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The space subdivision in cells resulting from a process of random nucleation and growth is a subject of
interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions
while assuming that the space subdivision process is in accordance with the premises of the Kolmogorov-
Johnson-Mehl-Avrami model. We have not imposed restrictions on the time dependency of nucleation and
growth rates. We have also developed an approximate analytical cell size probability density function. Finally,
we have applied our approach to the distributions resulting from solid phase crystallization under isochronal
heating conditions.
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I. INTRODUCTION

In this paper we consider the subdivision of a
D-dimensional Euclidean space into disjoint regions created
after a process of random nucleation and growth. Random
subdivisions can be obtained by several different methods,
among which Poisson-Voronoi and Johnson-Mehl
tessellations1 have been widely studied. The Poisson-Voronoi
tessellation is obtained by randomly picking several points,
the seeds Pi, by a Poisson process. Next, the space is subdi-
vided in cells, Ci, by the rule: Ci contains all points in space
closer to Pi than to any other seed. This cellular structure is
extensively applied in many diverse scientific fields includ-
ing biology,2,3 computer science,4,5 materials science,6,7

astrophysics,8–10 medicine,11 agriculture,12 quantum field
theory,13 and sociology.14

The space tessellation can be fully characterized by means
of the probability density function �PDF�, f�s�, which is the
probability that a cell has a size between s and s+ds. The
properties of the PDF of the Poisson-Voronoi tessellation
have been extensively studied both theoretically1,15,16 and
numerically.7,16–22 It is well known that the Poisson-Voronoi
tessellation PDF is described by a gamma distribution

f�s� = � �

E
�� 1

����
s�−1 exp�−

�

E
s� , �1�

where � is the gamma function, � is a parameter that is
dependent on the dimension D, i.e., �=2, 3.584, and 5.586
for D=1, 2, and 3 respectively; and E is the expected cell
size,

E � �
0

�

sf�s�ds . �2�

It is worth mentioning that Eq. �1� has been analytically
derived for the one-dimensional case, where �=2 is an exact
result.15 Conversely, for the two- and three-dimensional
cases, the validity of Eq. �1� is supported by analytical ap-
proximations and numerical fits.

Our main interest is the characterization of grain morphol-
ogy related to crystallization. In general, the crystallization

of most materials takes place by means of a nucleation and
growth mechanism: nucleation starts with the formation of
small atom clusters of the new stable phase in the metastable
phase. Subsequently, clusters with sizes greater than the criti-
cal, or nuclei, start to grow by incorporating neighboring
atoms of the metastable phase. During this growth, grains
impinge upon each other. Finally, the structure of the new
stable phase consists of disjoint regions or crystals separated
by grain boundaries. The evolution of crystallization and
grain size distributions is entirely determined by the nucle-
ation rate density I and the grain linear growth rate G. When
nucleation takes place for a very short time, its rate may
vanish before the onset of particle growth �site-saturated
nucleation�.23,24 In this case, the crystal structure is equiva-
lent to a Poisson-Voronoi tessellation provided that nucle-
ation is Poissonian through the whole space and growth is
isotropic.

Conversely, continuous nucleation takes place when
nucleation and growth occur at the same time. In general,
there is an energy barrier for nucleation and growth to hap-
pen. Thus, I and G depend on temperature. For the particular
case of isotropic and isothermal transformations, where I and
G are constant, the resulting crystal structure corresponds to
the well-known Johnson-Mehl tessellation.1 For this tessella-
tion, Axe and Yamada25 have obtained an analytical solution
for the one-dimensional case while Mulheran and Harding26

has developed a simple �but not so accurate� relation for the
two- and three-dimensional cases. Alternatively, Monte Carlo
simulations provide a powerful tool for the calculation of
tessellations and PDFs under a wide variety of
conditions.6,27–35

Under nonisothermal conditions, I and G depend on time
by virtue of their temperature dependence. Therefore, an in-
finite number of different tessellations and/or structures can
be obtained by varying the thermal history. Unlike the
Poisson-Voronoi and Johnson-Mehl tessellations, the analyti-
cal results related to tessellations emerging from time-
dependent nucleation and growth rates are scarce. Indeed, as
far as we know, the analytical models are limited to time-
dependent nucleation rates.16,36 In particular, Jun et al.36 have
derived an analytical solution for the one-dimensional case.
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Particularly relevant to the present work are the results of
Pineda et al.16 who obtained an accurate analytical descrip-
tion for the two- and three-dimensional cases.

In the present work we will consider those transforma-
tions that fulfill the Kolmogorov-Johnson-Mehl-Avrami
�KJMA� premises. No restrictions will be imposed on nucle-
ation and growth rate time dependence. We will refer to these
tessellations as KJMA tessellations. KJMA theory has been
widely applied to describe systems undergoing first-order
phase transformations, for instance, DNA replication;36 crys-
tallization of polymers,37 amorphous materials,38,39 and
glasses;40 switching in ferroelectrics41 and ferromagnets;42

lattice-gas models;43 and film growth on solid substrates.44 In
Sec. II we will describe the basic concepts of KJMA theory
and will focus our attention on those aspects that are useful
to the development of our work. Section III is devoted to the
calculation of the expected value and variance of the distri-
butions related to the KJMA tessellations. In Sec. IV we will
derive a simpler approximate relation for the variance and
will check its accuracy. As an application of the previous
results, in Sec. V we will derive an approximate grain size
PDF, which is the superposition of gamma distributions. Fi-
nally, at the end this section we will verify that the grain
radius PDF can be expressed, as well as the superposition of
Gaussian distributions.

II. KOLMOGOROV-JOHNSON-MEHL-AVRAMI THEORY

The KJMA theory45–47 describes in a very simple form the
kinetics of transformations governed by nucleation and
growth that satisfy the following assumptions:

�i� nucleation must be Poissonian through the entire
space;

�ii� the volume of an arbitrary grain is much smaller that
the volume of the system;

�iii� the crystal growth rate is isotropic.
On the basis of these premises, Kolmogorov calculated

the evolution of the transformed fraction, X�t�, through the
probability, p�t�, that an arbitrary point O has not crystal-
lized, i.e., the probability that no nuclei able to transform O
will be formed during the time interval �0, t�,

X�t� = 1 − p�t� , �3a�

p�t� = exp	− gD�
0

t

I���r�t,��Dd�
 , �3b�

r�t,�� � �
�

t

G�z�dz , �3c�

where gD is a geometrical factor related to the shape of the
crystal—for a D-dimensional sphere
gD=�D/2 /��D /2+1�—and r�t ,�� is the minimum distance
between O and a nucleus created at � so that the nucleus
would not transform O.

Based on geometrical arguments, Avrami deduced the fol-
lowing relation:

�tv�t,��
�tvex�t,��

=
1 − X�t�
1 − X���

, �4�

where �tv�t ,�� and �tvex�t ,�� are, respectively, the actual and
extended average volumetric growth rate at time t for grains
nucleated at time �. The word extended refers to the volume
a grain would attain if nuclei grew through each other and
overlapped without mutual interference.

The integration of Eq. �4� leads to48

dX�t�
1 − X�t�

= dXex�t� . �5�

Finally, integration of Eq. �5� gives Avrami’s well-known
formula

X�t� = 1 − exp�− Xex�t�� . �6�

The calculation of Xex�t� is straightforward and obtained by
simply neglecting the impingement between nuclei,

Xex�t� = gD�
0

t

I���r�t,��Dd� . �7�

The combination of Eqs. �6� and �7� gives Eq. �3�. As is well
known, Avrami and Kolmogorov deduced the same relation
using different approaches.

Note that in Eq. �7� it is assumed that the nucleation rate
is not affected by the shrinking of the untransformed phase.
In the calculation of Xex�t� the phantom nuclei are taken into
account. Avrami designated as phantom nuclei those nuclei
that are formed in the transformed fraction and therefore do
not contribute to the formation of new grains. Indeed, the
actual nucleation rate can be defined as

Ia�t� � �1 − X�t��I�t� . �8�

Concerning the limitations of the KJMA theory, it also
holds in the case of anisotropic growth provided that the
grains have a convex shape and are aligned in parallel.31

Moreover, the KJMA theory provides a good approximation
when the anisotropy is moderate or for soft impingement.49

However, KJMA theory fails when nucleation is
nonrandom,50 when growth is anisotropic,33,51,52 when
growth stops before crystallization is complete,49 and when
the incubation time is not negligible.53

III. STATISTICAL PROPERTIES OF THE KJMA CELL
SIZE DISTRIBUTION

The cell size distribution is characterized by its PDF, f�s�,
the probability that a cell has a size between s and s+ds.
From its definition it is obvious that f�s� must be normalized:

�
0

�

f�s�ds = 1. �9�

To analyze the properties of the cell size distribution, we will
consider the contribution of the crystals formed at a time �
over a time interval d� �� crystals�. We will call the cell size
distribution of the � crystals the � distribution. Accordingly,
we define the PDF of the � crystals, f��s�, as the probability
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that a � crystal has a volume between s and s+ds. From the
definition of f��s�, it is also apparent that f��s� must be nor-
malized:

�
0

�

f��s�ds = 1. �10�

f�s� is simply the addition of the contributions of the � crys-
tals over the time interval in which their nucleation takes
place

f�s� =

�
0

�

Ia���f��s�d�

�
0

�

Ia���d�

. �11�

Note that the denominator in Eq. �11� ensures that f�s� is
normalized if all f��s� are normalized.

In the following sections, we will present the expected
grain size and the variance of the cell size distribution and
their relationship with the equivalent parameters of the �
distributions.

A. Expected grain size

It is well known that the expected grain size, E, is the
inverse of the final grain density:

E = ��
0

�

Ia���d��−1

. �12�

Likewise, the expected value, E� of a � distribution is
simply the final average grain size of a � crystal normalized
to the total volume:

E� = �
�

�

�zv�z,��dz . �13�

Introducing Eq. �4� into Eq. �13� leads to

E� =
1

1 − X�����

�

�1 − X�z���zvex�z,��dz , �14�

where the extended average growth rate is given by

�zvex�z,�� = DgDr�z,��D−1G�z� . �15�

Note than once the evolution of the transformed fraction,
X�t�, is known—i.e., the solution of Eq. �3�—the calculation
of E� is straightforward.

Besides, the final space fraction occupied by the � crys-
tals, X�, can be calculated from the integration over the entire
space of the probability that a point P in the space belongs to
a � crystal nucleated at O. Since the system is homogeneous
and isotropic, this probability only depends on the distance b
between O and P. Therefore,

X� = I���� P��O,P�dVP = DgDI����
0

�

P��b�bD−1db ,

�16�

where P��b� is the probability that a point P, separated by a
distance b from the nucleus O, belongs to the crystal nucle-
ated at O. To calculate P��b�, we will use the same approach
that Kolmogorov used for the deduction of Eq. �3�. Since
nucleation is Poissonian, P��b� is given by the probability
that no nucleus is formed that could transform P before O
does so. P would be transformed by O at the moment tb:

b = r�tb,�� = �
�

tb

G�z�dz . �17�

Thus, the nuclei formed at z that could transform P before O
does so are located in a D sphere of radius r�tb ,z� around P.
Therefore, according to Eq. �3�, P��b� is given by

P��b� = exp	− gD�
0

tb

I�z�r�tb,z�Ddz
 . �18�

The previous integral spans the time interval �0, tb� since no
nucleus formed after tb could transform P. Comparison of
Eq. �7� with Eq. �18� gives

P��b� = exp�− Xex�tb�� = 1 − X�tb� . �19�

Finally, if we introduce the value of P��b� given by Eq.
�18� into Eq. �16� and we change the variable b by tb, we
obtain

X� = DgDI����
�

�

�1 − X�tb��r�tb,��D−1G�tb�dtb. �20�

Alternatively, the expected value, E� is the ratio between
the space fraction occupied by the � crystals and the density
of � crystals:

E� =
X�d�

Ia���d�
. �21�

As expected, substitution of Eqs. �8� and �20� into Eq.
�21� delivers Eq. �14�. Moreover, the integration of X� over
the whole time interval where nucleation takes place gives
the total transformed fraction, 1:

�
0

�

Ia���E�d� = �
0

�

X�d� = 1. �22�

We will end this subsection verifying that the value of E
evaluated from the � distributions coincides with the value
given at the beginning of this subsection �Eq. �12��:
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E � �
0

�

sf�s�ds =

�
0

�

Ia�����
0

�

sf��s�ds�d�

�
0

�

Ia���d�

=

�
0

�

Ia���E�d�

�
0

�

Ia���d�

=
1

�
0

�

Ia���d�

. �23�

B. Variance of the grain size distribution

To determine the variance we will adapt the development
of Gilbert1 for a Poisson-Voronoi tessellation to our case.
First, we define a new PDF, f��s�, as the PDF of the crystals
that contain a given arbitrary point O: i.e., if we pick an
arbitrary point O, f��s� is the probability that a crystal has a
size between s and s+ds and contains the point O. Accord-
ingly, f��s� is proportional to f�s� and to s because a large
crystal has a proportionally greater chance of containing the
point O. Therefore,

f��s� =
sf�s�

E
. �24�

The constant of proportionality, E−1, has been deduced by
imposing normalization:

�
0

�

f��s�ds = 1. �25�

From the definition of f��s� it can be easily proved that

var = �
0

�

�s − E�2f�s�ds = E�E − E2, �26�

where E� is the expected value of f��s�.
Once E� is known, the calculation of the variance is

simple. To obtain E� we first analyze the contribution of the
� crystals. To do so, we define f�

��s� as the PDF of the �
crystals that contain a given arbitrary point O: i.e., if we pick
an arbitrary point O, f�

��s� is the probability that a � crystal
has a volume between s and s+ds and contains the point O.
Accordingly, f�

��s� is proportional to f��s� and to s:

f�
��s� � f��s�s . �27�

On the other hand, the integration of f�
��s� over all pos-

sible volumes is the probability that an arbitrary point O
belongs to a � crystal. This probability is the fraction of the
space occupied by the � crystals X�:

�
0

�

f�
��s�ds = X�, �28�

taking into account that

E� = �
0

�

sf��s�ds , �29�

and combining Eqs. �21�, �27�, and �28�, we obtain f�
��s�:

f�
��s� = Ia���sf��s� . �30�

Then the expected value of f�
�, E�

� is

E�
� =

�
0

�

sf�
��s�ds

�
0

�

f�
��s�ds

. �31�

It can be easily verified that E� is related with E�
� through

E� =

�
0

�

sf��s�ds

�
0

�

f��s�ds

= �
0

�

X�E�
�d� . �32�

Therefore the contribution of the � crystal to the expected
value E� is X�E�

�. In addition, this contribution is the integra-
tion over the entire space of the probability that a differential
volume around a point P in the space belongs to the same �
crystal as O. Since the system is homogeneous and isotropic,
this probability only depends on the distance b between O
and P,

X�E�
� = DgD�

0

�

P�
��b�bD−1db , �33�

where P�
��b� is the probability that two points O and P, sepa-

rated by a distance b, belong to the same � crystal,

P�
��b� = I���� P�

��b,Q�dVQ. �34�

The integration domain covers the entire space, dVQ is the
D-volume differential around a point Q, I���dVQd� is the
probability that a nucleus is formed at Q at the time � during
the time interval d�, and P�

��b ,Q� is the probability that both
O and P belong to the same crystal nucleated at Q �see Fig.
1�. For D=2, dVQ=2rOdrOd�O while for D=3, dVQ
=2�rO

2 sin��O�drOd�O in polar coordinates.
P�

��b ,Q� is given by the probability that no nucleus is
formed that could transform O or P before Q does, then

r(t ,z)O
r(t ,z)P

O
Pb

VI

Q

rO rP

�O

FIG. 1. Schematic of the calculation of P�
��b ,Q�.

JORDI FARJAS AND PERE ROURA PHYSICAL REVIEW B 78, 144101 �2008�

144101-4



P�
��b,Q� = exp�− gD	�

0

tO

I�z�r�tO,z�Ddz

+ �
0

tP

I�z�r�tP,z�Ddz − �
0

t�
I�z�

VI

gD
dz
� ,

�35a�

rP
2 = rO

2 + b2 − 2rOb cos �O, �35b�

rx = r�tx,�� = �
�

tx

G�z�dz, for x = O,P , �35c�

rO + rP − b

2
= r�t�,�� = �

�

t�
G�z�dz , �35d�

where r�tO ,z� and r�tP ,z� are the minimum distance between
O,P and a nucleus created at the time z so that the nucleus
would not transform O and P, respectively �see Fig. 1�. VI is
the volume intersection between two D spheres of radius
r�tO ,z� and r�tP ,z� centered at O and P, respectively �gray
region in Fig. 1�. The subtraction of the term VI is in accor-
dance with the fact that it has been accounted for twice in the
first and second integrals in Eq. �35a�. For a particular set of
values of the integration variables rO and �O, rP is evaluated
from Eq. �35b� while tO and tP are defined by Eq. �35c� and
t� is defined by Eq. �35d�. Note that O and P are transformed
by Q at the times tO and tP, respectively. Thus, any nucleus
formed after tO and tP could not transform O or P, respec-
tively, so the two first integrals in Eq. �35a� span the time
interval �0, tO� and �0, tP�, respectively. Additionally, it can
be easily verified that if z	 t�, then the intersection between
the D-spheres is null. Therefore, the last integral in Eq. �35a�
spans the time interval �0, t��.

Finally, Eq. �35� is simplified by substitution of Eq. �7� in
the first and second integrals in Eq. �35a�

P�
��b,Q� =

exp�− Xex�tO� − Xex�tP��

exp	− �
0

t�
I�z�VIdz
 =

�1 − X�tO���1 − X�tP��

exp	− �
0

t�
I�z�VIdz
 .

�36�

It can be easily proved that the variance of the � distribu-
tions, var�, is given by

var� = E�
�E� − �E��2. �37�

Finally, we will check if the variance of the distribution
determined from the decomposition of f�s� into � PDF, Eq.
�11�, gives the expected result, Eq. �26�:

var =

�
0

� ��
0

�

s2Ia���f��s�ds�d�

�
0

�

Ia���d�

− E2

= E	�
0

� ��
0

�

sf�
��s�ds�d�
 − E2 = E	�

0

�

E�d�
 − E2

= E�E − E2. �38�

At this point, we would like to point out that the results
obtained so far are exact and general, i.e., we have not made
any assumption concerning f�s� and f��s�.

IV. APPROXIMATE VARIANCE

According to our previous analysis, the exact calculation
of the variance is reduced to the calculation of the parameters
E and E� in Eq. �26�. While the calculation of E is straight-
forward, the evaluation E� is more cumbersome. Indeed,
when compared to Monte Carlo algorithms,34 its numerical
calculation is more complex without representing any sig-
nificant reduction in computing time. That is because there
are several integrals nested and, in particular, the calculation
of the intersection volume VI is complex. When r�tO ,z�
b
or b
r�tO ,z�, VI tends toward being a D sphere of radius
r�tO ,z� and 0, respectively. On the other hand, when
r�tO ,z�r�tP ,z� the shape of VI roughly approaches a D
sphere. Since the width of VI �see Fig. 1� is r�tO ,z�
+r�tP ,z�−b, we approximate VI by a D sphere of diameter
r�tO ,z�+r�tP ,z�−b:

VI  gD� r�tO,z� + r�tP,z� − b

2
�D

. �39�

It is worth noting that the previous approximation also
works for the limiting cases r�tO ,z�
b and b
r�tO ,z�. Fur-
thermore, for the one-dimensional case it can be easily veri-
fied that Eq. �39� is exact �in Appendix A we derive P�

� for
D=1�. Finally, the approximate solution �from here on ap-
proximation I) is obtained by substitution of Eqs. �7� and
�39� into Eq. �36�:

P�
��b,Q� =

exp�− Xex�tO� − Xex�tP��
exp�− Xex�t���

=
�1 − X�tO���1 − X�tP��

�1 − X�t���
.

�40�

Therefore, the calculation of P�
��b ,Q� is simple provided that

the evolution of the transformed fraction, X�t�, is known.
Analytical exact solutions for X�t� are restricted to three par-
ticular situations under isothermal conditions: time-
independent growth and nucleation rates, time-independent
growth rate and nucleation rate proportional to a power of
time,54 and site-saturated nucleation. A quasiexact solution of
the KJMA model has recently been obtained under continu-
ous heating conditions.55 Moreover, there are numerical
methods, which allow a simple and fast calculation of X�t�
for an arbitrary time dependence of the nucleation and
growth rates.34
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We have analyzed the distribution emerging from solid
phase crystallization under isochronal heating conditions,
i.e., heating at a constant rate, to check the accuracy of ap-
proximation I, Eq. �40�, in the case of time-dependent nucle-
ation and growth rates. To work with realistic parameters we
have taken those of amorphous silicon crystallization,38,39,56

in which the nucleation and growth rates are described by an
Arrhenius temperature dependence

I = I0 exp�−
EN

KBT
� and G = G0 exp�−

EG

KBT
� , �41�

where T is the temperature in Kelvin and kB is the Boltzmann
constant. In Table I we summarize the corresponding param-
eters. When the temperature is raised at a constant rate �, the
nucleation and growth rates become time dependent through
Eq. �41�. Under those conditions, the kinetics is correctly
described by the KJMA theory35,55 and there is good agree-
ment between experiment and theoretical predictions.38,39

For the calculation of the evolution of the transformed frac-
tion, we have used the quasiexact solution described in Ref.
55. The numerical evaluation of the integrals has been per-
formed by means of an extended midpoint algorithm.57 To
confirm that the observed discrepancies are not related to
numerical inaccuracies, we have performed several calcula-
tions with consecutive smaller integration steps. Moreover,
for the numerical integration over a semi-infinite interval, we
have imposed a minimum relative error of 10−6. To check the
accuracy of the numerical calculation, we have calculated the
integral of X� over the interval �0,�� and have compared
them to its predicted value, Eq. �22�. Calculations that ex-
hibit discrepancies larger than 10−6 were rejected.

As is apparent from Fig. 1, the approximation of VI by a
D sphere of diameter equal to its width, Eq. �39�, results in
an underestimation of VI, which leads to an undervaluation
of E�

� and of var�. The latter conclusion can be verified in
Fig. 2, where the evolution of E�

� and var� with � is shown.
Although approximation I gives an accurate value of E�

�, the
approximate value of var� shows a significant deviation from
the exact value. The reason is that in the evaluation of var�,
Eq. �37�, both terms in the difference have similar values.
The same happens to the values of the variance and E�; the
exact and approximate values of E� are 3.93 and 3.69, re-
spectively, while the exact and approximate variances are
3.56 and 3.22, respectively. �Space has been normalized to
the space scaling factor35 �G�TP� / I�TP��1/4, where TP is the
peak temperature.� Despite the significant discrepancy be-
tween the exact and approximate values of var�, they have a
nearly parallel evolution with �. This result is general and is
related to the very similar dependency of the approximate

and exact VI on the integration parameters. Therefore, the
accuracy of approximation I can be analyzed through the
relation between the exact and approximate values of var0.
To cover a wide range of distributions, we will recall the
results given in Ref. 35. In this work it was shown that the
shape of the grain size probability density function �PDF�
was practically insensitive to the heating rate, but it depends
mainly on the ratio EN /EG, i.e., the relative evolution of the
nucleation and growth rates with time. The limit EN /EG
→0 corresponds to site-saturated nucleation while EN /EG
=1 coincides with the isothermal case.

In Fig. 3 we have plotted the exact and approximate val-
ues of var0, as well as their ratio. �At this point it is worth
recalling that according to Eq. �41�, a relation of 1 order of
magnitude between the activation energies EN and EG would
result in a huge difference in the relative time evolution be-

TABLE I. Experimental nucleation and growth rates of amor-
phous silicon �Ref. 38, 39, and 56�.

Nucleation Activation energy, EN 5.3 eV

Pre-exponential term, I0 1.7�1044 s−1 m−3

Growth Activation energy, EG 3.1 eV

Pre-exponential term, G0 2.1�107 s−1 m−1

FIG. 2. �Color online� E�
� and var� for three-dimensional growth

and isochronal heating of 40 K/min. Time and space have been
normalized according to the time and space scaling factors,
�I�TP�G�TP�3�−1/4 and �G�TP� / I�TP��1/4, where TP is the peak tem-
perature, i.e., the temperature at which the transformation rate is
maximum �see Ref. 35�. The exact �black solid line� and the ap-
proximate �red dashed line� values are compared.

FIG. 3. �Color online� Exact �black triangles� and approximate
�red circles� values of var0 and their ratio �solid blue squares� as a
function of the ratio between nucleation and growth activation
energies.
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tween the nucleation and growth rates.� First, we can easily
verify that var0 �and in general the variance� decreases with
EN /EG. This means that the distributions become broader as
EN /EG increases. Indeed, when EG
EN, during the first
stages of the transformation, nucleation dominates over
growth. Most of the nuclei are formed at the beginning and
they grow at a slow rate. Thus, the average grain size and its
variance diminishes when EN /EG diminishes. In contrast,
when EN
EG, during the first stages of crystallization,
growth dominates and the nucleation rate increases progres-
sively as crystallization proceeds. Since the time left for
growth is less for the nuclei that appear later, the density of
small grains will be higher than that of larger grains. So the
average grain size and the distribution variance increase with
EN /EG. On the other hand, despite the large variation of var0,
the total variation of the ratio between the exact and the
approximate var0 is very smooth—from 1.96 to 2.12. A simi-
lar behavior has been observed for the two-dimensional �2D�
case, where this rate evolves from 1.28 at EN /EG=10 to 1.35
at EN /EG=0. Hence, the deviations of the approximate value
of var0 from the exact value remain practically constant. This
result is due to approximation I, which is based on a geo-
metrical approach that is fairly insensitive to the relation be-
tween nucleation and growth rates.

Since the ratio between the exact and the approximate
var� is nearly constant, we can obtain a significantly more
accurate approximate value for var� by simply multiplying it
by the corresponding proportionality constant. This constant
only depends on the growth dimensionality. We have chosen
the values of 2.07 and 1.32 for the three-dimensional �3D�
and 2D cases, respectively. These values correspond to
EN /EG=1, i.e., they correspond to the isothermal case with
EG and EN constant in time. With this correction �from now
on approximation II�, the relative error in the calculation of
the variance diminishes to less than 2%, and for EN /EG1
the relative error is less than 0.2%. In Fig. 4 we have plotted
the exact and the approximate values of the distribution vari-
ance and E� with respect to the ratio EN /EG. The exact and
the approximate value obtained from approximation II of the

variance and E� exhibit excellent agreement; the values over-
lap in such a way that they are nearly indistinguishable. Con-
cerning the values obtained from approximation I, it is worth
noting that despite the significant error related to the calcu-
lation of var0 �Fig. 3� and of var� in general, the inaccuracies
in the evaluation of the variance and E� are significantly
smaller. The reason is that both parameters depend exclu-
sively on E� and E �Eqs. �26� and �32��. From Fig. 2 it is
clear that the error related to E� is significantly smaller than
the error in the evaluation of var�, while the calculation of E
is exact.

From now on, we will always use approximation II in the
calculation of the approximate values of E� and E�

�.

V. APPROXIMATE CELL SIZE PROBABILITY DENSITY
FUNCTION

One application of the preceding analysis of the statistical
properties of grain size distribution is the derivation of a
PDF. If we choose a set of f��s� such that their expected
value coincides with the result of Eq. �14� and their variance
is equal to the value given by Eq. �37�, then the variance and
expected values of the PDF obtained from Eq. �11� will be
exact, i.e., the PDF obtained from Eq. �11� will have the
same variance and expected values as the actual PDF. In-
deed, Pineda et al.,16 apply this approach in the case of tes-
sellations generated by random nucleation processes where
the growth rate was assumed to be constant. The agreement
between their approximate PDF and Monte Carlo simula-
tions was remarkable. However, they did not notice that the
expected value and the variance of their approximate PDF
were exact. Concerning the particular choice of the f��s�
functions, we will consider two cases: gamma and Gaussian
distributions.

A. Gamma distribution

Given that in a � distribution the nucleation events are
simultaneous and the � nuclei are randomly distributed, we
can assume that f��s� is similar to the PDF resulting from a
process of site saturated nucleation, i.e., that the PDF is that
of a Poisson-Voronoi tessellation. As explained in Sec. I, the
gamma distribution is the exact PDF for the one-dimensional
case while it provides a very accurate result for the two- and
three-dimensional cases:

f��s� = � ��

E�
��� 1

�����
s��−1 exp�−

��s

E�
� .

Since E� is already the expected value, the problem comes
down to the determination of the exponent ��. Indeed, �� can
be calculated from the following property of the gamma dis-
tributions:

�� =
�E��2

var�

. �42�

To check the accuracy of the PDF we compare them to
some Monte Carlo simulations. The Monte Carlo algorithm34

consists in dividing the space into a cubic lattice. Cells are
assigned to nuclei randomly. The nucleation time of each

FIG. 4. �Color online� Exact �black triangles�, approximate �red
circles�, and corrected approximate �blue squares� values of the
variance and E� and as a function of the ratio between the nucle-
ation and growth activation energies.
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nucleus is precisely calculated from the nucleation rate, and
it is recorded to evaluate the exact evolution of the grain
growth. Finally, each cell is assigned to the nucleus that first
reaches this cell. The evolution of the grain growth transfor-
mation is checked whenever the grain growth is equal to the
size of a cell in order to avoid incorrect cell assignation due
to shielding effects. In particular we consider the crystalliza-
tion of amorphous silicon under isochronal heating at 40
K/min �Table I�. The results of the calculations for three- and
two-dimensional growth are given in Figs. 5 and 6, respec-
tively. We have calculated the PDF using the exact, Eq. �36�,
and approximate, Eq. �40�, values of E�

�. We will refer to
these PDFs as the approximate III and approximate IV PDFs,
respectively. The validity of the selection of a gamma distri-

bution for the f��s� functions is confirmed by the good agree-
ment between the calculated PDF and the Monte Carlo simu-
lations. The excellent agreement between the approximate III
and the approximate IV PDFs is also noteworthy—the rela-
tive difference is less than 0.1% for s /E	0.05. Therefore,
the approximate calculation of E�

� is useful to obtain a simple
and accurate PDF for a Kolmogorov-Johnson-Mehl-Avrami
�KJMA� tessellation. However, the complexity and the com-
puting time required for their evaluation is significantly dif-
ferent. For instance, the calculation of the approximate III
PDF typically takes more than 30 times the time required for
the calculation of the approximate IV PDF. The reason for
this significant simplification and reduction in computing
time is that the approximate IV PDF saves us from having to
evaluate the inner and more complex integral of Eq. �36�.

To confirm this last conclusion, we have calculated the
PDF for the case of site saturated nucleation. This case cor-
responds to EN /EG=0 in Figs. 3 and 4 and is the case that
exhibits the greatest discrepancy between the exact and ap-
proximate values of the variance and E�. Therefore, it should
give the worst agreement between approximate III and the
approximate IV PDFs. As is apparent from Fig. 7 here again
the agreement between the PDFs obtained from the exact
calculation of E�

�, from the approximate calculation of E�
�,

and from Monte Carlo simulation is excellent. Only small
deviations of the approximate III from the approximate IV
PDF are distinguishable for sE. Finally, for the one-
dimensional case and for site saturated nucleation, both the
approximate III and approximate IV PDFs turn into the exact
PDF �see Appendix B�.

B. Gaussian distribution

When analyzing the crystallization morphology, it is often
better to use the grain radius distribution instead of the grain
size distribution. The grain radius, r, of a grain of size s, is

FIG. 5. �Color online� Grain size distribution for three-
dimensional growth and isochronal heating. Comparison between
the PDFs obtained from the exact calculation of E�

� �black solid
line�, from the approximate calculation of E�

� �red dashed line� and
from Monte Carlo simulation �empty squares�.

FIG. 6. �Color online� Grain size distribution for two-
dimensional growth and isochronal heating. Comparison between
the PDFs obtained from the exact calculation of E�

� �black solid
line�, from the approximate calculation of E�

� �red dashed line� and
from Monte Carlo simulation �empty squares�.

FIG. 7. �Color online� Grain size distribution for three-
dimensional growth and site-saturated nucleation. Comparison be-
tween the PDFs obtained from the exact calculation of E�

� �black
solid line�, from the approximate calculation of E�

� �red dashed line�
and from Monte Carlo simulation �empty squares�.
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defined as the radius that will have a D sphere of volume s.
For instance, for three-dimensional growth

r ��3 3s

4�
. �43�

Given the grain size PDF, the grain radius PDF, g�r�, can
be easily derived; for three-dimensional growth,

g�r� = 4�r2f�4

3
�r3� . �44�

On the other hand, for site saturated nucleation and three-
dimensional growth, it has been shown that g�r� is accurately
described by a Gaussian distribution34

g�r� =
1

�2��
exp�−

�r − Eg�2

2�2 � , �45�

where Eg is the expected value of the grain radius PDF and �
is the standard deviation

� = �varg. �46�

where varg is the variance of the grain radius distribution.
The fitted parameters were actually Eg=0.608 /n0

1/3 and �
=0.0883 /n0

1/3, where n0 is the nuclei density.
Conversely, g�r� can be determined by means of Eq. �44�,

where f�s� is a gamma distribution with �=5.581.16 Under
this approach, it can easily be proved that

Eg = � 3

4�

E

�
�1/3��� + 1/3�

����
,

varg = � 3

4�

E

�
�2/3	��� + 2/3�

����
−

��� + 1/3�2

����2 
 , �47�

where E=1 /n0 is the expected value of the grain size
distribution �see Appendix B�. By substituting �=5.581
into the previous relations we obtain Eg=0.608 /n0

1/3, varg
=7.65�10−3 /n0

2/3, and �=0.0874 /n0
1/3, which are in good

agreement with the parameters obtained from the Gaussian
fit.

Therefore, for a KJMA tessellation we can obtain g�r� as
the superposition of g��r� PDFs. In contrast with the previous
subsection, we will now assume that g��r� are Gaussian dis-
tributions:

g�r� =

�
0

�

Ia���g��r�d�

�
0

�

Ia���d�

. �48�

To evaluate the g��r� PDFs we need to know their expected
value, Eg,�, and their variance, varg,�. These parameters can
be easily derived from the statistical parameters of the �
distributions, E� and var�, by means of Eq. �47�. In Fig. 8 we
have plotted the grain radius distribution obtained, from the
grain size distribution �Eq. �44�� �where f�s� is the superpo-
sition of gamma distributions�, as a direct superposition of
g��r� Gaussian PDFs �Eq. �48�� and from Monte Carlo simu-

lations. This distribution corresponds to the crystallization of
amorphous silicon under isochronal heating at 40 K/min
�Table I�. The good agreement between the PDF calculated
from Eqs. �44� and �48� confirms that the g��r� are correctly
described by a Gaussian distribution. Finally, both ap-
proaches show good agreement with Monte Carlo simula-
tions, i.e., both approaches are useful for describing the grain
radius PDF.

VI. CONCLUSIONS

This paper deals with a subject of interest in many scien-
tific areas, namely, the cell size distribution of space tessel-
lations that emerge from first-order phase transformations
ruled by nucleation and growth of the new stable phase. No
restrictions are imposed on the time dependency of the
nucleation and growth rates, and the validity of our results is
limited to transformations that obey the premises of the
Kolmogorov-Johnson-Mehl-Avrami model. We have derived
some important statistical properties such as the expected
value and the variance. The approach used is an extension of
the work of Gilbert.1 Additionally, we have developed a sig-
nificantly simpler relation for the calculation of the variance.
The discrepancies between the exact and approximate vari-
ances are less than 2%.

Like Pineda et al.,16 we have derived an approximate
grain size PDF as the superposition of gamma distributions.
We have proved that the expected value and variance derived
from this approximate grain size PDF are exact. Moreover,
we have checked its accuracy against Monte Carlo simula-
tions for a system undergoing a crystallization under isochro-
nal heating conditions. The results show a remarkably good
agreement between the approximate PDF and the Monte
Carlo simulations. Finally, we have shown that the grain ra-
dius PDF can be expressed as the superposition of Gaussian
distributions.

FIG. 8. �Color online� Grain radius distribution for three-
dimensional growth and isochronal heating. Comparison between
the PDF obtained from Eq. �44� �black solid line�, Eq. �48� �red
dashed line�, and Monte Carlo simulation �empty squares�.

CELL SIZE DISTRIBUTION IN A RANDOM… PHYSICAL REVIEW B 78, 144101 �2008�

144101-9



ACKNOWLEDGMENTS

This work has been supported by the Spanish Programa
Nacional de Materiales under Contract No. MAT2006-11144
and by the Generalitat de Catalunya under Contract No.
2005SGR-00666.

APPENDIX A: ONE-DIMENSIONAL PDF

For the one-dimensional case, the extended transformed
fraction is

Xex�t� = 2�
0

t

I���	�
�

t

G�z�dz
d� , �A1�

and the expected value E� becomes

E� =
2

1 − X�����

�

�1 − X�z��G�z�dz . �A2�

With regard to the calculation of P�
��b�, we have split the

entire space into three regions. The first corresponds to Q
located at the left side of O, in this case rP=rO+b and

P�
��b,Q� = exp�− Xex�tP�� . �A3�

The second region corresponds to Q located between O and
P, then rP+rO=b and

P�
��b,Q� = exp�− Xex�tO� − Xex�tP� + Xex���� . �A4�

And the third region corresponds to Q located at the right
side of P, rO=rP+b and

P�
��b,Q� = exp�− Xex�tO�� . �A5�

Finally, combining Eqs. �A3�–�A5� with Eq. �34� we obtain

P�
��b� = I����2�

b

�

�1 − X�tO��drO

+
1

1 − X����0

b

�1 − X�tO���1 − X�tP��drO� ,

rO = �
�

tO

G�z�dz ,

b − rO = �
�

tP

G�z�dz . �A6�

Once P�
��b� is known, Eq. �33� combined with Eq. �37� de-

livers var�.

APPENDIX B: SITE SATURATED NUCLEATION

When nucleation is completed prior to crystal growth, the
nucleation rate can be approximated to I�t�n0��t�, where

n0 is the density of nuclei and � is the Dirac delta function.
In this case, the extended transformed fraction becomes

Xex�t� = n0gD	�
0

t

G�z�dz
D

. �B1�

Then

Ia��� = n0�1 − X�������� �B2�

and the PDF, Eq. �11�, is reduced to

f�s� =

�
0

�

n0�1 − X��������f��s�d�

�
0

�

n0�1 − X��������d�

= f0�s� . �B3�

Therefore, in this case we only need to calculate E0 and var0.
Concerning E0, Eq. �14�, it can be easily proved that it is
simply

E0 =
1

n0
�

0

�

exp�− Xex�dXex = 1/n0. �B4�

Indeed, according to Eq. �B3� E0=E, and the expected value
of E is 1 /n0 �Eq. �12��. Moreover, the fraction of space oc-
cupied by a � crystal, X�, is reduced to ����, as expected.

With respect to var0, its value is determined by E0
� and E0

by means of Eq. �37�. E0
� is given by Eq. �33�. We therefore

need to evaluate P0
��b�, the value of which depends on which

relation for P0
��b ,Q� we use: the exact one �Eq. �36�� or the

approximate one �Eq. �40��. We will evaluate P0
��b� for the

one-dimensional case because in this case the approximate
solution coincides with the exact one. Specifically, substitu-
tion of Eq. �B1� into Eq. �A6� leads to

P0
��b� = n0����	2�

b

�

e−2n0rOdrO + �
0

b

e−2n0bdrO

= n0����e−2n0b�1/n0 + b� . �B5�

Then, from Eqs. �33� and �B5�

E0
� =

3

2

1

n0
. �B6�

Finally, from Eqs. �37� and �B6�

var0 = �2n0�−1. �B7�

If we choose a gamma distribution for the calculation of the
cell size PDF, from Eq. �42� we obtain �0=2. Thus for site-
saturated nucleation and one-dimensional growth we obtain a
gamma distribution with �=2 and E=1 /n0, which agrees
with the exact solution.15,25
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