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Description of diffusive and propagative behavior on fractals
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The known properties of diffusion on fractals are reviewed in order to give a general outlook of these
dynamic processes. After that, we propose a description developed in the context of the intrinsic metric of
fractals, which leads us to a differential equation able to describe diffusion in real fractals in the asymptotic
regime. We show that our approach has a stronger physical justification than previous works on this field. The
most important result we present is the introduction of a dependence on time and space for the conductivity in
fractals, which is deduced by scaling arguments and supported by computer simulations. Finally, the diffusion
equation is used to introduce the possibility of reaction-diffusion processes on fractals and analyze their
properties. Specifically, an analytic expression for the speed of the corresponding travelling fronts, which can
be of great interest for application purposes, is derived.
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During the last years the study of the dynamic properties Recently, a great advance was done by Mdsjp who
of fractals has attracted the interest of many scienftist¥’],  considered an alternative approach by introducing an intrin-

as this field is becoming more and more used in all sorts oic metric for fractals, defined by the relaties r %2, where
applications. The well-known anomalous behavior sandr are the intrinsic and Euclidean distances, respectively.
The importance of this formalism is that the anomalous dy-
(r2)y~dw (1)  namics of fractals is absorbed therein, so it gives an ideal

framework to consider dynamic ideas that in nonfractal sys-

exhibited by this kind of spatially correlated structures, asiems are developed in the usual Euclidean space. From his
well as many other characteristics of these processes, hagguments, Mosco obtained an expression for the PDF which
been developed by scaling arguments and proved either anggads

lytically or numerically before(see Ref[1] and references

therein. Specifically, lots of efforts have been done in order r
to achieve an expression for the probability distribution func- P(r,t)~t~ /% ex;{ - C( (U,
tion (PDP P(r,t) for diffusion on fractalg2-5], i.e., the
function giving the probability that a particle or individual
stays at time at a distance from the origin.

As noted by some authors, the geometry of fractals, on it , i .
own, makes local and global diffusion behave in a differentiructure, namelymmjrdmm. We th|nk_ th"’?t Eq(3) is a gen-
way [5—7]. Nonetheless, for most applications we just neeoerahzatlon of the habitual forrf_Q), which is rec_overed in the
to know how the particles move at global scales. For thi£asedmin=1 or by averaging in the appropriate regime, as

aim, the homogenization properties of fractals become esse3OWn Previously both theoretically R¢fL1] and by simu-
tial. According to them, the averaged global diffusion be__atlons[lz]. Here, we begin from the general ideas presented

haves as a Brownian motion, although it does not locallyin [3] @nd try to complete therfnamely, we look for a gen-
(this involves important effects, as the “restoration of isot- €ralized diffusion equationin order to reach a physical de-
ropy” analyzed in Ref[7]). It allows us to define an aver- scription of diffusion gnd propagation processes on fractals,
aged PDF in the asymptotic regime propei8}. The usual as yvell as for potential application purposes which we de-
form taken for this averaged PDF is, according to scaling®ciPe below.

arguments and computer simulatidris9,14Q,

(3

) dyAmin/(dy—dmin)

where d,,,i, is the scaling exponent of the minimum path
Qossible within the fractall(,,) between two points of the

|. DIFFUSION EQUATION

dy /(dy—1)
P(r,t)~t dr/dw exf{ —C( 1/dw) 1 ) One of the first attempts to seek an equation able to de-
t scribe diffusion on fractals was performed by
O’Shaughnessy and Procacf#d before expression®) and

whered; is the Hausdorff dimension of the fractal, is the  (3) had been predicted. Their expression was deduced from
dimension of the random walk therein, aods a constant.  the conservation and transport equations
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TABLE I. Equivalence between the Euclidean and the new in-In consequence, the new metric gives an alternative which is

trinsic metrics and their characteristic parametémem Ref.[3]).

Euclidean metric  Intrinsic metric

r s=r2dw
Fractal dimension d¢ 2d;
d5=m

Minimum path dimension dmin 20,in

din=
min dW
AP(r,t)
J(f,t)ZD(f)rdfflT 5

with D(r) the diffusion coefficienfor conductivity in frac-

tals andJ(r,t) the radial flux of particles. Although their

more suitable in order to develop the idea of a diffusion
process.

We pretend now to find the explicit dependenceDgE).
This parameter is defined from E¢p), which is equivalent
to Fick’s law, but it does not have exactly the same properties
as the classical diffusion coefficient, so we will rather refer
to it as the conductivity. Likewise, we can define the resis-
tivity of the media asp=1/D. This resistivity should be
proportional to the number of steps that the particles must
move to go through the media; then, arguments from random
walks on fractals should be useful in order to find

Walks on fractals are characterized by the existence of
two behavior scales, as claimed in some mathematics works
[5,13] and proved by simulations in different cagég]. Ac-
cording to this idea of two separate scales, the media is di-
vided into small blocks of sizé; within the small blocks the
motion is classical, sg?~t, but at scales larger thahthe
effect of heterogeneities appears and motion depends on the

arguments seem theoretically correct, they were not able tfractal parameter§14]. It means that the self-invariance
predict the form(2) for the PDF. In consequence, later gen- properties of the fractal are not valid at short distan@es

eralizations have been proposed by different auth®ys0].

the ideal concept of self-similarity at all scales does not hold

In these papers, the general idea is to replace the temporfr fractals in practice

derivative in Eq.(4) by a fractional derivative, so this leads

to a solution which may reproduce the exponet/(d,,

From these arguments, it has been sh@8irihat for large
scaless, the number of blocka crossed by walkers grows as

—1) in Eq. (2). However, we note that this approach posesn~(s%/t)?, wherey=d>. /(2—d5,) anddS,, is the equiva-

two problems.

min.
lent tod,,;, in the intrinsic metriqTable ). In the asymptotic

(i) The correct parameters are only achieved by means gkgime, the number of steps done by the walker is propor-
a normalization, which is different from that used by tional to the numben of blocks crossed, so we predict that
O’Shaugnessy and Procaccia, and its physical meaning has-n. Nonetheless, this result must be renormalized in order

not been argued anywhere.

to recover constant resistivity for the approprigb®moge-

(i) When fractional derivatives are considered into theneous case. According to this, we will divide by the num-

diffusion equation, a new term anappears in the solution per of blocksny,m, corresponding to motion on homogeneous
for the PDF. Until now, this extra term has not been justifiedmedia, as in that cad® is the classical diffusion coefficient

by scaling arguments or somehow.

In general, we believe that the physical justification for
fractional derivatives is unclear for fractal geometries. We n
pretend here to show that there is no need for fractional
calculus in order to find an equation giving the solution in

Eqg. (3), so we overcome both drawbacks and (i) by
means of the following method.

andp is then a constant. Finally we find
P (S (7)

and henceD =D(s?/t)1~” for the conductivity. Therefore,

‘we obtain an unexpected temporal dependenc®,0a sur-

First, the procedure from O’Shaugnessy and ProcaccCigrising result that has been proposed before, in fact, from
can be directly adapted to the intrinsic metric of the fraCtalexperience for specific systems that involve heterogeneous

just by writing in their equatiors anddg instead ofr andd;
[see Eq(3) in Ref.[2]],

aP(s,t): 1 i D(S)Sds_laP(s,t)

at gds—1 Js as )’

(6)

media[15,16.

It is clear from the arguments above that the temporal
dependence oB comes from the existence of two separate
scales and the relation between them: random walku-
sion) take place through the inner scale, but our equations
concern asymptotic scales. This is why this dual behavior
must be taken into account. Nonetheless, because the idea of

wheredg is the mass scaling exponent in the intrinsic metrica temporal dependence for the conductivity may seem coun-
(see Table)l The main reason that leads us to propose thigerintuitive, we have performed numerical simulations for
approach is that undesirable dynamic consequences fromndom walks on two-dimensioné2D) percolation clusters

fractal nature are absorbed into the intrinsic mef@¢ We

in order to prove Eq5). We chose a circle at a certain radius

argue that these consequences would be the reason why pfesm the origin of the walk(to keepr, and sos, fixed) and
vious methods did not reach the expected results. The apneasured the flux of particles and the spatial derivative of
proach in Ref[2] can account for the fractional geometric the density at that radius, as a function of time. Introducing
properties of fractals, but not totally for their fractional dy- the results into Eq(5) we confirmed that the conductivity
namic properties, as the parametiy did not appear there. decays witht as a power law(Fig. 1). The exponent of the
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This PDF expression has a particular interest since it de-
scribes the dynamics of the fractal only in terms of the geo-
S 0 S O000000 0 0000000000 b0 metric parameterds anddy,;,. The fact that the dynamics of
the fractal is determined just by its geometry is an idea not
107 much emphasized before, although it is essential as it agrees
] with some basic characteristics of the fractal. We stress that
the relevance of the geometry on itself only holds for the
intrinsic metric, in agreement with the arguments by Mosco;
this is the main reason that led him to define the new metric
s[3].

Finally, the corresponding diffusion equation in the Eu-
- - ' clidean space, in function of the distances®w, can be
10° 1I04 165 written as

logt

log D

10% 4

FIG. 1. Time dependence of the paraméXs) in Eq. (5) for a

percolation cluster on a square latti@mpty circle$, which leads

dy—u
dP(r,t) 4Dy 4 r rdf7dw+l¢9P(r,t)
tLdy,

ot g2rdimlor a |

to D~t~ 033004 and comparison with the simulations for homo- 9
geneous diffusiorifull circles), which shows no time-dependence, . )
as expected. whereu=d,,din/(d,—dmin)- The exact solution of Eq9) is,

as expected, E¢3). It means that we have obtained, a partial
differential equation that reproduces the main results of frac-
tal diffusion (note that classical diffusion is recovered for the
appropriate valued;=1, d,=2, d,=1) and respects the
earguments on the intrinsic metric presented by Mosco.

power law is expected to be for percolation clusters1

= dpmin/(dyy—dpin) —1=-0.35:0.01 [17], while the fitted

line in Fig. 1 givesD ~t~%3%004 50 the agreement found is

good. The little discrepancy and the error bar given abov

are due to the fact that the spatial derivative is difficult to

estimate from discretized simulations exactly. Il. PROPAGATION PROPERTIES
It is important to note that our simulations involve some

limitations. In Fig. 1 the predicted scaling behavior is only |

found over barely two decades, while one would expect thafy

this universal behavior would extend over many time scales .y, ge jnto Eq.(4) a reaction term that accounts for indi-
First of aII,_|t is obvious that_ we must wait a transitory time | i, a1¢ appearing and disappearing at any occupied point of
till the particles reach the distancevhere the observations the media. Thus, we can easily generalize our discussion to

are done_. On_the_other_ hand,_ we muslt/d ensure that th|f'eaction-dif'fusion processes on fractal media just by adding a
asymptotic regime is achieved, i.e., that ““w>1 [8]; as new term, which yields

we keepr fixed, it means that there is also a maximum

threshold in time where our results stop holdifig]. We

could certainly choose a higher distanct obtain a higher JP 4D, 4
upper threshold, but then the transitory time would increaseﬁ= W o
too. All this, in addition to restrictions concerning the run- wl

ning time of the simulations, explain why the power-law

behavior predicted only holds in our simulations for a certain - . . .
(here we choose a logistic term for production, since it is a

time interval. Maybe some experimental work could be use- e . o
ful in order to confirm our predictions fdD well-known case and very common in biological applications

Now, after we have achieved an explicit form foys), [20_23)'. e . .
we can introduce it into Eq(6) and find the point-source Reaction-diffusion systems have many different applica-
solution for the PDF tions[24] due to their propagation propertiéheir solutions

have in general the form of traveling fron&5]). We wonder
whether these characteristics can also be found and analyzed
for our heterogeneous systems. In order to find the

(8) asymptotic speed for the traveling wave fronts in Bd) we
will make use of Hamilton-Jacobi dynamif®5]. The start-
ing point is the hyperbolic scaling procedute-t/e, r

by means of the normalizatiofidss® *P(s,t)ds=1 [19].  —r/e and the representation of the rescaled PEr,t)

This expression is exactly the same as that given by Mosce: P(r/g,t/¢) in WKB form

just by scaling arguments3]. In view of these results, we

propose Eq.(6) as the general equation governing the .

asymptotic diffusive behavior in the natufatrinsic) metric Pe(r t)=ex;{ G (r,t)) Go(r.1)=0 1)

of the fractal. ' ' ' '

Equation (9) describes diffusion on fractal media, i.e.,
w the probability density varies temporally according to
e spatial behavior of individuals. But we are allowed to

dy,—u
r W aP
(m) I'ddeJrlEl—FaP(l—P)
(10

s?\ 7
P(s,t)~t 952 ex;{ - c( T)
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1.0 checked by performing numerical simulations of Eg0)
(see Fig. 2 for values appropriate to two structures which
are known to agree with the behavior of EQ) [1]: the

081 Sierpinski gasketd,,=2.32 andd;=1.58) and percolation
clusters on 2D near criticalitjl7]. In both cases, the figure

0,6 shows that the speed and the acceleration found are in good

= agreement with Eq12).

> 0.4 We want also to emphasize the fact that, when the usual
conditions on fractaldl,>2 andd,,;=1 are considered, the
speed given by Eq12) is always lower than the well-known

0.2 Fisher's expression for homogeneous md@ial,

0’01,2 16 20 24 28 v=(4aDg)"? (13

u
(b) as other authors have intuitively pointed out beffité For
1.0 the classical geometipnamely,d,,=2 andd,,=1), Eq.(13)
1 aus . . . . is recovered from Eq(12), as it should.
0.8
I\ I1l. DISCUSSION
= ‘.
< 0.64 MR ... Our approach has allowed us to reach a diffusion equation
T R ... in accordance with Eq$1) and(2), which are results widely
accepted for fractal dynamics. Previous attempts to do this,

0.4- in spite of achieving some agreement with simulatipfk
have been rarely supported by physical arguments. When

0 200 400 600 800 fractional derivatives are introduced into these diffusion
t equationgsee, for example, Ref10]), the system is explic-

itly forced to show the anomalous behavior and the PDF
form in Eq.(2). On the contrary, the intrinsic metric leads to

FIG. 2. Comparison between the theoretical expression for wave, expected results more naturally. In fact, the intrinsic met-

front speed12) (lines) and that from numerical simulations of Eq. . . . dJ2
(10) (points. (a) Dependence on the parameterfor two well- ric only transforms the spatial coordinate{r“+»<). Then,

known structures at a fixed time=250: Sierpinski gasketd,  LN€re iS no need to alter the temporal terms in our equation
=2.32, d;=1.58; solid line and squaresnd percolation on 2D (iN contrast to what happened in previous approagtsasce

near criticality @, =2.88, d;=1.90; dotted line and circlgs(b) the dynamic properties arise_ now direct_ly from the geometry
Whend,,,=1 (solid line and squargsve obtain thaw is a con-  Of the fractal itself. We consider that this approach not only

stant, while for higher valuesi(,,=1.1; dotted line and circlegshe ~ agrees with the features of fractals, but is far more intuitive.

front is clearly decelerated, as predicted by E). All the vari- Besides the theoretical interest of our &@). on the field
ables plotted are adimensional. For simplicitaBy=1 was con-  Of fractal dynamics, we have shown the potential interest of
sidered. this kind of expressions for application to propagative pro-

cesses. Specifically, classical reaction-diffusion equations
where the action functionab® has to be found. It follows have been widely used to the study of biological expansions
from Eq. (11) that, as long as the functiorG(r,t) and invasions[20-22,24 since the pioneering work by
=lim OGE(r,t) is positive, the rescaled fielB*(r,t)—0 Fisher[23]. In spite of the good results obtained from them,
o one of the main objections argued by biologists against such
methods is that they assume homogeneous media. Systems
Uharacterized by a fractal spatial dimension as those consid-
ered here have been pointed out as a possible sol[2idn
and specific biological problems where spatial heterogene-
u | Vet 1 ities play an essential role have already been raised, such as
)(d—w) (4aDg) Mt Fmin™ =, (12)  epidemics on network28] and the coexistence of biological
species[29]. For these applications and many others, the
expansion rate of the front found here becomes useful to
It is interesting to note that the speed of the front does notletermine the asymptotic dynamical behavior. Thus, our ap-
depend on the geometric dimensidpand the front travels proach may offer a suitable generalization to these kinds of
for large times with constant speeddif,;,=1 and is deceler- studies, by improving the classical expression by Fisher, as
ated ifdn,i,>>1; thus, the only parameter determining whethershown by Eq(12). Likewise, a more general study about the
the front is accelerated or not is the fractal dimension of thavave front speeds derived from fractal diffusion equations is
minimum pathd,,, [26]. All of these effects have been performed in[26].

ase—0. The boundary of the set whe(r,t)>0 can be
regarded as a reaction front. From these ideas, the Hamilto
Jacobi method yields for the speed of the traveling ff@6{

v(t)=(

dmin
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