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We present a detailed analytical and numerical study of the avalanche distributions of the continuous damage
fiber bundle model �CDFBM�. Linearly elastic fibers undergo a series of partial failure events which give rise
to a gradual degradation of their stiffness. We show that the model reproduces a wide range of mechanical
behaviors. We find that macroscopic hardening and plastic responses are characterized by avalanche distribu-
tions, which exhibit an algebraic decay with exponents between 5/2 and 2 different from those observed in
mean-field fiber bundle models. We also derive analytically the phase diagram of a family of CDFBM which
covers a large variety of potential avalanche size distributions. Our results provide a unified view of the
statistics of breaking avalanches in fiber bundle models.
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I. INTRODUCTION

The damage and fracture of heterogeneous materials are
very interesting scientific problems with a broad spectrum of
technological applications �1–3�. It is well known that under
a constant or slowly increasing external load, the fracture of
heterogeneous materials proceeds in bursts, i.e., local break-
ings occur in correlated avalanches separated by silent peri-
ods �4–15�. Since the bursting activity generates elastic
waves, it can be recorded by means of the acoustic emission
technique, the primary source of information on the micro-
scopic dynamics of fracture. Recently, experiments on a
large variety of materials with disordered microstructure
have pointed out that the amplitude and energy distributions
of acoustic signals, as well as the distribution of delay time
intervals between consecutive emissions are characterized by
power laws, where the exponents show a certain degree of
universality �4–13�.

Among the theoretical approaches to the problem, the fi-
ber bundle model �FBM� plays a crucial role, since it cap-
tures the main ingredients of the fracture of disordered ma-
terials but it is still simple enough to facilitate analytical
calculations �16–31�. In FBM the specimen is discretized in
terms of parallel fibers which are subject to a longitudinal
external load. The fibers have identical elastic properties but
stochastically distributed breaking thresholds. While quasis-
tatically increasing the external load, the weaker fiber breaks
in the bundle. The load of the broken fiber must be overtaken
by the intact fibers whose local load may also exceed their
respective failure threshold and also fail. Hence, a single
breaking event may induce an entire avalanche, which goes
on until the avalanche stops or destroys the entire system. It
has been shown in the framework of FBM that in the limit of
equal load sharing, the size distribution of bursts is charac-
terized by a universal power-law decay with exponent 5/2 for
a broad class of disorder distributions �17–22�. It was shown
analytically that when bursts are recorded solely in the vicin-
ity of the critical point of macroscopic failure, a crossover
occurs to a lower value of the exponent 3/2. The crossover of
the bursts size exponent when approaching the critical point

addresses the possibility to design techniques to forecast the
imminent failure event �22,25,26�.

For theoretical studies on fracture statistics, it is a great
challenge to understand the origin of the scale free bursting
activity, to reveal the role of the underlying disorder and of
the breaking mechanisms, and to explore the possible univer-
sality classes which characterize the fracture process
�21,22,28–31�. Recently, we have shown by analytical and
numerical means that mixing fibers of strongly different
strength, i.e., when the bundle is composed of two subsets of
fibers, where one subset is unbreakable, the avalanche size
distribution exhibits a transition from the well-known expo-
nent 5/2 to a lower one 9/4 when the mixing ratio surpasses
a threshold value �23�.

In the present paper we investigate the effect of the break-
ing mechanism of fibers on avalanche statistics based on a
continuous damage fiber bundle model �CDFBM�, intro-
duced recently �32–34�. In CDFBM the fibers do not suffer
instantaneous failure when the local load exceeds their
breaking threshold; instead, they loose their stiffness gradu-
ally in a sequence of partial breaking events. The gradual
breaking sequence is characterized by two parameters: the
fraction of stiffness kept by the fiber after a partial breaking,
and the total number of allowed breakings. Varying the two
parameters, the model provides various types of mechanical
responses from simple quasibrittle behavior through plastic-
ity to hardening. We demonstrate by analytical calculations
that depending on the details of the constitutive curve, the
size distribution of bursts has a power-law functional form
with a spectrum of exponents between 5

2 and 2. We construct
analytically the phase diagram of the model, which provides
an overview of all possible avalanche behaviors, and verify
the analytical predictions with computer simulations.

II. CONTINUOUS DAMAGE FIBER BUNDLE MODEL

The continuous damage fiber bundle model has been in-
troduced recently �32–34� as an extension of the classical
fiber bundle model �16,18�. The model consists of a set of N
linearly elastic fibers with identical Young modulus Ef orga-
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nized into a parallel bundle. Under an increasing external
load the fibers exhibit brittle failure, i.e., they have a linearly
elastic behavior up to a critical load �th where they break.
The fibers have an identical Young modulus Ef; however, the
breaking threshold �th is a stochastic variable characterized
by a probability density p��th� and a distribution function
P��th�. The fiber bundle is loaded uniaxially, giving rise to a
global deformation f , which is related to the applied load
through �=Ef f . In the classical FBM, when fiber i experi-
ences a local load �i larger than its strength threshold, �th

i , it
fails so that its stiffness is set to zero.

As a novel element, in CDFBM it is assumed that the
failure of fibers is not instantaneous, instead the fibers un-
dergo a gradual degradation process. When the local load of
fiber i reaches its breaking threshold �th

i it suffers only partial
failure such that its stiffness Ef is reduced by a factor 0
���1. When the external load is further increased the fiber
again exhibits a linear elastic behavior but with a lower value
of the Young modulus �Ef, and hence, it can fail again in the
same manner as before. The maximum number of breaking
events kmax that the fibers can suffer together with the stiff-
ness reduction factor � is very important parameters of
CDFBM. Thus, given that �kEf is the remaining stiffness of
a single fiber, which has experienced k failure events, akmaxEf
can be interpreted as the maximum level of degradation of
the fibers’ elastic properties. The limiting case kmax=� rep-
resents the plastic limit of the model.

Moreover, it is important to note that once a fiber has
failed it can either keep the same strength threshold, which
corresponds to a quenched distribution of failure strengths,
or choose a different strength value from the prescribed
threshold distribution, corresponding to an annealed distribu-
tion of failure strengths. It has been presented in Refs.
�32–34� that depending on the way how the stiffness of fibers
is treated after kmax number of failure events, the model can
describe both macroscopic hardening and macroscopic frac-
ture of the bundle. Hardening behavior is obtained when the
fibers retain their �kmaxEf stiffness after having failed kmax
times. In this case the macroscopic constitutive equation of
the system converges to an asymptotic linear behavior. Set-
ting the stiffness of fibers to zero after kmax breakings implies
the complete failure of the fibers, which then leads to mac-
roscopic fracture of the entire bundle instead of hardening. In
the present paper our study is restricted to the case of
quenched disorder and macroscopic hardening in the final
state.

When the fibers are allowed to break only once kmax=1,
the constitutive equation of the fiber bundle subject to an
external force F can simply be expressed as

� =
F

N
= f�1 − P�f�� + �fP�f� , �1�

where P�f� and 1− P�f� are the fraction of failed and intact
fibers, respectively, and the Young modulus Ef of intact fi-
bers is taken to be unity Ef =1. In Eq. �1� the first term
provides the load carried by intact fibers while the second
term is the load-bearing contribution of the failed ones. It can
be seen that for �=0, the constitutive behavior of CDFBM

Eq. �1� reduces to the classical fiber bundle model where
failed fibers do not carry any load �16–18,22,30�.

It is worth noting that Eq. �1� can be rewritten in the form

� = �1 − ��f�1 − P�f�� + �f , �2�

which allows for an interesting alternative physical interpre-
tation: when fibers are allowed to break only once but they
retain their reduced Young modulus, the constitutive behav-
ior of CDFBM is identical to another fiber bundle, which is
composed of two subsets of fibers with widely different
strength characteristics but identical elastic behavior. A sub-
set of �N fibers is unbreakable while the remaining �1
−��N fibers are breakable characterized by a threshold dis-
tribution P �23�. Very recently, we have demonstrated that
the presence of unbreakable fibers results into a complex
behavior of the system; especially the avalanche statistics
presents substantial changes compared to the simple FBM
�23�. These former results imply that in CDFBM an even
richer behavior of the avalanche statistics can be expected,
which may provide a realistic description of certain materi-
als.

For the general case where fibers are allowed to fail kmax
times and the fibers keep their final stiffness �kmaxEf after
having failed kmax times, the constitutive equation can be cast
into the form

� = f�1 − P�f�� + �
i=1

kmax−1

�i f�P��i−1f� − P��i f��

+ �kmaxfP��kmax−1f� . �3�

In Eq. �3� f�1− P�f�� is the load carried by the intact fibers,
while �i f�P��i−1f�− P��i f�� and �kmaxfP��kmax−1f� account
for the load on the fibers that have failed i times and kmax
times, respectively.

To be specific, throughout the paper we will consider the
Weibull distribution

P��� = 1 − exp�− ��/�o�m� �4�

to characterize the fiber breaking thresholds, where �o de-
notes the characteristic fiber strength and m is the Weibull
exponent. The constitutive behavior of Eq. �3� for this
Weibull distribution is illustrated in Figs. 1 and 2. The fig-
ures show that the remaining fiber load-bearing capacity con-
fers the material with elastic hardening. In fact, once all fi-
bers have failed, the constitutive curve ��f� converges to an
asymptotic straight line and the system is characterized by an
elastic constant �kmaxEf. As kmax increases, the asymptotic
linear behavior of hardening is getting weaker and it is pre-
ceded by an increasingly wider plateau. The larger kmax is,
the flatter the constitutive curve becomes; in the limiting case
of kmax→� the macroscopic material response becomes
completely plastic. At a given value of kmax the shape of ��f�
along the plateau regime can be controlled by the stiffness
reduction parameter �. For low values of �, local maxima
and minima can be observed. For a given kmax there exists
always a critical value �c of the stiffness reduction factor for
which the wavy shape of Fig. 1 disappears, and in the pa-
rameter regime ���c�kmax� the plateau becomes monoto-
nous and essentially flat. The critical value �c�kmax� and the
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shape of the constitutive curve ��f� in the vicinity of this
critical point play an essential role in the statistics of bursts.
Figure 2 presents the constitutive curves ��f� for different
kmax at the corresponding critical value of �. It can be ob-
served that the larger kmax is, the wider the plastic plateau
turns.

The constitutive relation Eq. �3� can also be expressed as
a relation between the applied load � and the macroscopic
deformation of the bundle f experienced by each fiber,

� = Y�f�f , �5�

where Y�f� defines the effective Young modulus of the sys-
tem at deformation f ,

Y�f� = �1 − P�f�� + �
i=1

kmax−1

�i�P��i−1f� − P��i f��

+ �kmaxP��kmax−1f� �6�

in units of Ef.
Quasistatic loading of the bundle can be carried out in

such a way that the load is incremented until a single fiber
breaks. Then the load of the broken fiber is overtaken by the
remaining intact ones which might induce further breaking.
The subsequent breaking and load redistribution steps can
result in an entire avalanche of breakings. In order to under-
stand the statistics of burst of breaking fibers, let us consider
the case when a fiber, which has broken j times until the
deformation f was achieved, fails again. We have shown in
Ref. �34� that the probability density function pj

j+1�f� of this
event can be obtained in the form

pj
j+1�f� = � jp�� j f� . �7�

As a consequence, the Young modulus of the breaking fiber
gets reduced which releases stress distributed among the fi-
bers. This stress redistribution leads to an increase in the
global deformation f which can be expressed as

�f j =
� j�1 − ��f

Y�f�
, �8�

where index j expresses that this strain increment appears as
a consequence of a failure of fiber which has been broken j
times before. Using Eqs. �7� and �8�, the total probability that
a fiber breaks as a consequence of a fiber breaking when the
material is subject to a strain f reads as

ptot = �
j=0

k−1

�f jpj
j+1�f� =

�1 − ��f

Y�f� �
j=0

k−1

�2jp�� j f� . �9�

Using the expression for the Young modulus, and the fact
that its derivative

dY�f�
df

= �1 − ���
j=1

k−1

�2jp�� j f� �10�

is closely related to the overall breaking probability ptot�f�,
we can express ptot in the simple form

ptot�f� = −
fY��f�
Y�f�

. �11�

Since the extrema of the constitutive curve satisfy fY��f�
+Y�f�=0, in these points necessarily ptot=1 holds, which
leads to the breaking of a macroscopic fraction of the
sample, consistent with the kmax=1 case studied in Ref. �23�.

III. AVALANCHE DYNAMICS

Under a quasistatically increasing external load, the dam-
age and fracture of heterogeneous materials proceed in a
large number of events consisting of crack nucleation and
sudden advancement of growing cracks. This process is ac-
companied by the release of elastic waves which can be re-
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ness reduction parameter �=�c�kmax=1� on increasing the maxi-
mum number of allowed failures, kmax.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 1 2 3 4 5 6 7 8

σ

f

αc(1), kmax = 1

αc(2), kmax = 2

αc(3), kmax = 3

αc(4), kmax = 4

FIG. 2. �Color online� Constitutive curves of CDFBM varying
the maximum number of allowed failures kmax at the corresponding
critical value of the stiffness reduction factor �. As kmax increases
the plastic plateau gets wider. The failure thresholds are Weibull
distributed with the parameter values m=2 and �o=1.

AVALANCHE DYNAMICS OF FIBER BUNDLE MODELS PHYSICAL REVIEW E 80, 051108 �2009�

051108-3



corded by the acoustic emission technique. Hence, acoustic
signals provide very valuable information about microscopic
fracture dynamics in heterogeneous materials. In fiber bundle
models, single fiber breakings can trigger an avalanche of
breaking events which corresponds to the acoustic bursts of
the experiments. One of the main advantages of FBMs is that
they allow for the analytic derivation of the statistics of
breaking bursts at least in the limit of global load sharing.

In the global load sharing limit of simple FBM, Hansen
and Hemmer �17,18� proved that the probability density
D��� to observe an avalanche of size �, during a quasistatic
loading process, has the form

D��� =
��−1

�!
�

0

fm

p�f��1 − af�af
�−1e−af�df �

��−1

�!
I��� ,

�12�

where af is the average fraction of fibers which breaks as a
result of an infinitesimal increase in the applied deformation
f . For CDFBM af is identical to the total breaking probabil-
ity af = ptot given by Eq. �11�, which can further be simplified
to the form

af = −
d ln Y�f�

d ln f
. �13�

In the following we provide an analytic derivation of the
burst size distribution of CDFBM starting from Eqs. �12� and
�13�.

For convenience, we introduce the auxiliary function I���
with the definition

I��� � �
0

fm

p�f�
1 − af

af
e−��af−ln af�df . �14�

We are interested in large burst events, and hence will con-
centrate on the region of large avalanches ��	1�. In this
regime the Stirling equation ln n ! ��n+ 1

2 �ln n−n+ln	2
 is
used and the avalanche distribution D��� can be expressed as

D��� �
e�

	2
�3/2 I��� . �15�

Under global load sharing conditions, which is equivalent to
the CDFBM with kmax=1 and �=0, the upper integral limit
in Eq. �14� is the location of the parabolic maximum of the
constitutive curve fm. Thus, for large � this integral is con-
trolled by the maximum of the exponent in the integrand.
The extreme condition of ��af −ln af results in ��=af��1
− 1

af
�=0, according to a maximum at af =1. Carrying out the

Taylor expansions of af and � f, it was shown in Refs. �17,18�
that the distribution D��� simplifies to a power law

D��� 
 �−�, �16�

with the exponent �=5 /2 for a broad class of disorder dis-
tributions, including the CDFBM with kmax=1 and �=0,
where the constitutive curve of the system has a single qua-
dratic maximum �17,18�.

Even when the asymptotic behavior of the avalanche dis-
tribution is controlled by the extremum of �, there may exist

situations where the macroscopic constitutive curve of the
system has an inflexion point. This is the case if ��=0 at the
maximum, a situation which happens whenever af�=0 for
af =1. One then needs to continue the Taylor expansion of �
to identify the relevant leading contribution. Following the
usual procedure, one arrives at

I��� �
p�fc�afc

� e−�

2
�

0

�

df�f − fc�2e�3afc
�2

�/4!��f − fc�4
. �17�

which implies that the asymptotic decay of the avalanche
size distribution is characterized by a different algebraic tail

D��� �
� 3

4�
24	3
afc

� 31/4
�−9/4. �18�

Figure 1 illustrates that such a scenario is found in the
CDFBM with kmax=1 when the stiffness reduction parameter
� reaches its critical value �c�1�. As it has been discussed in
Sec. II, for the maximum number of allowed breakings
kmax=1, at �=�c�1� the local quadratic maximum of the con-
stitutive curve disappears, ��f� becomes monotonous and an
inflection point is formed. The above analytic result Eq. �18�
demonstrates that the presence of the inflexion point substan-
tially changes the avalanche statistics of the system.

One can then generalize the analysis and consider a situ-
ation where the constitutive relation ��f� leads to an incre-
mental average fiber breaking, af which gives rise to a gen-
eralized inflexion point of order n at the extremum of � of
the location fm. Carrying out again a Taylor expansion of �
to leading order around its extremum, we arrive at

I��� �
p�fc�af�e

−�

2
�

0

�

df�f − fm�ne��2n−1�af
�n�n

�/2n!��f − fm�2n
,

�19�

where afm

�n� denotes the first nonvanishing derivative of af at
fm. It follows that the cumulative avalanche size distribution
decays algebraically as

D��� 
 �−�4n+1/2n�. �20�

This analytic result demonstrates that as the order of the
inflexion point n increases, the size distribution of ava-
lanches remains a power low but the exponent gradually de-
creases. In the limit of an infinitely large plastic
plateau n→� the avalanche distribution will converge to
D���
�−2.

It is also interesting to analyze the statistics of avalanches
around a prescribed neighborhood of a generalized local ex-
tremal point �fm ;�m� of the constitutive curve of order n
where di�

dfi =0 �i=1. . .n−1 and n�Z�. Recently, it has been
shown that restricting the analysis to the vicinity of the para-
bolic maximum of the constitutive curve, the avalanche size
distribution shows a crossover between two power-law re-
gimes: the asymptotics of the distribution has an exponent
5/2 while the distribution of small avalanches decays slower
with the exponent 3/2. Considering avalanches only at the
maximum of ��f�, a single power law remains with exponent
3/2 �19–22�.

HIDALGO et al. PHYSICAL REVIEW E 80, 051108 �2009�

051108-4



In the general case of a local extremal point �fm ;�m� of
order n, the size distribution of avalanches originating in the
strain interval f0� f � fm can be cast into the form

D��, f0� =
��−1

�!
�

f0

fm

p�f��1 − af�af
�−1e−af�df . �21�

Hence, the asymptotics of the distribution reads as

D��, f0� 
 �−4n+1/2n��3n + 1

2n
 − �3n + 1

2n
,

�

�c
� ,

�22�

where �s� and �s ,x� are the complete and incomplete
gamma functions, respectively �35�. In Eq. �22� the crossover
avalanche size �c scales with the strain interval as

�c 

1

�fm − f0�2n . �23�

Depending on the avalanche size we can then identify two
regimes in the avalanche size distribution

D��, f0� 
 ��−�3/2�, if � � �c

�−��4n+1�/2n�, if � 	 �c.
� �24�

When the avalanches are recorded in the vicinity of a gener-
alized local extreme where di�

dfi =0 �i=1. . .n−1 and n�Z�,
we find that the power law has an exponent which also dif-
fers from the one characterizing the size distribution of all
avalanches. This result generalizes previous findings re-
ported in �19–22�, where a constitutive behavior with a
single parabolic maximum n=1 was examined.

IV. COMPUTER SIMULATIONS

In order to obtain a deeper understanding of the micro-
scopic breaking mechanism in CDFBM, we have developed
a simulation technique and explored numerically the distri-
bution of bursts of fiber failures in Ref. �34�. Under stress-
controlled loading conditions, the failure of each fiber is fol-
lowed by a redistribution of load, which can induce further
fiber breakings, resulting in an avalanche of failure events.
Previously, we have analyzed numerically the avalanche sta-
tistics of the model as a function of the number of failures,
kmax, and of the stiffness reduction parameter, �, setting up
an approximate phase diagram based on computer simula-
tions �34�. In the following, we will make use of the analytic
results of Secs. II and III, to deduce analytically the complete
phase diagram of CDFBM on the �� ;kmax� plane classifying
all possible functional forms of the burst size distributions.
The analytic predictions are checked with computer simula-
tions for a Weibull distribution of breaking thresholds Eq. �4�
with parameters m=2 and �0=1. In the simulations the num-
ber of fibers is fixed N=160 000 and the burst size distribu-
tions are averaged over two hundred samples.

Figure 1 shows that, after the initial elastic response, the
constitutive curve of CDFBM displays a plateau regime
which generically is nonmonotonic; different local extrema
develop along the plateau. Varying the value of � and kmax,

the number and type of the local extrema can be controlled.
The above analytic calculations have shown that the qualita-
tive shape of the local extrema has a substantial effect on the
microscopic failure process. Especially, the asymptotics of
the size distribution of breaking bursts is controlled by the
mechanical response of the material near the local extrema
and the last inflection point of the constitutive curves.

It is noticeable in Fig. 1 that the local extreme of the
constitutive curves of the CDFBM are not parabolic in gen-
eral, i.e., the larger the value of kmax is, the flatter the peaks
are. When fibers can fail only once kmax=1, below the critical
stiffness reduction parameter, ���c�kmax=1�, the constitu-
tive curve, ��f�, has one local maximum while above it ��f�
becomes monotonous with an inflexion point. It can also be
shown analytically that for kmax�1 the constitutive curve
has kmax local maxima; however, at the critical value
�c�kmax=1� the last maximum turns into an inflexion point.
This feature is illustrated in Fig. 1.

Carefully examining the model constitutive behavior, we
have found that for �c��c�1� �independently of kmax� the
first parabolic maximum is always slightly higher than the
rest of local maxima. Thus, the avalanche size distribution is
determined just by the behavior of burst processes around the
first parabolic maximum. Consequently, it results in an alge-
braic decay of the burst size distribution with an exponent
5/2 similarly to simple FBMs. This scenario is represented
by Phase I in the phase diagram of Fig. 3, where the burst
distributions are described by Eq. �16� in agreement with
Refs. �17,18�. The critical point �c�kmax=1� can be deter-
mined analytically as �c�1�=me−�1+m�/m / �1+me−�1+m�/m� for a
Weibull distribution. It reduces to �c�1�=0.305 for the pa-
rameter values m=2 and �0=1 and it is represented by the
dotted vertical line in the phase diagram of Fig. 3.

It has been shown in Sec. III that for each kmax there exists
a critical value of the stiffness reduction parameter �c�kmax�,
above which the constitutive curve becomes monotonous,
d� /df �0 �see Fig. 2�. In this case the avalanche statistics is
determined by a generalized singular point �fm ;�m� of ��f�
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leading to a distinct behavior which is represented by Phase
III in the phase diagram. The phase boundary in Fig. 3 sepa-
rating Phase II and Phase III is the curve of �c�kmax�. This
curve was deduced by solving numerically d� /df =0 and
d2� /df2=0 for a given kmax and looking for the minimum
�c�kmax�, which allowed for a common solution.

In this case the plateau region of the constitutive curve,
��f� does not have any maxima, and is characterized by the
inflection region in ��f� around �m. In Sec. III we have
shown analytically that in this situation the avalanche size
distribution decays asymptotically as a power law with an
exponent D���
�−��4n+1�/2n�. The value of n is directly re-
lated to the order of the first nonvanishing derivative of the
constitute curve dn��f�

dfn �0 at the generalized singular point
�fm ;�m�.

Note that the absence of local maxima in the constitutive
curve ��f� in Phase III implies that the avalanche size distri-
bution has an asymptotic exponential decay characterized by
a correlation length, which diverges on approaching �c from
Phase III. In order to numerically verify the analytic predic-
tions on the burst size distribution and to analyze the diverg-
ing correlation length when approaching the line �c�kmax�,
we have carried out computer simulations of CDFBM. The
insets of Figs. 4�a� and 4�b� display the burst size distribution
obtained numerically for kmax=2 and kmax=4 in the param-
eter range ���c�kmax�, i.e., inside Phase III. The corre-
sponding critical values can be obtained as �c�2�=0.435 and
�c�4�=0.537. It can be seen in the insets of Figs. 4�a� and
4�b� that in agreement with the analytic predictions, the cut-
off of the avalanche size distributions D��� rapidly increases
when � approaches �c from above.

To further analyze the effect of varying � in Phase III, we
introduce the scaling ansatz

D��� = �̄max
−� g��/�̄max

� � �25�

for the avalanche size distribution, D���, obtained above the
critical point ���c�kmax�. In Eq. �25�, the mean value of the

maximum avalanche, �̄max, is introduced as a scaling vari-
able, while � and � are scaling exponents which must satisfy
the relation �=��. Figures 4�a� and 4�b� display the rescaled

avalanche size distributions plotting D����̄max
� as a function

of � / �̄max
� . The high-quality data collapse obtained with the

parameters �=3.12 and �=1.4 are consistent with a power-
law exponent �=2.23. Additionally, in Fig. 4�b� the collapsed
data corresponding to kmax=4 and � values just above �c�4�
is consistent with �=3.28 and �=1.6, which correspond to a
power-law exponent �=2.05. It is noticeable that the size of
plastic plateau of the constitutive curve increases with in-
creasing kmax. These results are consistent with the prediction
that the exponent of the power law tends asymptotically to
�→2 with increasing kmax. This scenario corresponds to a
situation where the plastic plateau of the constitutive relation
becomes flatter as kmax increases. According to the theoreti-
cal description of the previous section, the exponent Eq. �20�
characterizing the asymptotic decay of the cumulative ava-
lanche size distribution can vary between 5

2 when a local
maximum controls the catastrophic avalanches, and 2 when

the relevant region of the constitutive curve becomes suffi-
ciently flat.

The fact that �c�1�����c�kmax� for kmax�1 opens a
region in the phase diagram where the constitutive curve is
nonmonotonous �Phase II�, where the first maximum of the
constitutive curve is smaller than the subsequent ones. As a
result, on increasing monotonously the applied stress the ma-
terial explores the intermediate region of its constitutive
curve where the material exhibits a nontrivial plastic behav-
ior, where the characteristic avalanche activity is located in
the neighborhood of the consecutive maxima. We can probe
these subsequent bursting activities by analyzing the ava-
lanche size distribution for different strain windows along
the constitutive curve. In Fig. 5 we show the avalanche dis-
tributions until the first parabolic maximum, for two values
of kmax displaying the generic algebraic decay D���
�−5/2

with the usual mean-field exponent 5/2. Under stress-
controlled loading the valleys of the constitutive curve �as
displayed in Fig. 1� cannot be accessed and the right-hand
side of the different maxima does not contribute to the ava-
lanche dynamics. However, we can analyze the avalanches
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FIG. 4. Avalanche distributions obtained for a system with dif-
ferent maximum number of allowed failures: �a� kmax=2 and �b�
kmax=4. Results for several values of � above �c�kmax� are shown.
Good data collapse is obtained if the two axis are scaled according
to the theoretical ansatz proposed in Eq. �25�. The insets show the
original avalanche size distributions.
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which propagate in the system in the neighborhood of the
different maxima from bellow �slightly lower strain�. As dis-
played in Fig. 6, in this case the avalanche has an asymptotic
algebraic decay characterized by an exponent −3 /2 indepen-
dently of the maximum shape, as predicted from Eq. �24�.
We note that the crossover phenomenon of the avalanche
size distribution P��� predicted by Eqs. �23� and �24� can
only be observed by setting different conditions on the strain
value around the consecutive maxima of ����. Without pre-
cise conditioning, avalanches originating from different re-
gimes of the consecutive curve mix up and the crossover
behavior disappears. This is the reason why we do not ana-
lyze numerically the behavior of the crossover avalanche size
�c defined by Eq. �23�.

Increasing � in Phase II, the maxima of the constitutive
curve subsequently disappear, but in all cases the contribu-
tion to the largest avalanches is controlled by the last maxi-

mum of the constitutive curve. As we approach �c�kmax�, the
last remaining maximum merges with the increasing part of
the constitutive relation associated to material hardening, and
right at the critical value the maximum gives rise to a plastic
region in the constitutive curve characterized by a weak sen-
sitivity to the applied strain. Mathematically, it can be re-
garded as a generalized inflection point, and accordingly, the
asymptotic algebraic decay of the avalanche distribution
function displays a peculiar exponent which cannot be
smaller than 2.

Our analysis holds for an unbounded distribution of
breaking thresholds. For a uniform threshold distribution de-
fined over a finite domain no inflexion points appear �inde-
pendently of kmax�. Thus, in the phase diagram of Fig. 3 for
the uniform distribution Phase I and Phase II merge into a
single phase. Moreover, the behavior close to the transition
line is simpler because the local extremum is always a single
quadratic maximum; hence, the transition for any kmax has
the same nature than in the case kmax=1 �23�. We note that
the avalanche statistics related to a single parabolic maxi-
mum notably differs when the system is loaded with finite
load increments �36,37�. Nevertheless, the CDFBM for
which the constitutive curve has more complex extreme
points deserves a detailed study which will be presented else-
where.

V. DISCUSSION

We have carried out a detailed study of the avalanche
statistics of the continuous damage fiber bundle model where
the fibers undergo a series of partial breaking events reduc-
ing gradually their stiffness. Slowly increasing the external
load on the bundle, fibers break in bursts due to the subse-
quent load redistribution over intact fibers. The model has
two main parameters, i.e., the stiffness reduction factor and
the total number of allowed failures. Varying these param-
eters, the model captures various types of materials’ response
which can have also experimental relevance.

The plastic deformation of heterogeneous materials is
known to proceed in avalanches on the microscale and recent
experimental and theoretical investigations have revealed
that dislocation rearrangements appear in bursts similarly to
the microfracturing of heterogeneous materials �14,15�. The
CDFBM shows that in a heterogeneous material macroscopic
plasticity can emerge due to the subsequent partial failure
without assuming plastic rheology of fibers. The microscopic
dynamics and avalanche activity we obtain lie somewhere
between microfracturing and plastic rearrangements. As the
main outcome of the work, we have determined analytically
the burst size distributions of the model and constructed a
phase diagram of the system which characterizes all possible
avalanche behaviors. We have shown that the presence of
macroscopic hardening and plastic behavior result in burst
distributions different from the usual mean-field result of
FBM: power-law functional forms arise with an exponent
varying between 5/2 and 2 depending on the model param-
eters, which is then followed by an exponential cutoff. The
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analytic results have been verified by extensive computer
simulations.

Although we have focused in a family of FBM where
analytic progress has been possible, the results obtained are
more general and indicate the intricate behavior and richness
of highly disordered materials which display a nonmonoto-
nous strain-load constitutive relation. The results obtained
show that a careful understanding on the shape of the con-
stitutive relation sheds light in the expected avalanche dy-
namics characterizing the failure process of materials on the
microlevel.
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