has been proposed before, in fact, fr
experience for specific systems that involve heterogene
media@15,16#.

It is clear from the arguments above that the tempo
dependence onD comes from the existence of two separa
scales and the relation between them: random walks~diffu-
sion! take place through the inner scale, but our equati
concern asymptotic scales. This is why this dual behav
must be taken into account. Nonetheless, because the id
a temporal dependence for the conductivity may seem co
terintuitive, we have performed numerical simulations f
random walks on two-dimensional~2D! percolation clusters
in order to prove Eq.~5!. We chose a circle at a certain radiu
from the origin of the walk~to keepr, and sos, fixed! and
measured the flux of particles and the spatial derivative
the density at that radius, as a function of time. Introduc
the results into Eq.~5! we confirmed that the conductivityD
decays witht as a power law~Fig. 1!. The exponent of the

-

5-2



s
ov
to

e
ly
h
le
e

s
t

m

as
n-
w
ai
se

sc

he

de-
eo-
f
not
rees
that
he
co;
tric

u-

ial
ac-
e

.,
to
to
i-
t of
n to
g a

s a
ns

ca-

yzed
the

o-
e,

DESCRIPTION OF DIFFUSIVE AND PROPAGATIVE . . . PHYSICAL REVIEW E 69, 031115 ~2004!
power law is expected to be for percolation clustersg21
5dmin /(dw2dmin)21520.3560.01 @17#, while the fitted
line in Fig. 1 givesD;t20.3360.04, so the agreement found i
good. The little discrepancy and the error bar given ab
are due to the fact that the spatial derivative is difficult
estimate from discretized simulations exactly.

It is important to note that our simulations involve som
limitations. In Fig. 1 the predicted scaling behavior is on
found over barely two decades, while one would expect t
this universal behavior would extend over many time sca
First of all, it is obvious that we must wait a transitory tim
till the particles reach the distancer where the observation
are done. On the other hand, we must ensure that
asymptotic regime is achieved, i.e., thatrt 21/dw@1 @8#; as
we keep r fixed, it means that there is also a maximu
threshold in time where our results stop holding@18#. We
could certainly choose a higher distancer to obtain a higher
upper threshold, but then the transitory time would incre
too. All this, in addition to restrictions concerning the ru
ning time of the simulations, explain why the power-la
behavior predicted only holds in our simulations for a cert
time interval. Maybe some experimental work could be u
ful in order to confirm our predictions forD.

Now, after we have achieved an explicit form forD(s),
we can introduce it into Eq.~6! and find the point-source
solution for the PDF,

P~s,t !;t2dS/2 expF2cS s2

t D gG ~8!

by means of the normalization*dSsds21P(s,t)ds51 @19#.
This expression is exactly the same as that given by Mo
just by scaling arguments@3#. In view of these results, we
propose Eq.~6! as the general equation governing t
asymptotic diffusive behavior in the natural~intrinsic! metric
of the fractal.

FIG. 1. Time dependence of the parameterD(s) in Eq. ~5! for a
percolation cluster on a square lattice~empty circles!, which leads
to D;t20.3360.04, and comparison with the simulations for hom
geneous diffusion~full circles!, which shows no time-dependenc
as expected.
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This PDF expression has a particular interest since it
scribes the dynamics of the fractal only in terms of the g
metric parametersdS anddmin

S . The fact that the dynamics o
the fractal is determined just by its geometry is an idea
much emphasized before, although it is essential as it ag
with some basic characteristics of the fractal. We stress
the relevance of the geometry on itself only holds for t
intrinsic metric, in agreement with the arguments by Mos
this is the main reason that led him to define the new me
s @3#.

Finally, the corresponding diffusion equation in the E
clidean space, in function of the distancer[s2/dw, can be
written as

]P~r ,t !

]t
5

4D0

dw
2 r df21

]

]r F S r

t1/dw
D dw2u

r df2dw11
]P~r ,t !

]r G ,

~9!

whereu5dwdmin /(dw2dmin). The exact solution of Eq.~9! is,
as expected, Eq.~3!. It means that we have obtained, a part
differential equation that reproduces the main results of fr
tal diffusion ~note that classical diffusion is recovered for th
appropriate valuesdf51, dw52, dmin51) and respects the
arguments on the intrinsic metric presented by Mosco.

II. PROPAGATION PROPERTIES

Equation ~9! describes diffusion on fractal media, i.e
how the probability density varies temporally according
the spatial behavior of individuals. But we are allowed
include into Eq.~4! a reaction term that accounts for ind
viduals appearing and disappearing at any occupied poin
the media. Thus, we can easily generalize our discussio
reaction-diffusion processes on fractal media just by addin
new term, which yields

]P

]t
5

4D0

dw
2 r df21

]

]r F S r

t1/dw
D dw2u

r df2dw11
]P

]r G1aP~12P!

~10!

~here we choose a logistic term for production, since it i
well-known case and very common in biological applicatio
@20–23#!.

Reaction-diffusion systems have many different appli
tions @24# due to their propagation properties~their solutions
have in general the form of traveling fronts@25#!. We wonder
whether these characteristics can also be found and anal
for our heterogeneous systems. In order to find
asymptotic speed for the traveling wave fronts in Eq.~10! we
will make use of Hamilton-Jacobi dynamics@25#. The start-
ing point is the hyperbolic scaling proceduret→t/«, r
→r /« and the representation of the rescaled PDFP«(r ,t)
5P(r /«,t/«) in WKB form

P«~r ,t !5expS 2
G«~r ,t !

« D , G«~r ,t !>0, ~11!
5-3
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where the action functionalG« has to be found. It follows
from Eq. ~11! that, as long as the functionG(r ,t)
5 lim

«→0
G«(r ,t) is positive, the rescaled fieldP«(r ,t)→0

as «→0. The boundary of the set whereG(r ,t).0 can be
regarded as a reaction front. From these ideas, the Hami
Jacobi method yields for the speed of the traveling front@26#

v~ t !5S 1

dmin
D S u

dw
D 1/u

~4aD0!1/ut1/dmin21. ~12!

It is interesting to note that the speed of the front does
depend on the geometric dimensiondf and the front travels
for large times with constant speed ifdmin51 and is deceler-
ated ifdmin.1; thus, the only parameter determining wheth
the front is accelerated or not is the fractal dimension of
minimum path dmin @26#. All of these effects have bee

FIG. 2. Comparison between the theoretical expression for w
front speed~12! ~lines! and that from numerical simulations of Eq
~10! ~points!. ~a! Dependence on the parameteru for two well-
known structures at a fixed timet5250: Sierpinski gasket (dw

52.32, df51.58; solid line and squares! and percolation on 2D
near criticality (dw52.88, df51.90; dotted line and circles!. ~b!
When dmin51 ~solid line and squares! we obtain thatv is a con-
stant, while for higher values (dmin51.1; dotted line and circles! the
front is clearly decelerated, as predicted by Eq.~12!. All the vari-
ables plotted are adimensional. For simplicity, 4aD051 was con-
sidered.
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checked by performing numerical simulations of Eq.~10!
~see Fig. 2! for values appropriate to two structures whic
are known to agree with the behavior of Eq.~2! @1#: the
Sierpinski gasket (dw52.32 anddf51.58) and percolation
clusters on 2D near criticality@17#. In both cases, the figure
shows that the speed and the acceleration found are in g
agreement with Eq.~12!.

We want also to emphasize the fact that, when the us
conditions on fractalsdw.2 anddmin>1 are considered, the
speed given by Eq.~12! is always lower than the well-known
Fisher’s expression for homogeneous media@23#,

v5~4aD0!1/2 ~13!

as other authors have intuitively pointed out before@1#. For
the classical geometry~namely,dw52 anddmin51), Eq.~13!
is recovered from Eq.~12!, as it should.

III. DISCUSSION

Our approach has allowed us to reach a diffusion equa
in accordance with Eqs.~1! and~2!, which are results widely
accepted for fractal dynamics. Previous attempts to do t
in spite of achieving some agreement with simulations@4#,
have been rarely supported by physical arguments. W
fractional derivatives are introduced into these diffusi
equations~see, for example, Ref.@10#!, the system is explic-
itly forced to show the anomalous behavior and the P
form in Eq.~2!. On the contrary, the intrinsic metric leads
the expected results more naturally. In fact, the intrinsic m
ric only transforms the spatial coordinate (s[r dw/2). Then,
there is no need to alter the temporal terms in our equa
~in contrast to what happened in previous approaches!, since
the dynamic properties arise now directly from the geome
of the fractal itself. We consider that this approach not o
agrees with the features of fractals, but is far more intuiti

Besides the theoretical interest of our Eq.~9! on the field
of fractal dynamics, we have shown the potential interes
this kind of expressions for application to propagative p
cesses. Specifically, classical reaction-diffusion equati
have been widely used to the study of biological expansi
and invasions@20–22,24# since the pioneering work by
Fisher@23#. In spite of the good results obtained from the
one of the main objections argued by biologists against s
methods is that they assume homogeneous media. Sys
characterized by a fractal spatial dimension as those con
ered here have been pointed out as a possible solution@27#,
and specific biological problems where spatial heteroge
ities play an essential role have already been raised, suc
epidemics on networks@28# and the coexistence of biologica
species@29#. For these applications and many others,
expansion rate of the front found here becomes usefu
determine the asymptotic dynamical behavior. Thus, our
proach may offer a suitable generalization to these kinds
studies, by improving the classical expression by Fisher
shown by Eq.~12!. Likewise, a more general study about th
wave front speeds derived from fractal diffusion equations
performed in@26#.
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