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Calculations of sub-μhartree accuracy employing explicitly correlated Gaussian lobe functions pro-
duce comprehensive data on the energy E(ω), its components, and the one-electron properties of
the two lowest-energy states of the three-electron harmonium atom. The energy computations at
19 values of the confinement strength ω ranging from 0.001 to 1000.0, used in conjunction with
a recently proposed robust interpolation scheme, yield explicit approximants capable of estimating
E(ω) and the potential energy of the harmonic confinement within a few tenths of μhartree for any
ω ≥ 0.001, the respective errors for the kinetic energy and the potential energy of the electron-
electron repulsion not exceeding 2 μhartrees. Thanks to the correct ω → 0 asymptotics incorporated
into the approximants, comparable accuracy is expected for values of ω smaller than 0.001. Occupa-
tion numbers of the dominant natural spinorbitals and two different measures of electron correlation
are also computed. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4717461]

I. INTRODUCTION

Electronic structures of N-electron harmonium atoms,
described by the nonrelativistic Hamiltonian,1–5

Ĥ = −1

2

N∑
p=1

∇̂2
p + 1

2
ω2

N∑
p=1

r2
p +

N∑
p>q=1

r−1
pq , (1)

are governed by the magnitude of the confinement
strength ω that measures the extent of electron correla-
tion. At the strong-confinement (or the weak-correlation)
limit of ω → ∞, harmonium atoms can be regarded as sys-
tems of independent harmonic oscillators weakly perturbed
by the electron-electron repulsion. Consequently, their ener-
gies E(ω) are given by the series expansion3, 6–8

E(ω) =
∞∑

j=0

Aj ω(2−j )/2 , (2)

where the coefficients {Aj} depend upon N and the electronic
state under consideration. The corresponding electron densi-
ties of low-energy states decrease monotonically with the dis-
tance from the origin of the coordinate system, making har-
monium atoms at the weak-correlation limit very much alike
their ordinary counterparts (except for the absence of the nu-
clear cusp).

What sets apart harmonium atoms from the fully
Coulombic systems is the strong-correlation (or the weak-
confinement) limit of ω → 0. While ordinary atoms un-
dergo autoionization below critical values of nuclear charge,
the Hamiltonian (1) admits bounded eigenstates for all val-
ues of ω. Therefore, upon the confinement strength becoming

a)Author to whom correspondence should be addressed. Electronic mail:
jerzy@wmf.univ.szczecin.pl.

vanishingly small, the harmonium atoms evolve into the so-
called Wigner molecules,4, 5, 9, 10 which are spherical Coulomb
crystals11 weakly perturbed by the kinetic energy of their
constituent electrons. In the relevant series expansion for the
energy,3, 4, 6

E(ω) =
∞∑

j=0

Bj ω(2+j )/3 , (3)

the first two terms are simply the electrostatic energy of the
pertinent Coulomb crystal and the zero-point energy of har-
monic vibrations about the equilibrium geometry determined
by the balance between the harmonic confinement and the
electron-electron repulsion. Whereas the dynamical electron
correlation dominates at the strong-confinement limit, the
Wigner molecules are perfect examples of systems involv-
ing the nondynamical correlation with the consequent elec-
tron localization and the asymptotic vanishing of occupation
numbers of all the natural spinorbitals.10

It is the infinite tunability of the absolute magnitudes
and relative extents of the dynamical and nondynamical elec-
tron correlations that makes harmonium atoms ideal tools for
calibration, testing, and benchmarking of approximate elec-
tronic structure methods of quantum chemistry and solid-state
physics. In this respect, thanks to their realistic electron den-
sities and smooth variation of electronic properties between
the ω → 0 and ω → ∞ limits, these systems hold a defi-
nite advantage over the homogeneous electron gas, in which
the constant-density ground state is abruptly replaced by the
Wigner crystal due to crossing of energy levels at some criti-
cal value of the electron density (which in this case serves the
role analogous to that of ω).
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Despite the availability of exact wavefunctions and en-
ergies for certain values of ω1–3 that has prompted several
studies assessing accuracies of diverse methods of quantum
chemistry,12–20 the trivial nature of electron correlation in the
two-electron harmonium atom limits its usefulness, especially
in research on electron-pair and density-matrix functional the-
ories. In contrast, the three-electron species, for which only
numerical and asymptotic solutions of the Schrödinger equa-
tions are possible, offers insights into more intricate interplays
between the same- and opposite-spin correlation effects.

Thus far, the three-electron harmonium atom has been
the subject of relatively few investigations. The study of the
ω → ∞ limit has resulted in closed-form expressions for the
coefficients A0, A1, and A2,

A0 = 11

2
, (4)

A1 = 5

2

√
2

π
, (5)

and

A2 = 49

9
+ 1

6π

[ − 88 + 2
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3 − 173 ln 2 + 98 ln (1 +
√

3)
]

≈ −0.176654 (6)

for the 2P− doublet ground state, and

A0 = 13

2
, (7)
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√
2

π
, (8)

and

A2 = 23

9
+ 8

3π
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√

3 − 7 ln 2 + 4 ln (1 +
√

3)
]

≈ −0.0756103 (9)

for the 4P+ quartet first excited state.6 The analysis of the
strong-correlation limit of ω → 0 has yielded

B0 = 1

2
35/3 (10)

and

B1 = 1

2

(
3 +

√
3 +

√
6
)

(11)

for both of the aforementioned states.4, 6

Numerical computations of the ground- and excited-state
energies of the three-electron harmonium atom have also been
carried out, involving methods ranging from the Hartree-
Fock approximation21 and low-level electron-correlation
approaches 22 to Monte Carlo calculations 23 and the full con-
figuration interaction (FCI) employed in conjunction with ex-
trapolation to the complete basis set (CBS).24 The FCI/CBS
study, in which approximate energies of the 2P− and 4P+
states have been computed for 12 values of ω between 0.1 and
1000.0, has uncovered both advantages and disadvantages of
using uncorrelated Gaussian basis sets in electronic structure
calculations on harmonium atoms. On one hand, unlike those
relying upon explicitly correlated basis sets, such calculations

produce not only the actual energies but also their correspond-
ing limits for specific angular momenta that are of much value
in assessment of the accuracy of approximate methods involv-
ing finite basis sets. On the other hand, they afford energies of
inferior accuracy and, due to the emergence of linear depen-
dencies among the basis functions, are not feasible for smaller
values of ω.

Prompted by those observations, we have recently em-
barked upon large-scale calculations that aimed at obtaining
highly accurate energies and other electronic properties of the
lowest-energy 2P− and 4P+ states of the three-electron har-
monium atom for a wide range of the confinement strengths.
The results of these definitive calculations are reported in this
paper.

II. NUMERICAL METHODS

Variational energies of the lowest-energy 2P− and 4P+
states of the three-electron harmonium atom have been com-
puted with accuracy exceeding 1 μhartree for 19 values of ω

belonging to the set {0.001, 0.002, 0.005, 0.1, . . . , 1000.0}
using the ansatz

�(r1, r2, r3, σ1, σ2, σ3)

=
M∑

I=1

CI Â [�(σ1, σ2, σ3) P̂ χI (r1, r2, r3)] , (12)

where �(σ 1, σ 2, σ 3) is the appropriate spin function, Â is the
three-electron antisymmetrizer that ensures proper permuta-
tional symmetry, P̂ is the spatial symmetry projector, and

χI (r1, r2, r3)

= exp

[
−

3∑
p=1

αIp (rp − RIp)2 −
3∑

p>q=1

βIpq (rp − rq)2

]

(13)

is the Ith explicitly correlated Gaussian lobe primitive. Since
their introduction over half a century ago,25, 26 such prim-
itives have found numerous applications in nonrelativistic
electronic structure studies, including those yielding the cur-
rently most accurate energies of atoms and molecules con-
taining between two and five electrons.27–31 Their popular-
ity stems from the fact that, despite satisfying neither the
nucleus-electron nor electron-electron cusp conditions, they
are flexible enough to recover most of the correlation energy
even with relatively short expansions (12) while allowing for
rapid computations of all the necessary integrals.

The wavefunctions of the harmonium atoms are eigen-
functions of both the L̂2 and L̂z operators with the respective
eigenvalues of L(L + 1) and mL. The primitives (13) do not
correspond to any particular value of L, except for the case
when all the vectors {RIp} vanish (which yields L = 0). In
principle, the multiplication of these primitives by either re-
spective angular functions23 or polynomials in {xp}, {yp}, and
{zp} (p = 1, 2, 3)32 would produce their counterparts pertain-
ing to higher angular momenta. However, the lobe primitives
are numerically expedient and efficient when the energies are
minimized with respect to all the variational parameters {CI,
RIp, αIp, βIpq}. 33
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The spatial symmetry projector

P̂ =
Nsym∑
m=1

am p̂m , (14)

where the index m runs over all the operations {p̂m} belonging
to a finite symmetry point group and the coefficients {am}
depend on the chosen irreducible representation, acts upon the
primitive χ I in the following manner:

P̂ χI (RI1, RI2, RI3) =
Nsym∑
m=1

am χI (p̂mRI1, p̂mRI2, p̂mRI3) .

(15)

While lower than Kh, the spatial symmetries employed in
the actual calculations (A2g of the D4h point group for the 4P+
state and 
u of the D∞h point group for the 2P− state), con-
serve the correct parities.34 In order to minimize the numbers
of primitives, the symmetries have been enforced with simple
expedients. Thus, for the 4P+ state, the vectors {RIp} were
constrained to the xy plane, yielding the A2 symmetry of the
C4v point group and the corresponding projector

P̂ = Ê + Ĉ4 + Ĉ2 + Ĉ3
4 − σ̂v1 − σ̂v2 − σ̂d1 − σ̂d2 . (16)

Similarly, for the 2P− state, the Au symmetry of the Ci point
group, corresponding to the projector

P̂ = Ê − î , (17)

has been enforced by restricting the vectors {RIp} to the z
axis. However, for the three smallest values of ω, where the
Wigner molecule with its off-center maximum in electron
density4, 5, 10 emerges, such symmetry restriction results in ex-
ceedingly long expansions (12). Lowering the symmetry to
A2u of the D4h point group and removing all the constraints
on the vectors {RIp} rectifies this problem.

Stitching of the expansions (2) and (3) while accurately
reproducing the computed energies is possible with the newly
developed robust interpolation scheme.35 The appropriate
[ K

1+2 ] approximants read

E(ω) =
K∑

k=0

CK,k (1 − t)K−k−2 t k+2 , (18)

where t is the real-valued solution of the equation

ω = ω0 t3 (1 − t)−2 . (19)

The parameters CK, 0, CK, 1, CK, K−2, CK, K−1, and CK, K are en-
tirely determined by the coefficients A0, A1, A2, B0, and B1

[Eqs. (4)–(11)],

CK,0 = ω
2/3
0 B0 , (20)

CK,1 = 3K − 2

3
ω

2/3
0 B0 + ω0 B1 , (21)

CK,K−2 = (K − 1)(K − 2)

2
ω0 A0 + 2K − 1

2
ω

1/2
0 A1 + A2,

(22)

CK,K−1 = (K − 1) ω0 A0 + ω
1/2
0 A1 , (23)

and

CK,K = ω0 A0 , (24)

whereas the remaining parameters {CK, 2, . . . , CK, K−3} are
obtained with the least-square fit of the computed energies.
Finally, the parameter ω0 follows from minimization of the
maximum absolute difference between the computed energies
and those produced by the respective approximant.

The availability of differentiable approximants E(ω) al-
lows accurate estimation of not only the total energy for
any value of ω but also its components, namely3 the kinetic
energy

T (ω) = 3

2
ωE′(ω) − E(ω) , (25)

the potential energy of the harmonic confinement

V (ω) = 1

2
ωE′(ω) , (26)

and the potential energy of the electron-electron repulsion

W (ω) = 2E(ω) − 2 ωE′(ω) , (27)

where

ωE′(ω) ≡ ω
dE(ω)

dω

=
K∑

k=0

CK,k (k + 2 − Kt) (3 − t)−1(1 − t)K−k−2 t k+2.

(28)

Natural spinorbitals and their occupation numbers
{ni(ω)} have been obtained by diagonalization of the finite-
matrix representations {�IJ} of the respective 1-matrices.
These representations have been computed with accurate
Gaussian quadratures of the multiple integrals

�IJ =
∑

σ

∫
�(r1, r2, r3, σ1, σ2, σ3) �(r′

1, r2, r3, σ1, σ2, σ3)

×φI (r1) φJ (r′
1) dr1 dr′

1 dr2 dr3, (29)

where
∑

σ denotes the appropriate collective spin summa-
tions and

φI (r)=ζ 3/4 HIx
(
√

ζ x) HIy
(
√

ζ y) HIz
(
√

ζ z) exp(−ζ r2/2) .

(30)

In Eq. (30), Hk(x) is the kth normalized Hermite polynomial
and I ≡ (Ix, Iy, Iz). The quality of the projection (29) has
been optimized by maximizing the trace of � with respect
to ζ . In practice, employment of the basis functions (30) with
0 ≤ Ix, Iy, Iz ≤ 10 (for the total of 113 = 1321 functions)
has been found to produce sufficiently accurate natural spinor-
bitals and their occupation numbers.

Occupation numbers of natural spinorbitals enter for-
mulae for various measures of electron correlation.36–38

Two of such measures, namely the index of almost
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idempotency,36, 38

I(ω) =
∑

i

ni(ω) [ 1 − ni(ω) ] , (31)

and the correlation entropy37, 38

S(ω) = −
∑

i

ni(ω) ln ni(ω) , (32)

have been computed. Analysis of the occupation numbers at
the weak- and strong-correlation limits10 leads to the conclu-
sion that the proper approximant for I(ω) has the form

I(ω) =
K∑

k=0

cK,k (1 − t)K−k+2 t k , (33)

where cK, 0 equals the number of electrons in question and t
is defined by Eq. (19). On the other hand, since the analo-
gous asymptotic series for S(ω) involves logarithmic terms,
they are not amenable to stitching with the aforedescribed
interpolation.

III. RESULTS AND DISCUSSION

Among all the three-electron Slater determinants built
from one-particle wavefunctions of a harmonic oscillator with
a given ω, those corresponding to the configurations sspm

(m = −1, 0, 1) possess the lowest energy. However, according
to the present calculations, the triply-degenerate 2P− doublet
is the ground state of the three-electron harmonium atom for
all the values of ω rather than only at the weak-correlation
limit. Inspection of the computed energies (Table I) reveals
that the strong-confinement expansion (2) truncated at three
terms yields values of E(ω) accurate to within 1% for ω > 0.4.

TABLE I. The total energy and its components of the 2P− ground state of
the three-electron harmonium atom.a

ω Mb E(ω) T(ω) V(ω) W(ω)

1000.0 131 5562.9024148 2734.4057549 2765.7693899 62.7272701
500.0 198 2794.4275166 1364.0240136 1386.1505100 44.2529929
200.0 148 1128.0345088 543.1213467 557.0519518 27.8612103
100.0 162 569.7728341 270.1857383 279.9861908 19.6009050
50.0 139 288.9314294 134.1446524 141.0253606 13.7614163
20.0 150 118.7492107 52.9374089 57.2288732 8.5829286
10.0 152 61.1385255 26.0870108 29.0751788 5.9763360
5.0 136 31.7939128 12.7939735 14.8626287 4.1373105
2.0 116 13.6600905 4.9446231 6.2015712 2.5138962
1.0 131 7.3397411 2.3916874 3.2438095 1.7042443
0.5 148 4.0132179 1.1507610 1.7213263 1.1411306
0.2 149 1.8582001 0.4358712 0.7646904 0.6576385
0.1 166 1.0594492 0.2095449 0.4229980 0.4269063
0.05 180 0.6138518 0.1012844 0.2383787 0.2741886
0.02 225 0.3048014 0.0391424 0.1146479 0.1510111
0.01 457 0.1819359 0.0192012 0.0670457 0.0956890
0.005 145c 0.1096579 0.0094614 0.0397065 0.0604901
0.002 223c 0.0568472 0.0037303 0.0201925 0.0329244
0.001 318c 0.0348458 0.0018500 0.0122319 0.0207639

aAll energies in hartree.
bThe number of basis functions in the expansion (12).
cCalculations within the D4h point group, see the text for explanation.

TABLE II. The individual-spin components of the kinetic and confinement
energies of the 2P− ground state of the three-electron harmonium atom.a

ω Tα(ω) Tβ (ω) Vα(ω) Vβ (ω)

1000.0 1989.0767832 745.3289717 2011.0317772 754.7376127
500.0 992.3095874 371.7144262 1007.7985630 378.3519470
200.0 395.1777625 147.9435842 404.9295799 152.1223719
100.0 196.6228859 73.5628524 203.4835539 76.5026369
50.0 97.6441971 36.5004554 102.4609812 38.5643794
20.0 38.5492641 14.3881448 41.5534626 15.6754106
10.0 19.0041401 7.0828707 21.0959042 7.9792746
5.0 9.3242298 3.4697437 10.7721644 4.0904643
2.0 3.6051012 1.3395219 4.4845316 1.7170395
1.0 1.7434928 0.6481946 2.3392439 0.9045656
0.5 0.8379286 0.3128324 1.2362435 0.4850828
0.2 0.3159915 0.1198797 0.5446321 0.2200583
0.1 0.1509211 0.0586238 0.2985682 0.1244298
0.05 0.0722512 0.0290333 0.1663939 0.0719849
0.02 0.0274846 0.0116578 0.0787618 0.0358861
0.01 0.0133217 0.0058795 0.0455753 0.0214704
0.005 0.0064979 0.0029635 0.0267825 0.0129240
0.002 0.0025374 0.0011929 0.0135392 0.0066533
0.001 0.0012522 0.0005977 0.0081826 0.0040494

aAll energies in hartree.

Conversely, the two-term weak-confinement expansion (3)
produces energy estimates of such accuracy only for
ω < 0.02.

At large values of ω, E(ω) is dominated by the kinetic
energy and the potential energy of the harmonic confinement.
For these energy components, it is possible to compute the
individual-spin contributions Ts(ω) and Vs(ω) (s = α, β,
Table II). At the ω → ∞ limit, both the Tα(ω) / Tβ(ω) and
Vα(ω) / Vβ(ω) ratios tend to (5/4)+(3/4)

(3/4) = 8/3 (Fig. 1). On the
other hand, at the limit of ω → 0, where a classical description
becomes valid, the ratios become equal to 2, simply reflecting
the totalities of particles with individual spins.

10-3 10-2 10-1 100 101 102 103

2.0

2.1

2.2
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2.6

2.7

T
α(

ω
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/ T
β(

ω
) 

 o
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 V
α(

ω
) 

/ V
β(

ω
)

ω

FIG. 1. The dependence of the ratios Tα(ω) / Tβ (ω) (blue dots) and
Vα(ω) / Vβ (ω) (red dots) on the confinement strength for the 2P− state of
the three-electron harmonium atom.
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TABLE III. The total energy and its components of the 4P+ first excited
state of the three-electron harmonium atom.a

ω Mb E(ω) T(ω) V(ω) W(ω)

1000.0 250 6550.3872366 3237.4596057 3262.6156141 50.3120168
500.0 216 3285.6071494 1616.1545067 1633.9205520 35.5320907
200.0 173 1322.4924099 644.4329526 655.6417875 22.4176698
100.0 148 665.8826969 321.0851132 328.9892700 15.8083137
50.0 137 336.2090496 159.7531499 165.3207331 11.1351666
20.0 124 137.0622507 63.2891151 66.7837886 6.9893470
10.0 131 69.9725716 31.3107229 33.7610982 4.9007505
5.0 125 35.9953228 15.4289150 17.1414126 3.4249951
2.0 107 15.1853142 6.0042894 7.0632012 2.1178236
1.0 107 8.0259277 2.9168822 3.6476033 1.4614421
0.5 81 4.3106903 1.4052467 1.9053123 1.0001313
0.2 108 1.9498681 0.5278552 0.8259078 0.5961051
0.1 186 1.0947376 0.2493872 0.4480416 0.3973088
0.05 221 0.6266728 0.1173191 0.2479973 0.2613564
0.02 243 0.3079190 0.0434012 0.1171067 0.1474111
0.01 313 0.1829731 0.0206388 0.0678706 0.0944637
0.005 565 0.1100055 0.0099264 0.0399773 0.0601017
0.002 691 0.0569337 0.0038356 0.0202565 0.0328417
0.001 880 0.0348783 0.0018844 0.0122542 0.0207396

aAll energies in hartree.
bThe number of basis functions in the expansion (12).

The spmpm′ (m �= m′ = −1, 0, 1) configurations of the
ω → ∞ limit give rise to the triply-degenerate 4P+ quartet
that remains the first excited state of the three-electron harmo-
nium atom for all the values of ω (Table III). As in the case of
the ground state, the truncated weak- and strong-correlation
expansions for E(ω) perform rather poorly, producing en-
ergy estimates accurate to within 1% only for ω > 0.14 and
ω < 0.008, respectively. The doublet-quartet energy splitting,
which is significant at strong confinements, vanishes as the
confinement strength tends to zero.4

It is instructive to compare the highly accurate energies
of the present study with those published previously.23, 24 In
general, excellent (sub-μhartree) agreement with the Monte
Carlo results23 is observed except for the energy of the 2P−
state at ω = 0.5, where the present value is lower by 6
μhartree (Table I). Despite judicious extrapolation employed,
the FCI/CBS energies24 fare much worse, the energy er-
rors steadily rising with a decreasing confinement strength:
2 μhartree at ω = 1000.0, 8 μhartree at ω = 10.0, 35
μhartree at ω = 0.5, and 44 μhartree at ω = 0.1 for the 2P−
state; 1 μhartree at ω = 1000.0, 1 μhartree at ω = 10.0, 8
μhartree at ω = 0.5, and 13 μhartree at ω = 0.1 for the 4P+
state.

The quality of the data compiled in Tables I and III is
readily assessed by analysing the behavior of the [ K

1+2 ] ap-
proximants (18) and (19) that smoothly interpolate energies
between the weak- and strong-correlation limits (Fig. 2). It is
found that, after initially decreasing with K in a steady fash-
ion, the maximum absolute deviations of the approximate en-
ergies from their “exact” computed counterparts reach tem-
porary plateaus at K = 10, where they amount to 0.3 and
0.4 μhartree for the 2P− and 4P+ states, respectively. This
extent of numerical noise is consistent with the convergence

10-3 10-2 10-1 100 101 102 103
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100

101
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104
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)

ω

FIG. 2. The dependence of the total energy on the confinement strength for
the three-electron harmonium atom. The blue dots and lines: the 2P− state,
the red dots and lines: the 4P+ state; the dots, the solid and the dotted lines
denote the computed data, the approximants, and the large-ω expansion (2),
respectively, whereas the dotted green line denotes the small-ω expansion (3)
that is common to both the states.

of energies observed in the variational calculations that is
suggestive of their accuracy in the order of 0.1 μhartree.39

The high quality of the computed energies and wavefunctions
is independently confirmed by the impressive agreement be-
tween the “exact” expectation-value energy components and
their counterparts calculated according to Eqs. (25)–(28) from
the [ 10

1+2 ] energy approximant (with the parameters listed in
Table IV) and its first derivative, the maximum absolute de-
viations amounting to 1.4 (1.4) μhartree for T(ω), 0.4 (0.5)
μhartree for V (ω), and 2.0 (1.9) μhartree for W (ω) of the
2P− (4P+) state.

In calibration and benchmarking of approximate electron
correlation methods, the knowledge of accurate occupation
numbers of natural spinorbitals is as important as that of ener-
gies. The computed occupation numbers of dominant natural
spinorbitals, compiled in Tables V–VII are expected to be ac-
curate to within ca. 10−5. In both the cases of the strongly

TABLE IV. The parameters of the [ 10
1+2 ] approximants for the total energies

of the 2P− and 4P+ states of the three-electron harmonium atom.a

State 2P− 4P+

ω0 0.06065557442 0.08602151109
C10, 0 0.4816733024 0.6080091855
C10, 1 4.713417723 5.983635883
C10, 2 20.69834808 26.45130240
C10, 3 53.77973749 69.26555948
C10, 4 91.11439973 118.1960178
C10, 5 105.8686226 139.1568142
C10, 6 84.65349282 114.5061120
C10, 7 46.18853978 65.12956009
C10, 8 16.50016288 24.49970722
C10, 9 3.493715488 5.500288290
C10, 10 0.3336056593 0.5591398221

aSee Eqs. (18) and (19).
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TABLE V. The occupation numbers of the strongly occupied natural spinor-
bitals of the 2P− and 4P+ states of the three-electron harmonium atom.

2P− 4P+

ω p0 s s s p±1

1000.0 0.999988 0.999985 0.999977 0.999997 0.999995
500.0 0.999975 0.999971 0.999954 0.999995 0.999989
200.0 0.999939 0.999928 0.999886 0.999988 0.999973
100.0 0.999878 0.999856 0.999773 0.999975 0.999946
50.0 0.999758 0.999714 0.999548 0.999951 0.999892
20.0 0.999404 0.999296 0.998884 0.999878 0.999734
10.0 0.998830 0.998613 0.997801 0.999759 0.999475
5.0 0.997723 0.997289 0.995695 0.999527 0.998968
2.0 0.994606 0.993532 0.989704 0.998858 0.997508
1.0 0.989848 0.987749 0.980456 0.997805 0.995207
0.5 0.981362 0.977364 0.963807 0.995841 0.990930
0.2 0.960535 0.951816 0.922792 0.990604 0.979656
0.1 0.933923 0.919518 0.871078 0.983078 0.963877
0.05 0.895183 0.873845 0.798618 0.970410 0.938488
0.02 0.823845 0.795040 0.676685 0.941210 0.885157
0.01 0.756550 0.727114 0.576149 0.905577 0.828089
0.005 0.681922 0.657702 0.479648 0.855174 0.758461
0.002 0.580567 0.568655 0.368830 0.765160 0.655808
0.001 0.507569 0.504063 0.300161 0.683940 0.578544

(Table V) and the dominant weakly occupied (Tables VI
and VII) natural spinorbitals, the occupation numbers vary
smoothly with ω, the leading asymptotic term beyond the con-
stant of zero or one being proportional to ω−1 at the weak-
correlation limit. The vanishing of the occupation numbers
at certain values of ω, encountered previously in the case of
the two-electron harmonium atom,3 is not observed. It is not
clear at present whether this vanishing is peculiar to the two-
electron species or it is not found in the present study because
of the limited range of ω considered.

TABLE VII. The occupation numbers of the dominant weakly occupied
natural spinorbitals of the 4P+ first excited state of the three-electron harmo-
nium atom.

ω d±2 d±1 p0

1000.0 0.000003 0.000002 0.000002
500.0 0.000006 0.000003 0.000003
200.0 0.000016 0.000008 0.000008
100.0 0.000032 0.000016 0.000016
50.0 0.000064 0.000031 0.000031
20.0 0.000158 0.000078 0.000077
10.0 0.000313 0.000154 0.000153
5.0 0.000616 0.000302 0.000300
2.0 0.001493 0.000731 0.000724
1.0 0.002884 0.001409 0.001392
0.5 0.005489 0.002673 0.002630
0.2 0.012424 0.006018 0.005885
0.1 0.022234 0.010711 0.010429
0.05 0.038154 0.018257 0.017727
0.02 0.071719 0.033973 0.033058
0.01 0.107169 0.050411 0.049510
0.005 0.148609 0.069591 0.069584
0.002 0.202465 0.094986 0.098500
0.001 0.233679 0.110298 0.118166

Both the index of almost idempotency [Eq. (31)] and the
correlation entropy [Eq. (32)] decrease monotonically with
ω (Figs. 3 and 4). In the case of the 2P− ground state, this
behavior is also observed for individual spin components of
these measures of electron correlation. The computed values
of I(ω) are consistent with their ω → 0 limits that equal the
respective numbers of electrons (we note in passing that the
“linear entropies” of the two-electron harmonium atom dis-
played in Fig. 1 of Ref. 38 violate such asymptotics and thus
are obviously in error). The approximants (33) with K = 8

TABLE VI. The occupation numbers of the dominant weakly occupied natural spinorbitals of the 2P− ground
state of the three-electron harmonium atom.

ω p±1 s d±1 p±1 p0 s d±1

1000.0 0.000006 0.000004 0.000003 0.000007 0.000004 0.000001 0.000001
500.0 0.000013 0.000008 0.000007 0.000015 0.000008 0.000002 0.000001
200.0 0.000031 0.000019 0.000017 0.000037 0.000019 0.000006 0.000004
100.0 0.000062 0.000038 0.000033 0.000074 0.000037 0.000012 0.000007
50.0 0.000124 0.000076 0.000066 0.000147 0.000074 0.000024 0.000014
20.0 0.000307 0.000186 0.000163 0.000364 0.000182 0.000059 0.000036
10.0 0.000606 0.000365 0.000320 0.000720 0.000357 0.000115 0.000072
5.0 0.001193 0.000711 0.000623 0.001414 0.000695 0.000225 0.000144
2.0 0.002879 0.001685 0.001476 0.003408 0.001642 0.000531 0.000357
1.0 0.005518 0.003167 0.002776 0.006516 0.003075 0.000990 0.000706
0.5 0.010344 0.005794 0.005090 0.012168 0.005593 0.001780 0.001378
0.2 0.022498 0.012138 0.010750 0.026246 0.011564 0.003539 0.003221
0.1 0.038137 0.020047 0.017972 0.044075 0.018768 0.005387 0.005836
0.05 0.060243 0.031199 0.028533 0.068797 0.028439 0.007308 0.009930
0.02 0.096639 0.050563 0.048316 0.108301 0.043963 0.008916 0.017701
0.01 0.124206 0.066989 0.067377 0.136944 0.056146 0.009291 0.024774
0.005 0.146562 0.082347 0.088474 0.158465 0.067061 0.011739 0.032023
0.002 0.163958 0.096941 0.115007 0.171020 0.077250 0.016848 0.040833
0.001 0.168097 0.102231 0.130364 0.168675 0.080708 0.020934 0.046345
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TABLE VIII. The parameters of the approximants (33) for the index of al-
most idempotency of the 2P− and 4P+ states of the three-electron harmonium
atom.

2P− (α) 2P− (β) 2P− (all) 4P+ (all)

ω0 0.01484874089 0.01530072302 0.01413903705 0.004896250478
c8, 0 2.000000000 1.000000000 3.000000000 3.000000000
c8, 1 20.24421304 12.12803986 33.33619779 16.33346031
c8, 2 60.15209407 20.84392444 75.94978756 148.8331478
c8, 3 207.3145352 168.6699549 388.4239730 195.8369088
c8, 4 207.2133717 58.39362443 262.3008601 438.9297534
c8, 5 285.4437247 270.7200045 554.3720075 341.7734661
c8, 6 135.6185831 113.1232035 264.9911628 188.8322466
c8, 7 34.83841331 30.12866095 68.47998523 49.79905454
c8, 8 3.648558054 3.001496875 7.092185256 5.508184935
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FIG. 3. The dependence of the index of almost idempotency on the confine-
ment strength for the three-electron harmonium atom. Blue dots and lines:
the α electrons of the 2P− state, red dots and lines: the β electrons of the 2P−
state, green dots and lines: all the electrons of the 2P− state, orange dots and
lines: all the electrons of the 4P+ state; the dots and the solid lines denote the
computed data and the approximants, respectively.

10-3 10-2 10-1 100 101 102 103
10-4

10-3

10-2

10-1

100

101

S
(ω

)

ω

FIG. 4. The dependence of the correlation entropy on the confinement
strength for the three-electron harmonium atom. Blue dots: the α electrons
of the 2P− state, red dots: the β electrons of the 2P− state, green dots: all the
electrons of the 2P− state, orange dots: all the electrons of the 4P+ state; the
lines are drawn for guidance only.

and the parameters listed in Table VIII reproduce the “exact”
values of I(ω) within 4 · 10−6 in all cases.

IV. CONCLUSIONS

The present calculations of sub-μhartree accuracy pro-
duce data on the energy E(ω), its components, and the one-
electron properties of the two lowest-energy states of the
three-electron harmonium atom that are both comprehensive
and definitive. When employed in conjunction with the re-
cently proposed35 robust interpolation scheme, the energy
computations at 19 values of the confinement strength ω rang-
ing from 0.001 to 1000.0 yield explicit approximants capable
of estimating E(ω) and the potential energy of the harmonic
confinement V (ω) within a few tenths of μhartree for any
ω ≥ 0.001, the respective errors for the kinetic energy T(ω)
and the potential energy of the electron-electron repulsion
W (ω) not exceeding 2 μhartrees. Thanks to the correct ω → 0
asymptotics incorporated into the approximants, comparable
accuracy is expected for values of ω smaller than 0.001. It
is also worth mentioning that all the coefficients {CK, k} of
the energy approximant are positive, which eliminates round-
off errors due to partial term cancellations. The same is true
about the respective approximants for the index of almost
idempotency.

Comparison of the computed energies with those previ-
ously published reveals some discrepancies that apparently
stem from the substandard performance of the extrapolation
employed in the workout of the FCI/CBS data24 and an error
of unknown origin in one instance of the results of Monte
Carlo calculations.23 Overall, the excellent performance of
both the explicitly correlated Gaussian lobe functions and
the robust interpolation scheme in calculations on the three-
electron harmonium atom bode well for analogous studies of
systems with larger numbers of particles.
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